151
|
Prymula K, Jadczyk T, Roterman I. Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction. J Comput Aided Mol Des 2010; 25:117-33. [PMID: 21104192 PMCID: PMC3032897 DOI: 10.1007/s10822-010-9402-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches.
Collapse
Affiliation(s)
- Katarzyna Prymula
- Faculty of Chemistry, Jagiellonian University, 3 Ingardena Street, 30-060 Krakow, Poland
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 7E Kopernika Street, 31-034 Krakow, Poland
| | - Tomasz Jadczyk
- Department of Electronics, AGH University of Science and Technology, 30 Mickiewicza Avenue, 30-059 Krakow, Poland
| | - Irena Roterman
- Department of Bioinformatics and Telemedicine, Medical College, Jagiellonian University, 16 Lazarza Street, 31-530 Krakow, Poland
| |
Collapse
|
152
|
Masterson LR, Cheng C, Yu T, Tonelli M, Kornev A, Taylor SS, Veglia G. Dynamics connect substrate recognition to catalysis in protein kinase A. Nat Chem Biol 2010; 6:821-8. [PMID: 20890288 PMCID: PMC3487389 DOI: 10.1038/nchembio.452] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 09/03/2010] [Indexed: 12/12/2022]
Abstract
Atomic resolution studies of protein kinases have traditionally been carried out in the inhibitory state, limiting our current knowledge on the mechanisms of substrate recognition and catalysis. Using NMR, X-ray crystallography and thermodynamic measurements, we analyzed the substrate recognition process of cAMP-dependent protein kinase (PKA), finding that entropy and protein dynamics play a prominent role. The nucleotide acts as a dynamic and allosteric activator by coupling the two lobes of apo PKA, enhancing the enzyme dynamics synchronously and priming it for catalysis. The formation of the ternary complex is entropically driven, and NMR spin relaxation data reveal that both substrate and PKA are dynamic in the closed state. Our results show that the enzyme toggles between open and closed states, which indicates that a conformational selection rather than an induced-fit mechanism governs substrate recognition.
Collapse
Affiliation(s)
- Larry R. Masterson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455-0431
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431
| | - Cecilia Cheng
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA 92093-0654
| | - Tao Yu
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544
| | - Alexandr Kornev
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA 92093-0654
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of San Diego, San Diego CA 92093-0654
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455-0431
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431
| |
Collapse
|
153
|
Reinbothe C, El Bakkouri M, Buhr F, Muraki N, Nomata J, Kurisu G, Fujita Y, Reinbothe S. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. TRENDS IN PLANT SCIENCE 2010; 15:614-24. [PMID: 20801074 DOI: 10.1016/j.tplants.2010.07.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/14/2010] [Accepted: 07/22/2010] [Indexed: 05/21/2023]
Abstract
Photosynthetic organisms require chlorophyll or bacteriochlorophyll for their light trapping and energy transduction activities. The biosynthetic pathways of chlorophyll and bacteriochlorophyll are similar in most of their early steps, except for the reduction of protochlorophyllide (Pchlide) to chlorophyllide. Whereas angiosperms make use of a light-dependent enzyme, cyanobacteria, algae, bryophytes, pteridophytes and gymnosperms contain an additional, light-independent enzyme dubbed dark-operative Pchlide oxidoreductase (DPOR). Anoxygenic photosynthetic bacteria such as Rhodobacter capsulatus and Rhodobacter sphaeroides rely solely on DPOR. Recent atomic resolution of reductase and catalytic components of DPOR from R. sphaeroides and R. capsulatus, respectively, have revealed their similarity to nitrogenase components. In this review, we discuss the two fundamentally different mechanisms of Pchlide reduction in photosynthetic organisms.
Collapse
Affiliation(s)
- Christiane Reinbothe
- Lehrstuhl für Pflanzenphysiologie, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Bhatt D, Zuckerman DM. Heterogeneous path ensembles for conformational transitions in semi-atomistic models of adenylate kinase. J Chem Theory Comput 2010; 6:3527-3539. [PMID: 21660120 PMCID: PMC3108504 DOI: 10.1021/ct100406t] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We performed "weighted ensemble" path-sampling simulations of adenylate kinase, using several semi-atomistic protein models. The models have an all-atom backbone with various levels of residue interactions. The primary result is that full statistically rigorous path sampling required only a few weeks of single-processor computing time with these models, indicating the addition of further chemical detail should be readily feasible. Our semi-atomistic path ensembles are consistent with previous biophysical findings: the presence of two distinct pathways, identification of intermediates, and symmetry of forward and reverse pathways.
Collapse
Affiliation(s)
- Divesh Bhatt
- Department of Computational and Systems Biology, University of Pittsburgh
| | | |
Collapse
|
155
|
Burger SK, Ayers PW. Dual Grid Methods for Finding the Reaction Path on Reduced Potential Energy Surfaces. J Chem Theory Comput 2010; 6:1490-7. [PMID: 26615686 DOI: 10.1021/ct100012y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Steven K. Burger
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Paul W. Ayers
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada
| |
Collapse
|
156
|
Lindberg D, de la Fuente Revenga M, Widersten M. Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity. Biochemistry 2010; 49:2297-304. [PMID: 20146441 DOI: 10.1021/bi902157b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The underlying enzyme kinetics behind the regioselective promiscuity shown by epoxide hydrolases toward certain epoxides has been studied. The effects of temperature and pH on regioselectivity were investigated by analyzing the stereochemistry of hydrolysis products of (1R,2R)-trans-2-methylstyrene oxide between 14-46 degrees C and pH 6.0-9.0, either catalyzed by the potato epoxide hydrolase StEH1 or in the absence of enzyme. In the enzyme-catalyzed reaction, a switch of preferred epoxide carbon that is subjected to nucleophilic attack is observed at pH values above 8. The enzyme also displays cooperativity in substrate saturation plots when assayed at temperatures < or = 30 degrees C and at intermediate pH. The cooperativity is lost at higher assay temperatures. Cooperativity can originate from a kinetic mechanism involving hysteresis and will be dependent on the relationship between k(cat) and the rate of interconversion between two different Michaelis complexes. In the case of the studied reactions, the proposed different Michaelis complexes are enzyme-substrate complexes in which the epoxide substrate is bound in different binding modes, allowing for separate pathways toward product formation. The assumption of separated, but interacting, reaction pathways is supported by that formation of the two product enantiomers also displays distinct pH dependencies of k(cat)/K(M). The thermodynamic parameters describing the differences in activation enthalpy and entropy suggest that (1) regioselectivity is primarily dictated by differences in activation entropy with positive values of both DeltaDeltaH(++) and DeltaDeltaS(++) and (2) the hysteretic behavior is linked to an interconversion between Michaelis complexes with rates increasing with temperature. From the collected data, we propose that hysteresis, regioselectivity, and, when applicable, hysteretic cooperativity are closely linked properties, explained by the kinetic mechanism earlier introduced by our group.
Collapse
Affiliation(s)
- Diana Lindberg
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
157
|
Fazary AE, Ismadji S, Ju YH. Studies on temperature dependent kinetics of Aspergillus awamori feruloyl esterase in water solutions. KINETICS AND CATALYSIS 2010. [DOI: 10.1134/s0023158410010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
158
|
Koval VV, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS. Real-time studies of conformational dynamics of the repair enzyme E. coli formamidopyrimidine-DNA glycosylase and its DNA complexes during catalytic cycle. Mutat Res 2010; 685:3-10. [PMID: 19751748 DOI: 10.1016/j.mrfmmm.2009.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 08/20/2009] [Indexed: 05/28/2023]
Abstract
Fpg protein from Escherichia coli belongs to the class of DNA glycosylases/abasic site lyases excising several oxidatively damaged purines in the base excision repair pathway. In this review, we summarize the results of our studies of Fpg protein from E. coli, elucidating the intrinsic mechanism of recognition and excision of damaged bases in DNA.
Collapse
Affiliation(s)
- Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave. 8, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
159
|
Mutations in salt-bridging residues at the interface of the core and lid domains of epoxide hydrolase StEH1 affect regioselectivity, protein stability and hysteresis. Arch Biochem Biophys 2010; 495:165-73. [PMID: 20079707 DOI: 10.1016/j.abb.2010.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/18/2009] [Accepted: 01/11/2010] [Indexed: 11/22/2022]
Abstract
Epoxide hydrolase, StEH1, shows hysteretic behavior in the catalyzed hydrolysis of trans-2-methylstyrene oxide (2-MeSO)(1). Linkage between protein structure dynamics and catalytic function was probed in mutant enzymes in which surface-located salt-bridging residues were substituted. Salt-bridges at the interface of the alpha/beta-hydrolase fold core and lid domains, as well as between residues in the lid domain, between Lys(179)-Asp(202), Glu(215)-Arg(41) and Arg(236)-Glu(165) were disrupted by mutations, K179Q, E215Q, R236K and R236Q. All mutants displayed enzyme activity with styrene oxide (SO) and 2-MeSO when assayed at 30 degrees C. Disruption of salt-bridges altered the rates for isomerization between distinct Michaelis complexes, with (1R,2R)-2-MeSO as substrate, presumably as a result of increased dynamics of involved protein segments. Another indication of increased flexibility was a lowered thermostability in all mutants. We propose that the alterations to regioselectivity in these mutants derive from an increased mobility in protein segments otherwise stabilized by salt bridging interactions.
Collapse
|
160
|
Abstract
Molecular dynamics are essential for protein function. In some cases these dynamics involve the interconversion between ground state, highly populated conformers and less populated higher energy structures ('excited states') that play critical roles in biochemical processes. Here we describe recent advances in NMR spectroscopy methods that enable studies of these otherwise invisible excited states at an atomic level and that help elucidate their important relation to function. We discuss a range of examples from molecular recognition, ligand binding, enzyme catalysis and protein folding that illustrate the role that motion plays in 'funneling' conformers along preferred pathways that facilitate their biological function.
Collapse
Affiliation(s)
- Andrew J Baldwin
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
161
|
Ramanathan A, Agarwal PK. Computational identification of slow conformational fluctuations in proteins. J Phys Chem B 2009; 113:16669-80. [PMID: 19908896 PMCID: PMC2872677 DOI: 10.1021/jp9077213] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conformational flexibility of proteins has been linked to their designated functions. Slow conformational fluctuations occurring at the microsecond to millisecond time scale, in particular, have recently attracted considerable interest in connection to the mechanism of enzyme catalysis. Computational methods are providing valuable insights into the connection between protein structure, flexibility, and function. In this report, we present studies on identification and characterization of microsecond flexibility of ubiquitin, based on quasi-harmonic analysis (QHA) and normal-mode analysis (NMA). The results indicate that the slowest 10 QHA modes, computed from the 0.5 mus molecular dynamics ensemble, contribute over 78% of all motions. The identified slow movements show over 75% similarity with the conformational fluctuations observed in nuclear magnetic resonance ensemble and also agree with displacements in the set of X-ray structures. The slowest modes show high flexibility in the beta1-beta2, alpha1-beta3, and beta3-beta4 loop regions, with functional implications in the mechanism of binding other proteins. NMA of ubiquitin structures was not able to reproduce the long time scale fluctuations, as they were found to strongly depend on the reference structures. Further, conformational fluctuations coupled to the cis/trans isomerization reaction catalyzed by the enzyme cyclophilin A (CypA), occurring at the microsecond to millisecond time scale, have also been identified and characterized on the basis of QHA of conformations sampled along the reaction pathway. The results indicate that QHA covers the same conformational landscape as the experimentally observed CypA flexibility. Overall, the identified slow conformational fluctuations in ubiquitin and CypA indicate that the intrinsic flexibility of these proteins is closely linked to their designated functions.
Collapse
Affiliation(s)
- Arvind Ramanathan
- Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology, Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Computational Biology Institute, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - Pratul K. Agarwal
- Computational Biology Institute, and Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| |
Collapse
|
162
|
Koike R, Kidera A, Ota M. Alteration of oligomeric state and domain architecture is essential for functional transformation between transferase and hydrolase with the same scaffold. Protein Sci 2009; 18:2060-6. [PMID: 19670211 DOI: 10.1002/pro.218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transferases and hydrolases catalyze different chemical reactions and express different dynamic responses upon ligand binding. To insulate the ligand molecule from the surrounding water, transferases bury it inside the protein by closing the cleft, while hydrolases undergo a small conformational change and leave the ligand molecule exposed to the solvent. Despite these distinct ligand-binding modes, some transferases and hydrolases are homologous. To clarify how such different catalytic modes are possible with the same scaffold, we examined the solvent accessibility of ligand molecules for 15 SCOP superfamilies, each containing both transferase and hydrolase catalytic domains. In contrast to hydrolases, we found that nine superfamilies of transferases use two major strategies, oligomerization and domain fusion, to insulate the ligand molecules. The subunits and domains that were recruited by the transferases often act as a cover for the ligand molecule. The other strategies adopted by transferases to insulate the ligand molecule are the relocation of catalytic sites, the rearrangement of secondary structure elements, and the insertion of peripheral regions. These findings provide insights into how proteins have evolved and acquired distinct functions with a limited number of scaffolds.
Collapse
|
163
|
Chaudhury S, Igoshin OA. Dynamic disorder-driven substrate inhibition and bistability in a simple enzymatic reaction. J Phys Chem B 2009; 113:13421-8. [PMID: 19757836 DOI: 10.1021/jp907908d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformations and catalytic rates of enzymes (biological catalysts) fluctuate over a wide range of time scales. Recent experimental and theoretical investigations demonstrated case studies where the enzymatic catalysis rate follows the Michaelis-Menten (MM) rate law despite molecular fluctuations. In this paper, we investigate deviations from MM law and their effects on the dynamical behavior of the enzymatic network. We consider a simple kinetic scheme for a single substrate enzymatic reaction in which the product release step is treated explicitly. We examine how conformational fluctuations affect the underlying rate law in the quasi-static limit when conformational dynamics is very slow in one of the states. Our numerical results and analytically solvable model indicate that slow conformational fluctuations of the enzyme-substrate complex lead to non-MM behavior, substrate inhibition, and possible bistability of the reaction network.
Collapse
Affiliation(s)
- Srabanti Chaudhury
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
164
|
Kamberaj H, van der Vaart A. Extracting the causality of correlated motions from molecular dynamics simulations. Biophys J 2009; 97:1747-55. [PMID: 19751680 DOI: 10.1016/j.bpj.2009.07.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/21/2009] [Accepted: 07/07/2009] [Indexed: 11/18/2022] Open
Abstract
The information theory measure of transfer entropy is used to extract the causality of correlated motions from molecular dynamics simulations. For each pair of correlated residues, the method quantifies which residue drives the correlated motions, and which residue responds. The measure reveals how correlated motions are used to transmit information through the system, and helps to clarify the link between correlated motions and biological function in biomolecular systems. The method is illustrated by its application to the Ets-1 transcription factor, which partially unfolds upon binding DNA. The calculations show dramatic changes in the direction of information flow upon DNA binding, and elucidate how the presence of DNA is communicated from the DNA binding H1 and H3 helices to inhibitory helix HI-1. Helix H4 is shown to act as a relay, which is attenuated in the apo state.
Collapse
Affiliation(s)
- Hiqmet Kamberaj
- Center for Biological Physics, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona, USA
| | | |
Collapse
|
165
|
Ramsey JD, Gill ML, Kamerzell TJ, Price ES, Joshi SB, Bishop SM, Oliver CN, Middaugh CR. Using empirical phase diagrams to understand the role of intramolecular dynamics in immunoglobulin G stability. J Pharm Sci 2009; 98:2432-47. [PMID: 19072858 DOI: 10.1002/jps.21619] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Understanding the relationship between protein dynamics and stability is of paramount importance to the fields of biology and pharmaceutics. Clarifying this relationship is complicated by the large amount of experimental data that must be generated and analyzed if motions that exist over the wide range of timescales are to be included. To address this issue, we propose an approach that utilizes a multidimensional vector-based empirical phase diagram (EPD) to analyze a set of dynamic results acquired across a temperature-pH perturbation plane. This approach is applied to a humanized immunoglobulin G1 (IgG1), a protein of major biological and pharmaceutical importance whose dynamic nature is linked to its multiple biological roles. Static and dynamic measurements are used to characterize the IgG and to construct both static and dynamic EPDs. Between pH 5 and 8, a single, pH-dependent transition is observed that corresponds to thermal unfolding of the IgG. Under more acidic conditions, evidence exists for the formation of a more compact, aggregation resistant state of the immunoglobulin, known as A-form. The dynamics-based EPD presents a considerably more detailed pattern of apparent phase transitions over the temperature-pH plane. The utility and potential applications of this approach are discussed.
Collapse
Affiliation(s)
- Joshua D Ramsey
- Department of Pharmaceutical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Shapiro YE, Kahana E, Meirovitch E. Domain Mobility in Proteins from NMR/SRLS. J Phys Chem B 2009; 113:12050-60. [DOI: 10.1021/jp901522c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yury E. Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Edith Kahana
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
167
|
Hsieh J, Fierke CA. Conformational change in the Bacillus subtilis RNase P holoenzyme--pre-tRNA complex enhances substrate affinity and limits cleavage rate. RNA (NEW YORK, N.Y.) 2009; 15:1565-77. [PMID: 19549719 PMCID: PMC2714742 DOI: 10.1261/rna.1639409] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ribonuclease P (RNase P) is a ribonucleoprotein complex that catalyzes the 5' maturation of precursor tRNAs. To investigate the mechanism of substrate recognition in this enzyme, we characterize the thermodynamics and kinetics of Bacillus subtilis pre-tRNA(Asp) binding to B. subtilis RNase P holoenzyme using fluorescence techniques. Time courses for fluorescein-labeled pre-tRNA binding to RNase P are biphasic in the presence of both Ca(II) and Mg(II), requiring a minimal two-step association mechanism. In the first step, the apparent bimolecular rate constant for pre-tRNA associating with RNase P has a value that is near the diffusion limit and is independent of the length of the pre-tRNA leader. Following formation of the initial enzyme-substrate complex, a unimolecular step enhances the overall affinity of pre-tRNA by eight- to 300-fold as the length of the leader sequence increases from 2 to 5 nucleotides. This increase in affinity is due to a decrease in the reverse rate constant for the conformational change that correlates with the formation of an optimal leader-protein interaction in the RNase P holoenzyme-pre-tRNA complex. Furthermore, the forward rate constant for the conformational change becomes rate limiting for cleavage under single-turnover conditions at high pH, explaining the origin of the observed apparent pK(a) in the RNase P-catalyzed cleavage reaction. These data suggest that a conformational change in the RNase P*pre-tRNA complex is coupled to the interactions between the 5' leader and P protein and aligns essential functional groups at the cleavage active site to enhance efficient cleavage of pre-tRNA.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
168
|
Conformational selection or induced fit: a flux description of reaction mechanism. Proc Natl Acad Sci U S A 2009; 106:13737-41. [PMID: 19666553 DOI: 10.1073/pnas.0907195106] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanism of ligand binding coupled to conformational changes in macromolecules has recently attracted considerable interest. The 2 limiting cases are the "induced fit" mechanism (binding first) or "conformational selection" (conformational change first). Described here are the criteria by which the sequence of events can be determined quantitatively. The relative importance of the 2 pathways is determined not by comparing rate constants (a common misconception) but instead by comparing the flux through each pathway. The simple rules for calculating flux in multistep mechanisms are described and then applied to 2 examples from the literature, neither of which has previously been analyzed using the concept of flux. The first example is the mechanism of conformational change in the binding of NADPH to dihydrofolate reductase. The second example is the mechanism of flavodoxin folding coupled to binding of its cofactor, flavin mononucleotide. In both cases, the mechanism switches from being dominated by the conformational selection pathway at low ligand concentration to induced fit at high ligand concentration. Over a wide range of conditions, a significant fraction of the flux occurs through both pathways. Such a mixed mechanism likely will be discovered for many cases of coupled conformational change and ligand binding when kinetic data are analyzed by using a flux-based approach.
Collapse
|
169
|
Shapiro YE, Meirovitch E. Evidence for domain motion in proteins affecting global diffusion properties: a nuclear magnetic resonance study. J Phys Chem B 2009; 113:7003-11. [PMID: 19385637 DOI: 10.1021/jp9009806] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The rotational diffusion of proteins is an important hydrodynamic property. Compact protein structures were found previously to exhibit hydration layer viscosity, etaloc, higher than the viscosity of bulk water, eta. This implies an apparent activation energy for rotational diffusion higher than the activation energy of water viscosity, Eeta=15.4+/-0.3 kJ/mol. In this study we examine etaloc of internally mobile proteins using 15N spin relaxation methods. We also examine the activation enthalpy, DeltaH#, and activation entropy, DeltaS#, for rotational diffusion. Of particular relevance are internally mobile ligand-free forms and compact ligand-bound forms of multidomain proteins. Adenylate kinase (AKeco) and Ca2+-calmodulin (Ca2+-CaM) are typical examples. For AKeco (Ca2+-CaM) we find that DeltaH# is 14.5+/-0.5 (15.7+/-0.4) kJ/mol. For the complex of AKeco with the inhibitor AP5A (the complex of Ca2+-CaM with the peptide smMLCKp), we find that DeltaH# is 18.1+/-0.7 (18.2+/-0.5) kJ/mol. The internally mobile outer surface protein A has DeltaH#=12.6+/-0.8 kJ/mol, and the compact protein Staphylococcal nuclease has DeltaH#=18.8+/-0.6 kJ/mol. For the internally mobile and compact proteins studied, <|DeltaS(|> equals 62+/-7 J/(mol K) and 44+/-5 J/(mol K), respectively. The fact is that etaloc>eta (DeltaH#>Eeta) for compact proteins was ascribed previously to electrostatic interactions between surface sites and water rigidifying the hydration layer. We find herein that obliteration of these interactions by domain motion leads to etaloc approximately eta, DeltaH# approximately Eeta, and large activation entropy for internally mobile protein structures.
Collapse
Affiliation(s)
- Yury E Shapiro
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | |
Collapse
|
170
|
Kawasaki T, Toyoda M, Okahata Y. Pulse Frequency-dependent Regulation of Lysozyme Reactivity under Pulsed Ultrasound Irradiation. CHEM LETT 2009. [DOI: 10.1246/cl.2009.536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
171
|
Ghanem M, Zhadin N, Callender R, Schramm VL. Loop-tryptophan human purine nucleoside phosphorylase reveals submillisecond protein dynamics. Biochemistry 2009; 48:3658-68. [PMID: 19191546 DOI: 10.1021/bi802339c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human PNP is a homotrimer containing three tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The catalytic sites of PNP are located near the subunit-subunit interfaces where F159 is a catalytic site residue donated from an adjacent subunit. F159 covers the top (beta) surface of the ribosyl group at the catalytic site. QM/MM calculations of human PNP have shown that F159 is the center of the most mobile region of the protein providing access to the substrate in the active site. F159 is also the key residue in a cluster of hydrophobic residues that shield catalytic site ligands from bulk solvent. Trp-free human PNP (Leuko-PNP) was previously engineered by replacing the three Trp residues of native PNP with Tyr. From this active construct, a single Trp residue was placed in the catalytic site loop (F159W-Leuko-PNP) as a reporter group for the ribosyl region of the catalytic site. The F159W-Leuko-PNP fluorescence is red shifted compared to native PNP, suggesting a solvent-exposed Trp residue. Upon ligand binding (hypoxanthine), the 3-fold fluorescence quench confirms conformational packing of the catalytic site pocket hydrophobic cluster. F159W-Leuko-PNP has an on-enzyme thermodynamic equilibrium constant (Keq) near unity in the temperature range between 20 and 30 degrees C and nonzero enthalpic components, making it suitable for laser-induced T-jump analyses. T-jump relaxation kinetics of F159W-Leuko-PNP in equilibrium with substrates and/or products indicate the conformational equilibria of at least two ternary complex intermediates in the nano- to millisecond time scale (1000-10000 s-1) that equilibrate prior to the slower chemical step (approximately 200 s-1). F159W-Leuko-PNP provides a novel protein platform to investigate the protein conformational dynamics occurring prior to transition state formation.
Collapse
Affiliation(s)
- Mahmoud Ghanem
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
172
|
Heidarsson PO, Sigurdsson ST, Ásgeirsson B. Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy. FEBS J 2009; 276:2725-35. [DOI: 10.1111/j.1742-4658.2009.06996.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
173
|
Qi G, Hayward S. Database of ligand-induced domain movements in enzymes. BMC STRUCTURAL BIOLOGY 2009; 9:13. [PMID: 19267915 PMCID: PMC2672080 DOI: 10.1186/1472-6807-9-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Conformational change induced by the binding of a substrate or coenzyme is a poorly understood stage in the process of enzyme catalysed reactions. For enzymes that exhibit a domain movement, the conformational change can be clearly characterized and therefore the opportunity exists to gain an understanding of the mechanisms involved. The development of the non-redundant database of protein domain movements contains examples of ligand-induced domain movements in enzymes, but this valuable data has remained unexploited. DESCRIPTION The domain movements in the non-redundant database of protein domain movements are those found by applying the DynDom program to pairs of crystallographic structures contained in Protein Data Bank files. For each pair of structures cross-checking ligands in their Protein Data Bank files with the KEGG-LIGAND database and using methods that search for ligands that contact the enzyme in one conformation but not the other, the non-redundant database of protein domain movements was refined down to a set of 203 enzymes where a domain movement is apparently triggered by the binding of a functional ligand. For these cases, ligand binding information, including hydrogen bonds and salt-bridges between the ligand and specific residues on the enzyme is presented in the context of dynamical information such as the regions that form the dynamic domains, the hinge bending residues, and the hinge axes. CONCLUSION The presentation at a single website of data on interactions between a ligand and specific residues on the enzyme alongside data on the movement that these interactions induce, should lead to new insights into the mechanisms of these enzymes in particular, and help in trying to understand the general process of ligand-induced domain closure in enzymes. The website can be found at: http://www.cmp.uea.ac.uk/dyndom/enzymeList.do.
Collapse
Affiliation(s)
- Guoying Qi
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Steven Hayward
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
174
|
Lescop E, Lu Z, Liu Q, Xu H, Li G, Xia B, Yan H, Jin C. Dynamics of the conformational transitions in the assembling of the Michaelis complex of a bisubstrate enzyme: a (15)N relaxation study of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase. Biochemistry 2009; 48:302-12. [PMID: 19108643 DOI: 10.1021/bi8016262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), which follows an ordered bi-bi kinetic mechanism with ATP binding to the enzyme first. HPPK undergoes dramatic conformational changes during its catalytic cycle as revealed by X-ray crystallography, and the conformational changes are essential for the enzymatic catalysis as shown by site-directed mutagenesis and biochemical and crystallographic analysis of the mutants. However, the dynamic properties of the enzyme have not been measured experimentally. Here, we report a (15)N NMR relaxation study of the dynamic properties of Escherichia coli HPPK from the apo form to the binary substrate complex with MgATP (represented by MgAMPCPP, an ATP analogue) to the Michaelis complex (ternary substrate complex) with MgATP (represented by MgAMPCPP) and HP (represented by 7,7-dimethyl-6-hydroxypterin, an HP analogue). The results show that the binding of the nucleotide to HPPK does not cause major changes in the dynamic properties of the enzyme. Whereas enzymes are often more rigid when bound to the ligand or the substrate, the internal mobility of HPPK is not reduced and is even moderately increased in the binary complex, particularly in the catalytic loops. The internal mobility of the catalytic loops is significantly quenched upon the formation of the ternary complex, but some mobility remains. The enhanced motions in the catalytic loops of the binary substrate complex may be required for the assembling of the ternary complex. On the other hand, some degrees of mobility in the catalytic loops of the ternary complex may be required for the optimal stabilization of the transition state, which may need the instantaneous adjustment and alignment of the side-chain positions of catalytic residues. Such dynamic behaviors may be characteristic of bisubstrate enzymes.
Collapse
Affiliation(s)
- Ewen Lescop
- Beijing NMR Center, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Tsuchiya D, Shimizu N, Tomita M. Versatile architecture of a bacterial aconitase B and its catalytic performance in the sequential reaction coupled with isocitrate dehydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1847-56. [DOI: 10.1016/j.bbapap.2008.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/13/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|
176
|
Boehr DD, Dyson HJ, Wright PE. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis. Biochemistry 2008; 47:9227-33. [PMID: 18690714 DOI: 10.1021/bi801102e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic cycle of an enzyme is frequently associated with conformational changes that may limit maximum catalytic throughput. In Escherichia coli dihydrofolate reductase, release of the tetrahydrofolate (THF) product is the rate-determining step under physiological conditions and is associated with an "occluded" to "closed" conformational change. In this study, we demonstrate that in dihydrofolate reductase the closed to occluded conformational change in the product ternary complex (E.THF.NADP (+)) also gates progression through the catalytic cycle. Using NMR relaxation dispersion, we have measured the temperature and pH dependence of microsecond to millisecond time scale backbone dynamics of the occluded E.THF.NADP (+) complex. Our studies indicate the presence of three independent dynamic regions, associated with the active-site loops, the cofactor binding cleft, and the C-terminus and an adjacent loop, which fluctuate into discrete conformational substates with different kinetic and thermodynamic parameters. The dynamics of the C-terminally associated region is pH-dependent (p K a < 6), but the dynamics of the active-site loops and cofactor binding cleft are pH-independent. The active-site loop dynamics access a closed conformation, and the accompanying closed to occluded rate constant is comparable to the maximum pH-independent hydride transfer rate constant. Together, these results strongly suggest that the closed to occluded conformational transition in the product ternary complex is a prerequisite for progression through the catalytic cycle and that the rate of this process places an effective limit on the maximum rate of the hydride transfer step.
Collapse
Affiliation(s)
- David D Boehr
- Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
177
|
|
178
|
Vandemeulebroucke A, De Vos S, Van Holsbeke E, Steyaert J, Versées W. A Flexible Loop as a Functional Element in the Catalytic Mechanism of Nucleoside Hydrolase from Trypanosoma vivax. J Biol Chem 2008; 283:22272-82. [DOI: 10.1074/jbc.m803705200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
179
|
Bache N, Rand KD, Roepstorff P, Jørgensen TJD. Gas-Phase Fragmentation of Peptides by MALDI in-Source Decay with Limited Amide Hydrogen (1H/2H) Scrambling. Anal Chem 2008; 80:6431-5. [DOI: 10.1021/ac800902a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nicolai Bache
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Kasper D. Rand
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
180
|
Ingratta M, Duhamel J. Effect of Side-chain Length on the Side-chain Dynamics of α-Helical Poly(l-glutamic acid) as Probed by a Fluorescence Blob Model. J Phys Chem B 2008; 112:9209-18. [DOI: 10.1021/jp8021248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark Ingratta
- Institute for Polymer Research, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Jean Duhamel
- Institute for Polymer Research, Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
181
|
Protein Structural Change upon Ligand Binding Correlates with Enzymatic Reaction Mechanism. J Mol Biol 2008; 379:397-401. [DOI: 10.1016/j.jmb.2008.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/21/2008] [Accepted: 04/08/2008] [Indexed: 11/20/2022]
|
182
|
Liu YH, Konermann L. Conformational dynamics of free and catalytically active thermolysin are indistinguishable by hydrogen/deuterium exchange mass spectrometry. Biochemistry 2008; 47:6342-51. [PMID: 18494500 DOI: 10.1021/bi800463q] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational dynamics are thought to be a prerequisite for the catalytic activity of enzymes. However, the exact relationship between structural fluctuations and function is not well understood. In this work hydrogen/deuterium exchange (HDX) and electrospray ionization mass spectrometry (ESI-MS) are used for exploring the conformational dynamics of thermolysin. Amide HDX reflects the internal mobility of proteins; regions that undergo frequent unfolding-refolding show faster exchange than segments that are highly stable. Thermolysin is a zinc protease with an active site that is located between two lobes. Substrate turnover is associated with hinge bending that leads to a closed conformation. Product release regenerates the open form, such that steady-state catalysis involves a continuous closing/opening cycle. HDX/ESI-MS with proteolytic peptide mapping in the absence of substrate shows that elements in the periphery of the two lobes are most mobile. A comparison with previous X-ray data suggests that these peripheral regions undergo quite pronounced structural changes during the catalytic cycle. In contrast, active site residues exhibit only a moderate degree of backbone flexibility, and the central zinc appears to be in a fairly rigid environment. The presence of both rigid and moderately flexible elements in the active site may reflect a carefully tuned balance that is required for function. Interestingly, the HDX behavior of catalytically active thermolysin is indistinguishable from that of the free enzyme. This result is consistent with the view that catalytically relevant motions preexist in the resting state and that enzyme function can only be performed within the limitations given by the intrinsic dynamics of the protein. The data presented in this work indicate the prevalence of stochastic elements in the function of thermolysin, rather than supporting a deterministic mechanism.
Collapse
Affiliation(s)
- Yu-Hong Liu
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | | |
Collapse
|
183
|
Abstract
The dynamic nature of the interconversion of pyruvate to lactate as catalyzed by lactate dehydrogenase (LDH) is characterized by laser-induced temperature jump relaxation spectroscopy with a resolution of 20 ns. An equilibrium system of LDH.NADH plus pyruvate and LDH.NAD+ plus lactate is perturbed by a sudden T-jump, and the relaxation of the system is monitored by NADH emission and absorption changes. The substrate binding pathway is observed to be similar, although not identical, to previous work on substrate mimics: an encounter complex is formed between LDH.NADH and pyruvate, which collapses to the active Michaelis complex. The previously unresolved hydride transfer event is characterized and separated from other unimolecular isomerizations of the protein important for the catalytic mechanism, such as loop closure, a slower step, and faster events on the nanosecond-microsecond timescales whose structural basis is not understood. The results of this study show that this approach can be applied quite generally to enzyme systems and report on the dynamic nature of proteins over a very wide time range.
Collapse
|
184
|
Debler EW, Müller R, Hilvert D, Wilson IA. Conformational isomerism can limit antibody catalysis. J Biol Chem 2008; 283:16554-60. [PMID: 18417480 DOI: 10.1074/jbc.m710256200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligand binding to enzymes and antibodies is often accompanied by protein conformational changes. Although such structural adjustments may be conducive to enzyme catalysis, much less is known about their effect on reactions promoted by engineered catalytic antibodies. Crystallographic and pre-steady state kinetic analyses of antibody 34E4, which efficiently promotes the conversion of benzisoxazoles to salicylonitriles, show that the resting catalyst adopts two interconverting active-site conformations, only one of which is competent to bind substrate. In the predominant isomer, the indole side chain of Trp(L91) occupies the binding site and blocks ligand access. Slow conformational isomerization of this residue, on the same time scale as catalytic turnover, creates a deep and narrow binding site that can accommodate substrate and promote proton transfer using Glu(H50) as a carboxylate base. Although 34E4 is among the best catalysts for the deprotonation of benzisoxazoles, its efficiency appears to be significantly limited by this conformational plasticity of its active site. Future efforts to improve this antibody might profitably focus on stabilizing the active conformation of the catalyst. Analogous strategies may also be relevant to other engineered proteins that are limited by an unfavorable conformational pre-equilibrium.
Collapse
Affiliation(s)
- Erik W Debler
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
185
|
Shafferman A, Barak D, Stein D, Kronman C, Velan B, Greig NH, Ordentlich A. Flexibility versus "rigidity" of the functional architecture of AChE active center. Chem Biol Interact 2008; 175:166-72. [PMID: 18471807 DOI: 10.1016/j.cbi.2008.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/14/2008] [Accepted: 03/18/2008] [Indexed: 11/20/2022]
Abstract
Functional architecture of the AChE active center appears to be characterized by both structural "rigidity", necessary to stabilize the catalytic triad as well as by flexibility in accommodating the different, high affinity AChE ligands. These seemingly conflicting structural properties of the active center are demonstrated through combination of structural methods with kinetic studies of the enzyme and its mutant derivatives with plethora of structurally diverse ligands and in particular with series of stereoselective covalent and noncovalent AChE ligands. Thus, steric perturbation of the acyl pocket precipitates in a pronounced stereoselectivity toward methylphosphonates by disrupting the stabilizing environment of the catalytic histidine rather than through steric exclusion demonstrating the functional importance of the "rigid" environment of the catalytic machinery. The acyl pocket, the cation-binding subsite (Trp86) and the peripheral anionic subsite were also found to be directly involved in HuAChE stereoselectivity toward charged chiral phosphonates, operating through differential positioning of the ligand cationic moiety within the active center. Residue Trp86 is also a part of the "hydrophobic patch" which seems flexible enough to accommodate the structurally diverse ligands like tacrine, galanthamine and the two diastereomers of huperzine A. Also, we have recently discovered further aspects of the role of both the unique structure and the flexibility of the "hydrophobic patch" in determining the reactivity and stereoselectivity of HuAChE toward certain carbamates including analogs of physostigmine. In these cases the ligands are accommodated mostly through hydrophobic interactions and their stereoselectivity delineates precisely the steric limits of the pocket. Hence, the HuAChE stereoselectivity provides a sensitive tool in the in depth exploration of the functional architecture of the active center. These studies suggest that the combination of "rigidity" and flexibility within the HuAChE gorge are an essential element of its molecular design.
Collapse
Affiliation(s)
- Avigdor Shafferman
- Department Biochemistry and Molecular Biology, Israel Institute for Biological Research, Ness-Ziona, Israel.
| | | | | | | | | | | | | |
Collapse
|
186
|
Benkovic SJ, Hammes GG, Hammes-Schiffer S. Free-Energy Landscape of Enzyme Catalysis. Biochemistry 2008; 47:3317-21. [DOI: 10.1021/bi800049z] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Stephen J. Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, and Department of Biochemistry, Box 3711, Duke University, Durham, North Carolina 27710
| | - Gordon G. Hammes
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, and Department of Biochemistry, Box 3711, Duke University, Durham, North Carolina 27710
| | - Sharon Hammes-Schiffer
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, and Department of Biochemistry, Box 3711, Duke University, Durham, North Carolina 27710
| |
Collapse
|
187
|
Loria JP, Berlow RB, Watt ED. Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res 2008; 41:214-21. [PMID: 18281945 DOI: 10.1021/ar700132n] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In many enzymes, conformational changes that occur along the reaction coordinate can pose a bottleneck to the rate of conversion of substrates to products. Characterization of these rate-limiting protein motions is essential for obtaining a full understanding of enzyme-catalyzed reactions. Solution NMR experiments such as the Carr-Purcell-Meiboom-Gill (CPMG) spin-echo or off-resonance R 1rho pulse sequences enable quantitation of protein motions in the time range of microseconds to milliseconds. These experiments allow characterization of the conformational exchange rate constant, k ex, the equilibrium populations of the relevant conformations, and the chemical shift differences (Deltaomega) between the conformations. The CPMG experiments were applied to the backbone N-H positions of ribonuclease A (RNase A). To probe the role of dynamic processes in the catalytic cycle of RNase A, stable mimics of the apo enzyme (E), enzyme-substrate (ES) complex, and enzyme-product (EP) complex were formed. The results indicate that the ligand has relatively little influence on the kinetics of motion, which occurs at 1700 s (-1) and is the same as both k cat, and the product dissociation rate constant. Instead, the effect of ligand is to stabilize one of the pre-existing conformations. Thus, these NMR experiments indicate that the conformational change in RNase A is ligand-stabilized and does not appear to be ligand-induced. Further evidence for the coupling of motion and enzyme function comes from the similar solvent deuterium kinetic isotope effect on k ex derived from the NMR measurements and k cat from enzyme kinetic studies. This isotope effect of approximately 2 depends linearly on solvent deuterium content suggesting the involvement of a single proton in RNase A motion and function. Moreover, mutation of His48 to alanine eliminates motion in RNase A and decreases the catalytic turnover rate indicating the involvement of His48, which is far from the active site, in coupling motion and function. For the enzyme triosephosphate isomerase (TIM), the opening and closing motion of a highly conserved active site loop (loop 6) has been implicated in many studies to play an important role in the catalytic cycle of the enzyme. Off-resonance R 1rho experiments were performed on TIM, and results were obtained for amino acid residues in the N-terminal (Val167), and C-terminal (Lys174, Thr177) portions of loop 6. The results indicate that all three loop residues move between the open and closed conformation at about 10,000 s (-1), which is the same as the catalytic rate constant. The O (eta) atom of Tyr208 provides a hydrogen bond to stabilize the closed form of loop 6 by interacting with the amide nitrogen of Ala176; these atoms are outside of hydrogen bonding distance in the open form of the enzyme. Mutation of Tyr208 to phenylalanine results in significant loss of catalytic activity but does not appear to alter the kex value of the N-terminal part of loop 6. Instead, removal of this hydrogen bond appears to result in an increase in the equilibrium population of the open conformer of loop 6, thereby resulting in a loss of activity through a shift in the conformational equilibrium of loop 6. Solution NMR relaxation dispersion experiments are powerful experimental tools that can elucidate protein motions with atomic resolution and can provide insight into the role of these motions in biological function.
Collapse
Affiliation(s)
- J. Patrick Loria
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| | - Rebecca B. Berlow
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Eric D. Watt
- Department of Chemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
188
|
A role for Drosophila in understanding drug-induced cytotoxicity and teratogenesis. Cytotechnology 2008; 57:1-9. [PMID: 19003167 DOI: 10.1007/s10616-008-9124-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 01/08/2008] [Indexed: 10/22/2022] Open
Abstract
Drosophila research has been and continues to be an essential tool for many aspects of biological scientific research and has provided insight into numerous genetic, biochemical, and behavioral processes. As well, due to the remarkable conservation of gene function between Drosophila and humans, and the easy ability to manipulate these genes in a whole organism, Drosophila research has proven critical for studying human disease and the physiological response to chemical reagents. Methotrexate, a widely prescribed pharmaceutical which inhibits dihydrofolate reductase and therefore folate metabolism, is known to cause teratogenic effects in human fetuses. Recently, there has been resurgence in the use of methotrexate for inflammatory diseases and ectopic or unwanted pregnancies thus, increasing the need to fully understand the cytotoxicity of this pharmaceutical. Concerns have been raised over the ethics of studying teratogenic drugs like methotrexate in mammalian systems and thus, we have proposed a Drosophila model. We have shown that exposure of female Drosophila to methotrexate results in progeny with developmental abnormalities. We have also shown that methotrexate exposure changes the abundance of many fundamental cellular transcripts. Expression of a dihydrofolate reductase with a reduced affinity for methotrexate can not only prevent much of the abnormal transcript profile but the teratogenesis seen after drug treatment. In the future, such studies may generate useful tools for mammalian antifolate "rescue" therapies.
Collapse
|
189
|
Remote mutations and active site dynamics correlate with catalytic properties of purine nucleoside phosphorylase. Biophys J 2008; 94:4078-88. [PMID: 18234834 DOI: 10.1529/biophysj.107.121913] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been found that with mutation of two surface residues (Lys(22) --> Glu and His(104) --> Arg) in human purine nucleoside phosphorylase (hPNP), there is an enhancement of catalytic activity in the chemical step. This is true although the mutations are quite remote from the active site, and there are no significant changes in crystallographic structure between the wild-type and mutant active sites. We propose that dynamic coupling from the remote residues to the catalytic site may play a role in catalysis, and it is this alteration in dynamics that causes an increase in the chemical step rate. Computational results indicate that the mutant exhibits stronger coupling between promotion of vibrations and the reaction coordinate than that found in native hPNP. Power spectra comparing native and mutant proteins show a correlation between the vibrations of Immucillin-G (ImmG):O5'...ImmG:N4' and H257:Ndelta...ImmG:O5' consistent with a coupling of these motions. These modes are linked to the protein promoting vibrations. Stronger coupling of motions to the reaction coordinate increases the probability of reaching the transition state and thus lowers the activation free energy. This motion has been shown to contribute to catalysis. Coincident with the approach to the transition state, the sum of the distances of ImmG:O4'...ImmG:O5'...H257:Ndelta became smaller, stabilizing the oxacarbenium ion formed at the transition state. Combined results from crystallography, mutational analysis, chemical kinetics, and computational analysis are consistent with dynamic compression playing a significant role in forming the transition state. Stronger coupling of these pairs is observed in the catalytically enhanced mutant enzyme. That motion and catalysis are enhanced by mutations remote from the catalytic site implicates dynamic coupling through the protein architecture as a component of catalysis in hPNP.
Collapse
|
190
|
Abstract
Allosteric signaling in proteins requires long-range communication mediated by highly conserved residues, often triggered by ligand binding. In this article, we map the allosteric network in the catalytic subunit of protein kinase A using NMR spectroscopy. We show that positive allosteric cooperativity is generated by nucleotide and substrate binding during the transitions through the major conformational states: apo, intermediate, and closed. The allosteric network is disrupted by a single site mutation (Y204A), which also decouples the cooperativity of ligand binding. Because protein kinase A is the prototype for the entire kinome, these findings may serve as a paradigm for describing long-range coupling in other protein kinases.
Collapse
|
191
|
Min W, Xie XS, Bagchi B. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis. J Phys Chem B 2007; 112:454-66. [PMID: 18085768 DOI: 10.1021/jp076533c] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We introduce a two-dimensional (2D) multisurface reaction free energy description of the catalytic cycle that explicitly connects the recently observed multi-time-scale conformational dynamics as well as dispersed enzymatic kinetics to the classical Michaelis-Menten equation. A slow conformational motion on a collective enzyme coordinate Q facilitates the catalytic reaction along the intrinsic reaction coordinate X, providing a dynamic realization of Pauling's well-known idea of transition-state stabilization. The catalytic cycle is modeled as transitions between multiple displaced harmonic wells in the XQ space representing different states of the cycle, which is constructed according to the free energy driving force of the cycle. Subsequent to substrate association with the enzyme, the enzyme-substrate complex under strain exhibits a nonequilibrium relaxation toward a new conformation that lowers the activation energy of the reaction, as first proposed by Haldane. The chemical reaction in X is thus enslaved to the down hill slow motion on the Q surface. One consequence of the present theory is that, in spite of the existence of dispersive kinetics, the Michaelis-Menten expression of the catalysis rate remains valid under certain conditions, as observed in recent single-molecule experiments. This dynamic theory builds the relationship between the protein conformational dynamics and the enzymatic reaction kinetics and offers a unified description of enzyme fluctuation-assisted catalysis.
Collapse
Affiliation(s)
- Wei Min
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
192
|
Balbo PB, Bohm A. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 2007; 15:1117-31. [PMID: 17850751 PMCID: PMC2032019 DOI: 10.1016/j.str.2007.07.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/27/2007] [Accepted: 07/01/2007] [Indexed: 11/23/2022]
Abstract
We report the 1.8 A structure of yeast poly(A) polymerase (PAP) trapped in complex with ATP and a five residue poly(A) by mutation of the catalytically required aspartic acid 154 to alanine. The enzyme has undergone significant domain movement and reveals a closed conformation with extensive interactions between the substrates and all three polymerase domains. Both substrates and 31 buried water molecules are enclosed within a central cavity that is open at both ends. Four PAP mutants were subjected to detailed kinetic analysis, and studies of the adenylyltransfer (forward), pyrophosphorolysis (reverse), and nucleotidyltransfer reaction utilizing CTP for the mutants are presented. The results support a model in which binding of both poly(A) and the correct nucleotide, MgATP, induces a conformational change, resulting in formation of a stable, closed enzyme state. Thermodynamic considerations of the data are discussed as they pertain to domain closure, substrate specificity, and catalytic strategies utilized by PAP.
Collapse
Affiliation(s)
| | - Andrew Bohm
- *corresponding author: , 617-636-2994, 617-636-2409 (fax)
| |
Collapse
|
193
|
Structure and dynamics of a molten globular enzyme. Nat Struct Mol Biol 2007; 14:1202-6. [PMID: 17994104 DOI: 10.1038/nsmb1325] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 09/26/2007] [Indexed: 11/08/2022]
Abstract
Although protein dynamics has been recognized as a potentially important contributor to enzyme catalysis, structural disorder is generally considered to reduce catalytic efficiency. This widely held assumption has recently been challenged by the finding that an engineered chorismate mutase combines high catalytic activity with the properties of a molten globule, a loosely packed and highly dynamic conformational ensemble. Taking advantage of the ordering observed upon ligand binding, we have now used NMR spectroscopy to characterize this enzyme in complex with a transition-state analog. The complex adopts a helix-bundle structure, as designed, but retains unprecedented flexibility on the millisecond timescale across its entire length. Moreover, pre-steady-state kinetics data show that binding occurs by an induced-fit mechanism on the same timescale as the enzymatic reaction, linking global conformational plasticity with efficient catalysis.
Collapse
|
194
|
Favia AD, Nobeli I, Glaser F, Thornton JM. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases. J Mol Biol 2007; 375:855-74. [PMID: 18036612 DOI: 10.1016/j.jmb.2007.10.065] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
Protein ligand docking has recently been investigated as a tool for protein function identification, with some success in identifying both known and unknown substrates of proteins. However, identifying a protein's substrate when cross-docking a large number of enzymes and their cognate ligands remains a challenge. To explore a more limited yet practically important and timely problem in more detail, we have used docking for identifying the substrates of a single protein family with remarkable substrate diversity, the short-chain dehydrogenases/reductases. We examine different protocols for identifying candidate substrates for 27 short-chain dehydrogenase/reductase proteins of known catalytic function. We present the results of docking >900 metabolites from the human metabolome to each of these proteins together with their known cognate substrates and products, and we investigate the ability of docking to (a) reproduce a viable binding mode for the substrate and (b) to rank the substrate highly amongst the dataset of other metabolites. In addition, we examine whether our docking results provide information about the nature of the substrate, based on the best-scoring metabolites in the dataset. We compare two different docking methods and two alternative scoring functions for one of the docking methods, and we attempt to rationalise both successes and failures. Finally, we introduce a new protocol, whereby we dock only a set of representative structures (medoids) to each of the proteins, in the hope of characterising each binding site in terms of its ligand preferences, with a reduced computational cost. We compare the results from this protocol with our original docking experiments, and we find that although the rank of the representatives correlates well with the mean rank of the clusters to which they belong, a simple structure-based clustering is too naive for the purpose of substrate identification. Many clusters comprise ligands with widely varying affinities for the same protein; hence important candidates can be missed if a single representative is used.
Collapse
Affiliation(s)
- Angelo D Favia
- European Molecular Biology Laboratory-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | |
Collapse
|
195
|
Affiliation(s)
- David D Boehr
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
196
|
Lepesheva GI, Seliskar M, Knutson CG, Stourman NV, Rozman D, Waterman MR. Conformational dynamics in the F/G segment of CYP51 from Mycobacterium tuberculosis monitored by FRET. Arch Biochem Biophys 2007; 464:221-7. [PMID: 17585868 PMCID: PMC3042880 DOI: 10.1016/j.abb.2007.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/28/2022]
Abstract
A cysteine was introduced into the FG-loop (P187C) of CYP51 from Mycobacterium tuberculosis (MT) for selective labeling with BODIPY and fluorescence energy transfer (FRET) analysis. Förster radius for the BODIPY-heme pair was calculated assuming that the distance between the heme and Cys187 in solution corresponds to that in the crystal structure of ligand free MTCYP51. Interaction of MTCYP51 with azole inhibitors ketoconazole and fluconazole or the substrate analog estriol did not influence the fluorescence, but titration with the substrate lanosterol quenched BODIPY emission, the effect being proportional to the portion of substrate bound MTCYP51. The detected changes correspond to approximately 10A decrease in the calculated distance between BODIPY-Cys187 and the heme. The results confirm (1) functional importance of conformational motions in the MTCYP51 F/G segment and (2) applicability of FRET to monitor them in solution.
Collapse
Affiliation(s)
- Galina I. Lepesheva
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Matej Seliskar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Charles G. Knutson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Nina V. Stourman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Michael R. Waterman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
197
|
Watt ED, Shimada H, Kovrigin EL, Loria JP. The mechanism of rate-limiting motions in enzyme function. Proc Natl Acad Sci U S A 2007; 104:11981-6. [PMID: 17615241 PMCID: PMC1924554 DOI: 10.1073/pnas.0702551104] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Indexed: 11/18/2022] Open
Abstract
The ability to use conformational flexibility is a hallmark of enzyme function. Here we show that protein motions and catalytic activity in a RNase are coupled and display identical solvent isotope effects. Solution NMR relaxation experiments identify a cluster of residues, some distant from the active site, that are integral to this motion. These studies implicate a single residue, histidine-48, as the key modulator in coupling protein motion with enzyme function. Mutation of H48 to alanine results in loss of protein motion in the isotope-sensitive region of the enzyme. In addition, k(cat) decreases for this mutant and the kinetic solvent isotope effect on k(cat), which was 2.0 in WT, is near unity in H48A. Despite being located 18 A from the enzyme active site, H48 is essential in coordinating the motions involved in the rate-limiting enzymatic step. These studies have identified, of approximately 160 potential exchangeable protons, a single site that is integral in the rate-limiting step in RNase A enzyme function.
Collapse
Affiliation(s)
- Eric D. Watt
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
| | - Hiroko Shimada
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
| | - Evgenii L. Kovrigin
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
| | - J. Patrick Loria
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520
| |
Collapse
|
198
|
Savir Y, Tlusty T. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. PLoS One 2007; 2:e468. [PMID: 17520027 PMCID: PMC1868595 DOI: 10.1371/journal.pone.0000468] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 05/01/2007] [Indexed: 12/12/2022] Open
Abstract
To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution.
Collapse
Affiliation(s)
- Yonatan Savir
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Tsvi Tlusty
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
199
|
Mueller-Planitz F, Herschlag D. DNA topoisomerase II selects DNA cleavage sites based on reactivity rather than binding affinity. Nucleic Acids Res 2007; 35:3764-73. [PMID: 17517767 PMCID: PMC1920260 DOI: 10.1093/nar/gkm335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA topoisomerase II modulates DNA topology by relieving supercoil stress and by unknotting or decatenating entangled DNA. During its reaction cycle, the enzyme creates a transient double-strand break in one DNA segment, the G-DNA. This break serves as a gate through which another DNA segment is transported. Defined topoisomerase II cleavage sites in genomic and plasmid DNA have been previously mapped. To dissect the G-DNA recognition mechanism, we studied the affinity and reactivity of a series of DNA duplexes of varied sequence under conditions that only allow G-DNA to bind. These DNA duplexes could be cleaved to varying extents ranging from undetectable (<0.5%) to 80%. The sequence that defines a cleavage site resides within the central 20 bp of the duplex. The DNA affinity does not correlate with the ability of the enzyme to cleave DNA, suggesting that the binding step does not contribute significantly to the selection mechanism. Kinetic experiments show that the selectivity interactions are formed before rather than subsequent to cleavage. Presumably the binding energy of the cognate interactions is used to promote a conformational change that brings the enzyme into a cleavage competent state. The ability to modulate the extent of DNA cleavage by varying the DNA sequence may be valuable for future structural and mechanistic studies that aim to determine topoisomerase structures with DNA bound in pre- and post-cleavage states and to understand the conformational changes associated with DNA binding and cleavage.
Collapse
Affiliation(s)
| | - Daniel Herschlag
- *To whom correspondence should be addressed. +1 650 723 9442+1 650 723 6783
| |
Collapse
|
200
|
Woycechowsky KJ, Vamvaca K, Hilvert D. Novel enzymes through design and evolution. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2007; 75:241-94, xiii. [PMID: 17124869 DOI: 10.1002/9780471224464.ch4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of enzymes with new catalytic activities remains a major challenge. So far, several different strategies have been developed to tackle this problem, including site-directed mutagenesis, random mutagenesis (directed evolution), antibody catalysis, computational redesign, and de novo methods. Using these techniques, a broad array of novel enzymes has been created (aldolases, decarboxylases, dehydratases, isomerases, oxidases, reductases, and others), although their low efficiencies (10 to 100 M(-1) s(-l)) compared to those of the best natural enzymes (10(6) to 10(8) M(-1) s(-1)) remains a significant concern. Whereas rational design might be the most promising and versatile approach to generating new activities, directed evolution seems to be the best way to optimize the catalytic properties of novel enzymes. Indeed, impressive successes in enzyme engineering have resulted from a combination of rational and random design.
Collapse
|