151
|
Hu C, Farshadfar K, Dietl MC, Cervantes-Reyes A, Wang T, Adak T, Rudolph M, Rominger F, Li J, Ariafard A, Hashmi ASK. Gold-Catalyzed [5,5]-Rearrangement. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chao Hu
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Kaveh Farshadfar
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran 1469669191, Iran
| | - Martin C. Dietl
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Alejandro Cervantes-Reyes
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Tao Wang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Tapas Adak
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Jun Li
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Alireza Ariafard
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
152
|
Tu Q, Wang Z, Zhang Z, Huang J, Yang Z. Synthetic Strategy for Construction of Highly Congested Tetracyclic Core (6-5-7-4) of Harziane Diterpenoids. Org Lett 2021; 23:4088-4093. [PMID: 33988367 DOI: 10.1021/acs.orglett.1c00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structurally intriguing tetracyclic core of complex harziane diterpenoid was constructed in 14 steps from commercially available 3-ethoxycyclohex-2-en-1-one. The key steps were a Mn/Cu-mediated oxidative 1,3-dicarbonyl radical cascade cyclization reaction, which diastereoselectively formed the core of dimethylbicyclo[3.2.1]octane structure, and a Au-catalyzed diastereoselective formal [2 + 2] cycloaddition for construction of the harziane diterpenoid tetracyclic framework. The developed method paves the way for achieving total synthesis of this type of complex natural product.
Collapse
Affiliation(s)
- Qian Tu
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zheyuan Wang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhongchao Zhang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Huang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhen Yang
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
153
|
Zhang S, Tang A, Xie R, Zhao Z, Yao J, Miao M. Gold Catalysis Enabling Furan-Fused Cyclobutenes as a Platform toward Cross Cycloadditions. Org Lett 2021; 23:3701-3705. [PMID: 33904750 DOI: 10.1021/acs.orglett.1c01079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inherently strained furan-fused cyclobutenes, in situ generated via cycloisomerizations of allenyl ketones bearing cyclopropyl moiety under gold catalysis, have been utilized as reactive building blocks toward cross cycloadditions. The [4 + 2] and [3 + 2] annulations of these species with benzo[c]isoxazoles and N-iminoquinazolinium ylides furnish various three-dimensional cyclobutane-bridged polyheterocycles in good yields. A wide range of typically electron-deficient 1,3-dienes, heterodienes, and 1,3-dipoles can trap furan-fused cyclobutenes to afford several polycyclic architectures.
Collapse
Affiliation(s)
- Shouzhi Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Aijie Tang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Ruyu Xie
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Zhiqiang Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Jinzhong Yao
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
| | - Maozhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
154
|
Cai Y, Zhu W, Zhao S, Dong C, Xu Z, Zhao Y. Difluorocarbene-Mediated Cascade Cyclization: The Multifunctional Role of Ruppert-Prakash Reagent. Org Lett 2021; 23:3546-3551. [PMID: 33913711 DOI: 10.1021/acs.orglett.1c00962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A difluorocarbene-mediated cascade cyclization reaction for rapid access to gem-difluorinated 3-coumaranone derivatives was developed. The difluorocarbene acts as a bipolar CF2 building block, which enables a homologation cyclization process via sequentially reacting with the phenolate and the ester group on the same substrate. The potential application of this synthetic approach is demonstrated by a late-stage modification of diethylstilbestrol. Mechanistic studies revealed the multiple crucial roles played by the Ruppert-Prakash reagent.
Collapse
Affiliation(s)
- Yanyao Cai
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wenjie Zhu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chanjuan Dong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.,Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
155
|
Wei WT, Li Q, Zhang MZ, He WM. N-Radical enabled cyclization of 1,n-enynes. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63702-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
156
|
Yang S, Alix A, Bour C, Gandon V. Alkynophilicity of Group 13 MX 3 Salts: A Theoretical Study. Inorg Chem 2021; 60:5507-5522. [PMID: 33769800 DOI: 10.1021/acs.inorgchem.0c03302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The concept of alkynophilicity is revisited with group 13 MX3 metal salts (M = In, Ga, Al, B; X = Cl, OTf) using M06-2X/6-31+G(d,p) calculations. This study aims at answering why some of these salts show reactivity toward enynes that is similar to that observed with late-transition-metal complexes, notably Au(I) species, and why some of them are inactive. For this purpose, the mechanism of the skeletal reorganization of 1,6-enynes into 1-vinylcyclopentenes has been computed, including monomeric ("standard") and dimeric (superelectrophilic) activation. Those results are confronted with deactivation pathways based on the dissociation of the M-X bond. The role of the X ligand in the stabilization of the intermediate nonclassical carbocation is revealed, and the whole features required to make a good π-Lewis acid are discussed.
Collapse
Affiliation(s)
- Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Aurélien Alix
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| |
Collapse
|
157
|
Specklin D, Coffinet A, Vendier L, del Rosal I, Dinoi C, Simonneau A. Synthesis, Characterization, and Comparative Theoretical Investigation of Dinitrogen-Bridged Group 6-Gold Heterobimetallic Complexes. Inorg Chem 2021; 60:5545-5562. [PMID: 33724789 PMCID: PMC8058778 DOI: 10.1021/acs.inorgchem.0c03271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/21/2023]
Abstract
We have prepared and characterized a series of unprecedented group 6-group 11, N2-bridged, heterobimetallic [ML4(η1-N2)(μ-η1:η1-N2)Au(NHC)]+ complexes (M = Mo, W, L2 = diphosphine) by treatment of trans-[ML4(N2)2] with a cationic gold(I) complex [Au(NHC)]+. The adducts are very labile in solution and in the solid, especially in the case of molybdenum, and decomposition pathways are likely initiated by electron transfers from the zerovalent group 6 atom to gold. Spectroscopic and structural parameters point to the fact that the gold adducts are very similar to Lewis pairs formed out of strong main-group Lewis acids (LA) and low-valent, end-on dinitrogen complexes, with a bent M-N-N-Au motif. To verify how far the analogy goes, we computed the electronic structures of [W(depe)2(η1-N2)(μ-η1:η1-N2)AuNHC]+ (10W+) and [W(depe)2(η1-N2)(μ-η1:η1-N2)B(C6F5)3] (11W). A careful analysis of the frontier orbitals of both compounds shows that a filled orbital resulting from the combination of the π* orbital of the bridging N2 with a d orbital of the group 6 metal overlaps in 10W+ with an empty sd hybrid orbital at gold, whereas in 11W with an sp3 hybrid orbital at boron. The bent N-N-LA arrangement maximizes these interactions, providing a similar level of N2 "push-pull" activation in the two compounds. In the gold case, the HOMO-2 orbital is further delocalized to the empty carbenic p orbital, and an NBO analysis suggests an important electrostatic component in the μ-N2-[Au(NHC)]+ bond.
Collapse
Affiliation(s)
- David Specklin
- LCC−CNRS,
Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France
| | - Anaïs Coffinet
- LCC−CNRS,
Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France
| | - Laure Vendier
- LCC−CNRS,
Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France
| | - Iker del Rosal
- LPCNO,
CNRS, and INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Chiara Dinoi
- LPCNO,
CNRS, and INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Antoine Simonneau
- LCC−CNRS,
Université de Toulouse, CNRS, UPS, 205 route de Narbonne, BP44099, F-31077 Toulouse cedex 4, France
| |
Collapse
|
158
|
Unconventional Gold-Catalyzed One-Pot/Multicomponent Synthesis of Propargylamines Starting from Benzyl Alcohols. Catalysts 2021. [DOI: 10.3390/catal11040513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A formal homogeneous gold-catalyzed A3-coupling, starting from benzyl alcohols, is reported for the straightforward synthesis of propargylamines. This is the first process where these highly valuable compounds have been synthesized, starting from the corresponding alcohols in a one-pot oxidation procedure using MnO2, followed by a HAuCl4·3H2O catalyzed multicomponent reaction. The final products are obtained with very good yields in short reaction times, which is of fundamental interest for the synthesis of pharmaceuticals. The usefulness and efficiency of our methodology is successfully compared against the same reaction starting from aldehydes.
Collapse
|
159
|
Rufino-Felipe E, Colorado-Peralta R, Reyes-Márquez V, Valdés H, Morales-Morales D. Fluorinated-NHC Transition Metal Complexes: Leading Characters as Potential Anticancer Metallodrugs. Anticancer Agents Med Chem 2021; 21:938-948. [PMID: 32900353 DOI: 10.2174/1871520620666200908103452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/31/2020] [Indexed: 12/09/2022]
Abstract
In the last 20 years, N-Heterocyclic Carbene (NHC) ligands have been ubiquitous in biological and medicinal chemistry. Part of their success lies in the tremendous number of topologies that can be synthesized and thus finely tuned that have been described so far. This is particularly true in the case of those derivatives, including fluorine or fluorinated fragments on their NHC moieties, gaining much attention due to their enhanced biological properties and turning them into excellent candidates for the development of novel metallodrugs. Thus, this review summarizes the development that fluorinated-NHC transition metal complexes have had and their impact on cancer treatment.
Collapse
Affiliation(s)
- Ernesto Rufino-Felipe
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - Raúl Colorado-Peralta
- Facultad de Ciencias Quimicas, Universidad Veracruzana, Oriente 6 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, Mexico
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Quimico-Biologicas, Universidad de Sonora, Luis Encinas y Rosales s/n. CP 83000. Hermosillo, Sonora, Mexico
| | - Hugo Valdés
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| | - David Morales-Morales
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Coyoacan, Ciudad de Mexico, C.P. 04510, Mexico
| |
Collapse
|
160
|
Milcendeau P, Gandon V, Guinchard X. Gold‐Catalyzed Carboamination of Allenes by Tertiary Amines Proceeding with Benzylic Group Migration. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pierre Milcendeau
- Université Paris-Saclay, CNRS Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| | - Xavier Guinchard
- Université Paris-Saclay, CNRS Institut de Chimie des Substances Naturelles, UPR 2301 91198 Gif-sur-Yvette France
| |
Collapse
|
161
|
Ito M, Takaki A, Okamura M, Kanyiva KS, Shibata T. Catalytic Synthesis of Dibenzazepines and Dibenzazocines by 7‐
Exo
‐ and 8‐
Endo
‐
Dig
‐Selective Cycloisomerization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mamoru Ito
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Asahi Takaki
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Moeka Okamura
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Kyalo Stephen Kanyiva
- International Center for Science and Engineering Programs (ICSEP) Waseda University, Shinjuku Tokyo 169-8555 Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry School of Advanced Science and Engineering Waseda University, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
162
|
Franchino A, Montesinos-Magraner M, Echavarren AM. Silver-Free Catalysis with Gold(I) Chloride Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200358] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Marc Montesinos-Magraner
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
163
|
Murakami R, Inagaki F. [Development of Gold-catalyzed Reaction Utilizing Electron Acceptability of Z-type Ligand]. YAKUGAKU ZASSHI 2021; 141:305-314. [PMID: 33642496 DOI: 10.1248/yakushi.20-00179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction between transition metals and ligands is important for catalytic reactions. The ligands are largely dominated by the covalent X-type (hydride, alkyl and halogen) and/or dative L-type ligands (e.g., P, N, CO, olefin, etc.). Therefore, the interaction of the Z-type ligands (B, Al and Si, etc.) with transition metals is emerging as a new concept for the reactivity of the metal center. Recently, we developed the synthesis of the gold complex Au(DPB)X (DPB=diphosphine-borane) featuring the Z-type ligand, and their catalytic reaction. The gold catalysts showed a high activity compared to the general catalysts (without Z-ligand) for the various cyclization reactions due to the electron-withdrawing effect of the Z-ligand on the coordinating gold center. In this review, first the structure analysis of the synthesized Au→Z complex is introduced in detail, and second, the catalytic reactions based on the alkyne activation are described.
Collapse
Affiliation(s)
- Ryo Murakami
- The Faculty of Pharmaceutical Science, Kobe Gakuin University
| | | |
Collapse
|
164
|
Jiang JJ, Wong MK. Recent Advances in the Development of Chiral Gold Complexes for Catalytic Asymmetric Catalysis. Chem Asian J 2021; 16:364-377. [PMID: 33386691 DOI: 10.1002/asia.202001375] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Asymmetric gold catalysis has been rapidly developed in the past ten years. Breakthroughs have been made by rational design and meticulous selection of chiral ligands. This review summarizes newly developed gold-catalyzed enantioselective organic transformations and recent progress in ligand design (since 2016), organized according to different types of chiral ligands, including bisphosphine ligands, monophosphine ligands, phosphite-derived ligands, and N-heterocyclic carbene ligands for asymmetric gold(I) catalysis as well as heterocyclic carbene ligands and oxazoline ligands for asymmetric gold(III) catalysis.
Collapse
Affiliation(s)
- Jia-Jun Jiang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
165
|
Liang R, Song L, Lu J, Xu W, Ding C, Jia Y. Palladium‐Catalyzed Enantioselective Heteroarenyne Cycloisomerization Reaction. Angew Chem Int Ed Engl 2021; 60:7412-7417. [DOI: 10.1002/anie.202014796] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Ren‐Xiao Liang
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Ling‐Jie Song
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Jin‐Bo Lu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Wei‐Yan Xu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Chao Ding
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
166
|
Liang R, Song L, Lu J, Xu W, Ding C, Jia Y. Palladium‐Catalyzed Enantioselective Heteroarenyne Cycloisomerization Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ren‐Xiao Liang
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Ling‐Jie Song
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Jin‐Bo Lu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Wei‐Yan Xu
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Chao Ding
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
| | - Yi‐Xia Jia
- College of Chemical Engineering State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology Zhejiang University of Technology Chaowang Road #18 Hangzhou 310014 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
167
|
Nasrallah H, Min Y, Lerayer E, Nguyen TA, Poinsot D, Roger J, Brandès S, Heintz O, Roblin P, Jolibois F, Poteau R, Coppel Y, Kahn ML, Gerber IC, Axet MR, Serp P, Hierso JC. Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks. JACS AU 2021; 1:187-200. [PMID: 34467283 PMCID: PMC8395676 DOI: 10.1021/jacsau.0c00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 05/14/2023]
Abstract
Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensors, medical diagnostics, information storage, and catalysis applications. Herein, the control of the synthesis of sub-2-nm gold NPs is achieved by the formation of dense networks, which are assembled in a single step reaction by employing ditopic polymantanethiols. By using 1,1'-bisadamantane-3,3'-dithiol (BAd-SH) and diamantane-4,9-dithiol (DAd-SH), serving both as bulky surface stabilizers and short-sized linkers, we provide a simple method to form uniformly small gold NPs (1.3 ± 0.2 nm to 1.6 ± 0.3 nm) embedded in rigid frameworks. These NP arrays are organized alongside short interparticular distances ranging from 1.9 to 2.7 nm. The analysis of gold NP surfaces and their modification were achieved in joint experimental and theoretical studies, using notably XPS, NMR, and DFT modeling. Our experimental studies and DFT analyses highlighted the necessary oxidative surface reorganization of individual nanoparticles for an effective enyne cycloisomerization. The modifications at bulky stabilizing ligands allow surface steric decongestion for the alkyne moiety activation but also result in network alteration by overoxidation of sulfurs. Thus, sub-2-nm nanoparticles originating from networks building create convenient conditions for generating reactive Au(I) surface single-sites-in the absence of silver additives-useful for heterogeneous gold-catalyzed enyne cyclization. These nanocatalysts, which as such ease organic products separation, also provide a convenient access for building further polycyclic complexity, owing to their high reactivity and selectivity.
Collapse
Affiliation(s)
- Houssein
O. Nasrallah
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Yuanyuan Min
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Emmanuel Lerayer
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Tuan-Anh Nguyen
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Didier Poinsot
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Julien Roger
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Stéphane Brandès
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
| | - Olivier Heintz
- Laboratoire
Interdisciplinaire Carnot Bourgogne (ICB − UMR CNRS 6303), Université Bourgogne Franche-Comté (UBFC), 9 avenue Alain Savary 21078, Dijon, France
| | - Pierre Roblin
- Laboratoire
de Génie Chimique and Fédération de Recherche
FERMAT, 4 allée Emile Monso, 31030 Toulouse, France
| | - Franck Jolibois
- INSA−CNRS−UPS,
LPCNO, Université Fédérale
de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Romuald Poteau
- INSA−CNRS−UPS,
LPCNO, Université Fédérale
de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Yannick Coppel
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Myrtil L. Kahn
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Iann C. Gerber
- INSA−CNRS−UPS,
LPCNO, Université Fédérale
de Toulouse Midi-Pyrénées, 135 Avenue de Rangueil, F-31077 Toulouse, France
- Iann C. Gerber
| | - M. Rosa Axet
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- M. Rosa Axet
| | - Philippe Serp
- LCC-CNRS,
Université de Toulouse, INPT, UPS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
- Philippe Serp
| | - Jean-Cyrille Hierso
- Institut
de Chimie Moléculaire de l’Université de Bourgogne
(ICMUB - UMR CNRS 6302), Université Bourgogne Franche-Comté
(UBFC), 9 avenue Alain Savary, 21078 Dijon Cedex, France
- Jean-Cyrille Hierso
| |
Collapse
|
168
|
Zheng Z, Ma X, Cheng X, Zhao K, Gutman K, Li T, Zhang L. Homogeneous Gold-Catalyzed Oxidation Reactions. Chem Rev 2021; 121:8979-9038. [DOI: 10.1021/acs.chemrev.0c00774] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Zhitong Zheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xu Ma
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Xinpeng Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Ke Zhao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Kaylaa Gutman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Tianyou Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
169
|
Dalovai P, Karunakar GV, Damodaran Nadar V, Doddi VR, Kanaparthy S. Gold-catalyzed formation of substituted aminobenzophenone derivatives via intramolecular 6-endo-dig cyclization. J CHEM SCI 2021. [DOI: 10.1007/s12039-020-01860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
170
|
Chintawar CC, Yadav AK, Kumar A, Sancheti SP, Patil NT. Divergent Gold Catalysis: Unlocking Molecular Diversity through Catalyst Control. Chem Rev 2021; 121:8478-8558. [PMID: 33555193 DOI: 10.1021/acs.chemrev.0c00903] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The catalyst-directed divergent synthesis, commonly termed as "divergent catalysis", has emerged as a promising technique as it allows chartering of structurally distinct products from common substrates simply by modulating the catalyst system. In this regard, gold complexes emerged as powerful catalysts as they offer unique reactivity profiles as compared to various other transition metal catalysts, primarily due to their salient electronic and geometrical features. Owing to the tunable soft π-acidic nature, gold catalysts not only evolved as superior contenders for catalyzing the reactions of alkynes, alkenes, and allenes but also, more intriguingly, have been found to provide divergent reaction pathways over other π-acid catalysts such as Ag, Pt, Pd, Rh, Cu, In, Sc, Hg, Zn, etc. The recent past has witnessed a renaissance in such examples wherein, by choosing gold catalysts over other transition metal catalysts or by fine-tuning the ligands, counteranions or oxidation states of the gold catalyst itself, a complete reactivity switch was observed. However, reviews documenting such examples are sporadic; as a result, most of the reports of this kind remained scattered in the literature, thereby hampering further development of this burgeoning field. By conceptualizing the idea of "Divergent Gold Catalysis (DGC)", this review aims to consolidate all such reports and provide a unified approach necessary to pave the way for further advancement of this exciting area. Based on the factors governing the divergence in product formation, an explicit classification of DGC has been provided. To gain a fundamental understanding of the divergence in observed reactivities and selectivities, the review is accompanied by mechanistic insights at appropriate places.
Collapse
Affiliation(s)
- Chetan C Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Amit K Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Anil Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Shashank P Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
171
|
Au-promoted Pd-catalyzed arylative cyclization of N,N-dimethyl-o-alkynylaniline with aryl iodides: Access to 2,3-diaryl indoles and mechanistic insight. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
172
|
Affiliation(s)
- Sina Witzel
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
173
|
Sancheti SP, Patil NT. Non‐Canonical Reactivity of Gold Carbene with Alkyne: An Overview of the Mechanistic Premise. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001528] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shashank P. Sancheti
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| | - Nitin T. Patil
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 India
| |
Collapse
|
174
|
Lu Z, Li T, Mudshinge SR, Xu B, Hammond GB. Optimization of Catalysts and Conditions in Gold(I) Catalysis—Counterion and Additive Effects. Chem Rev 2021; 121:8452-8477. [DOI: 10.1021/acs.chemrev.0c00713] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhichao Lu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tingting Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Sagar R. Mudshinge
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Gerald B. Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
175
|
Jiang Z, Niu SL, Zeng Q, Ouyang Q, Chen YC, Xiao Q. Selective Alkynylallylation of the C-C σ Bond of Cyclopropenes. Angew Chem Int Ed Engl 2021; 60:297-303. [PMID: 32909645 DOI: 10.1002/anie.202008886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/12/2020] [Indexed: 01/04/2023]
Abstract
A Pd-catalyzed regio- and stereoselective alkynylallylation of a specific C-C σ bond in cyclopropenes, using allyl propiolates as both allylation and alkynylation reagents, has been achieved for the first time. By merging selective C(sp2 )-C(sp3 ) bond scission with conjunctive cross-couplings, this decarboxylative reorganization reaction features fascinating atom and step economy and provides an efficient approach to highly functionalized dienynes from readily available substrates. Without further optimization, gram-scale products can be easily obtained by such a simple, neutral, and low-cost catalytic system with high TONs. DFT calculations afford a rationale toward the formation of the products and indicate that the selective insertion of the double bond of cyclopropenes into the C-Pd bond of ambidentate Pd complex and the subsequent nonclassical β-C elimination promoted by 1,4-palladium migration are critical for the success of the reaction.
Collapse
Affiliation(s)
- Zeqi Jiang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Sheng-Li Niu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qiang Zeng
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Ying-Chun Chen
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qing Xiao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| |
Collapse
|
176
|
Ueda H, Yamamoto R, Yamaguchi M, Tokuyama H. Synthesis of substituted anilines via a gold-catalyzed three-component reaction. Org Biomol Chem 2021; 19:765-769. [DOI: 10.1039/d0ob02018d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A three-component reaction for the synthesis of substituted anilines by a gold(i)-catalyzed domino reaction was developed.
Collapse
Affiliation(s)
- Hirofumi Ueda
- Graduate School of Pharmaceutical Sciences
- Tohoku University Aoba 6-3
- Sendai
- Japan
| | - Ryota Yamamoto
- Graduate School of Pharmaceutical Sciences
- Tohoku University Aoba 6-3
- Sendai
- Japan
| | - Minami Yamaguchi
- Graduate School of Pharmaceutical Sciences
- Tohoku University Aoba 6-3
- Sendai
- Japan
| | - Hidetoshi Tokuyama
- Graduate School of Pharmaceutical Sciences
- Tohoku University Aoba 6-3
- Sendai
- Japan
| |
Collapse
|
177
|
Yu Z, Lin S, Lin Z. Understanding the reaction mechanism of gold-catalyzed reactions of 2,1-benzisoxazoles with propiolates and ynamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00217a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detailed reaction mechanisms of gold-catalyzed reactions of 2,1-benzisoxazoles with propiolates and ynamides have been investigated with the aid of density functional theory calculations.
Collapse
Affiliation(s)
- Zhaoyuan Yu
- The Institute of Drug Discovery Technology
- Ningbo University
- Ningbo
- 315211
- PR China
| | - Shujuan Lin
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
- State Key Laboratory of Structural Chemistry
| | - Zhenyang Lin
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
| |
Collapse
|
178
|
Li Z, Qiu X, Meng N, Liu Z. Progress in the Synthesis of Hydrobenzofurans from O-Cyclohexadienone-tethered 1,6-Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
179
|
Gangwar MK, Butcher RJ. Axially chiral bis-1,2,3-Triazol-4-ylidene–Ag(I)-MIC and, bis-Au(I)-MIC complexes of (R)-BINOL and (-)-Menthol scaffold: Synthesis, structure, and characterizations. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
180
|
Li J, Huo H, Yang F, Zhou Q, Li M, Chen ZS, Ji K. Gold( iii)-catalyzed bicyclizations of alkylidenecyclopropane-tethered ynones for divergent synthesis of indene and naphthalenone-based polycycles. Org Chem Front 2021. [DOI: 10.1039/d1qo00821h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold(iii)-catalyzed cascade oxidation/cyclization of alkylidenecyclopropane-tethered ynones for the assembly of indene and naphthalenone-based polycycles by employing different N-oxides is reported.
Collapse
Affiliation(s)
- Jian Li
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, Shaanxi 712100, China
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibo Huo
- State Key Laboratory of Crop Stress Biology in Arid Area, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Qianqian Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Mengxue Li
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, Shaanxi 712100, China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, Shaanxi Key Laboratory of Natural Products & Chemical Biology, 3 Taicheng Road, Yangling, Shaanxi 712100, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
181
|
Emmaniel Raju C, Kadiyala V, Sreenivasulu G, Kumar PB, Sridhar B, Karunakar GV. Gold-catalyzed synthesis of 1 H-isochromene-4-carbaldehydes via oxidative cascade cyclization. Org Biomol Chem 2021; 19:3634-3643. [PMID: 33908556 DOI: 10.1039/d1ob00066g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient gold-catalyzed formation of indenylidene-derived 1H-isochromene-4-carbaldehydes from substituted 1,5,10-triyne-O-silanes was developed under mild reaction conditions. In this reaction, gold-catalyzed selective oxidation, 1,2-migration, nucleophilic addition and then 5-endo-dig cyclization took place regioselectively. The indenylidene-derived isochromene-4-carbaldehydes were synthesized in moderate to very good yields via the formation of new C-C and C-O bonds in one pot.
Collapse
Affiliation(s)
- Chittala Emmaniel Raju
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. and Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Veerabhushanam Kadiyala
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. and Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Gottam Sreenivasulu
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. and Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Perla Bharath Kumar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. and Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. and Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
182
|
Toledo A, Salamanca V, Pérez-Moro T, Albéniz AC. Transmetalation of Acyclic Tungsten Carbenes to Coinage Metals: Distinct Behavior of Silver toward Carbene Transfer and Hydrolysis. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alberto Toledo
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Vanesa Salamanca
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Teresa Pérez-Moro
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Ana C. Albéniz
- IU CINQUIMA/Química Inorgánica, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
183
|
Kim H, Jang J, Shin S. Gold-Catalyzed Asymmetric Thioallylation of Propiolates via Charge-Induced Thio-Claisen Rearrangement. J Am Chem Soc 2020; 142:20788-20795. [PMID: 33206513 DOI: 10.1021/jacs.0c09783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A gold(I)-catalyzed enantioselective thioallylation of propiolates with allyl sulfides is described. The key mechanistic element is a sulfonium-induced Claisen rearrangement which helps minimize the allyl dissociation and render higher enantioselectivity. This protocol features remarkable scope of the allyl moiety, allowing enantiocontrolled synthesis of all-carbon quaternary centers, and exhibits exceptional functional group compatibility with many Lewis bases and π-bonds. This intermolecular variant of Claisen rearrangement forges both C-S and C-C bonds concomitantly, providing efficient access to interesting optically active organosulfur compounds which can be transformed further through the vinyl sulfide as a functional handle. The rate of the reaction was zeroth order with respect to allyl sulfides, which suggested a reversible inhibition, providing a resting state for the catalyst. The Hammett plot displayed a correlation with σp values, suggesting a turnover-limiting sigmatropic rearrangement where decreased electron-density on sulfur accelerated the rearrangement.
Collapse
Affiliation(s)
- Hanbyul Kim
- Department of Chemistry, Research Institute of Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Jiwon Jang
- Department of Chemistry, Research Institute of Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute of Natural Sciences and Center for New Directions in Organic Synthesis (CNOS), Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea
| |
Collapse
|
184
|
Chen X, Fontaine-Vive F, Poulain-Martini S, Michelet V. Silver-catalyzed intramolecular [4 + 2] cycloaddition reaction of amide-1,6-enynes. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
185
|
Escofet I, Armengol‐Relats H, Bruss H, Besora M, Echavarren AM. On the Structure of Intermediates in Enyne Gold(I)-Catalyzed Cyclizations: Formation of trans-Fused Bicyclo[5.1.0]octanes as a Case Study. Chemistry 2020; 26:15738-15745. [PMID: 33155306 PMCID: PMC7756441 DOI: 10.1002/chem.202004237] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Indexed: 11/28/2022]
Abstract
The nature of cyclopropyl gold(I) carbene-type intermediates has been reexamined as part of a mechanistic study on the formation of cis- or trans-fused bicyclo[5.1.0]octanes in a gold(I)-catalyzed cascade reaction. Benchmark of DFT methods together with QTAIM theory and NBO analysis confirms the formation of distinct intermediates with carbenic or carbocationic structures in the cycloisomerizations of enynes.
Collapse
Affiliation(s)
- Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Helena Armengol‐Relats
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Hanna Bruss
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Maria Besora
- Departament de Química Física i InorgànicaUniversitat Rovira i Virgili (URV)C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ)Barcelona Institute of Science and Technology (BIST)Av. Països Catalans 1643007TarragonaSpain
- Departament de Química Orgànica i AnalíticaUniversitat Rovira i Virgili (URV)C/ Marcel⋅lí Domingo s/n43007TarragonaSpain
| |
Collapse
|
186
|
Yang Y, Liu Y, Zhu R, Zhang D. Theoretical insight into the different reactivities of aliphatic and aromatic terminal alkynes towards homopropargyl alcohols via Au(I) catalysis. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
187
|
Zhu B, Zhu L, Xia J, Huang S, Huang X. Gold-catalyzed cycloisomerization of enynamides: Regio- and stereoselective approach to tetracyclic spiroindolines. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
188
|
Campeau D, León Rayo DF, Mansour A, Muratov K, Gagosz F. Gold-Catalyzed Reactions of Specially Activated Alkynes, Allenes, and Alkenes. Chem Rev 2020; 121:8756-8867. [DOI: 10.1021/acs.chemrev.0c00788] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - David F. León Rayo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Ali Mansour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5 Ottawa, Canada
| |
Collapse
|
189
|
Milián A, García-García P, Pérez-Redondo A, Sanz R, Vaquero JJ, Fernández-Rodríguez MA. Selective Synthesis of Phenanthrenes and Dihydrophenanthrenes via Gold-Catalyzed Cycloisomerization of Biphenyl Embedded Trienynes. Org Lett 2020; 22:8464-8469. [PMID: 32969663 DOI: 10.1021/acs.orglett.0c03067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Readily available o'-alkenyl-o-alkynylbiaryls, a particular type of 1,7-enynes, undergo a selective cycloisomerization reaction in the presence of a gold(I) catalyst to give interesting phenanthrene and dihydrophenanthrene derivatives in high yields. The solvent used provokes a switch in the evolution of the gold intermediate and plays a key role in the reaction outcome.
Collapse
Affiliation(s)
- Ana Milián
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Patricia García-García
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Adrián Pérez-Redondo
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Roberto Sanz
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Juan J Vaquero
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| | - Manuel A Fernández-Rodríguez
- Departamento de Quı́mica Orgánica y Quı́mica Inorgánica, Instituto de Investigación Quı́mica "Andrés M. del Rı́o" (IQAR). Universidad de Alcalá (IRYCIS). Campus Cientı́fico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
190
|
Jiang Z, Niu S, Zeng Q, Ouyang Q, Chen Y, Xiao Q. Selective Alkynylallylation of the C−C σ Bond of Cyclopropenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zeqi Jiang
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Sheng‐Li Niu
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qiang Zeng
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qin Ouyang
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Ying‐Chun Chen
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| | - Qing Xiao
- School of Pharmacy Third Military Medical University Gao Tanyan Avenue Chongqing 400038 China
| |
Collapse
|
191
|
Gayyur, Choudhary S, Saxena A, Ghosh N. Gold-catalyzed homo- and cross-annulation of alkynyl carboxylic acids: a facile access to substituted 4-hydroxy 2 H-pyrones and total synthesis of pseudopyronine A. Org Biomol Chem 2020; 18:8716-8723. [PMID: 33089263 DOI: 10.1039/d0ob01700k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Au(i)-catalyzed homo- and cross-annulation reaction of alkynyl carboxylic acids offering 3,6-disubstituted 4-hydroxy 2H-pyrones has been demonstrated. The reaction tolerates various substituted alkynyl carboxylic acids and moderate to good yields of α-pyrone scaffolds have been observed. Later, a gram-scale reaction of the acid and the total synthesis of the natural product pseudopyronine A have been carried out successfully.
Collapse
Affiliation(s)
- Gayyur
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| | - Shivani Choudhary
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| | - Anchal Saxena
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India.
| | - Nayan Ghosh
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow-226031, U.P., India. and Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, U. P., India
| |
Collapse
|
192
|
Abstract
Three- and four-membered rings, widespread motifs in nature and medicinal chemistry, have fascinated chemists ever since their discovery. However, due to energetic considerations, small rings are often difficult to assemble. In this regard, homogeneous gold catalysis has emerged as a powerful tool to construct these highly strained carbocycles. This review aims to provide a comprehensive summary of all the major advances and discoveries made in the gold-catalyzed synthesis of cyclopropanes, cyclopropenes, cyclobutanes, cyclobutenes, and their corresponding heterocyclic or heterosubstituted analogs.
Collapse
Affiliation(s)
- Mauro Mato
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Cristina Garcı A-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quı́mica Analı́tica i Quı́mica Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
193
|
Praveen C. Regio‐ and Site‐selective Molecular Rearrangements by Homogeneous Gold Catalysis. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division Central Electrochemical Research Institute (CSIR-Laboratory) Alagappapuram Karaikudi-630003, Sivagangai District Tamil Nadu India
| |
Collapse
|
194
|
Chan SC, Yeung CF, Shek HL, Ng SW, Tse SY, Tse MK, Yiu SM, Wong CY. Iron(ii)-induced cycloisomerization of alkynes via"non-vinylidene" pathways for iron(ii)-indolizine and -indolizinone complexes. Chem Commun (Camb) 2020; 56:12644-12647. [PMID: 32960203 DOI: 10.1039/d0cc05081d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Reactions between pyridine-functionalized alkynes and an Fe(ii) precursor supported by 2,5,8-trithia[9](2,9)-1,10-phenanthrolinophane afforded the first Fe(ii)-indolizine and -indolizinone complexes. Structural analysis and theoretical calculations revealed the existence of unconventional "non-vinylidene" pathways and challenged the generality of vinylidene intermediacy in Fe(ii)-induced alkyne transformations.
Collapse
Affiliation(s)
- Siu-Chung Chan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Wang Y, Zhu J, Guo R, Lindberg H, Wang YM. Iron-catalyzed α-C-H functionalization of π-bonds: cross-dehydrogenative coupling and mechanistic insights. Chem Sci 2020; 11:12316-12322. [PMID: 34094439 PMCID: PMC8163013 DOI: 10.1039/d0sc05091a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/16/2020] [Indexed: 12/02/2022] Open
Abstract
The deprotonation of propargylic C-H bonds for subsequent functionalization typically requires stoichiometric metal alkyl or amide reagents. In addition to the undesirable generation of stoichiometric metallic waste, these conditions limit the functional group compatibility and versatility of this functionalization strategy and often result in regioisomeric mixtures. In this article, we report the use of dicarbonyl cyclopentadienyliron(ii) complexes for the generation of propargylic anion equivalents toward the direct electrophilic functionalization of propargylic C-H bonds under mild, catalytic conditions. This technology was applied to the direct conversion of C-H bonds to C-C bonds for the synthesis of several functionalized scaffolds through a one-pot cross dehydrogenative coupling reaction with tetrahydroisoquinoline and related privileged heterocyclic scaffolds. A series of NMR studies and deuterium-labelling experiments indicated that the deprotonation of the propargylic C-H bond was the rate-determining step when a Cp*Fe(CO)2-based catalyst system was employed.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Jin Zhu
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Rui Guo
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Haley Lindberg
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh Pittsburgh Pennsylvania 15260 USA
| |
Collapse
|
196
|
Affiliation(s)
- Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
197
|
Dherbassy Q, Manna S, Talbot FJT, Prasitwatcharakorn W, Perry GJP, Procter DJ. Copper-catalyzed functionalization of enynes. Chem Sci 2020; 11:11380-11393. [PMID: 34094380 PMCID: PMC8163025 DOI: 10.1039/d0sc04012f] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
The copper-catalyzed functionalization of enyne derivatives has recently emerged as a powerful approach in contemporary synthesis. Enynes are versatile and readily accessible substrates that can undergo a variety of reactions to yield densely functionalized, enantioenriched products. In this perspective, we review copper-catalyzed transformations of enynes, such as boro- and hydrofunctionalizations, copper-mediated radical difunctionalizations, and cyclizations. Particular attention is given to the regiodivergent functionalization of 1,3-enynes, and the current mechanistic understanding of such processes.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Srimanta Manna
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Fabien J T Talbot
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Watcharapon Prasitwatcharakorn
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - Gregory J P Perry
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| | - David J Procter
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK www.twitter.com/GroupProcter https://www.proctergroupresearch.com/
| |
Collapse
|
198
|
Affiliation(s)
- Ronald L. Reyes
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
199
|
Arimitsu S, Iwasa S, Arakaki R. Enantioselective Fluorination of α-Branched β-Ynone Esters Using a Cinchona-Based Phase-Transfer Catalyst. J Org Chem 2020; 85:12804-12812. [PMID: 32955893 DOI: 10.1021/acs.joc.0c01997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report the fluorination of α-branched β-ynone esters to afford their corresponding quaternary fluorinated products with good enantioselectivity (ee = 73-90%) using a cinchona-based phase-transfer catalyst. α-Branched β-ynone esters possess a highly acidic α-proton and form their corresponding enolate as a single isomer, which allows the enantioselective fluorination reaction to occur under standard cinchona-based phase-transfer catalyst conditions. Moreover, the obtained α-fluorinated product can be treated with [(SPhos)AuNTf2] (1 mol %) to afford a fluorinated 3,5-diketo carboxylic acid.
Collapse
Affiliation(s)
- Satoru Arimitsu
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| | - Satsuki Iwasa
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| | - Ryunosuke Arakaki
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Senbaru 1, Nakagami, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
200
|
Abstract
With an inwardly directed reactive center and a well-defined binding pocket, Au(I) functionalized resorcin[4]arene cavitands have been shown to catalyze molecular transformations. The reactivity profiles that emerge differ from other Au(I) catalysts. The added constraint of a binding pocket gives rise to the possibility that the substrates might have to fit into the resorcinarene pocket; our hypothesis is that substrates that match the available space have different reaction outcomes than those that do not. Herein we report on the intramolecular cyclization of alkyne-aromatic substrates with variable alkynes and aromatic composition. We see that scaffold size most drastically dictates reactivity, especially when the substrate's features are particularly designed. The results of these experiments add to the veritable goldmine of information about the selectivity in catalysis that cavitands offer.
Collapse
Affiliation(s)
- Lisa E Rusali
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| | - Michael P Schramm
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA
| |
Collapse
|