151
|
Dorl S, Winkler S, Mechtler K, Dorfer V. MS Ana: Improving Sensitivity in Peptide Identification with Spectral Library Search. J Proteome Res 2023; 22:462-470. [PMID: 36688604 PMCID: PMC9903325 DOI: 10.1021/acs.jproteome.2c00658] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spectral library search can enable more sensitive peptide identification in tandem mass spectrometry experiments. However, its drawbacks are the limited availability of high-quality libraries and the added difficulty of creating decoy spectra for result validation. We describe MS Ana, a new spectral library search engine that enables high sensitivity peptide identification using either curated or predicted spectral libraries as well as robust false discovery control through its own decoy library generation algorithm. MS Ana identifies on average 36% more spectrum matches and 4% more proteins than database search in a benchmark test on single-shot human cell-line data. Further, we demonstrate the quality of the result validation with tests on synthetic peptide pools and show the importance of library selection through a comparison of library search performance with different configurations of publicly available human spectral libraries.
Collapse
Affiliation(s)
- Sebastian Dorl
- University
of Applied Sciences Upper Austria, Bioinformatics Research Group, Softwarepark 11, 4232Hagenberg, Austria,Department
of Computer Science, Johannes Kepler University
Linz, Altenbergerstraße
69, 4040Linz, Austria,E-mail: . Phone: +43 (0) 50804
27145
| | - Stephan Winkler
- University
of Applied Sciences Upper Austria, Bioinformatics Research Group, Softwarepark 11, 4232Hagenberg, Austria,Department
of Computer Science, Johannes Kepler University
Linz, Altenbergerstraße
69, 4040Linz, Austria
| | - Karl Mechtler
- Research
Institute of Molecular Pathology (IMP), Protein Chemistry, Campus-Vienna-Biocenter 1, 1030Vienna, Austria,Institute
of Molecular Biotechnology (IMBA), Protein Chemistry, Vienna Biocenter
(VBC), Dr. Bohr-Gasse 3, 1030Vienna, Austria,Gregor
Mendel Institute of Molecular Plant Biology of the Austrian Academy
of Sciences (GMI), Dr.
Bohr Gasse 3, 1030Vienna, Austria
| | - Viktoria Dorfer
- University
of Applied Sciences Upper Austria, Bioinformatics Research Group, Softwarepark 11, 4232Hagenberg, Austria,E-mail: . Phone: +43 (0) 50804
22740
| |
Collapse
|
152
|
Callahan N, Siegall WB, Bergonzo C, Marino JP, Kelman Z. Contributions from ClpS surface residues in modulating N-terminal peptide binding and their implications for NAAB development. Protein Eng Des Sel 2023; 36:gzad007. [PMID: 37498171 DOI: 10.1093/protein/gzad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Numerous technologies are currently in development for use in next-generation protein sequencing platforms. A notable published approach employs fluorescently-tagged binding proteins to identity the N-terminus of immobilized peptides, in-between rounds of digestion. This approach makes use of N-terminal amino acid binder (NAAB) proteins, which would identify amino acids by chemical and shape complementarity. One source of NAABs is the ClpS protein family, which serve to recruit proteins to bacterial proteosomes based on the identity of the N-terminal amino acid. In this study, a Thermosynechococcus vestitus (also known as Thermosynechococcus elongatus) ClpS2 protein was used as the starting point for direct evolution of an NAAB with affinity and specificity for N-terminal leucine. Enriched variants were analyzed and shown to improve the interaction between the ClpS surface and the peptide chain, without increasing promiscuity. Interestingly, interactions were found that were unanticipated which favor different charged residues located at position 5 from the N-terminus of a target peptide.
Collapse
Affiliation(s)
- Nicholas Callahan
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - William B Siegall
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Zvi Kelman
- Institute for Bioscience and Biotechnology Research (IBBR), National Institute of Standards & Technology (NIST) and the University of Maryland (UMD), 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards & Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Biomolecular Labeling Laboratory, IBBR, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| |
Collapse
|
153
|
Jiang Y, Hutton A, Cranney CW, Meyer JG. Label-Free Quantification from Direct Infusion Shotgun Proteome Analysis (DISPA-LFQ) with CsoDIAq Software. Anal Chem 2023; 95:677-685. [PMID: 36527718 PMCID: PMC9850400 DOI: 10.1021/acs.analchem.2c02249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Large-scale proteome analysis requires rapid and high-throughput analytical methods. We recently reported a new paradigm in proteome analysis where direct infusion and ion mobility are used instead of liquid chromatography (LC) to achieve rapid and high-throughput proteome analysis. Here, we introduce an improved direct infusion shotgun proteome analysis protocol including label-free quantification (DISPA-LFQ) using CsoDIAq software. With CsoDIAq analysis of DISPA data, we can now identify up to ∼2000 proteins from the HeLa and 293T proteomes, and with DISPA-LFQ, we can quantify ∼1000 proteins from no more than 1 μg of sample within minutes. The identified proteins are involved in numerous valuable pathways including central carbon metabolism, nucleic acid replication and transport, protein synthesis, and endocytosis. Together with a high-throughput sample preparation method in a 96-well plate, we further demonstrate the utility of this technology for performing high-throughput drug analysis in human 293T cells. The total time for data collection from a whole 96-well plate is approximately 8 h. We conclude that the DISPA-LFQ strategy presents a valuable tool for fast identification and quantification of proteins in complex mixtures, which will power a high-throughput proteomic era of drug screening, biomarker discovery, and clinical analysis.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Alexandre Hutton
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
| | - Caleb W. Cranney
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jesse G. Meyer
- Department
of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
| |
Collapse
|
154
|
Battellino T, Ogata K, Spicer V, Ishihama Y, Krokhin O. Acetic Acid Ion Pairing Additive for Reversed-Phase HPLC Improves Detection Sensitivity in Bottom-up Proteomics Compared to Formic Acid. J Proteome Res 2023; 22:272-278. [PMID: 36480176 DOI: 10.1021/acs.jproteome.2c00388] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the general acceptance of formic acid as the additive of choice for peptide reversed-phase LC-MS/MS applications, some still argue that the selection of acetic acid represents a better option. To settle this debate, we investigated both the difference in MS sensitivity and chromatographic behavior of peptides between these two systems. This interlaboratory study was performed using different MS setups and C18 separation media employing both 0.1% formic and 0.5% acetic acid as ion pairing modifiers. Relative to formic acid, we find an overall ∼2.2-2.5× increase in MS signal and a slight decrease in RP LC retention (-0.7% acetonitrile on average) for acetic acid conditions. While these two features have opposing effects on peptide detectability, we find that acetic acid produces up to 60% higher peptide ID output depending on the type of sample. The drop in RPLC retention increases with peptide net charge at acidic pH. MS signal is dependent on the difference between the charge of the precursor ion and the charge of the peptide in solution, favoring species with a low pI. Lower peptide retention under acetic acid conditions demonstrates its higher hydrophilicity and, as expected, leads to composition and sequence-dependent character of the observed retention shift.
Collapse
Affiliation(s)
- Taylor Battellino
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Oleg Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada.,University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| |
Collapse
|
155
|
Gabant G, Stekovic M, Nemcic M, Pinêtre J, Cadene M. A sDOE (Simple Design-of-Experiment) Approach for Parameter Optimization in Mass Spectrometry. Part 1. Parameter Selection and Interference Effects in Top-Down ETD Fragmentation of Proteins in a UHR-QTOF Instrument. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:27-35. [PMID: 36479974 DOI: 10.1021/jasms.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Design-of-experiment (DOE) approaches, originally conceived by Fischer, are widely applied in industry, particularly in the context of production for which they have been greatly expended. In a research and development context, DOE can be of great use for method development. Specifically, DOE can greatly speed up instrument parameter optimization by first identifying parameters that are critical to a given outcome, showing parameter interdependency where it occurs and accelerating optimization of said parameters using matrices of experimental conditions. While DOE approaches have been applied in mass spectrometry experiments, they have so far failed to gain widespread adoption. This could be attributed to the fact that DOE can get quite complex and daunting to the everyday user. Here we make the case that a subset of DOE tools, hereafter called SimpleDOE (sDOE), can make DOE accessible and useful to the Mass Spectrometry community at large. We illustrate the progressive gains from a purely manual approach to sDOE through a stepwise optimization of parameters affecting the efficiency of top-down ETD fragmentation of proteins on a high-resolution Q-TOF mass spectrometer, where the aim is to maximize sequence coverage of fragmentation events.
Collapse
Affiliation(s)
- Guillaume Gabant
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Martin Stekovic
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Matej Nemcic
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Justine Pinêtre
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| | - Martine Cadene
- Centre de Biophysique Moléculaire, UPR4301, CNRS, affiliated to Université d'Orléans, Rue Charles Sadron, Orléans45071 Cedex 2, France
| |
Collapse
|
156
|
Son A, Pankow S, Bamberger TC, Yates JR. Quantitative structural proteomics in living cells by covalent protein painting. Methods Enzymol 2023; 679:33-63. [PMID: 36682868 PMCID: PMC10262296 DOI: 10.1016/bs.mie.2022.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The fold and conformation of proteins are key to successful cellular function, but all techniques for protein structure determination are performed in an artificial environment with highly purified proteins. While protein conformations have been solved to atomic resolution and modern protein structure prediction tools rapidly generate near accurate models of proteins, there is an unmet need to uncover the conformations of proteins in living cells. Here, we describe Covalent Protein Painting (CPP), a simple and fast method to infer structural information on protein conformation in cells with a quantitative protein footprinting technology. CPP monitors the conformational landscape of the 3D proteome in cells with high sensitivity and throughput. A key advantage of CPP is its' ability to quantitatively compare the 3D proteomes between different experimental conditions and to discover significant changes in the protein conformations. We detail how to perform a successful CPP experiment, the factors to consider before performing the experiment, and how to interpret the results.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Sandra Pankow
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Tom Casimir Bamberger
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
157
|
Luo RY, Wong C, Xia JQ, Glader BE, Shi RZ, Zehnder JL. Neutral-Coating Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Top-Down Identification of Hemoglobin Variants. Clin Chem 2023; 69:56-67. [PMID: 36308334 DOI: 10.1093/clinchem/hvac171] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Identification of hemoglobin (Hb) variants is of significant value in the clinical diagnosis of hemoglobinopathy. However, conventional methods for identification of Hb variants in clinical laboratories can be inadequate due to the lack of structural characterization. We describe the use of neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry (CE-HR-MS) to achieve high-performance top-down identification of Hb variants. METHODS An Orbitrap Q-Exactive Plus mass spectrometer was coupled with an ECE-001 capillary electrophoresis (CE) unit through an EMASS-II ion source. A PS1 neutral-coating capillary was used for CE. Samples of red blood cells were lysed in water and diluted in 10 mM ammonium formate buffer for analysis. Deconvolution of raw mass spectrometry data was carried out to merge multiple charge states and isotopic peaks of an analyte to obtain its monoisotopic mass. RESULTS The neutral-coating CE could baseline separate individual Hb subunits dissociated from intact Hb forms, and the HR-MS could achieve both intact-protein analysis and top-down analysis of analytes. A number of patient samples that contain Hb subunit variants were analyzed, and the variants were successfully identified using the CE-HR-MS method. CONCLUSIONS The CE-HR-MS method has been demonstrated as a useful tool for top-down identification of Hb variants. With the ability to characterize the primary structures of Hb subunits, the CE-HR-MS method has significant advantages to complement or partially replace the conventional methods for the identification of Hb variants.
Collapse
Affiliation(s)
- Ruben Yiqi Luo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Carolyn Wong
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | | | - Bertil E Glader
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Run-Zhang Shi
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - James L Zehnder
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| |
Collapse
|
158
|
Cox J. Prediction of peptide mass spectral libraries with machine learning. Nat Biotechnol 2023; 41:33-43. [PMID: 36008611 DOI: 10.1038/s41587-022-01424-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
The recent development of machine learning methods to identify peptides in complex mass spectrometric data constitutes a major breakthrough in proteomics. Longstanding methods for peptide identification, such as search engines and experimental spectral libraries, are being superseded by deep learning models that allow the fragmentation spectra of peptides to be predicted from their amino acid sequence. These new approaches, including recurrent neural networks and convolutional neural networks, use predicted in silico spectral libraries rather than experimental libraries to achieve higher sensitivity and/or specificity in the analysis of proteomics data. Machine learning is galvanizing applications that involve large search spaces, such as immunopeptidomics and proteogenomics. Current challenges in the field include the prediction of spectra for peptides with post-translational modifications and for cross-linked pairs of peptides. Permeation of machine-learning-based spectral prediction into search engines and spectrum-centric data-independent acquisition workflows for diverse peptide classes and measurement conditions will continue to push sensitivity and dynamic range in proteomics applications in the coming years.
Collapse
Affiliation(s)
- Jürgen Cox
- Computational Systems Biochemistry Research Group, Max-Planck Institute of Biochemistry, Martinsried, Germany.
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
159
|
McDonnell K, Howley E, Abram F. Critical evaluation of the use of artificial data for machine learning based de novo peptide identification. Comput Struct Biotechnol J 2023; 21:2732-2743. [PMID: 37168871 PMCID: PMC10165132 DOI: 10.1016/j.csbj.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 05/13/2023] Open
Abstract
Proteins are essential components of all living cells and so the study of their in situ expression, proteomics, has wide reaching applications. Peptide identification in proteomics typically relies on matching high resolution tandem mass spectra to a protein database but can also be performed de novo. While artificial spectra have been successfully incorporated into database search pipelines to increase peptide identification rates, little work has been done to investigate the utility of artificial spectra in the context of de novo peptide identification. Here, we perform a critical analysis of the use of artificial data for the training and evaluation of de novo peptide identification algorithms. First, we classify the different fragment ion types present in real spectra and then estimate the number of spurious matches using random peptides. We then categorise the different types of noise present in real spectra. Finally, we transfer this knowledge to artificial data and test the performance of a state-of-the-art de novo peptide identification algorithm trained using artificial spectra with and without relevant noise addition. Noise supplementation increased artificial training data performance from 30% to 77% of real training data peptide recall. While real data performance was not fully replicated, this work provides the first steps towards an artificial spectrum framework for the training and evaluation of de novo peptide identification algorithms. Further enhanced artificial spectra may allow for more in depth analysis of de novo algorithms as well as alleviating the reliance on database searches for training data.
Collapse
Affiliation(s)
- Kevin McDonnell
- Functional Environmental Microbiology, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
- School of Computer Science, University of Galway, Ireland
- Corresponding author at: Functional Environmental Microbiology, School of Natural Sciences, Ryan Institute, University of Galway, Ireland.
| | - Enda Howley
- School of Computer Science, University of Galway, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, School of Natural Sciences, Ryan Institute, University of Galway, Ireland
- Corresponding author.
| |
Collapse
|
160
|
Tardif M, Fremy E, Hesse AM, Burger T, Couté Y, Wieczorek S. Statistical Analysis of Quantitative Peptidomics and Peptide-Level Proteomics Data with Prostar. Methods Mol Biol 2023; 2426:163-196. [PMID: 36308690 DOI: 10.1007/978-1-0716-1967-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prostar is a software tool dedicated to the processing of quantitative data resulting from mass spectrometry-based label-free proteomics. Practically, once biological samples have been analyzed by bottom-up proteomics, the raw mass spectrometer outputs are processed by bioinformatics tools, so as to identify peptides and quantify them, notably by means of precursor ion chromatogram integration. From that point, the classical workflows aggregate these pieces of peptide-level information to infer protein-level identities and amounts. Finally, protein abundances can be statistically analyzed to find out proteins that are significantly differentially abundant between compared conditions. Prostar original workflow has been developed based on this strategy. However, recent works have demonstrated that processing peptide-level information is often more accurate when searching for differentially abundant proteins, as the aggregation step tends to hide some of the data variabilities and biases. As a result, Prostar has been extended by workflows that manage peptide-level data, and this protocol details their use. The first one, deemed "peptidomics," implies that the differential analysis is conducted at peptide level, independently of the peptide-to-protein relationship. The second workflow proposes to aggregate the peptide abundances after their preprocessing (i.e., after filtering, normalization, and imputation), so as to minimize the amount of protein-level preprocessing prior to differential analysis.
Collapse
Affiliation(s)
- Marianne Tardif
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, Grenoble, France
| | - Enora Fremy
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, Grenoble, France
| | - Thomas Burger
- Univ. Grenoble Alpes, CNRS, INSERM, CEA, Grenoble, France
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, Grenoble, France
| | - Samuel Wieczorek
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, Grenoble, France.
| |
Collapse
|
161
|
Zhang X, Sun H, Wang Z, Zhou S, Fu Y, Anthony HA, Peng J. In-Depth Blood Proteome Profiling by Extensive Fractionation and Multiplexed Quantitative Mass Spectrometry. Methods Mol Biol 2023; 2628:109-125. [PMID: 36781782 DOI: 10.1007/978-1-0716-2978-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Blood in the circulatory system carries information of physiological and pathological status of the human body, so blood proteins are often used as biomarkers for diagnosis, prognosis, and therapy. Human blood proteome can be explored by the latest technologies in mass spectrometry (MS), creating an opportunity of discovering new disease biomarkers. The extreme dynamic range of protein concentrations in blood, however, poses a challenge to detect proteins of low abundance, namely, tissue leakage proteins. Here, we describe a strategy to directly analyze undepleted blood samples by extensive liquid chromatography (LC) fractionation and 18-plex tandem-mass-tag (TMT) mass spectrometry. The proteins in blood specimens (e.g., plasma or serum) are isolated by acetone precipitation and digested into peptides. The resulting peptides are TMT-labeled, separated by basic pH reverse-phase (RP) LC into at least 40 fractions, and analyzed by acidic pH RPLC and high-resolution MS/MS, leading to the quantification of ~3000 unique proteins. Further increase of basic pH RPLC fractions and adjustment of the fraction concatenation strategy can enhance the proteomic coverage (up to ~5000 proteins). Finally, the combination of multiple batches of TMT experiments allows the profiling of hundreds of blood samples. This TMT-MS-based method provides a powerful platform for deep proteome profiling of human blood samples.
Collapse
Affiliation(s)
- Xue Zhang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Huan Sun
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhen Wang
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Suiping Zhou
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yingxue Fu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - High A Anthony
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
162
|
Allergy, asthma, and proteomics: opportunities with immediate impact. Allergol Immunopathol (Madr) 2023; 51:16-21. [PMID: 36617817 DOI: 10.15586/aei.v51i1.567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/08/2022] [Indexed: 01/03/2023]
Abstract
Allergy is widely discussed by researchers due to its complex mechanism that leads to disorders and injuries, but the reason behind the allergic status remains unclear. Current treatments are insufficient to improve the patient's quality of life significantly. New technologies in scientific and technological development are emerging. For instance, the union between allergy and peptidomics and bioinformatics tools may help fill the gaps in this field, diagnosis, and treatment. In this review, we look at peptidomics and address some findings, such as target proteins or biomarkers that help better understand mechanisms that lead to inflammation, organ damage, and, consequently, poor quality of life or even death.
Collapse
|
163
|
Nisar N, Mir SA, Kareem O, Pottoo FH. Proteomics approaches in the identification of cancer biomarkers and drug discovery. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
164
|
Cecerska-Heryć E, Ronkowski B, Heryć R, Serwin N, Grygorcewicz B, Roszak M, Galant K, Dołęgowska B. Proteomic and lipidomic biomarkers in the diagnosis and progression of inflammatory bowel disease - a review. Proteomics Clin Appl 2023; 17:e2200003. [PMID: 36043901 DOI: 10.1002/prca.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/07/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE There is an increasing prevalence of inflammatory bowel disease (IBD) and to date, no effective treatment has been developed and the exact etiology of this disease remains unknown. Nevertheless, a growing number of proteomic and lipidomic studies have identified certain proteins and lipids which can be used successfully in patients to improve diagnoses and monitoring of treatment. EXPERIMENTAL DESIGN We have focused on the applications of proteins and lipids for IBD diagnostics, including differentiation of Crohn's disease (CD) and ulcerative colitis (UC), treatment monitoring, monitoring of clinical state, likelihood of relapse, and their potential for novel targeted treatments. RESULTS Analysis of protein and lipid profiles can: improve the availability and use of diagnostic markers; improve understanding of the pathomechanisms of IBD, for example, several studies have implicated platelet dysfunction (PF4), autoimmune responses (granzyme B, perforin), and abnormal metabolism (arachidonic acid pathways); aid in monitoring patient health; and improve therapeutics (experimental phosphatidylcholine therapy has been shown to result in an improvement in intestinal condition). CONCLUSIONS Despite the enormous progress of proteomics and lipidomics in recent years and the development of new technologies, further research is needed to select some of the most sensitive and specific markers applicable in diagnosing and treating IBD.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Bartosz Ronkowski
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Katarzyna Galant
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Szczecin, Poland
| |
Collapse
|
165
|
Derks J, Leduc A, Wallmann G, Huffman RG, Willetts M, Khan S, Specht H, Ralser M, Demichev V, Slavov N. Increasing the throughput of sensitive proteomics by plexDIA. Nat Biotechnol 2023; 41:50-59. [PMID: 35835881 PMCID: PMC9839897 DOI: 10.1038/s41587-022-01389-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/13/2022] [Indexed: 01/22/2023]
Abstract
Current mass spectrometry methods enable high-throughput proteomics of large sample amounts, but proteomics of low sample amounts remains limited in depth and throughput. To increase the throughput of sensitive proteomics, we developed an experimental and computational framework, called plexDIA, for simultaneously multiplexing the analysis of peptides and samples. Multiplexed analysis with plexDIA increases throughput multiplicatively with the number of labels without reducing proteome coverage or quantitative accuracy. By using three-plex non-isobaric mass tags, plexDIA enables quantification of threefold more protein ratios among nanogram-level samples. Using 1-hour active gradients, plexDIA quantified ~8,000 proteins in each sample of labeled three-plex sets and increased data completeness, reducing missing data more than twofold across samples. Applied to single human cells, plexDIA quantified ~1,000 proteins per cell and achieved 98% data completeness within a plexDIA set while using ~5 minutes of active chromatography per cell. These results establish a general framework for increasing the throughput of sensitive and quantitative protein analysis.
Collapse
Affiliation(s)
- Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
| | - Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Georg Wallmann
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - R Gray Huffman
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Saad Khan
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Harrison Specht
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Markus Ralser
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
| |
Collapse
|
166
|
Bujdoš D, Popelářová B, Volke DC, Nikel PI, Sonnenschein N, Dvořák P. Engineering of Pseudomonas putida for accelerated co-utilization of glucose and cellobiose yields aerobic overproduction of pyruvate explained by an upgraded metabolic model. Metab Eng 2023; 75:29-46. [PMID: 36343876 DOI: 10.1016/j.ymben.2022.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Pseudomonas putida KT2440 is an attractive bacterial host for biotechnological production of valuable chemicals from renewable lignocellulosic feedstocks as it can valorize lignin-derived aromatics or glucose obtainable from cellulose. P. putida EM42, a genome-reduced variant of strain KT2440 endowed with advantageous physiological properties, was recently engineered for growth on cellobiose, a major cellooligosaccharide product of enzymatic cellulose hydrolysis. Co-utilization of cellobiose and glucose was achieved in a mutant lacking periplasmic glucose dehydrogenase Gcd (PP_1444). However, the cause of the co-utilization phenotype remained to be understood and the Δgcd strain had a significant growth defect. In this study, we investigated the basis of the simultaneous uptake of the two sugars and accelerated the growth of P. putida EM42 Δgcd mutant for the bioproduction of valuable compounds from glucose and cellobiose. We show that the gcd deletion lifted the inhibition of the exogenous β-glucosidase BglC from Thermobifida fusca exerted by the intermediates of the periplasmic glucose oxidation pathway. The additional deletion of hexR gene, which encodes a repressor of the upper glycolysis genes, failed to restore rapid growth on glucose. The reduced growth rate of the Δgcd mutant was partially compensated by the implantation of heterologous glucose and cellobiose transporters (Glf from Zymomonas mobilis and LacY from Escherichia coli, respectively). Remarkably, this intervention resulted in the accumulation of pyruvate in aerobic P. putida cultures. We demonstrated that the excess of this key metabolic intermediate can be redirected to the enhanced biosynthesis of ethanol and lactate. The pyruvate overproduction phenotype was then unveiled by an upgraded genome-scale metabolic model constrained with proteomic and kinetic data. The model pointed to the saturation of glucose catabolism enzymes due to unregulated substrate uptake and it predicted improved bioproduction of pyruvate-derived chemicals by the engineered strain. This work sheds light on the co-metabolism of cellulosic sugars in an attractive biotechnological host and introduces a novel strategy for pyruvate overproduction in bacterial cultures under aerobic conditions.
Collapse
Affiliation(s)
- Dalimil Bujdoš
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs, Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
167
|
Bostanci N, Bao K. Proteome Analysis of Oral Biofluids in Periodontal Health and Disease Using Mass Spectrometry. Methods Mol Biol 2023; 2588:13-23. [PMID: 36418679 DOI: 10.1007/978-1-0716-2780-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mass spectrometry-based proteomic approaches permit the high-throughput assessment of proteins from oral biofluids, therefore, allowing a deeper insight into the mechanistic study of periodontal disease. Here we describe an entire experimental design of proteomic workflow for oral biofluids, exemplified by saliva and gingival crevicular fluid collected from periodontal health or disease subjects and using a label-free quantification strategy for mass spectrometric data acquisition.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kai Bao
- Section of Oral Health and Periodontology, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
168
|
Baboo S, Diedrich JK, Martínez-Bartolomé S, Wang X, Schiffner T, Groschel B, Schief WR, Paulson JC, Yates JR. DeGlyPHER: Highly sensitive site-specific analysis of N-linked glycans on proteins. Methods Enzymol 2022; 682:137-185. [PMID: 36948700 PMCID: PMC11032187 DOI: 10.1016/bs.mie.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditional mass spectrometry-based glycoproteomic approaches have been widely used for site-specific N-glycoform analysis, but a large amount of starting material is needed to obtain sampling that is representative of the vast diversity of N-glycans on glycoproteins. These methods also often include a complicated workflow and very challenging data analysis. These limitations have prevented glycoproteomics from being adapted to high-throughput platforms, and the sensitivity of the analysis is currently inadequate for elucidating N-glycan heterogeneity in clinical samples. Heavily glycosylated spike proteins of enveloped viruses, recombinantly expressed as potential vaccines, are prime targets for glycoproteomic analysis. Since the immunogenicity of spike proteins may be impacted by their glycosylation patterns, site-specific analysis of N-glycoforms provides critical information for vaccine design. Using recombinantly expressed soluble HIV Env trimer, we describe DeGlyPHER, a modification of our previously reported sequential deglycosylation strategy to yield a "single-pot" process. DeGlyPHER is an ultrasensitive, simple, rapid, robust, and efficient approach for site-specific analysis of protein N-glycoforms, that we developed for analysis of limited quantities of glycoproteins.
Collapse
Affiliation(s)
- Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | | | - Xiaoning Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Torben Schiffner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States
| | - William R Schief
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, United States; The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Cambridge, MA, United States
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
169
|
Miao X, Zhao Y, Li H, Ren Y, Hu G, Yang J, Liu L, Li X. Phosphoproteomics Profile of Chicken Cecum in the Response to Salmonella enterica Serovar Enteritidis Inoculation. Animals (Basel) 2022; 13:ani13010078. [PMID: 36611688 PMCID: PMC9817708 DOI: 10.3390/ani13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a foodborne pathogen, which can cause great threats to human health through the consumption of contaminated poultry products. This research combines TMT labeling, HPLC and mass-spectrometry-based phosphoproteomics on cecum of the F1 cross of Guangxi Yao chicken and Jining Bairi chicken. The treated group was inoculated with 0.3 mL inoculum S. Enteritidis, and the control group was inoculated with 0.3 mL phosphate-buffered saline (PBS). A total of 338 differentially phosphorylated modification sites in 243 differentially phosphorylated proteins (DPPs) were chosen for downstream analyses. A total of 213 sites in 146 DPPs were up-regulated and 125 sites in 97 DPPs were down-regulated. Functional analysis was performed for DPPs based on gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the protein domain. The DPPs were mainly enriched in immune- and metabolic-related GO-BP (biological process) and KEGG pathways. We predicted and classified the subcellular structure and COG/KOG of DPPs. Furthermore, protein-protein interaction network analyses were performed by using multiple algorithms. We identified 71 motifs of the phosphorylated modification sites and selected 18 sites randomly to detect the expression level through parallel reaction monitoring (PRM). S. Enteritidis inoculation caused phosphorylation alteration in immune- and metabolic-related proteins. The invasion of S. Enteritidis may be actualized by inducing cecum cell apoptosis through the endoplasmic reticulum pathway, and chickens could resist the invasion of S. Enteritidis by affecting the function of ECM receptors. The findings herein provide a crucial theoretical foundation to understand the molecular mechanism and epigenetic regulation in response to S. Enteritidis inoculation in chickens.
Collapse
Affiliation(s)
- Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Ya’nan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Huilong Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Yanru Ren
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Geng Hu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Jingchao Yang
- Shandong Animal Husbandry General Station, Jinan 250010, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.L.); (X.L.)
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (L.L.); (X.L.)
| |
Collapse
|
170
|
Diederiks N, Ravensbergen CJ, Treep M, van Wezel M, Kuruc M, Renee Ruhaak L, Tollenaar RA, Cobbaert CM, van der Burgt YE, Mesker WE. Development of Tier 2 LC-MRM-MS protein quantification methods for liquid biopsies. J Mass Spectrom Adv Clin Lab 2022; 27:49-55. [PMID: 36619217 PMCID: PMC9811211 DOI: 10.1016/j.jmsacl.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In the pursuit of personalized diagnostics and tailored treatments, quantitative protein tests contribute to a more precise definition of health and disease. The development of new quantitative protein tests should be driven by an unmet clinical need and performed in a collaborative effort that involves all stakeholders. With regard to the analytical part, mass spectrometry (MS)-based platforms are an excellent tool for quantification of specific proteins in body fluids, for example focused on cancer. The obtained readouts have great potential in determining tumor aggressiveness to facilitate treatment decisions, and can furthermore be used to monitor patient response. Internationally standardized TNM classifications of malignant tumors are beneficial for diagnosis, however treatment outcome and survival of cancer patients is poorly predicted. To this end, the importance of the tumor microenvironment has endorsed the introduction of the tumor-stroma ratio as a prognostic parameter in solid primary tumor types. Currently, the stromal content of tumor tissues is determined via routine diagnostic pathology slides. With the development of liquid chromatography (LC)-MS methods we aim at quantification of tumor-stroma specific proteins in body fluids. In this mini-review the analytical aspect of this developmental trajectory is further detailed.
Collapse
Affiliation(s)
- Nina Diederiks
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Cor J. Ravensbergen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Maxim Treep
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Madelein van Wezel
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matt Kuruc
- Biotech Support Group LLC, 1 Deer Park Drive, Suite M, Monmouth Junction, NJ 08852, USA
| | - L. Renee Ruhaak
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Rob A.E.M. Tollenaar
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Yuri E.M. van der Burgt
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands,Corresponding author.
| | - Wilma E. Mesker
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| |
Collapse
|
171
|
He H, Zhou L, Guo Z, Li P, Gao S, Liu Z. Dual Biomimetic Recognition-Driven Plasmonic Nanogap-Enhanced Raman Scattering for Ultrasensitive Protein Fingerprinting and Quantitation. NANO LETTERS 2022; 22:9664-9671. [PMID: 36413654 DOI: 10.1021/acs.nanolett.2c03857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein assays with fingerprints and high sensitivity are essential for biomedical research and applications. However, the prevailing methods mainly rely on indirect or labeled immunoassays, failing to provide fingerprint information. Herein, we report a dual biomimetic recognition-driven plasmonic nanogap-enhanced Raman scattering (DBR-PNERS) strategy for ultrasensitive protein fingerprinting and quantitation. A pair of molecularly imprinted nanoantennas were rationally engineered for specifically trapping a target protein into well-defined plasmonic nanogaps through dual-terminal recognition for ultrahigh Raman signal amplification. Meanwhile, a Raman-active small molecule was embedded into the nanoantenna as an internal standard to provide a ratiometric assay for robust quantitation. DBR-PNERS exhibited several significant merits over existing approaches, including fingerprinting, ultrahigh sensitivity, quantitation robustness, speed, sample consumption, and so on. Therefore, it can be a promising tool for a protein assay and holds a great perspective in important applications.
Collapse
Affiliation(s)
- Hui He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lingli Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhanchen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
172
|
Comparison of solid-phase extraction methods for efficient purification of phosphopeptides with low sample amounts. J Chromatogr A 2022; 1685:463597. [DOI: 10.1016/j.chroma.2022.463597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
|
173
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
174
|
Gallo V, Serianni VM, Imperiale D, Zappettini A, Villani M, Marmiroli M, Marmiroli N. Protein Analysis of A. halleri and N. caerulescens Hyperaccumulators When Exposed to Nano and Ionic Forms of Cd and Zn. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4236. [PMID: 36500857 PMCID: PMC9736429 DOI: 10.3390/nano12234236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Hyperaccumulator plant species growing on metal-rich soils can accumulate high quantity of metals and metalloids in aerial tissues, and several proteomic studies on the molecular mechanisms at the basis of metals resistance and hyperaccumulation have been published. Hyperaccumulator are also at the basis of the phytoremediation strategy to remove metals more efficiently from polluted soils or water. Arabidopsis halleri and Noccea caerulescens are both hyperaccumulators of metals and nano-metals. In this study, the change in some proteins in A. halleri and N. caerulescens was assessed after the growth in soil with cadmium and zinc, provided as sulphate salts (CdSO4 and ZnSO4) or sulfide quantum dots (CdS QDs and ZnS QDs). The protein extracts obtained from plants after 30 days of growth were analyzed by 2D-gel electrophoresis (2D SDS-PAGE) and identified by MALDI-TOF/TOF mass spectrometry. A bioinformatics analysis was carried out on quantitative protein differences between control and treated plants. In total, 43 proteins resulted in being significatively modulated in A. halleri, while 61 resulted in being modulated in N. caerulescens. Although these two plants are hyperaccumulator of both metals and nano-metals, at protein levels the mechanisms involved do not proceed in the same way, but at the end bring a similar physiological result.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
| | - Valentina M. Serianni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
| | - Davide Imperiale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
- Experimental Station for the Food Preservation Industry—Research Foundation, 43121 Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 06128 Parma, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), 06128 Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43126 Parma, Italy
| | - Nelson Marmiroli
- The Italian National Interuniversity Consortium for Environmental Sciences (CINSA), 43124 Parma, Italy
| |
Collapse
|
175
|
West AV, Woo CM. Photoaffinity Labeling Chemistries Used to Map Biomolecular Interactions. Isr J Chem 2022. [DOI: 10.1002/ijch.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexander V. West
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St Cambridge MA USA
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology Harvard University 12 Oxford St Cambridge MA USA
| |
Collapse
|
176
|
Leonova T, Ihling C, Saoud M, Frolova N, Rennert R, Wessjohann LA, Frolov A. Does filter-aided sample preparation provide sufficient method linearity for quantitative plant shotgun proteomics? FRONTIERS IN PLANT SCIENCE 2022; 13:874761. [PMID: 36507396 PMCID: PMC9728026 DOI: 10.3389/fpls.2022.874761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Due to its outstanding throughput and analytical resolution, gel-free LC-based shotgun proteomics represents the gold standard of proteome analysis. Thereby, the efficiency of sample preparation dramatically affects the correctness and reliability of protein quantification. Thus, the steps of protein isolation, solubilization, and proteolysis represent the principal bottleneck of shotgun proteomics. The desired performance of the sample preparation protocols can be achieved by the application of detergents. However, these compounds ultimately compromise reverse-phase chromatographic separation and disrupt electrospray ionization. Filter-aided sample preparation (FASP) represents an elegant approach to overcome these limitations. Although this method is comprehensively validated for cell proteomics, its applicability to plants and compatibility with plant-specific protein isolation protocols remain to be confirmed. Thereby, the most important gap is the absence of the data on the linearity of underlying protein quantification methods for plant matrices. To fill this gap, we address here the potential of FASP in combination with two protein isolation protocols for quantitative analysis of pea (Pisum sativum) seed and Arabidopsis thaliana leaf proteomes by the shotgun approach. For this aim, in comprehensive spiking experiments with bovine serum albumin (BSA), we evaluated the linear dynamic range (LDR) of protein quantification in the presence of plant matrices. Furthermore, we addressed the interference of two different plant matrices in quantitative experiments, accomplished with two alternative sample preparation workflows in comparison to conventional FASP-based digestion of cell lysates, considered here as a reference. The spiking experiments revealed high sensitivities (LODs of up to 4 fmol) for spiked BSA and LDRs of at least 0.6 × 102. Thereby, phenol extraction yielded slightly better recoveries, whereas the detergent-based method showed better linearity. Thus, our results indicate the very good applicability of FASP to quantitative plant proteomics with only limited impact of the protein isolation technique on the method's overall performance.
Collapse
Affiliation(s)
- Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Christian Ihling
- Institute of Pharmacy, Department of Pharmaceutical Chemistry and Bioanalytics, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Nadezhda Frolova
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, Russia
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Biochemistry, St Petersburg State University, St Petersburg, Russia
| |
Collapse
|
177
|
Structural Investigation of Therapeutic Antibodies Using Hydroxyl Radical Protein Footprinting Methods. Antibodies (Basel) 2022; 11:antib11040071. [PMID: 36412837 PMCID: PMC9680451 DOI: 10.3390/antib11040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Commercial monoclonal antibodies are growing and important components of modern therapies against a multitude of human diseases. Well-known high-resolution structural methods such as protein crystallography are often used to characterize antibody structures and to determine paratope and/or epitope binding regions in order to refine antibody design. However, many standard structural techniques require specialized sample preparation that may perturb antibody structure or require high concentrations or other conditions that are far from the conditions conducive to the accurate determination of antigen binding or kinetics. We describe here in this minireview the relatively new method of hydroxyl radical protein footprinting, a solution-state method that can provide structural and kinetic information on antibodies or antibody-antigen interactions useful for therapeutic antibody design. We provide a brief history of hydroxyl radical footprinting, examples of current implementations, and recent advances in throughput and accessibility.
Collapse
|
178
|
Danko K, Lukasheva E, Zhukov VA, Zgoda V, Frolov A. Detergent-Assisted Protein Digestion-On the Way to Avoid the Key Bottleneck of Shotgun Bottom-Up Proteomics. Int J Mol Sci 2022; 23:13903. [PMID: 36430380 PMCID: PMC9695859 DOI: 10.3390/ijms232213903] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Gel-free bottom-up shotgun proteomics is the principal methodological platform for the state-of-the-art proteome research. This methodology assumes quantitative isolation of the total protein fraction from a complex biological sample, its limited proteolysis with site-specific proteases, analysis of the resulted peptides with nanoscaled reversed-phase high-performance liquid chromatography-(tandem) mass spectrometry (nanoRP-HPLC-MS and MS/MS), protein identification by sequence database search and peptide-based quantitative analysis. The most critical steps of this workflow are protein reconstitution and digestion; therefore, detergents and chaotropic agents are strongly mandatory to ensure complete solubilization of complex protein isolates and to achieve accessibility of all protease cleavage sites. However, detergents are incompatible with both RP separation and electrospray ionization (ESI). Therefore, to make LC-MS analysis possible, several strategies were implemented in the shotgun proteomics workflow. These techniques rely either on enzymatic digestion in centrifugal filters with subsequent evacuation of the detergent, or employment of MS-compatible surfactants, which can be degraded upon the digestion. In this review we comprehensively address all currently available strategies for the detergent-assisted proteolysis in respect of their relative efficiency when applied to different biological matrices. We critically discuss the current progress and the further perspectives of these technologies in the context of its advances and gaps.
Collapse
Affiliation(s)
- Katerina Danko
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology, Podbelsky Chaussee 3, Pushkin, 196608 St. Petersburg, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
179
|
Meng Y, Qiu N, Guyonnet V, Mine Y. Unveiling and application of the chicken egg proteome: An overview on a two-decade achievement. Food Chem 2022; 393:133403. [PMID: 35689922 DOI: 10.1016/j.foodchem.2022.133403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/19/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022]
Abstract
Egg proteins are not only the most complete and ideal form of protein for human or embryo nutrition but also play the vital role in the food industry. Egg proteins are subjected to many potential changes under various conditions, which may further alter the nutritional value, physicochemical-properties, and bioactivities of proteins. Recent advances in our understanding of the proteome of raw egg matrix from different species and dynamic changes occurring during storage and incubation are developing rapidly. This review provides a comprehensive overview of the main characteristics of chicken egg proteome, covering all its components and applications under various conditions, such as markers detection, egg quality evaluation, genetic and biological unknown identification, and embryonic nutritional supplementation, which not only contributes to our in-depth understanding of each constituent functionality of proteome, but also provides information to increase the value to egg industry.
Collapse
Affiliation(s)
- Yaqi Meng
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ning Qiu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Vincent Guyonnet
- FFI Consulting Ltd, 2488 Lyn Road, Brockville, ON K6V 5T3, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
180
|
Solovyeva EM, Bubis JA, Tarasova IA, Lobas AA, Ivanov MV, Nazarov AA, Shutkov IA, Gorshkov MV. On the Feasibility of Using an Ultra-Fast DirectMS1 Method of Proteome-Wide Analysis for Searching Drug Targets in Chemical Proteomics. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1342-1353. [PMID: 36509723 DOI: 10.1134/s000629792211013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protein quantitation in tissue cells or physiological fluids based on liquid chromatography/mass spectrometry is one of the key sources of information on the mechanisms of cell functioning during chemotherapeutic treatment. Information on significant changes in protein expression upon treatment can be obtained by chemical proteomics and requires analysis of the cellular proteomes, as well as development of experimental and bioinformatic methods for identification of the drug targets. Low throughput of whole proteome analysis based on liquid chromatography and tandem mass spectrometry is one of the main factors limiting the scale of these studies. The method of direct mass spectrometric identification of proteins, DirectMS1, is one of the approaches developed in recent years allowing ultrafast proteome-wide analyses employing minute-scale gradients for separation of proteolytic mixtures. Aim of this work was evaluation of both possibilities and limitations of the method for identification of drug targets at the level of whole proteome and for revealing cellular processes activated by the treatment. Particularly, the available literature data on chemical proteomics obtained earlier for a large set of onco-pharmaceuticals using multiplex quantitative proteome profiling were analyzed. The results obtained were further compared with the proteome-wide data acquired by the DirectMS1 method using ultrashort separation gradients to evaluate efficiency of the method in identifying known drug targets. Using ovarian cancer cell line A2780 as an example, a whole-proteome comparison of two cell lysis techniques was performed, including the freeze-thaw lysis commonly employed in chemical proteomics and the one based on ultrasonication for cell disruption, which is the widely accepted as a standard in proteomic studies. Also, the proteome-wide profiling was performed using ultrafast DirectMS1 method for A2780 cell line treated with lonidamine, followed by gene ontology analyses to evaluate capabilities of the method in revealing regulation of proteins in the cellular processes associated with drug treatment.
Collapse
Affiliation(s)
- Elizaveta M Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Anna A Lobas
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Alexey A Nazarov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Ilya A Shutkov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
181
|
Pien N, Bray F, Gheysens T, Tytgat L, Rolando C, Mantovani D, Dubruel P, Vlierberghe SV. Proteomics as a tool to gain next level insights into photo-crosslinkable biopolymer modifications. Bioact Mater 2022; 17:204-220. [PMID: 35386456 PMCID: PMC8965084 DOI: 10.1016/j.bioactmat.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 12/25/2022] Open
Abstract
The distribution of photo-crosslinkable moieties onto a protein backbone can affect a biomaterial's crosslinking behavior, and therefore also its mechanical and biological properties. A profound insight in this respect is essential for biomaterials exploited in tissue engineering and regenerative medicine. In the present work, photo-crosslinkable moieties have been introduced on the primary amine groups of: (i) a recombinant collagen peptide (RCPhC1) with a known amino acid (AA) sequence, and (ii) bovine skin collagen (COL BS) with an unknown AA sequence. The degree of substitution (DS) was quantified with two conventional techniques: an ortho-phthalic dialdehyde (OPA) assay and 1H NMR spectroscopy. However, neither of both provides information on the exact type and location of the modified AAs. Therefore, for the first time, proteomic analysis was evaluated herein as a tool to identify functionalized AAs as well as the exact position of photo-crosslinkable moieties along the AA sequence, thereby enabling an in-depth, unprecedented characterization of functionalized photo-crosslinkable biopolymers. Moreover, our strategy enabled to visualize the spatial distribution of the modifications within the overall structure of the protein. Proteomics has proven to provide unprecedented insight in the distribution of photo-crosslinkable moieties along the protein backbone, undoubtedly contributing to superior functional biomaterial design to serve regenerative medicine.
Collapse
Affiliation(s)
- Nele Pien
- Ghent University, Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Krijgslaan 281 S4bis, 9000 Gent, Belgium
- Laval University, Laboratory for Biomaterials and Bioengineering, CRC-I, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59 000, Lille, France
| | - Tom Gheysens
- Ghent University, Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Liesbeth Tytgat
- Ghent University, Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290, MSAP, Miniaturisation pour la Synthèse l'Analyse et la Protéomique, F-59 000, Lille, France
| | - Diego Mantovani
- Laval University, Laboratory for Biomaterials and Bioengineering, CRC-I, Pavillon Pouliot, Québec G1V 0A6, Canada
| | - Peter Dubruel
- Ghent University, Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Krijgslaan 281 S4bis, 9000 Gent, Belgium
| | - Sandra Van Vlierberghe
- Ghent University, Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Krijgslaan 281 S4bis, 9000 Gent, Belgium
| |
Collapse
|
182
|
Cupp-Sutton KA, Fang M, Wu S. Separation methods in single-cell proteomics: RPLC or CE? INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 481:116920. [PMID: 36211475 PMCID: PMC9542495 DOI: 10.1016/j.ijms.2022.116920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cellular heterogeneity is commonly investigated using single-cell genomics and transcriptomics to investigate biological questions such as disease mechanism, therapeutic screening, and genomic and transcriptomic diversity between cellular populations and subpopulations at the cellular level. Single-cell mass spectrometry (MS)-based proteomics enables the high-throughput examination of protein expression at the single-cell level with wide applicability, and with spatial and temporal resolution, applicable to the study of cellular development, disease, effect of treatment, etc. The study of single-cell proteomics has lagged behind genomics and transcriptomics largely because proteins from single-cell samples cannot be amplified as DNA and RNA can using well established techniques such as PCR. Therefore, analytical methods must be robust, reproducible, and sensitive enough to detect the very small amount of protein within a single cell. To this end, nearly every step of the proteomics process has been extensively altered and improved to facilitate the proteomics analysis of single cells including cell counting and sorting, lysis, protein digestion, sample cleanup, separation, MS data acquisition, and data analysis. Here, we have reviewed recent advances in single-cell protein separation using nano reversed phase liquid chromatography (nRPLC) and capillary electrophoresis (CE) to inform application driven selection of separation techniques in the laboratory setting.
Collapse
Affiliation(s)
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
183
|
Wu W, Tang R, Li Z, Shen Y, Ma S, Ou J. Fabrication of hydrophilic titanium (IV)-immobilized polydispersed microspheres via inverse suspension polymerization for enrichment of phosphopeptides in milk. Food Chem 2022; 395:133608. [DOI: 10.1016/j.foodchem.2022.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
184
|
Characterization of peptide-protein relationships in protein ambiguity groups via bipartite graphs. PLoS One 2022; 17:e0276401. [PMID: 36269744 PMCID: PMC9586388 DOI: 10.1371/journal.pone.0276401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
In bottom-up proteomics, proteins are enzymatically digested into peptides before measurement with mass spectrometry. The relationship between proteins and their corresponding peptides can be represented by bipartite graphs. We conduct a comprehensive analysis of bipartite graphs using quantified peptides from measured data sets as well as theoretical peptides from an in silico digestion of the corresponding complete taxonomic protein sequence databases. The aim of this study is to characterize and structure the different types of graphs that occur and to compare them between data sets. We observed a large influence of the accepted minimum peptide length during in silico digestion. When changing from theoretical peptides to measured ones, the graph structures are subject to two opposite effects. On the one hand, the graphs based on measured peptides are on average smaller and less complex compared to graphs using theoretical peptides. On the other hand, the proportion of protein nodes without unique peptides, which are a complicated case for protein inference and quantification, is considerably larger for measured data. Additionally, the proportion of graphs containing at least one protein node without unique peptides rises when going from database to quantitative level. The fraction of shared peptides and proteins without unique peptides as well as the complexity and size of the graphs highly depends on the data set and organism. Large differences between the structures of bipartite peptide-protein graphs have been observed between database and quantitative level as well as between analyzed species. In the analyzed measured data sets, the proportion of protein nodes without unique peptides ranged from 6.4% to 55.0%. This highlights the need for novel methods that can quantify proteins without unique peptides. The knowledge about the structure of the bipartite peptide-protein graphs gained in this study will be useful for the development of such algorithms.
Collapse
|
185
|
Zheng SY, Hu XM, Huang K, Li ZH, Chen QN, Yang RH, Xiong K. Proteomics as a tool to improve novel insights into skin diseases: what we know and where we should be going. Front Surg 2022; 9:1025557. [PMID: 36338621 PMCID: PMC9633964 DOI: 10.3389/fsurg.2022.1025557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Background Biochemical processes involved in complex skin diseases (skin cancers, psoriasis, and wound) can be identified by combining proteomics analysis and bioinformatics tools, which gain a next-level insight into their pathogenesis, diagnosis, and therapeutic targets. Methods Articles were identified through a search of PubMed, Embase, and MEDLINE references dated to May 2022, to perform system data mining, and a search of the Web of Science (WoS) Core Collection was utilized to conduct a visual bibliometric analysis. Results An increased trend line revealed that the number of publications related to proteomics utilized in skin diseases has sharply increased recent years, reaching a peak in 2021. The hottest fields focused on are skin cancer (melanoma), inflammation skin disorder (psoriasis), and skin wounds. After deduplication and title, abstract, and full-text screening, a total of 486 of the 7,822 outcomes met the inclusion/exclusion criteria for detailed data mining in the field of skin disease tooling with proteomics, with regard to skin cancer. According to the data, cell death, metabolism, skeleton, immune, and inflammation enrichment pathways are likely the major part and hotspots of proteomic analysis found in skin diseases. Also, the focuses of proteomics in skin disease are from superficial presumption to depth mechanism exploration within more comprehensive validation, from basic study to a combination or guideline for clinical applications. Furthermore, we chose skin cancer as a typical example, compared with other skin disorders. In addition to finding key pathogenic proteins and differences between diseases, proteomic analysis is also used for therapeutic evaluation or can further obtain in-depth mechanisms in the field of skin diseases. Conclusion Proteomics has been regarded as an irreplaceable technology in the study of pathophysiological mechanism and/or therapeutic targets of skin diseases, which could provide candidate key proteins for the insight into the biological information after gene transcription. However, depth pathogenesis and potential clinical applications need further studies with stronger evidence within a wider range of skin diseases.
Collapse
Affiliation(s)
- Sheng-yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xi-min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Kun Huang
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zi-han Li
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Qing-ning Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Rong-hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of 173 Medicine, South China University of Technology, Guangzhou, China
- Correspondence: Rong-hua Yang Kun Xiong
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
- Correspondence: Rong-hua Yang Kun Xiong
| |
Collapse
|
186
|
Papanastasiou D, Kounadis D, Lekkas A, Orfanopoulos I, Mpozatzidis A, Smyrnakis A, Panagiotopoulos E, Kosmopoulou M, Reinhardt-Szyba M, Fort K, Makarov A, Zubarev RA. The Omnitrap Platform: A Versatile Segmented Linear Ion Trap for Multidimensional Multiple-Stage Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1990-2007. [PMID: 36113052 PMCID: PMC9850925 DOI: 10.1021/jasms.2c00214] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Multidimensional multiple-stage tandem processing of ions is demonstrated successfully in a novel segmented linear ion trap. The enhanced performance is enabled by incorporating the entire range of ion activation methods into a single platform in a highly dynamic fashion. The ion activation network comprises external injection of reagent ions, radical neutral species, photons, electrons, and collisions with neutrals. Axial segmentation of the two-dimensional trapping field provides access to a unique functionality landscape through a system of purpose-designed regions for processing ions with maximum flexibility. Design aspects of the segmented linear ion trap, termed the Omnitrap platform, are highlighted, and motion of ions trapped by rectangular waveforms is investigated experimentally by mapping the stability diagram, tracing secular frequencies, and exploring different isolation techniques. All fragmentation methods incorporated in the Omnitrap platform involving radical chemistry are shown to provide complete sequence coverage for partially unfolded ubiquitin. Three-stage (MS3) tandem mass spectrometry experiments combining collision-induced dissociation of radical ions produced by electron meta-ionization and further involving two intermediate steps of ion isolation and accumulation are performed with high efficiency, producing information rich spectra with signal-to-noise levels comparable to those obtained in a two-stage (MS2) experiment. The advanced capabilities of the Omnitrap platform to provide in-depth top-down MSn characterization of proteins are portrayed. Performance is further enhanced by connecting the Omnitrap platform to an Orbitrap mass analyzer, while successful integration with time-of-flight analyzers has already been demonstrated.
Collapse
Affiliation(s)
- Dimitris Papanastasiou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Diamantis Kounadis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Alexandros Lekkas
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Ioannis Orfanopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Andreas Mpozatzidis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Athanasios Smyrnakis
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Elias Panagiotopoulos
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Mariangela Kosmopoulou
- Fasmatech
Science & Technology, TESPA Lefkippos, NCSR Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | | | - Kyle Fort
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Alexander Makarov
- Thermo
Fisher Scientific, Hanna-Kunath-Straße
11, 28199 Bremen, Germany
| | - Roman A. Zubarev
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 17165 Solna, Sweden
| |
Collapse
|
187
|
Ma X. Recent Advances in Mass Spectrometry-Based Structural Elucidation Techniques. Molecules 2022; 27:6466. [PMID: 36235003 PMCID: PMC9572214 DOI: 10.3390/molecules27196466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS) has become the central technique that is extensively used for the analysis of molecular structures of unknown compounds in the gas phase. It manipulates the molecules by converting them into ions using various ionization sources. With high-resolution MS, accurate molecular weights (MW) of the intact molecular ions can be measured so that they can be assigned a molecular formula with high confidence. Furthermore, the application of tandem MS has enabled detailed structural characterization by breaking the intact molecular ions and protonated or deprotonated molecules into key fragment ions. This approach is not only used for the structural elucidation of small molecules (MW < 2000 Da), but also crucial biopolymers such as proteins and polypeptides; therefore, MS has been extensively used in multiomics studies for revealing the structures and functions of important biomolecules and their interactions with each other. The high sensitivity of MS has enabled the analysis of low-level analytes in complex matrices. It is also a versatile technique that can be coupled with separation techniques, including chromatography and ion mobility, and many other analytical instruments such as NMR. In this review, we aim to focus on the technical advances of MS-based structural elucidation methods over the past five years, and provide an overview of their applications in complex mixture analysis. We hope this review can be of interest for a wide range of audiences who may not have extensive experience in MS-based techniques.
Collapse
Affiliation(s)
- Xin Ma
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr NW, Atlanta, GA 30332, USA
| |
Collapse
|
188
|
Kennes-Veiga D, Trueba-Santiso A, Gallardo-Garay V, Balboa S, Carballa M, Lema JM. Sulfamethoxazole Enhances Specific Enzymatic Activities under Aerobic Heterotrophic Conditions: A Metaproteomic Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13152-13159. [PMID: 36073795 PMCID: PMC9686132 DOI: 10.1021/acs.est.2c05001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The growing concern about antibiotic-resistant microorganisms has focused on the sludge from wastewater treatment plants (WWTPs) as a potential hotspot for their development and spread. To this end, it seems relevant to analyze the changes on the microbiota as a consequence of the antibiotics that wastewater may contain. This study aims at determining whether the presence of sulfamethoxazole (SMX), even in relatively low concentrations, modifies the microbial activities and the enzymatic expression of an activated sludge under aerobic heterotrophic conditions. For that purpose, we applied a metaproteomic approach in combination with genomic and transformation product analyses. SMX was biotransformed, and the metabolite 2,4(1H,3H)-pteridinedione-SMX (PtO-SMX) from the pterin-conjugation pathway was detected at all concentrations tested. Metaproteomics showed that SMX at 50-2000 μg/L slightly affected the microbial community structure, which was confirmed by DNA metabarcoding. Interestingly, an enhanced activity of the genus Corynebacterium and specifically of five enzymes involved in its central carbon metabolism was found at increased SMX concentrations. Our results suggest a role of Corynebacterium genus on SMX risks mitigation in our bioreactors.
Collapse
Affiliation(s)
- David
M. Kennes-Veiga
- CRETUS,
Department of Chemical Engineering, University
of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Alba Trueba-Santiso
- CRETUS,
Department of Chemical Engineering, University
of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Valentina Gallardo-Garay
- CRETUS,
Department of Chemical Engineering, University
of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Sabela Balboa
- CRETUS,
Department of Microbiology, University of
Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Marta Carballa
- CRETUS,
Department of Chemical Engineering, University
of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| | - Juan M. Lema
- CRETUS,
Department of Chemical Engineering, University
of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain
| |
Collapse
|
189
|
Zhang L, Li Q, Bao Y, Tan Y, Lametsch R, Hong H, Luo Y. Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Crit Rev Food Sci Nutr 2022; 64:1572-1591. [PMID: 36122384 DOI: 10.1080/10408398.2022.2117788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In addition to microbial spoilage and lipid peroxidation, protein oxidation is increasingly recognized as a major cause for quality deterioration of muscle-based foods. Although protein oxidation in muscle-based foods has attracted tremendous interest in the past decade, specific oxidative pathways and underlying mechanisms of protein oxidation in aquatic products remain largely unexplored. The present review covers the aspects of the origin and site-specific nature of protein oxidation, progress on the characterization of protein oxidation, oxidized proteins in aquatic products, and impact of protein oxidation on protein functionalities. Compared to meat protein oxidation, aquatic proteins demonstrate a less extent of oxidation on aromatic amino acids and are more susceptible to be indirectly oxidized by lipid peroxidation products. Different from traditional measurement of protein carbonyls and thiols, proteomics-based strategy better characterizes the targeted oxidation sites within proteins. The future trends using more robust and accurate targeted proteomics, such as parallel reaction monitoring strategy, to characterize protein oxidation in aquatic products are also given.
Collapse
Affiliation(s)
- Longteng Zhang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qian Li
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - René Lametsch
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
190
|
Ivanov MV, Bubis JA, Gorshkov V, Tarasova IA, Levitsky LI, Solovyeva EM, Lipatova AV, Kjeldsen F, Gorshkov MV. DirectMS1Quant: Ultrafast Quantitative Proteomics with MS/MS-Free Mass Spectrometry. Anal Chem 2022; 94:13068-13075. [PMID: 36094425 DOI: 10.1021/acs.analchem.2c02255] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, we presented the DirectMS1 method of ultrafast proteome-wide analysis based on minute-long LC gradients and MS1-only mass spectra acquisition. Currently, the method provides the depth of human cell proteome coverage of 2500 proteins at a 1% false discovery rate (FDR) when using 5 min LC gradients and 7.3 min runtime in total. While the standard MS/MS approaches provide 4000-5000 protein identifications within a couple of hours of instrumentation time, we advocate here that the higher number of identified proteins does not always translate into better quantitation quality of the proteome analysis. To further elaborate on this issue, we performed a one-on-one comparison of quantitation results obtained using DirectMS1 with three popular MS/MS-based quantitation methods: label-free (LFQ) and tandem mass tag quantitation (TMT), both based on data-dependent acquisition (DDA) and data-independent acquisition (DIA). For comparison, we performed a series of proteome-wide analyses of well-characterized (ground truth) and biologically relevant samples, including a mix of UPS1 proteins spiked at different concentrations into an Echerichia coli digest used as a background and a set of glioblastoma cell lines. MS1-only data was analyzed using a novel quantitation workflow called DirectMS1Quant developed in this work. The results obtained in this study demonstrated comparable quantitation efficiency of 5 min DirectMS1 with both TMT and DIA methods, yet the latter two utilized a 10-20-fold longer instrumentation time.
Collapse
Affiliation(s)
- Mark V Ivanov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia A Bubis
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Lev I Levitsky
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta M Solovyeva
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Anastasiya V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Frank Kjeldsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
191
|
Bai L, Hao X, Keith J, Feng Y. DNA Methylation in Regulatory T Cell Differentiation and Function: Challenges and Opportunities. Biomolecules 2022; 12:1282. [PMID: 36139121 PMCID: PMC9496199 DOI: 10.3390/biom12091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
As a bona fide epigenetic marker, DNA methylation has been linked to the differentiation and function of regulatory T (Treg) cells, a subset of CD4 T cells that play an essential role in maintaining immune homeostasis and suppressing autoimmunity and antitumor immune response. DNA methylation undergoes dynamic regulation involving maintenance of preexisting patterns, passive and active demethylation, and de novo methylation. Scattered evidence suggests that these processes control different stages of Treg cell lifespan ranging from lineage induction to cell fate maintenance, suppression of effector T cells and innate immune cells, and transdifferentiation. Despite significant progress, it remains to be fully explored how differential DNA methylation regulates Treg cell fate and immunological function. Here, we review recent progress and discuss the questions and challenges for further understanding the immunological roles and mechanisms of dynamic DNA methylation in controlling Treg cell differentiation and function. We also explore the opportunities that these processes offer to manipulate Treg cell suppressive function for therapeutic purposes by targeting DNA methylation.
Collapse
Affiliation(s)
| | | | | | - Yongqiang Feng
- Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Pl MS 351, Memphis, TN 38105, USA
| |
Collapse
|
192
|
Shahinuzzaman ADA, Kamal AHM, Chakrabarty JK, Rahman A, Chowdhury SM. Identification of Inflammatory Proteomics Networks of Toll-like Receptor 4 through Immunoprecipitation-Based Chemical Cross-Linking Proteomics. Proteomes 2022; 10:proteomes10030031. [PMID: 36136309 PMCID: PMC9506174 DOI: 10.3390/proteomes10030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb) directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK 293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked proteins on beads, followed by liquid chromatography–mass spectrometry (LC-MS/MS) analysis of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative expression of proteins between treated and untreated samples. We identified 712 proteins across treated and untreated samples and performed protein network analysis using Ingenuity Pathway Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1) and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced anti-inflammatory response due to possible interaction with the TLR4.
Collapse
Affiliation(s)
- A. D. A. Shahinuzzaman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Abu Hena Mostafa Kamal
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Advanced Technology Cores, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jayanta K. Chakrabarty
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Aurchie Rahman
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: ; Tel.: +1-817-272-5439
| |
Collapse
|
193
|
Fedorov II, Lineva VI, Tarasova IA, Gorshkov MV. Mass Spectrometry-Based Chemical Proteomics for Drug Target Discoveries. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:983-994. [PMID: 36180990 DOI: 10.1134/s0006297922090103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Chemical proteomics, emerging rapidly in recent years, has become a main approach to identifying interactions between the small molecules and proteins in the cells on a proteome scale and mapping the signaling and/or metabolic pathways activated and regulated by these interactions. The methods of chemical proteomics allow not only identifying proteins targeted by drugs, characterizing their toxicity and discovering possible off-target proteins, but also elucidation of the fundamental mechanisms of cell functioning under conditions of drug exposure or due to the changes in physiological state of the organism itself. Solving these problems is essential for both basic research in biology and clinical practice, including approaches to early diagnosis of various forms of serious diseases or prediction of the effectiveness of therapeutic treatment. At the same time, recent developments in high-resolution mass spectrometry have provided the technology for searching the drug targets across the whole cell proteomes. This review provides a concise description of the main objectives and problems of mass spectrometry-based chemical proteomics, the methods and approaches to their solution, and examples of implementation of these methods in biomedical research.
Collapse
Affiliation(s)
- Ivan I Fedorov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Victoria I Lineva
- Moscow Institute of Physics and Technology (National University), Dolgoprudny, Moscow Region, 141700, Russia
| | - Irina A Tarasova
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mikhail V Gorshkov
- V. L. Talrose Institute for Energy Problems of Chemical Physics, N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
194
|
Yu Z, Lei Y, Zhao P, Fu S, Zhang D, Shen J, Zan L, Liu Y. Nutritional and physical characteristics evaluation of giant panda (Ailuropoda melanoleuca) milk in comparison with bovine and caprine milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
195
|
Blevins MS, Juetten KJ, James VK, Butalewicz JP, Escobar EE, Lanzillotti MB, Sanders JD, Fort KL, Brodbelt JS. Nanohydrophobic Interaction Chromatography Coupled to Ultraviolet Photodissociation Mass Spectrometry for the Analysis of Intact Proteins in Low Charge States. J Proteome Res 2022; 21:2493-2503. [PMID: 36043517 DOI: 10.1021/acs.jproteome.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The direct correlation between proteoforms and biological phenotype necessitates the exploration of mass spectrometry (MS)-based methods more suitable for proteoform detection and characterization. Here, we couple nano-hydrophobic interaction chromatography (nano-HIC) to ultraviolet photodissociation MS (UVPD-MS) for separation and characterization of intact proteins and proteoforms. High linearity, sensitivity, and sequence coverage are obtained with this method for a variety of proteins. Investigation of collisional cross sections of intact proteins during nano-HIC indicates semifolded conformations in low charge states, enabling a different dimension of separation in comparison to traditional, fully denaturing reversed-phase separations. This method is demonstrated for a mixture of intact proteins from Escherichia coli ribosomes; high sequence coverage is obtained for a variety of modified and unmodified proteoforms.
Collapse
Affiliation(s)
- Molly S Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle J Juetten
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Virginia K James
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P Butalewicz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael B Lanzillotti
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Sanders
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Kyle L Fort
- Thermo Fisher Scientific, Bremen 28199, Germany
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
196
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
197
|
Beller NC, Hummon AB. Advances in stable isotope labeling: dynamic labeling for spatial and temporal proteomic analysis. Mol Omics 2022; 18:579-590. [PMID: 35723214 PMCID: PMC9378559 DOI: 10.1039/d2mo00077f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
The field of proteomics is continually improving, requiring the development of new quantitative methods. Stable isotope labeling in cell culture (SILAC) is a metabolic labeling technique originating in the early 2000s. By incorporating isotopically labeled amino acids into the media used for cell culture, unlabeled versus labeled cells can be differentiated by the mass spectrometer. Traditional SILAC labeling has been expanded to pulsed applications allowing for a new quantitative dimension of proteomics - temporal analysis. The complete introduction of Heavy SILAC labeling chased with surplus unlabeled medium mimics traditional pulse-chase experiments and allows for the loss of heavy signal to track proteomic changes over time. In a similar fashion, pulsed SILAC (pSILAC) monitors the initial incorporation of a heavy label across a period of time, which allows for the rate of protein label integration to be assessed. These innovative techniques have aided in inspiring numerous SILAC-based temporal and spatial labeling applications, including super SILAC, spike-in SILAC, spatial SILAC, and a revival in label multiplexing. This review reflects upon the evolution of SILAC and the pulsed SILAC application, introduces advances in SILAC labeling, and proposes future perspectives for this novel and exciting field.
Collapse
Affiliation(s)
- Nicole C Beller
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210.
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA, 43210
| |
Collapse
|
198
|
Portero EP, Pade L, Li J, Choi SB, Nemes P. Single-Cell Mass Spectrometry of Metabolites and Proteins for Systems and Functional Biology. NEUROMETHODS 2022; 184:87-114. [PMID: 36699808 PMCID: PMC9872963 DOI: 10.1007/978-1-0716-2525-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Molecular composition is intricately intertwined with cellular function, and elucidation of this relationship is essential for understanding life processes and developing next-generational therapeutics. Technological innovations in capillary electrophoresis (CE) and liquid chromatography (LC) mass spectrometry (MS) provide previously unavailable insights into cellular biochemistry by allowing for the unbiased detection and quantification of molecules with high specificity. This chapter presents our validated protocols integrating ultrasensitive MS with classical tools of cell, developmental, and neurobiology to assess the biological function of important biomolecules. We use CE and LC MS to measure hundreds of metabolites and thousands of proteins in single cells or limited populations of tissues in chordate embryos and mammalian neurons, revealing molecular heterogeneity between identified cells. By pairing microinjection and optical microscopy, we demonstrate cell lineage tracing and testing the roles the dysregulated molecules play in the formation and maintenance of cell heterogeneity and tissue specification in frog embryos (Xenopus laevis). Electrophysiology extends our workflows to characterizing neuronal activity in sections of mammalian brain tissues. The information obtained from these studies mutually strengthen chemistry and biology and highlight the importance of interdisciplinary research to advance basic knowledge and translational applications forward.
Collapse
Affiliation(s)
| | | | - Jie Li
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Sam B. Choi
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
199
|
Urbiola-Salvador V, Miroszewska D, Jabłońska A, Qureshi T, Chen Z. Proteomics approaches to characterize the immune responses in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119266. [PMID: 35390423 DOI: 10.1016/j.bbamcr.2022.119266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Despite the dynamic development of cancer research, annually millions of people die of cancer. The human immune system is the major 'guard' against tumor development. Unfortunately, cancer cells have the ability to evade the immune system and continue to grow. The proper understanding of the intricate immune response in tumorigenesis remains the holy grail of cancer immunology and designing effective immunotherapy. To decode the immune responses in cancer, in recent years, proteomics studies have received considerable attention. Proteomics studies focus on the detection and quantification of proteins, which are the effectors of biological functions, and as such, are proven to reflect the cell state more accurately, in comparison to genomic or transcriptomic studies. In this review, we discuss the proteomics studies applied to characterize the immune responses in cancer and tumor immune microenvironment heterogeneity. Further, we describe emerging single-cell proteomics approaches that have the potential to be applied in cancer immunity studies.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Talha Qureshi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Poland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
200
|
Proteomic Discovery and Validation of Novel Fluid Biomarkers for Improved Patient Selection and Prediction of Clinical Outcomes in Alzheimer’s Disease Patient Cohorts. Proteomes 2022; 10:proteomes10030026. [PMID: 35997438 PMCID: PMC9397030 DOI: 10.3390/proteomes10030026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease characterized by progressive cognitive decline. The two cardinal neuropathological hallmarks of AD include the buildup of cerebral β amyloid (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau. The current disease-modifying treatments are still not effective enough to lower the rate of cognitive decline. There is an urgent need to identify early detection and disease progression biomarkers that can facilitate AD drug development. The current established readouts based on the expression levels of amyloid beta, tau, and phospho-tau have shown many discrepancies in patient samples when linked to disease progression. There is an urgent need to identify diagnostic and disease progression biomarkers from blood, cerebrospinal fluid (CSF), or other biofluids that can facilitate the early detection of the disease and provide pharmacodynamic readouts for new drugs being tested in clinical trials. Advances in proteomic approaches using state-of-the-art mass spectrometry are now being increasingly applied to study AD disease mechanisms and identify drug targets and novel disease biomarkers. In this report, we describe the application of quantitative proteomic approaches for understanding AD pathophysiology, summarize the current knowledge gained from proteomic investigations of AD, and discuss the development and validation of new predictive and diagnostic disease biomarkers.
Collapse
|