151
|
Song Y, Nelp M, Bandarian V, Wysocki VH. Refining the Structural Model of a Heterohexameric Protein Complex: Surface Induced Dissociation and Ion Mobility Provide Key Connectivity and Topology Information. ACS CENTRAL SCIENCE 2015; 1:477-487. [PMID: 26744735 PMCID: PMC4690985 DOI: 10.1021/acscentsci.5b00251] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Toyocamycin nitrile hydratase (TNH) is a protein hexamer that catalyzes the hydration of toyocamycin to produce sangivamycin. The structure of hexameric TNH and the arrangement of subunits within the complex, however, have not been solved by NMR or X-ray crystallography. Native mass spectrometry (MS) clearly shows that TNH is composed of two copies each of the α, β, and γ subunits. Previous surface induced dissociation (SID) tandem mass spectrometry on a quadrupole time-of-flight (QTOF) platform suggests that the TNH hexamer is a dimer composed of two αβγ trimers; furthermore, the results suggest that α-β interact most strongly (Blackwell et al. Anal. Chem. 2011, 83, 2862-2865). Here, multiple complementary MS based approaches and homology modeling have been applied to refine the structure of TNH. Solution-phase organic solvent disruption coupled with native MS agrees with the previous SID results. By coupling surface induced dissociation with ion mobility mass spectrometry (SID/IM), further information on the intersubunit contacts and relative interfacial strengths are obtained. The results show that TNH is a dimer of αβγ trimers, that within the trimer the α, β subunits bind most strongly, and that the primary contact between the two trimers is through a γ-γ interface. Collisional cross sections (CCSs) measured from IM experiments are used as constraints for postulating the arrangement of the subunits represented by coarse-grained spheres. Covalent labeling (surface mapping) together with protein complex homology modeling and docking of trimers to form hexamer are utilized with all the above information to propose the likely quaternary structure of TNH, with chemical cross-linking providing cross-links consistent with the proposed structure. The novel feature of this approach is the use of SID-MS with ion mobility to define complete connectivity and relative interfacial areas of a heterohexameric protein complex, providing much more information than is available from solution disruption. That information, when combined with CCS-guided coarse-grained modeling and covalent labeling restraints for homology modeling and trimer-trimer docking, provides atomic models of a previously uncharacterized heterohexameric protein complex.
Collapse
Affiliation(s)
- Yang Song
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Micah
T. Nelp
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United
States
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department
of Chemistry and Biochemistry, The University
of Arizona, Tucson, Arizona 85721, United
States
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Vicki H. Wysocki
- Department
of Chemistry and Biochemistry, The Ohio
State University, Columbus, Ohio 43210, United States
- Address: 260 Biomedical Research
Tower, 460 West 12th Avenue, Columbus, OH 43210, USA. Phone: 614-292-8687. E-mail:
| |
Collapse
|
152
|
Hall Z, Schmidt C, Politis A. Uncovering the Early Assembly Mechanism for Amyloidogenic β2-Microglobulin Using Cross-linking and Native Mass Spectrometry. J Biol Chem 2015; 291:4626-37. [PMID: 26655720 PMCID: PMC4813486 DOI: 10.1074/jbc.m115.691063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Indexed: 12/14/2022] Open
Abstract
β2-Microglobulin (β2m), a key component of the major histocompatibility class I complex, can aggregate into fibrils with severe clinical consequences. As such, investigating the structural aspects of the formation of oligomeric intermediates of β2m and their subsequent progression toward fibrillar aggregates is of great importance. However, β2m aggregates are challenging targets in structural biology, primarily due to their inherent transient and heterogeneous nature. Here we study the oligomeric distributions and structures of the early intermediates of amyloidogenic β2m and its truncated variant ΔN6-β2m. We established compact oligomers for both variants by integrating advanced mass spectrometric techniques with available electron microscopy maps and atomic level structures from NMR spectroscopy and x-ray crystallography. Our results revealed a stepwise assembly mechanism by monomer addition and domain swapping for the oligomeric species of ΔN6-β2m. The observed structural similarity and common oligomerization pathway between the two variants is likely to enable ΔN6-β2m to cross-seed β2m fibrillation and allow the formation of mixed fibrils. We further determined the key subunit interactions in ΔN6-β2m tetramer, revealing the importance of a domain-swapped hinge region for formation of higher order oligomers. Overall, we deliver new mechanistic insights into β2m aggregation, paving the way for future studies on the mechanisms and cause of amyloid fibrillation.
Collapse
Affiliation(s)
- Zoe Hall
- From the Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Carla Schmidt
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom, and
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
153
|
Quintyn RS, Zhou M, Yan J, Wysocki VH. Surface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes. Anal Chem 2015; 87:11879-86. [PMID: 26499904 DOI: 10.1021/acs.analchem.5b03441] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Mowei Zhou
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Jing Yan
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
154
|
Marcoux J, Cianférani S. Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods 2015; 89:4-12. [DOI: 10.1016/j.ymeth.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023] Open
|
155
|
Borysik AJ, Kovacs D, Guharoy M, Tompa P. Ensemble Methods Enable a New Definition for the Solution to Gas-Phase Transfer of Intrinsically Disordered Proteins. J Am Chem Soc 2015; 137:13807-17. [DOI: 10.1021/jacs.5b06027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antoni J. Borysik
- King’s College London, Department of Chemistry,
Britannia House, 7 Trinity
Street, London SE1 1DB, U.K
| | - Denes Kovacs
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Mainak Guharoy
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Peter Tompa
- VIB
Structural Biology Research Centre (SBRC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
- Institute
of Enzymology, Research Centre for Natural Sciences of
the Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
156
|
Zhao Y, Singh A, Li L, Linhardt RJ, Xu Y, Liu J, Woods RJ, Amster IJ. Investigating changes in the gas-phase conformation of Antithrombin III upon binding of Arixtra using traveling wave ion mobility spectrometry (TWIMS). Analyst 2015; 140:6980-9. [PMID: 26115461 PMCID: PMC4586392 DOI: 10.1039/c5an00908a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We validate the utility of ion mobility to measure protein conformational changes induced by the binding of glycosaminoglycan ligands, using the well characterized system of Antithrombin III (ATIII) and Arixtra, a pharmaceutical agent with heparin (Hp) activity. Heparin has been used as a therapeutic anticoagulant drug for several decades through its interaction with ATIII, a serine protease inhibitor that plays a central role in the blood coagulation cascade. This interaction induces conformational changes within ATIII that dramatically enhance the ATIII-mediated inhibition rate. Arixtra is the smallest synthetic Hp containing the specific pentasaccharide sequence required to bind with ATIII. Here we report the first travelling wave ion mobility mass spectrometry (TWIMS) investigation of the conformational changes in ATIII induced by its interaction with Arixtra. Native electrospray ionization mass spectrometry allowed the gentle transfer of the native topology of ATIII and ATIII-Arixtra complex. IM measurements of ATIII and ATIII-Arixtra complex showed a single structure, with well-defined collisional cross section (CCS) values. An average 3.6% increase in CCS of ATIII occurred as a result of its interaction with Arixtra, which agrees closely with the theoretical estimation of the change in CCS based on protein crystal structures. A comparison of the binding behavior of ATIII under both denaturing and non-denaturing conditions confirmed the significance of a folded tertiary structure of ATIII for its biological activity. A Hp oligosaccharide whose structure is similar to Arixtra but missing the 3-O sulfo group on the central glucosamine residue showed a dramatic decrease in binding affinity towards ATIII, but no change in the mobility behavior of the complex, consistent with prior studies that suggested that 3-O sulfation affects the equilibrium constant for binding to ATIII, but not the mode of interaction. In contrast, nonspecific binding by a Hp tetrasaccharide showed more complex mobility behavior, suggesting more promiscuous interactions with ATIII. The effect of collisional activation of ATIII and ATIII-Arixtra complex were also assessed, revealing that the binding of Arixtra provided ATIII with additional stability against unfolding. Overall, our results validate the capability of TWIMS to retain the significant features of the solution structure of a protein-carbohydrate complex so that it can be used to study protein conformational changes induced by the binding of glycosaminoglycan ligands.
Collapse
Affiliation(s)
- Yuejie Zhao
- University of Georgia, Department of Chemistry, 140 Cedar Street, Athens, GA 30602-2556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Campuzano IDG, Larriba C, Bagal D, Schnier PD. Ion Mobility and Mass Spectrometry Measurements of the Humanized IgGk NIST Monoclonal Antibody. ACTA ACUST UNITED AC 2015. [DOI: 10.1021/bk-2015-1202.ch004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Iain D. G. Campuzano
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| | - Carlos Larriba
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| | - Dhanashri Bagal
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| | - Paul D. Schnier
- Molecular Structure and Characterization, Amgen Inc., Thousand Oaks, California 91320, United States
- Mechanical Engineering Department, Yale University, New Haven, Connecticut 06520, United States
- Molecular Structure and Characterization, Amgen Inc., South San Francisco, California 94080, United States
| |
Collapse
|
158
|
Chen SH, Russell DH. How Closely Related Are Conformations of Protein Ions Sampled by IM-MS to Native Solution Structures? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1433-43. [PMID: 26115967 DOI: 10.1007/s13361-015-1191-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 05/25/2023]
Abstract
Here, we critically evaluate the effects of changes in the ion internal energy (E(int)) on ion-neutral collision cross sections (CCS) of ions of two structurally diverse proteins, specifically the [M + 6H](6+) ion of ubiquitin (ubq(6+)), the [M + 5H](5+) ion of the intrinsically disordered protein (IDP) apo-metallothionein-2A (MT), and its partially- and fully-metalated isoform, the [CdiMT](5+) ion. The ion-neutral CCS for ions formed by "native-state" ESI show a strong dependence on E(int). Collisional activation is used to increase E(int) prior to the ions entering and within the traveling wave (TW) ion mobility analyzer. Comparisons of experimental CCSs with those generated by molecular dynamics (MD) simulation for solution-phase ions and solvent-free ions as a function of temperature provide new insights about conformational preferences and retention of solution conformations. The E(int)-dependent CCSs, which reveal increased conformational diversity of the ion population, are discussed in terms of folding/unfolding of solvent-free ions. For example, ubiquitin ions that have low internal energies retain native-like conformations, whereas ions that are heated by collisional activation possess higher internal energies and yield a broader range of CCS owing to increased conformational diversity due to losses of secondary and tertiary structures. In contrast, the CCS profile for the IDP apoMT is consistent with kinetic trapping of an ion population composed of a wide range of conformers, and as the E(int) is increased, these structurally labile conformers unfold to an elongated conformation.
Collapse
Affiliation(s)
- Shu-Hua Chen
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
159
|
Borysik AJ. Structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry and molecular dynamics simulations. Anal Chem 2015; 87:8970-6. [PMID: 26266526 DOI: 10.1021/acs.analchem.5b02172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure and dynamics of a protein-surfactant assembly studied by ion-mobility mass spectrometry (IMS) and vacuum molecular dynamics (MD) simulations is reported. Direct evidence is provided for the ability of the surfactant dodecyl-β-D-maltoside (DDM) to prevent charge-induced unfolding of the membrane protein (PagP) in the gas-phase. Restraints obtained by IMS are used to map the surfactant positions onto the protein surface. Surfactants occupying more exposed positions at the apexes of the β-barrel structure are most in-line with the experimental observations. MD simulations provide additional evidence for this assembly organization through surfactant inversion and migration on the protein structure in the absence of solvent. Surfactant migration entails a net shift from apolar membrane spanning regions to more polar regions of the protein structure with the DDM molecule remaining attached to the protein via headgroup interactions. These data provide evidence for the role of protein-DDM headgroup interactions in stabilizing membrane protein structure from gas-phase unfolding.
Collapse
Affiliation(s)
- Antoni J Borysik
- Department of Chemistry, King's College London , Britannia House, London SE1 1DB, United Kingdom
| |
Collapse
|
160
|
Guo K, Guo Z, Ludlow JM, Xie T, Liao S, Newkome GR, Wesdemiotis C. Characterization of Metallosupramolecular Polymers by Top-Down Multidimensional Mass Spectrometry Methods. Macromol Rapid Commun 2015; 36:1539-52. [PMID: 26248126 DOI: 10.1002/marc.201500084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/15/2015] [Indexed: 11/07/2022]
Abstract
Top-down multidimensional mass spectrometry, interfacing electrospray ionization (ESI) with ion mobility mass spectrometry (IM-MS), and energy resolved (gradient) tandem mass spectrometry (gMS(2) ) are employed to characterize the stoichiometries, architectures, and intrinsic stabilities of coordinatively bound supramolecular polymers containing terpyridine functionalized ligands. As a soft ionization method, ESI prevents or minimizes unwanted assembly destruction. The IM dimension affords separation of the supramolecular ions by charge and collision cross-section (a function of size and shape). The mobility separated ions are subsequently identified by their mass-to-charge-ratios and isotope patterns in the orthogonal MS dimension. Finally, the gMS(2) dimension reveals bond breaking proclivities and disintegration pathways of the assemblies. The described methodology does not require high sample purity due to the dispersive nature of the IM and MS steps. Its utility is demonstrated with the comprehensive analysis of bisterpyridine-based metallomacrocycle mixtures and a tristerpyridine based complex with 3-D nanosphere-like architecture.
Collapse
Affiliation(s)
- Kai Guo
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Zaihong Guo
- Department of Chemistry, The University of Akron, Akron, OH, 44325, USA
| | - James M Ludlow
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Tingzheng Xie
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Shengyun Liao
- Department of Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - George R Newkome
- Departments of Chemistry and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| | - Chrys Wesdemiotis
- Departments of Chemistry and Polymer Science, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
161
|
Pacholarz KJ, Barran PE. Distinguishing Loss of Structure from Subunit Dissociation for Protein Complexes with Variable Temperature Ion Mobility Mass Spectrometry. Anal Chem 2015; 87:6271-9. [DOI: 10.1021/acs.analchem.5b01063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kamila J. Pacholarz
- University of Edinburgh, School of Chemistry, West Mains Road, Edinburgh EH9 3JJ, United Kingdom
- University of Manchester, School of Chemistry, Manchester
Institute of Biotechnology, Michael Barber Centre for Collaborative
Mass Spectrometry, 131
Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita E. Barran
- University of Manchester, School of Chemistry, Manchester
Institute of Biotechnology, Michael Barber Centre for Collaborative
Mass Spectrometry, 131
Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
162
|
Schenk ER, Nau F, Fernandez-Lima F. Theoretical predictor for candidate structure assignment from IMS data of biomolecule-related conformational space. INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR ION MOBILITY SPECTROMETRY 2015; 18:23-29. [PMID: 27330407 PMCID: PMC4909055 DOI: 10.1007/s12127-015-0165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability to correlate experimental ion mobility data with candidate structures from theoretical modeling provides a powerful analytical and structural tool for the characterization of biomolecules. In the present paper, a theoretical workflow is described to generate and assign candidate structures for experimental trapped ion mobility and H/D exchange (HDX-TIMS-MS) data following molecular dynamics simulations and statistical filtering. The applicability of the theoretical predictor is illustrated for a peptide and protein example with multiple conformations and kinetic intermediates. The described methodology yields a low computational cost and a simple workflow by incorporating statistical filtering and molecular dynamics simulations. The workflow can be adapted to different IMS scenarios and CCS calculators for a more accurate description of the IMS experimental conditions. For the case of the HDX-TIMS-MS experiments, molecular dynamics in the "TIMS box" accounts for a better sampling of the molecular intermediates and local energy minima.
Collapse
Affiliation(s)
- Emily R Schenk
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Frederic Nau
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
163
|
D'Atri V, Porrini M, Rosu F, Gabelica V. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:711-26. [PMID: 26259654 PMCID: PMC4440389 DOI: 10.1002/jms.3590] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 05/13/2023]
Abstract
Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section Ω(EXP). Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting Ω(CALC) are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with Ω(EXP) determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial.
Collapse
Affiliation(s)
- Valentina D'Atri
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | - Massimiliano Porrini
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| | | | - Valérie Gabelica
- Univ. Bordeaux, IECB, ARNA laboratoryPessac, F-33600, France
- INSERM, U869, ARNA laboratoryBordeaux, F-33000, France
| |
Collapse
|
164
|
Quintyn R, Yan J, Wysocki V. Surface-Induced Dissociation of Homotetramers with D2 Symmetry Yields their Assembly Pathways and Characterizes the Effect of Ligand Binding. ACTA ACUST UNITED AC 2015; 22:583-92. [DOI: 10.1016/j.chembiol.2015.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022]
|
165
|
Politis A, Borysik AJ. Assembling the pieces of macromolecular complexes: Hybrid structural biology approaches. Proteomics 2015; 15:2792-803. [DOI: 10.1002/pmic.201400507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 01/14/2023]
|
166
|
Marty MT, Baldwin AJ, Marklund EG, Hochberg GKA, Benesch JLP, Robinson CV. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem 2015; 87:4370-6. [PMID: 25799115 PMCID: PMC4594776 DOI: 10.1021/acs.analchem.5b00140] [Citation(s) in RCA: 630] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interpretation of mass spectra is challenging because they report a ratio of two physical quantities, mass and charge, which may each have multiple components that overlap in m/z. Previous approaches to disentangling the two have focused on peak assignment or fitting. However, the former struggle with complex spectra, and the latter are generally computationally intensive and may require substantial manual intervention. We propose a new data analysis approach that employs a Bayesian framework to separate the mass and charge dimensions. On the basis of this approach, we developed UniDec (Universal Deconvolution), software that provides a rapid, robust, and flexible deconvolution of mass spectra and ion mobility-mass spectra with minimal user intervention. Incorporation of the charge-state distribution in the Bayesian prior probabilities provides separation of the m/z spectrum into its physical mass and charge components. We have evaluated our approach using systems of increasing complexity, enabling us to deduce lipid binding to membrane proteins, to probe the dynamics of subunit exchange reactions, and to characterize polydispersity in both protein assemblies and lipoprotein Nanodiscs. The general utility of our approach will greatly facilitate analysis of ion mobility and mass spectra.
Collapse
Affiliation(s)
- Michael T. Marty
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Andrew J. Baldwin
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Erik G. Marklund
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Georg K. A. Hochberg
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Justin L. P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| | - Carol V. Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K
| |
Collapse
|
167
|
Shah S, Sanchez J, Stewart A, Piperakis MM, Cosstick R, Nichols C, Park CK, Ma X, Wysocki V, Bitinaite J, Horton NC. Probing the run-on oligomer of activated SgrAI bound to DNA. PLoS One 2015; 10:e0124783. [PMID: 25880668 PMCID: PMC4399878 DOI: 10.1371/journal.pone.0124783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 03/05/2015] [Indexed: 02/04/2023] Open
Abstract
SgrAI is a type II restriction endonuclease with an unusual mechanism of activation involving run-on oligomerization. The run-on oligomer is formed from complexes of SgrAI bound to DNA containing its 8 bp primary recognition sequence (uncleaved or cleaved), and also binds (and thereby activates for DNA cleavage) complexes of SgrAI bound to secondary site DNA sequences which contain a single base substitution in either the 1st/8th or the 2nd/7th position of the primary recognition sequence. This modulation of enzyme activity via run-on oligomerization is a newly appreciated phenomenon that has been shown for a small but increasing number of enzymes. One outstanding question regarding the mechanistic model for SgrAI is whether or not the activating primary site DNA must be cleaved by SgrAI prior to inducing activation. Herein we show that an uncleavable primary site DNA containing a 3'-S-phosphorothiolate is in fact able to induce activation. In addition, we now show that cleavage of secondary site DNA can be activated to nearly the same degree as primary, provided a sufficient number of flanking base pairs are present. We also show differences in activation and cleavage of the two types of secondary site, and that effects of selected single site substitutions in SgrAI, as well as measured collisional cross-sections from previous work, are consistent with the cryo-electron microscopy model for the run-on activated oligomer of SgrAI bound to DNA.
Collapse
Affiliation(s)
- Santosh Shah
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
| | - Jonathan Sanchez
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
| | - Andrew Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
- Genetics Graduate Program, University of Arizona, Tucson, AZ 85721, United States of America
| | - Michael M. Piperakis
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom, L69 7ZD, United States of America
| | - Richard Cosstick
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom, L69 7ZD, United States of America
| | - Claire Nichols
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
| | - Chad K. Park
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
| | - Xin Ma
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, United States of America
| | - Vicki Wysocki
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, United States of America
| | - Jurate Bitinaite
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, United States of America
| | - Nancy C. Horton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, United States of America
| |
Collapse
|
168
|
Mehmood S, Allison TM, Robinson CV. Mass Spectrometry of Protein Complexes: From Origins to Applications. Annu Rev Phys Chem 2015; 66:453-74. [DOI: 10.1146/annurev-physchem-040214-121732] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Timothy M. Allison
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
169
|
Marcoux J, Champion T, Colas O, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci 2015; 24:1210-23. [PMID: 25694334 DOI: 10.1002/pro.2666] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/08/2023]
Abstract
Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1.
Collapse
Affiliation(s)
- Julien Marcoux
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, 67087, Strasbourg, France
| | - Thierry Champion
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Elsa Wagner-Rousset
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, 67087, Strasbourg, France
| | - Alain Beck
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, 67087, Strasbourg, France
| |
Collapse
|
170
|
Ridgeway ME, Silveira JA, Meier JE, Park MA. Microheterogeneity within conformational states of ubiquitin revealed by high resolution trapped ion mobility spectrometry. Analyst 2015; 140:6964-72. [DOI: 10.1039/c5an00841g] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present work employs trapped ion mobility spectrometry (TIMS) for the analysis of ubiquitin ions known to display a multitude of previously unresolved interchangeable conformations upon electrospray ionization.
Collapse
|
171
|
Quintyn RS, Harvey SR, Wysocki VH. Illustration of SID-IM-SID (surface-induced dissociation-ion mobility-SID) mass spectrometry: homo and hetero model protein complexes. Analyst 2015; 140:7012-9. [DOI: 10.1039/c5an01095k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface collisions generate subcomplexes, which are then separated by ion mobility and dissociated into their individual subunitsviaa second stage of surface collisions to elucidate protein complex architecture and assembly.
Collapse
Affiliation(s)
- Royston S. Quintyn
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| | - Sophie R. Harvey
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
- School of Chemistry
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry
- Ohio State University
- Columbus
- USA
| |
Collapse
|
172
|
Boga Raja UK, Injeti S, Culver T, McCabe JW, Angel LA. Probing the stability of insulin oligomers using electrospray ionization ion mobility mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:759-774. [PMID: 26764306 DOI: 10.1255/ejms.1396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peptide hormone insulin is central to regulating carbohydrate and fat metabolism in the body by controlling blood sugar levels. Insulin's most active form is the monomer and the extent of insulin oligomerization is related to insulin's activity of controlling blood sugar levels. Electrospray ionization (ESI) of human insulin produced a series of oligomers from the monomer to the undecamer identified using quadrupole ion mobility time-of-flight mass spectrometry. Previous research suggested that only the monomer, dimer and hexamer are native forms of insulin in solution and the range of oligomers observed in the gas-phase are ESI artifacts. Here the properties of three distinct oligomer bands I, II and III, where both the charge state and number of insulin units of the oligomer increase incrementally, were investigated. When Zn(ii) was added to the insulin sample the same oligomers were observed but with 0-6 Zn(ii) ions bound to each of the oligomers. The oligomers of bands I, II and III were characterized by comparing their drift times, collision cross- sections, relative intensities, collision-induced dissociation (CID) patterns and relative breakdown energies. Insulin oligomers of band I dissociated primarily by releasing either the 2+ or 3+ monomer accompanied by an oligomer that conserved the mass, charge and Zn(ii) of the precursor. Insulin oligomers of bands II and III dissociated primarily by releasing the 2+ monomer accompanied by an oligomer which conserved the mass, charge and Zn(ii) of the precursor. Comparison of CID patterns and breakdown energies showed all the oligomers in band II required higher collision energies to dissociate than the oligomers in band I, and the oligomers of band III required higher energies to dissociate than oligomers of band II. These results show that the amount of excess charge on the oligomer in respect to the number of insulin monomers in the oligomer affects their stability.
Collapse
Affiliation(s)
- Uday Kumar Boga Raja
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Srilakshmi Injeti
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Tiffany Culver
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Jacob W McCabe
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| | - Laurence A Angel
- Chemistry Department, Texas A&M University - Commerce, P.O. Box 3011, Commerce, TX 75429, USA.
| |
Collapse
|
173
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
174
|
Michelmann K, Silveira JA, Ridgeway ME, Park MA. Fundamentals of trapped ion mobility spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:14-24. [PMID: 25331153 DOI: 10.1007/s13361-014-0999-4] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 05/18/2023]
Abstract
Trapped ion mobility spectrometry (TIMS) is a relatively new gas-phase separation method that has been coupled to quadrupole orthogonal acceleration time-of-flight mass spectrometry. The TIMS analyzer is a segmented rf ion guide wherein ions are mobility-analyzed using an electric field that holds ions stationary against a moving gas, unlike conventional drift tube ion mobility spectrometry where the gas is stationary. Ions are initially trapped, and subsequently eluted from the TIMS analyzer over time according to their mobility (K). Though TIMS has achieved a high level of performance (R > 250) in a small device (<5 cm) using modest operating potentials (<300 V), a proper theory has yet to be produced. Here, we develop a quantitative theory for TIMS via mathematical derivation and simulations. A one-dimensional analytical model, used to predict the transit time and theoretical resolving power, is described. Theoretical trends are in agreement with experimental measurements performed as a function of K, pressure, and the axial electric field scan rate. The linear dependence of the transit time with 1/K provides a fundamental basis for determination of reduced mobility or collision cross section values by calibration. The quantitative description of TIMS provides an operational understanding of the analyzer, outlines the current performance capabilities, and provides insight into future avenues for improvement.
Collapse
|
175
|
De Gieter S, Konijnenberg A, Talavera A, Butterer A, Haesaerts S, De Greve H, Sobott F, Loris R, Garcia-Pino A. The intrinsically disordered domain of the antitoxin Phd chaperones the toxin Doc against irreversible inactivation and misfolding. J Biol Chem 2014; 289:34013-23. [PMID: 25326388 PMCID: PMC4256337 DOI: 10.1074/jbc.m114.572396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site.
Collapse
Affiliation(s)
- Steven De Gieter
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Ariel Talavera
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Annika Butterer
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Sarah Haesaerts
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Henri De Greve
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels, Belgium, and
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and Center for Proteomics (CFP-CeProMa), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Remy Loris
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Abel Garcia-Pino
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe),
| |
Collapse
|
176
|
Mehmood S, Marcoux J, Hopper JTS, Allison TM, Liko I, Borysik AJ, Robinson CV. Charge reduction stabilizes intact membrane protein complexes for mass spectrometry. J Am Chem Soc 2014; 136:17010-2. [PMID: 25402655 DOI: 10.1021/ja510283g] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The study of intact soluble protein assemblies by means of mass spectrometry is providing invaluable contributions to structural biology and biochemistry. A recent breakthrough has enabled similar study of membrane protein complexes, following their release from detergent micelles in the gas phase. Careful optimization of mass spectrometry conditions, particularly with respect to energy regimes, is essential for maintaining compact folded states as detergent is removed. However, many of the saccharide detergents widely employed in structural biology can cause unfolding of membrane proteins in the gas phase. Here, we investigate the potential of charge reduction by introducing three membrane protein complexes from saccharide detergents and show how reducing their overall charge enables generation of compact states, as evidenced by ion mobility mass spectrometry. We find that charge reduction stabilizes the oligomeric state and enhances the stability of lipid-bound complexes. This finding is significant since maintaining native-like membrane proteins enables ligand binding to be assessed from a range of detergents that retain solubility while protecting the overall fold.
Collapse
Affiliation(s)
- Shahid Mehmood
- Department of Chemistry, University of Oxford , Oxford, U.K
| | | | | | | | | | | | | |
Collapse
|
177
|
Stow SM, Goodwin CR, Kliman M, Bachmann BO, McLean JA, Lybrand TP. Distance geometry protocol to generate conformations of natural products to structurally interpret ion mobility-mass spectrometry collision cross sections. J Phys Chem B 2014; 118:13812-20. [PMID: 25360896 PMCID: PMC4259499 DOI: 10.1021/jp509398e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Ion mobility-mass spectrometry (IM-MS)
allows the separation of
ionized molecules based on their charge-to-surface area (IM) and mass-to-charge
ratio (MS), respectively. The IM drift time data that is obtained
is used to calculate the ion-neutral collision cross section (CCS)
of the ionized molecule with the neutral drift gas, which is directly
related to the ion conformation and hence molecular size and shape.
Studying the conformational landscape of these ionized molecules computationally
provides interpretation to delineate the potential structures that
these CCS values could represent, or conversely, structural motifs
not consistent with the IM data. A challenge in the IM-MS community
is the ability to rapidly compute conformations to interpret natural
product data, a class of molecules exhibiting a broad range of biological
activity. The diversity of biological activity is, in part, related
to the unique structural characteristics often observed for natural
products. Contemporary approaches to structurally interpret IM-MS
data for peptides and proteins typically utilize molecular dynamics
(MD) simulations to sample conformational space. However, MD calculations
are computationally expensive, they require a force field that accurately
describes the molecule of interest, and there is no simple metric
that indicates when sufficient conformational sampling has been achieved.
Distance geometry is a computationally inexpensive approach that creates
conformations based on sampling different pairwise distances between
the atoms within the molecule and therefore does not require a force
field. Progressively larger distance bounds can be used in distance
geometry calculations, providing in principle a strategy to assess
when all plausible conformations have been sampled. Our results suggest
that distance geometry is a computationally efficient and potentially
superior strategy for conformational analysis of natural products
to interpret gas-phase CCS data.
Collapse
Affiliation(s)
- Sarah M Stow
- Department of Chemistry, ‡Department of Pharmacology, §Vanderbilt Institute of Chemical Biology, ∥Vanderbilt Institute of Integrative Biosystems Research and Education, ⊥Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | | | | |
Collapse
|
178
|
Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry. Proc Natl Acad Sci U S A 2014; 111:17170-5. [PMID: 25404294 DOI: 10.1073/pnas.1413118111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility-mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins.
Collapse
|
179
|
Escribano E, Madurga S, Vilaseca M, Moreno V. Ion mobility and Top-down MS complementary approaches for the structural analysis of protein models bound to anticancer metallodrugs. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
180
|
Debaene F, Bœuf A, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Innovative Native MS Methodologies for Antibody Drug Conjugate Characterization: High Resolution Native MS and IM-MS for Average DAR and DAR Distribution Assessment. Anal Chem 2014; 86:10674-83. [DOI: 10.1021/ac502593n] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- François Debaene
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Amandine Bœuf
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Daniel Ayoub
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Alain Van Dorsselaer
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Alain Beck
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| |
Collapse
|
181
|
Molecular simulation-based structural prediction of protein complexes in mass spectrometry: the human insulin dimer. PLoS Comput Biol 2014; 10:e1003838. [PMID: 25210764 PMCID: PMC4161290 DOI: 10.1371/journal.pcbi.1003838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/26/2014] [Indexed: 01/02/2023] Open
Abstract
Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structural prediction protocol for single proteins in ESI-MS to protein complexes. We apply our protocol to the human insulin dimer (hIns2) as a test case. Our calculations reproduce the main charge and the collision cross section (CCS) measured in ESI-MS experiments. Molecular dynamics simulations for 0.075 ms show that the complex maximizes intermolecular non-bonded interactions relative to the structure in water, without affecting the cross section. The overall gas-phase structure of hIns2 does exhibit differences with the one in aqueous solution, not inferable from a comparison with calculated CCS. Hence, care should be exerted when interpreting ESI-MS proteomics data based solely on NMR and/or X-ray structural information.
Collapse
|
182
|
Shi L, Holliday AE, Shi H, Zhu F, Ewing MA, Russell DH, Clemmer DE. Characterizing Intermediates Along the Transition from Polyproline I to Polyproline II Using Ion Mobility Spectrometry-Mass Spectrometry. J Am Chem Soc 2014; 136:12702-11. [DOI: 10.1021/ja505899g] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liuqing Shi
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alison E. Holliday
- Department
of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania 19081, United States
| | - Huilin Shi
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Feifei Zhu
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael A. Ewing
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
183
|
Alexeev Y, Fedorov DG, Shvartsburg AA. Effective Ion Mobility Calculations for Macromolecules by Scattering on Electron Clouds. J Phys Chem A 2014; 118:6763-72. [DOI: 10.1021/jp505012c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuri Alexeev
- Argonne
Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Dmitri G. Fedorov
- Nanosystem
Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Alexandre A. Shvartsburg
- Biological
Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
184
|
Marcoux J, Politis A, Rinehart D, Marshall DP, Wallace MI, Tamm LK, Robinson CV. Mass spectrometry defines the C-terminal dimerization domain and enables modeling of the structure of full-length OmpA. Structure 2014; 22:781-90. [PMID: 24746938 DOI: 10.1016/j.str.2014.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 11/17/2022]
Abstract
The transmembrane domain of the outer membrane protein A (OmpA) from Escherichia coli is an excellent model for structural and folding studies of β-barrel membrane proteins. However, full-length OmpA resists crystallographic efforts, and the link between its function and tertiary structure remains controversial. Here we use site-directed mutagenesis and mass spectrometry of different constructs of OmpA, released in the gas phase from detergent micelles, to define the minimal region encompassing the C-terminal dimer interface. Combining knowledge of the location of the dimeric interface with molecular modeling and ion mobility data allows us to propose a low-resolution model for the full-length OmpA dimer. Our model of the dimer is in remarkable agreement with experimental ion mobility data, with none of the unfolding or collapse observed for full-length monomeric OmpA, implying that dimer formation stabilizes the overall structure and prevents collapse of the flexible linker that connects the two domains.
Collapse
Affiliation(s)
- Julien Marcoux
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Argyris Politis
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Dennis Rinehart
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - David P Marshall
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Mark I Wallace
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
185
|
Zhou M, Wysocki VH. Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase. Acc Chem Res 2014; 47:1010-8. [PMID: 24524650 DOI: 10.1021/ar400223t] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The quaternary structures of proteins are both important and of interest to chemists, because many proteins exist as complexes in vivo, and probing these structures allows us to better understand their biological functions. Conventional structural biology methods such as X-ray crystallography and nuclear magnetic resonance provide high-resolution information on the structures of protein complexes and are the gold standards in the field. However, other emerging biophysical methods that only provide low-resolution data (e.g. stoichiometry and subunit connectivity) on the structures of the protein complexes are also becoming more important to scientists. Mass spectrometry is one of these approaches that provide lower than atomic structural resolution, but the approach is higher throughput and provides not only better mass information than other techniques but also stoichiometry and topology. Fragile noncovalent interactions within the protein complexes can be preserved in the gas phase of MS under gentle ionization and transfer conditions. Scientists can measure the masses of the complexes with high confidence to reveal the stoichiometry and composition of the proteins. What makes mass spectrometry an even more powerful method is that researchers can further isolate the protein complexes and activate them in the gas phase to release subunits for more structural information. The caveat is that, upon gas-phase activation, the released subunits need to faithfully reflect the native topology so that useful information on the proteins can be extracted from mass spectrometry experiments. Unfortunately, many proteins tend to favor unfolding upon collision with neutral gas (the most common activation method in mass spectrometers). Therefore, this typically results in limited insights on the quaternary structure of the precursor without further manipulation of other experimental factors. Scientists have observed, however, that valuable structural information can be obtained when the gas-phase proteins are activated by collision with a surface. Subcomplexes released after surface collision are consistent with the native quaternary structure of several protein systems studied, even for a large chaperone protein, GroEL, that approaches megadalton mass. The unique and meaningful data generated from surface induced dissociation (SID) have been attributed to the fast and energetic activation process upon collision with a massive target, the surface. In this Account, we summarize our SID studies of protein complexes, with emphasis on the more recent work on the combination of ion mobility (IM) with SID. IM has gained popularity over the years not only as a gas-phase separation technique but also as a technique with the ability to measure the size and shape of the proteins in the gas phase. Incorporation of IM before SID allows different conformations of a protein to be separated and examined individually by SID for structural details. When IM is after SID, the cross sections of the SID products can be measured, providing insight on the dissociation pathways, which may mimic disassembly pathways. Furthermore, the separation by IM greatly reduces the peak overlapping (same m/z) and coalescence (merging) of SID products, improving the resolving power of the method. While there are still many unanswered questions on the fundamental properties of gas-phase proteins and a need for further research, our work has shown that SID can be a complementary gas-phase tool providing useful information for studying quaternary structures of noncovalent protein complexes.
Collapse
Affiliation(s)
- Mowei Zhou
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| | - Vicki H. Wysocki
- Department of Chemistry and
Biochemistry, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
186
|
Lanucara F, Holman SW, Gray CJ, Eyers CE. The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 2014; 6:281-94. [DOI: 10.1038/nchem.1889] [Citation(s) in RCA: 655] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 02/11/2014] [Indexed: 02/07/2023]
|
187
|
Zhou M, Politis A, Davies R, Liko I, Wu KJ, Stewart AG, Stock D, Robinson CV. Ion mobility-mass spectrometry of a rotary ATPase reveals ATP-induced reduction in conformational flexibility. Nat Chem 2014; 6:208-215. [PMID: 24557135 PMCID: PMC4067995 DOI: 10.1038/nchem.1868] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Rotary ATPases play fundamental roles in energy conversion as their catalytic rotation is associated with interdomain fluctuations and heterogeneity of conformational states. Using ion mobility mass spectrometry we compared the conformational dynamics of the intact ATPase from Thermus thermophilus with those of its membrane and soluble subcomplexes. Our results define regions with enhanced flexibility assigned to distinct subunits within the overall assembly. To provide a structural context for our experimental data we performed molecular dynamics simulations and observed conformational changes of the peripheral stalks that reflect their intrinsic flexibility. By isolating complexes at different phases of cell growth and manipulating nucleotides, metal ions and pH during isolation, we reveal differences that can be related to conformational changes in the Vo complex triggered by ATP binding. Together these results implicate nucleotides in modulating flexibility of the stator components and uncover mechanistic detail that underlies operation and regulation in the context of the holoenzyme.
Collapse
Affiliation(s)
- Min Zhou
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Argyris Politis
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Roberta Davies
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Idlir Liko
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Kuan-Jung Wu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| | - Alastair G Stewart
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Daniela Stock
- The Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia
- The University of New South Wales, Sydney NSW 2052, Australia
| | - Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
188
|
Cassou CA, Williams ER. Anions in electrothermal supercharging of proteins with electrospray ionization follow a reverse Hofmeister series. Anal Chem 2014; 86:1640-7. [PMID: 24410546 PMCID: PMC3983018 DOI: 10.1021/ac403398j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
effects of different anions on the extent of electrothermal
supercharging of proteins from aqueous ammonium and sodium salt solutions
were investigated. Sulfate and hydrogen phosphate are the most effective
anions at producing high charge state protein ions from buffered aqueous
solution, whereas iodide and perchlorate are ineffective with electrothermal
supercharging. The propensity for these anions to produce high charge
state protein ions follows the following trend: sulfate > hydrogen
phosphate > thiocyanate > bicarbonate > chloride > formate
≈
bromide > acetate > iodide > perchlorate. This trend correlates
with
the reverse Hofmeister series over a wide range of salt concentrations
(1 mM to 2 M) and with several physical properties, including solvent
surface tension, anion viscosity B-coefficient, and anion surface/bulk
partitioning coefficient, all of which are related to the Hofmeister
series. The effectiveness of electrothermal supercharging does not
depend on bubble formation, either from thermal degradation of the
buffer or from coalescence of dissolved gas. These results provide
evidence that the effect of different ions in the formation of high
charge state ions by electrothermal supercharging is largely a result
of Hofmeister effects on protein stability leading to protein unfolding
in the heated ESI droplet.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
189
|
Snijder J, Heck AJR. Analytical approaches for size and mass analysis of large protein assemblies. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:43-64. [PMID: 25014341 DOI: 10.1146/annurev-anchem-071213-020015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Analysis of the size and mass of nanoparticles, whether they are natural biomacromolecular or synthetic supramolecular assemblies, is an important step in the characterization of such molecular species. In recent years, electrospray ionization (ESI) has emerged as a technology through which particles with masses up to 100 MDa can be ionized and transferred into the gas phase, preparing them for accurate mass analysis. Here we review currently used methodologies, with a clear focus on native mass spectrometry (MS). Additional complementary methodologies are also covered, including ion-mobility analysis, nanomechanical mass sensors, and charge-detection MS. The literature discussed clearly demonstrates the great potential of ESI-based methodologies for the size and mass analysis of nanoparticles, including very large naturally occurring protein assemblies. The analytical approaches discussed are powerful tools in not only structural biology, but also nanotechnology.
Collapse
Affiliation(s)
- Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands; ,
| | | |
Collapse
|
190
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
191
|
Saikusa K, Kuwabara N, Kokabu Y, Inoue Y, Sato M, Iwasaki H, Shimizu T, Ikeguchi M, Akashi S. Characterisation of an intrinsically disordered protein complex of Swi5-Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering. Analyst 2013; 138:1441-9. [PMID: 23324799 DOI: 10.1039/c2an35878f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is now recognized that intrinsically disordered proteins (IDPs) play important roles as hubs in intracellular networks, and their structural characterisation is of significance. However, due to their highly dynamic features, it is challenging to investigate the structures of IDPs solely by conventional methods. In the present study, we demonstrate a novel method to characterise protein complexes using electrospray ionization ion mobility mass spectrometry (ESI-IM-MS) in combination with small-angle X-ray scattering (SAXS). This method enables structural characterisation even of proteins that have difficulties in crystallisation. With this method, we have characterised the Schizosaccharomyces pombe Swi5-Sfr1 complex, which is expected to have a long disordered region at the N-terminal portion of Sfr1. ESI-IM-MS analysis of the Swi5-Sfr1 complex revealed that its experimental collision cross-section (CCS) had a wide distribution, and the CCS values of the most dominant ions were ∼56% of the theoretically calculated value based on the SAXS low-resolution model, suggesting a significant size reduction in the gas phase. The present study demonstrates that the newly developed method for calculation of the theoretical CCSs of the SAXS low-resolution models of proteins allows accurate evaluation of the experimental CCS values of IDPs provided by ESI-IM-MS by comparing with the low-resolution solution structures. Furthermore, it was revealed that the combination of ESI-IM-MS and SAXS is a promising method for structural characterisation of protein complexes that are unable to crystallise.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Zhou M, Dagan S, Wysocki VH. Impact of charge state on gas-phase behaviors of noncovalent protein complexes in collision induced dissociation and surface induced dissociation. Analyst 2013; 138:1353-62. [PMID: 23324896 DOI: 10.1039/c2an36525a] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Charge states of noncovalent protein complexes in the gas phase are known to affect their propensity for unfolding and dissociation. In this work, C-reactive protein (CRP) pentamer and Concanavalin A (ConA) tetramer at different charge states were subjected to collision induced dissociation (CID) and surface induced dissociation (SID) in a modified quadrupole/ion mobility/time-of-flight mass spectrometer. Charge manipulation was achieved through solution addition of charge reducing (triethylammonium acetate) or supercharging (3-nitrobenzylalcohol) reagents. The results show that charge reduction increases the stability of the proteins to dissociation and suppresses unfolding of the precursors. While CID becomes less effective at dissociation of charge reduced CRP and ConA, SID showed better preserved subunit contacts that are useful for quaternary structure elucidation. In contrast, supercharging of CRP and ConA leads to facile dissociation into subunits even for CID. The extent of precursor unfolding also increases with greater charge. Another interesting finding is that low-charge multimer products (dimers, trimers, etc.) seem to be collapsed after being released from the complexes. Further investigation is necessary to fully understand this behavior. The data presented here suggest that charge manipulation can be used to "tune" the dissociation behavior of noncovalent protein complexes in order to obtain the most useful information desired for structural analysis.
Collapse
Affiliation(s)
- Mowei Zhou
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., PO Box 210041, Tucson, Arizona, USA
| | | | | |
Collapse
|
193
|
Allen SJ, Schwartz AM, Bush MF. Effects of Polarity on the Structures and Charge States of Native-Like Proteins and Protein Complexes in the Gas Phase. Anal Chem 2013; 85:12055-61. [DOI: 10.1021/ac403139d] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Samuel J. Allen
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Alicia M. Schwartz
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F. Bush
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
194
|
Vahidi S, Stocks BB, Konermann L. Partially Disordered Proteins Studied by Ion Mobility-Mass Spectrometry: Implications for the Preservation of Solution Phase Structure in the Gas Phase. Anal Chem 2013; 85:10471-8. [DOI: 10.1021/ac402490r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Siavash Vahidi
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Bradley B. Stocks
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Departments
of Chemistry
and Biochemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
195
|
Fort KL, Silveira JA, Russell DH. The periodic focusing ion funnel: theory, design, and experimental characterization by high-resolution ion mobility-mass spectrometry. Anal Chem 2013; 85:9543-8. [PMID: 24044574 DOI: 10.1021/ac401629b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simulation-based development and experimental characterization of a DC-only ion funnel is described herein. Radial ion confinement is achieved via periodic focusing whereby a collisionally dampened effective potential is generated in the inertial frame of an ion traversing the device with appreciable velocity. The new device, termed a periodic focusing ion funnel (PF IF), provides an efficient alternative to the rf ion funnel providing high ion transmission with fewer electrodes, simplified electrical circuitry, and reduced power supply requirements. The utility of the PF IF for structural ion mobility-mass spectrometry (IM-MS) studies is demonstrated using model peptide ions (bradykinin, gramicidin S, and trpzip 1).
Collapse
Affiliation(s)
- Kyle L Fort
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | |
Collapse
|
196
|
Zhang Y, Deng L, Kitova EN, Klassen JS. Dissociation of multisubunit protein-ligand complexes in the gas phase. Evidence for ligand migration. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1573-1583. [PMID: 23943432 DOI: 10.1007/s13361-013-0712-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/19/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp (GM1)) and corresponding glycosphingolipid (β-D-Galp-(1→3)-β-D-GalpNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Galp-(1→4)-β-D-Glcp-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)(n+) ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)(n-) ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)(n+/-) ions, as well as for deprotonated (S4 + 4Btl)(n-) ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)(n+) ions was observed as a minor pathway. The (S4 + 4Btl)(n+) ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)(15+) ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand complexes in the gas phase depend, not only on the native topology of the complex, but also on structural changes that occur upon collisional activation.
Collapse
Affiliation(s)
- Yixuan Zhang
- Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | | | | | | |
Collapse
|
197
|
Zhou M, Jones CM, Wysocki VH. Dissecting the Large Noncovalent Protein Complex GroEL with Surface-Induced Dissociation and Ion Mobility–Mass Spectrometry. Anal Chem 2013; 85:8262-7. [DOI: 10.1021/ac401497c] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mowei Zhou
- Department of Chemistry
and Biochemistry, Ohio State University, 484 W. 12th Ave., Columbus, Ohio 43210, United States
- Department of Chemistry
and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Christopher M. Jones
- Department of Chemistry
and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Vicki H. Wysocki
- Department of Chemistry
and Biochemistry, Ohio State University, 484 W. 12th Ave., Columbus, Ohio 43210, United States
- Department of Chemistry
and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| |
Collapse
|
198
|
Hall Z, Hernández H, Marsh J, Teichmann S, Robinson C. The role of salt bridges, charge density, and subunit flexibility in determining disassembly routes of protein complexes. Structure 2013; 21:1325-37. [PMID: 23850452 PMCID: PMC3737473 DOI: 10.1016/j.str.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/16/2013] [Accepted: 06/05/2013] [Indexed: 01/07/2023]
Abstract
Mass spectrometry can be used to characterize multiprotein complexes, defining their subunit stoichiometry and composition following solution disruption and collision-induced dissociation (CID). While CID of protein complexes in the gas phase typically results in the dissociation of unfolded subunits, a second atypical route is possible wherein compact subunits or subcomplexes are ejected without unfolding. Because tertiary structure and subunit interactions may be retained, this is the preferred route for structural investigations. How can we influence which pathway is adopted? By studying properties of a series of homomeric and heteromeric protein complexes and varying their overall charge in solution, we found that low subunit flexibility, higher charge densities, fewer salt bridges, and smaller interfaces are likely to be involved in promoting dissociation routes without unfolding. Manipulating the charge on a protein complex therefore enables us to direct dissociation through structurally informative pathways that mimic those followed in solution.
Collapse
Affiliation(s)
- Zoe Hall
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Helena Hernández
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Joseph A. Marsh
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sarah A. Teichmann
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Carol V. Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
199
|
Pritchard C, O’Connor G, Ashcroft AE. The Role of Ion Mobility Spectrometry–Mass Spectrometry in the Analysis of Protein Reference Standards. Anal Chem 2013; 85:7205-12. [DOI: 10.1021/ac400927s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Caroline Pritchard
- Astbury Centre for Structural
Molecular Biology, University of Leeds,
Leeds LS2 9JT, United Kingdom
- LGC, Queens Road, Teddington TW11 0LY,
United Kingdom
| | | | - Alison E. Ashcroft
- Astbury Centre for Structural
Molecular Biology, University of Leeds,
Leeds LS2 9JT, United Kingdom
| |
Collapse
|
200
|
Ma X, Shah S, Zhou M, Park CK, Wysocki VH, Horton NC. Structural analysis of activated SgrAI-DNA oligomers using ion mobility mass spectrometry. Biochemistry 2013; 52:4373-81. [PMID: 23742104 DOI: 10.1021/bi3013214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits self-modulation of DNA cleavage activity and sequence specificity. Previous studies have shown that SgrAI forms large oligomers when bound to particular DNA sequences and under the same conditions where SgrAI exhibits accelerated DNA cleavage kinetics. However, the detailed structure and stoichiometry of the SgrAI-DNA complex as well as the basic building block of the oligomers have not been fully characterized. Ion mobility mass spectrometry (IM-MS) was employed to analyze SgrAI-DNA complexes and show that the basic building block of the oligomers is the DNA-bound SgrAI dimer (DBD) with one SgrAI dimer bound to two precleaved duplex DNA molecules each containing one-half of the SgrAI primary recognition sequence. The oligomers contain variable numbers of DBDs with as many as 19 DBDs. Observation of the large oligomers shows that nanoelectrospray ionization (nano-ESI) can preserve the proposed activated form of an enzyme. Finally, the collision cross section of the SgrAI-DNA oligomers measured by IM-MS was found to have a linear relationship with the number of DBDs in each oligomer, suggesting a regular, repeating structure.
Collapse
Affiliation(s)
- Xin Ma
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | | | | | |
Collapse
|