151
|
Jung C, Chylinski TM, Pimenta A, Ortiz D, Shea TB. Neurofilament transport is dependent on actin and myosin. J Neurosci 2005; 24:9486-96. [PMID: 15509735 PMCID: PMC6730143 DOI: 10.1523/jneurosci.1665-04.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Real-time analyses have revealed that some newly synthesized neurofilament (NF) subunits translocate into and along axonal neurites by moving along the inner plasma membrane surface, suggesting that they may translocate against the submembrane actin cortex. We therefore examined whether or not NF axonal transport was dependent on actin and myosin. Perturbation of filamentous actin in NB2a/d1 cells with cytochalasin B inhibited translocation of subunits into axonal neurites and inhibited bidirectional translocation of NF subunits within neurites. Intravitreal injection of cytochalasin B inhibited NF axonal transport in optic axons in a dose-response manner. NF subunits were coprecipitated from NB2a/d1 cells by an anti-myosin antibody, and myosin colocalized with NFs in immunofluorescent analyses. The myosin light chain kinase inhibitor ML-7 and the myosin ATPase inhibitor 2,3-butanedione-2-monoxime perturbed NF translocation within NB2a/d1 axonal neurites. These findings suggest that some NF subunits may undergo axonal transport via myosin-mediated interactions with the actin cortex.
Collapse
Affiliation(s)
- Cheolwha Jung
- Center for Cellular Neurobiology and Neurodegeneration Research, Departments of Biological Sciences and Biochemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA
| | | | | | | | | |
Collapse
|
152
|
Pérez-Ollé R, López-Toledano MA, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K, Liem RKH. Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem 2005; 93:861-74. [PMID: 15857389 DOI: 10.1111/j.1471-4159.2005.03095.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurofilament light gene mutations have been linked to a subset of patients with Charcot-Marie-Tooth disease, the most common inherited motor and sensory neuropathy. We have previously shown that Charcot-Marie-Tooth-linked mutant neurofilament light assembles abnormally in non-neuronal cells. In this study, we have characterized the effects of expression of mutant neurofilament light proteins on axonal transport in a neuronal cell culture model. We demonstrated that the Charcot-Marie-Tooth-linked neurofilament light mutations: (i) affect the axonal transport of mutant neurofilaments; (ii) have a dominant-negative effect on the transport of wild-type neurofilaments; (iii) affect the transport of mitochondria and the anterograde axonal transport marker human amyloid precursor protein; (iv) result in alterations of retrograde axonal transport and (v) cause fragmentation of the Golgi apparatus. Increased neuritic degeneration was observed in neuronal cells overexpressing neurofilament light mutants. Our results suggest that these generalized axonal transport defects could be responsible for the neuropathy in Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Raül Pérez-Ollé
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Abstract
Retinal ganglion cells are the output cells of the retina whose axons are under considerable metabolic stress in both health and disease states. They are highly polarised to ensure that mitochondria and enzymes involved in the generation of ATP are strategically concentrated to meet the local energy demands of the cell. In passing from the eye to the brain, axons are protected and supported by glial tissues and the blood supply of the optic nerve head is regulated to maintain the supply of oxygen and nutrients to the axons. In spite of this, the optic nerve head remains the point at which retinal ganglion cell axons are most vulnerable to the effects of increased intraocular pressure or ischaemia. Considerable work has been undertaken in this area to advance our understanding on the pathophysiology of axon damage and to develop new strategies for the prevention of retinal ganglion cell death.
Collapse
Affiliation(s)
- J E Morgan
- Department of Ophthalmology, University Hospital of Wales, Heath Park, Cardiff, UK.
| |
Collapse
|
154
|
Francis F, Roy S, Brady ST, Black MM. Transport of neurofilaments in growing axons requires microtubules but not actin filaments. J Neurosci Res 2005; 79:442-50. [PMID: 15635594 DOI: 10.1002/jnr.20399] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurofilament (NF) polymers are conveyed from cell body to axon tip by slow axonal transport, and disruption of this process is implicated in several neuronal pathologies. This movement occurs in both anterograde and retrograde directions and is characterized by relatively rapid but brief movements of neurofilaments, interrupted by prolonged pauses. The present studies combine pharmacologic treatments that target actin filaments or microtubules with imaging of NF polymer transport in living axons to examine the dependence of neurofilament transport on these cytoskeletal systems. The heavy NF subunit tagged with green fluorescent protein was expressed in cultured sympathetic neurons to visualize NF transport. Depletion of axonal actin filaments by treatment with 5 microM latrunculin for 6 hr had no detectable effect on directionality or transport rate of NFs, but frequency of movement events was reduced from 1/3.1 min of imaging time to 1/4.9 min. Depolymerization of axonal microtubules using either 5 microM vinblastine for 3 hr or 5 microg/ml nocodazole for 4-6 hr profoundly suppressed neurofilament transport. In 92% of treated neurons, NF transport was undetected. These observations indicate that actin filaments are not required for neurofilament transport, although they may have subtle effects on neurofilament movements. In contrast, axonal transport of NFs requires microtubules, suggesting that anterograde and retrograde NF transport is powered by microtubule-based motors.
Collapse
Affiliation(s)
- Franto Francis
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
155
|
Wöll S, Windoffer R, Leube RE. Dissection of keratin dynamics: different contributions of the actin and microtubule systems. Eur J Cell Biol 2005; 84:311-28. [PMID: 15819410 DOI: 10.1016/j.ejcb.2004.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It has only recently been recognized that intermediate filaments (IFs) and their assembly intermediates are highly motile cytoskeletal components with cell-type- and isotype-specific characteristics. To elucidate the cell-type-independent contribution of actin filaments and microtubules to these motile properties, fluorescent epithelial IF keratin polypeptides were introduced into non-epithelial, adrenal cortex-derived SW13 cells. Time-lapse fluorescence microscopy of stably transfected SW13 cell lines synthesizing fluorescent human keratin 8 and 18 chimeras HK8-CFP and HK18-YFP revealed extended filament networks that are entirely composed of transgene products and exhibit the same dynamic features as keratin systems in epithelial cells. Detailed analyses identified two distinct types of keratin motility: (I) Slow (approximately 0.23 microm/min), inward-directed, continuous transport of keratin filament precursor particles from the plasma membrane towards the cell interior, which is most pronounced in lamellipodia. (II) Fast (approximately 17 microm/min), bidirectional and intermittent transport of keratin particles in axonal-type cell processes. Disruption of actin filaments inhibited type I motility while type II motility remained. Conversely, microtubule disruption inhibited transport mode II while mode I continued. Combining the two treatments resulted in a complete block of keratin motility. We therefore conclude that keratin motility relies both on intact actin filaments and microtubules and is not dependent on epithelium-specific cellular factors.
Collapse
Affiliation(s)
- Stefan Wöll
- Department of Anatomy, Johannes Gutenberg University Mainz, Becherweg 13, D-55128 Mainz, Germany
| | | | | |
Collapse
|
156
|
He Y, Francis F, Myers KA, Yu W, Black MM, Baas PW. Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. ACTA ACUST UNITED AC 2005; 168:697-703. [PMID: 15728192 PMCID: PMC2171826 DOI: 10.1083/jcb.200407191] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies have shown that the transport of microtubules (MTs) and neurofilaments (NFs) within the axon is rapid, infrequent, asynchronous, and bidirectional. Here, we used RNA interference to investigate the role of cytoplasmic dynein in powering these transport events. To reveal transport of MTs and NFs, we expressed EGFP-tagged tubulin or NF proteins in cultured rat sympathetic neurons and performed live-cell imaging of the fluorescent cytoskeletal elements in photobleached regions of the axon. The occurrence of anterograde MT and retrograde NF movements was significantly diminished in neurons that had been depleted of dynein heavy chain, whereas the occurrence of retrograde MT and anterograde NF movements was unaffected. These results support a cargo model for NF transport and a sliding filament model for MT transport.
Collapse
Affiliation(s)
- Yan He
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | |
Collapse
|
157
|
Abstract
Dynactin is a multisubunit protein complex that is required for most, if not all, types of cytoplasmic dynein activity in eukaryotes. Dynactin binds dynein directly and allows the motor to traverse the microtubule lattice over long distances. A single dynactin subunit, p150Glued, is sufficient for both activities, yet dynactin contains several other subunits that are organized into an elaborate structure. It is currently believed that the bulk of the dynactin structure participates in interactions with a wide range of cellular structures, many of which are cargoes of the dynein motor. Genetic studies verify the importance of all elements of dynactin structure to its function. Although dynein can bind some membranous cargoes independently of dynactin, establishment of a fully functional dynein-cargo link appears to depend on dynactin. In this review, I summarize what is presently known about dynactin structure, the cellular structures with which it associates, and the intermolecular interactions that underlie and regulate binding. Although the molecular details of dynactin's interactions with membranous organelles and other molecules are complex, the framework provided here is intended to distill what is presently known and to be of use to dynactin specialists and beginners alike.
Collapse
Affiliation(s)
- Trina A Schroer
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
158
|
Roy S, Zhang B, Lee VMY, Trojanowski JQ. Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol 2005; 109:5-13. [PMID: 15645263 DOI: 10.1007/s00401-004-0952-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/09/2004] [Indexed: 02/05/2023]
Abstract
A core pathology central to most neurodegenerative diseases is the misfolding, fibrillization and aggregation of disease proteins to form the hallmark lesions of specific disorders. The mechanisms underlying these brain-specific neurodegenerative amyloidoses are the focus of intense investigation and defective axonal transport has been hypothesized to play a mechanistic role in several neurodegenerative disorders; however, this hypothesis has not been extensively examined. Discoveries of mutations in human genes encoding motor proteins responsible for axonal transport do provide direct evidence for the involvement of axonal transport in neurodegenerative diseases, and this evidence is supported by studies of animal models of neurodegeneration. In this review, we summarize recent findings related to axonal transport and neurodegeneration. Focusing on specific neurodegenerative diseases from a neuropathologic perspective, we highlight discoveries of human motor protein mutations in some of these diseases, as well as illustrate new insights from animal models of neurodegenerative disorders. We also review the current understanding of the biology of axonal transport including major recent findings related to slow axonal transport.
Collapse
Affiliation(s)
- Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-4283, USA
| | | | | | | |
Collapse
|
159
|
Theiss C, Napirei M, Meller K. Impairment of anterograde and retrograde neurofilament transport after anti-kinesin and anti-dynein antibody microinjection in chicken dorsal root ganglia. Eur J Cell Biol 2005; 84:29-43. [PMID: 15724814 DOI: 10.1016/j.ejcb.2004.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of the present study was to investigate the participation of the motor proteins kinesin and dynein in axonal transport of neurofilaments (NF) in cultured dorsal root ganglia neurons. Therefore, we performed live-recording studies of the green fluorescent protein-tagged neurofilament M (GFP-NF-M) to assay transport processes in neurons. Co-localization studies revealed that GFP-NF-M was capable to build a functional NF network with other NF subunits, including phosphorylated heavy neurofilaments (NF-H-PH). Time-lapse recordings using confocal laser scanning microscopy exhibited fast transport of NF dots in anterograde and retrograde direction through a photobleached gap. Following microinjection of anti-kinesin antibodies or colchicine treatment an impairment of anterograde as well as retrograde NF transport was observed during live-recording experiments. In contrast, microinjection of anti-dynein antibodies only impaired retrograde transport of NF whereas the anterograde movement of GFP-NF-M was unaffected. Treatment of the cells with unspecific antibodies had no effect.
Collapse
Affiliation(s)
- Carsten Theiss
- Department of Cytology, Institute of Anatomy, Faculty of Medicine, Ruhr-University Bochum, Universitätsstr 150, D-44780 Bochum, Germany.
| | | | | |
Collapse
|
160
|
Green KJ, Böhringer M, Gocken T, Jones JCR. Intermediate filament associated proteins. ADVANCES IN PROTEIN CHEMISTRY 2005; 70:143-202. [PMID: 15837516 DOI: 10.1016/s0065-3233(05)70006-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.
Collapse
Affiliation(s)
- Kathleen J Green
- Departments of Pathology and Dermatology and R.H. Lurie Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
161
|
Abstract
The importance of active axonal transport to the neuron has been highlighted by the recent discoveries that mutations in microtubule motor proteins result in neurodegenerative diseases. Mutations affecting microtubule motor function have been shown to cause hereditary forms of Charcot-Marie-Tooth disease (type 2A), hereditary spastic paraplegia and motor neuron disease. Although motor neurons appear to be uniquely susceptible to defects in axonal transport, recent work has identified links between perturbations in axonal transport and the pathogenesis of other neurodegenerative diseases such as Huntington's disease and Alzheimer's disease. More broadly, cytoskeletal abnormalities might also be at the root of related disorders such as spinal muscular atrophy, supporting a key role for axonal transport in the pathogenesis of many neurodegenerative diseases.
Collapse
Affiliation(s)
- Erika L F Holzbaur
- University of Pennsylvania, D400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
162
|
Abstract
Active transport by microtubule motors has a plethora of crucial roles in eukaryotic cells. Organelles often move bidirectionally, employing both plus-end and minus-end directed motors. Bidirectional motion is widespread and may allow dynamic regulation, error correction and the establishment of polarized organelle distributions. Emerging evidence suggests that motors for both directions are simultaneously present on cellular 'cargo', but that their activity is coordinated so that when plus-end motors are active, minus-end motors are not, and vice versa. Both the dynein cofactor dynactin and the Klarsicht (Klar) protein appear to be important for such coordination. The direction of net transport depends on the balance between plus-end directed and minus-end directed motion. In several model systems, factors crucial for setting this balance have now been identified, setting the stage for a molecular dissection of the underlying regulatory mechanisms. These analyses will likely provide insight into motor cooperation in general.
Collapse
Affiliation(s)
- Michael A Welte
- Rosenstiel Biomedical Research Center and Department of Biology, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
163
|
Wagner OI, Ascaño J, Tokito M, Leterrier JF, Janmey PA, Holzbaur ELF. The interaction of neurofilaments with the microtubule motor cytoplasmic dynein. Mol Biol Cell 2004; 15:5092-100. [PMID: 15342782 PMCID: PMC524780 DOI: 10.1091/mbc.e04-05-0401] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport. In this study, we examine the interaction of neurofilaments with cytoplasmic dynein. We used fluid tapping mode atomic force microscopy to visualize single neurofilaments, microtubules, dynein/dynactin, and physical interactions between these neuronal components. AFM images suggest that neurofilaments act as cargo for dynein, associating with the base of the motor complex. Yeast two-hybrid and affinity chromatography assays confirm this hypothesis, indicating that neurofilament subunit M binds directly to dynein IC. This interaction is blocked by monoclonal antibodies directed either to NF-M or to dynein. Together these data suggest that a specific interaction between neurofilament subunit M and cytoplasmic dynein is involved in the saltatory bidirectional motility of neurofilaments undergoing axonal transport in the neuron.
Collapse
Affiliation(s)
- Oliver I Wagner
- Institute of Medicine and Engineering, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | |
Collapse
|
164
|
Perez-Olle R, Lopez-Toledano MA, Liem RKH. The G336S variant in the human neurofilament-M gene does not affect its assembly or distribution: importance of the functional analysis of neurofilament variants. J Neuropathol Exp Neurol 2004; 63:759-74. [PMID: 15290901 DOI: 10.1093/jnen/63.7.759] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human neurofilament medium (hNFM) subunit is one of the 3 neurofilament (NF) polypeptides, which are the most abundant intermediate filament (IF) proteins in post-mitotic neurons. The formation of neurofilamentous aggregates is a pathological hallmark of many neurodegenerative diseases, including the Lewy bodies found in Parkinson disease (PD). A Gly336Ser (G336S) variant in the rod domain of hNFM has recently been described in a patient with early-onset autosomal-dominant PD. In this study, we have generated a mammalian expression vector encoding the variant hNFM cDNA and characterized its effects on the formation of heteropolymeric IFs in heterologous cell lines. We have also investigated the distribution of the (G336S) hNFM variant protein in neuronal CAD cells, as well as the effects of the variant on the distribution of other cellular organelles and proteins. Our results demonstrate that the G336S variant does not affect the formation of IF networks nor the distribution of the variant hNFM protein. Our data suggest that if the G336S variant is involved in the development of PD, it does not appear to be due to defects in the assembly and distribution of NFs.
Collapse
Affiliation(s)
- Raul Perez-Olle
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
165
|
Abstract
Intermediate filaments, actin-containing microfilaments and microtubules are the three main cytoskeletal systems of vertebrate and many invertebrate cells. Although these systems are composed of distinctly different proteins, they are in constant and intimate communication with one another. Understanding the molecular basis of this cytoskeletal crosstalk is essential for determining the mechanisms that underlie many cell-biological phenomena. Recent studies have revealed that intermediate filaments and their associated proteins are important components in mediating this crosstalk.
Collapse
Affiliation(s)
- Lynne Chang
- Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 East Chicago Avenue, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
166
|
|
167
|
Uchida A, Brown A. Arrival, reversal, and departure of neurofilaments at the tips of growing axons. Mol Biol Cell 2004; 15:4215-25. [PMID: 15215317 PMCID: PMC515353 DOI: 10.1091/mbc.e04-05-0371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the movement of green fluorescent protein-tagged neurofilaments at the distal ends of growing axons by using time-lapse fluorescence imaging. The filaments moved in a rapid, infrequent, and asynchronous manner in either an anterograde or retrograde direction (60% anterograde, 40% retrograde). Most of the anterograde filaments entered the growth cone and most of the retrograde filaments originated in the growth cone. In a small number of cases we were able to observe neurofilaments reverse direction, and all of these reversals occurred in or close to the growth cone. We conclude that neurofilament polymers are delivered rapidly and infrequently to the tips of growing axons and that some of these polymers reverse direction in the growth cone and move back into the axon. We propose that 1) growth cones are a preferential site of neurofilament reversal in distal axons, 2) most retrograde neurofilaments in distal axons originate by reversal of anterograde filaments in the growth cone, 3) those anterograde filaments that do not reverse direction are recruited to form the neurofilament cytoskeleton of the newly forming axon, and 4) the net delivery of neurofilament polymers to growth cones may be controlled by regulating the reversal frequency.
Collapse
Affiliation(s)
- Atsuko Uchida
- Center for Molecular Neurobiology and Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
168
|
Nguyen MD, Shu T, Sanada K, Larivière RC, Tseng HC, Park SK, Julien JP, Tsai LH. A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat Cell Biol 2004; 6:595-608. [PMID: 15208636 DOI: 10.1038/ncb1139] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 05/27/2004] [Indexed: 11/09/2022]
Abstract
The cytoskeleton controls the architecture and survival of central nervous system (CNS) neurons by maintaining the stability of axons and dendrites. Although neurofilaments (NFs) constitute the main cytoskeletal network in these structures, the mechanism that underlies subunit incorporation into filaments remains a mystery. Here we report that NUDEL, a mammalian homologue of the Aspergillus nidulans nuclear distribution molecule NudE, is important for NF assembly, transport and neuronal integrity. NUDEL facilitates the polymerization of NFs through a direct interaction with the NF light subunit (NF-L). Knockdown of NUDEL by RNA interference (RNAi) in a neuroblastoma cell line, primary cortical neurons or post-natal mouse brain destabilizes NF-L and alters the homeostasis of NFs. This results in NF abnormalities and morphological changes reminiscent of neurodegeneration. Furthermore, variations in levels of NUDEL correlate with disease progression and NF defects in a mouse model of neurodegeneration. Thus, NUDEL contributes to the integrity of CNS neurons by regulating NF assembly.
Collapse
Affiliation(s)
- Minh Dang Nguyen
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, New Research Building, Room 856-8, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Helfand BT, Chang L, Goldman RD. Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 2004; 117:133-41. [PMID: 14676269 DOI: 10.1242/jcs.00936] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent evidence showing that intermediate filaments (IFs) are dynamic, motile elements of the cytoskeletal repertoire of vertebrate cells has overturned the long-standing view that they simply form static 'space filling' cytoplasmic networks. In fact, many types of IF are now known to engage in a remarkable array of movements that are closely associated with their assembly, disassembly and subcellular organization. Some of these motile properties are intrinsic to IFs and others are attributable to molecular crosstalk with either microtubules or actin-containing microfilaments. This crosstalk is, to a large extent, mediated by molecular motors, including conventional kinesin and cytoplasmic dynein. These motors are responsible for the high-speed delivery of nonfilamentous IF precursors and short filaments to specific regions of the cytoplasm, where they assemble into long IFs. Interestingly, the patterns and speeds of IF movements vary in different cell types and even within different regions of the same cell. These differences in motility may be related to their interactions with different types of molecular motor and/or other factors, such as IF-associated proteins.
Collapse
Affiliation(s)
- Brian T Helfand
- Feinberg School of Medicine, Northwestern University, Department of Cell and Molecular Biology, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|
170
|
Vanden Berghe P, Hennig GW, Smith TK. Characteristics of intermittent mitochondrial transport in guinea pig enteric nerve fibers. Am J Physiol Gastrointest Liver Physiol 2004; 286:G671-82. [PMID: 14592946 DOI: 10.1152/ajpgi.00283.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enteric neurons controlling various gut functions are prone to oxidative insults that might damage mitochondria (e.g., intestinal inflammation). To resume local energy supply, mitochondria need to be transported. We used MitoTracker dyes and confocal microscopy to investigate basic characteristics of mitochondrial transport in guinea pig myenteric neurites. During a 10-s observation of 1 mm nerve fiber, on average, three mitochondria were transported at an average speed of 0.41 +/- 0.02 microm/s. Movement patterns were clearly erratic, and velocities were independent of mitochondrial size. The velocity oscillated periodically ( approximately 6 s) but was not consistently affected by structures such as en route boutons, bifurcations, or stationary mitochondria. Also, mitochondria transported in opposite directions did not necessarily affect each others' mobility. Transport was blocked by microtubule disruption (100 microM colchicine), and destabilization (1 microM cytochalasin-D) or stabilization (10 microM phalloidin) of actin filaments, respectively, decreased (0.22 +/- 0.02 microm/s, P < 0.05) or increased (0.53 +/- 0.02 microm/s, P < 0.05) transport speed. Transport was inhibited by TTX (1 microM), and removal of extracellular Ca(2+) (plus 2 mM EGTA) had no effect. However, depletion of intracellular stores (thapsigargin) reduced (to 33%) and slowed the transport significantly (0.18 +/- 0.02 microm/s, P < 0.05), suggesting an important role for stored Ca(2+) in mitochondrial transport. Transport was also reduced (to 21%) by the mitochondrial uncoupler FCCP (1 microM) in a time-dependent fashion and slowed by oligomycin (10 microM). We conclude that mitochondrial transport is remarkably independent of structural nerve fiber properties. We also show that mitochondrial transport is TTX sensitive and speeds up by stabilizing actin and that functional Ca(2+) stores are required for efficient transport.
Collapse
Affiliation(s)
- Pieter Vanden Berghe
- Department of Physiology and Cell Biology/352, University of Nevada, School of Medicine, Reno, Nevada 89557-0046, USA.
| | | | | |
Collapse
|
171
|
Abstract
Axonal transport in neurons has been shown to be microtubule dependent, driven by the molecular motor proteins kinesin and dynein. However, organelles undergoing fast transport can often pause or rapidly change directions without apparent dissociation from their transport tracks. Cytoskeletal polymers such as neurofilaments and microtubules have also been shown to make infrequent but rapid movements in axons indicating that their transport is likely to involve molecular motors. In addition, neurons have multiple compartments that are devoid of microtubules where transport of organelles is still seen to occur. These areas are rich in other cytoskeletal polymers such as actin filaments. Transported organelles have been shown to associate with multiple motor proteins including myosins. This suggests that nonmicrotubule-based transport may be myosin driven. In this review we will focus our attention on myosin motors known to be present in neurons and evaluate the evidence that they contribute to transport or other functions in the different compartments of the neuron.
Collapse
Affiliation(s)
- Paul C Bridgman
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Box 8108, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA.
| |
Collapse
|
172
|
Windoffer R, Wöll S, Strnad P, Leube RE. Identification of novel principles of keratin filament network turnover in living cells. Mol Biol Cell 2004; 15:2436-48. [PMID: 15004233 PMCID: PMC404035 DOI: 10.1091/mbc.e03-09-0707] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg University, 55128 Mainz, Germany
| | | | | | | |
Collapse
|
173
|
Saha AR, Hill J, Utton MA, Asuni AA, Ackerley S, Grierson AJ, Miller CC, Davies AM, Buchman VL, Anderton BH, Hanger DP. Parkinson's disease α-synuclein mutations exhibit defective axonal transport in cultured neurons. J Cell Sci 2004; 117:1017-24. [PMID: 14996933 DOI: 10.1242/jcs.00967] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein is a major protein constituent of Lewy bodies and mutations in α-synuclein cause familial autosomal dominant Parkinson's disease. One explanation for the formation of perikaryal and neuritic aggregates of α-synuclein, which is a presynaptic protein, is that the mutations disrupt α-synuclein transport and lead to its proximal accumulation. We found that mutant forms of α-synuclein, either associated with Parkinson's disease (A30P or A53T) or mimicking defined serine, but not tyrosine, phosphorylation states exhibit reduced axonal transport following transfection into cultured neurons. Furthermore, transfection of A30P, but not wild-type, α-synuclein results in accumulation of the protein proximal to the cell body. We propose that the reduced axonal transport exhibited by the Parkinson's disease-associated α-synuclein mutants examined in this study might contribute to perikaryal accumulation of α-synuclein and hence Lewy body formation and neuritic abnormalities in diseased brain.
Collapse
Affiliation(s)
- Anirban R Saha
- Department of Neuroscience, PO Box 38, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Lariviere RC, Julien JP. Functions of intermediate filaments in neuronal development and disease. ACTA ACUST UNITED AC 2004; 58:131-48. [PMID: 14598376 DOI: 10.1002/neu.10270] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Five major types of intermediate filament (IF) proteins are expressed in mature neurons: the three neurofilament proteins (NF-L, NF-M, and NF-H), alpha-internexin, and peripherin. While the differential expression of IF genes during embryonic development suggests potential functions of these proteins in axogenesis, none of the IF gene knockout experiments in mice caused gross developmental defects of the nervous system. Yet, deficiencies in neuronal IF proteins are not completely innocuous. Substantial developmental loss of motor axons was detected in mice lacking NF-L and in double knockout NF-M;NF-H mice, supporting the view of a role for IFs in axon stabilization. Moreover, the absence of peripherin resulted in approximately 30% loss of small sensory axons. Mice lacking NF-L had a scarcity of IF structures and exhibited a severe axonal hypotrophy, causing up to 50% reduction in conduction velocity, a feature that would be very detrimental for large animal species. Unexpectedly, the NF-M rather than NF-H protein turned out to be required for proper radial growth of large myelinated axons. Studies with transgenic mice suggest that some types of IF accumulations, reminiscent of those found in amyotrophic lateral sclerosis (ALS), can have deleterious effects and even cause neurodegeneration. Additional evidence for the involvement of IFs in pathogenesis came from the recent discovery of neurofilament gene mutations linked to ALS and Charcot-Marie-Tooth disease (CMT2E). Conversely, we discuss how certain types of perikaryal neurofilament aggregates might confer protection in motor neuron disease.
Collapse
Affiliation(s)
- Roxanne C Lariviere
- Centre for Research in Neurosciences, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
175
|
Hollenbeck PJ, Bamburg JR. Comparing the properties of neuronal culture systems: a shopping guide for the cell biologist. Methods Cell Biol 2004; 71:1-16. [PMID: 12884683 DOI: 10.1016/s0091-679x(03)01001-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Cell biologists of many stripes may find that their question of interest can be studied to advantage in neurons. However, they will also find that "neurons" include many and diverse cell types among which perhaps just one or a few may be ideal for a particular experiment. This chapter discusses the properties, relative complexity, and cost of primary neurons and neuronal cell types from different species and parts of the nervous system and compares their utility for different kinds of cell biological experiments.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
176
|
Abstract
Cultures of vertebrate peripheral neurons have been used to address a variety of issues related to the cell biology of the neuron. They are particularly amenable to experimental manipulations, such as microinjection, and can be cultured under a variety of different conditions designed to meet the needs of the particular experiment. This chapter focuses on cultures of rat sympathetic neurons from the superior cervical ganglia and on cultures of chick sensory neurons from the lumbosacral dorsal root ganglia. Information is provided on methods for dissection, preparation of culture dishes and substrates, composition of media, relevant growth factors, reduction of nonneuronal contamination, and maintenance of the cultures.
Collapse
Affiliation(s)
- Yan He
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
177
|
Abstract
For many years, cytoplasmic intermediate filaments (IFs) were considered to be stable cytoskeletal elements contributing primarily to the maintenance of the structural and mechanical integrity of cells. However, recent studies of living cells have revealed that IFs and their precursors possess a remarkably wide array of dynamic and motile properties. These properties are in large part due to interactions with molecular motors such as conventional kinesin, cytoplasmic dynein, and myosin. The association between IFs and motors appears to account for much of the well-documented molecular cross talk between IFs and the other major cytoskeletal elements, microtubules, and actin-containing microfilaments. Furthermore, the associations with molecular motors are also responsible for the high-speed, targeted delivery of nonfilamentous IF protein cargo to specific regions of the cytoplasm where they polymerize into IFs. This review considers the functional implications of the motile properties of IFs and discusses the potential relationships between malfunctions in these motile activities and human diseases.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
178
|
Uchida A, Tashiro T, Komiya Y, Yorifuji H, Kishimoto T, Hisanaga SI. Morphological and biochemical changes of neurofilaments in aged rat sciatic nerve axons. J Neurochem 2004; 88:735-45. [PMID: 14720223 DOI: 10.1046/j.1471-4159.2003.02201.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have made a detailed comparison of neurofilaments (NFs) in the axons of the sciatic nerves between young and aged rats. In young rats, NF density was similar between proximal and distal sciatic nerve, but it became higher in the proximal region of sciatic nerve of aged rats. In accordance with this morphological change, NF protein content decreased dramatically in the middle region of the sciatic nerves of aged rats. The ratio of NF-M to NF-H in aged rats was lower than that in young rats at the proximal region of sciatic nerves and further decreased in the distal region of sciatic nerve. We analyzed transcription and axonal transport of NF proteins in motor neurons in spinal cord which are the major constituents of sciatic nerve axons. Of the transcripts of the NF subunits, NF-M mRNA was particularly reduced in aged rats. Examination of slow axonal transport revealed that the transport rate for NF-M was slightly faster than that for NF-H in young rats, but slightly slower in aged rats. A decrease in both the synthesis and transport rate of NF-M with aging may contribute to the relative reduction in NF-M in the aged rat sciatic nerve. Although the relationship between NF packing and reduced NF-M is not clear at present, these changes in NFs may be associated with age-dependent axonal degeneration diseases.
Collapse
Affiliation(s)
- Atsuko Uchida
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachiohji, Japan.
| | | | | | | | | | | |
Collapse
|
179
|
Liem RKH, Leung CL. Neuronal intermediate filament overexpression and neurodegeneration in transgenic mice. Exp Neurol 2004; 184:3-8. [PMID: 14637070 DOI: 10.1016/s0014-4886(03)00291-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ronald K H Liem
- Department of Pathology, Columbia University College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
180
|
Windoffer R, Leube RE. Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods Cell Biol 2004; 78:321-52. [PMID: 15646624 DOI: 10.1016/s0091-679x(04)78012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
181
|
Millecamps S, Julien JP. [35S]Methionine Metabolic Labeling to Study Axonal Transport of Neuronal Intermediate Filament Proteins In Vivo. Methods Cell Biol 2004; 78:555-71. [PMID: 15646631 DOI: 10.1016/s0091-679x(04)78019-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stéphanie Millecamps
- Research Center of CHUL and Department of Anatomy and Physiology, Laval University, Quebec, G1V 4G2, QC Canada
| | | |
Collapse
|
182
|
Li W, Hoffman PN, Stirling W, Price DL, Lee MK. Axonal transport of human α-synuclein slows with aging but is not affected by familial Parkinson's disease-linked mutations. J Neurochem 2003; 88:401-10. [PMID: 14690528 DOI: 10.1046/j.1471-4159.2003.02166.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biochemical and genetic abnormalities of alpha-synuclein (alpha-Syn) are implicated in the pathogenesis of Parkinson's disease (PD) and other alpha-synucleinopathies. The abnormal intraneuronal accumulations of alpha-Syn in Lewy bodies (LBs) and Lewy neurites (LNs) have implicated defects in axonal transport of alpha-Syn in the alpha-synucleinopathies. Using human (Hu) alpha-Syn transgenic (Tg) mice, we have examined whether familial PD (FPD)-linked mutations (A30P and A53T) alter axonal transport of Hualpha-Syn. Our studies using peripheral nerves show that Hualpha-Syn and Moalpha-Syn are almost exclusively transported in the slow component (SC) of axonal transport and that the FPD-linked alpha-Syn mutations do not have obvious effects on the axonal transport of alpha-Syn. Moreover, older pre-symptomatic A53T Hualpha-Syn Tg mice do not show gross alterations in the axonal transport of alpha-Syn and other proteins in the SC, indicating that the early stages of alpha-synucleinopathy in A53T alpha-Syn Tg mice are not associated with gross alterations in the slow axonal transport. However, the axonal transport of alpha-Syn slows significantly with aging. Because the rate of axonal transport affects the stability and accumulation of proteins in axons, age-dependent-slowing alpha-Syn is a likely contributor to axonal aggregation of alpha-Syn in alpha-synucleinopathy.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196, USA
| | | | | | | | | |
Collapse
|
183
|
Rao MV, Campbell J, Yuan A, Kumar A, Gotow T, Uchiyama Y, Nixon RA. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate. J Cell Biol 2003; 163:1021-31. [PMID: 14662746 PMCID: PMC2173612 DOI: 10.1083/jcb.200308076] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Accepted: 10/17/2003] [Indexed: 11/26/2022] Open
Abstract
The phosphorylated carboxyl-terminal "tail" domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681-693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail-deleted (NF-MtailDelta) mutant mice using an embryonic stem cell-mediated "gene knockin" approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailDelta mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail-mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M.
Collapse
Affiliation(s)
- Mala V Rao
- Nathan Kline Institute, NYU School of Medicine, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Neurons require long-distance microtubule-based transport systems to ferry vital cellular cargoes and signals between cell bodies and axonal or dendritic terminals. Considerable progress has been made on developing a molecular understanding of these processes and how they are integrated into normal neuronal functions. Recent work also suggests that these transport systems may fail early in the pathogenesis of a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lawrence S B Goldstein
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
185
|
Abstract
Axonal transport is the specialized and well-developed intracellular transport system for regulated and/or long-distance transport based on generalized cellular machineries. Among them, slow axonal transport conveys cytoplasmic proteins. The motor molecule, the nature of transporting complex and the transport regulation mechanism for slow transport are still unclarified. There has been a dispute regarding the nature of transporting complex of cytoskeletal proteins, polymer-sliding hypothesis versus subunit-transport theory. Recent data supporting the hypothesis of polymer sliding in cultured neurons only reconfirm the previously reported structure and this inference suffers from the lack of ultrastructural evidence and the direct relevance to the physiological slow transport phenomenon in vivo. Observation of the moving cytoskeletal proteins in vivo using transgenic mice or squid giant axons revealed that subunits do move in a microtubule-dependent manner, strongly indicating the involvement of microtubule-based motor kinesin. If the slow transport rate reflects the intermittent fast transport dependent on kinesin motor, we have to investigate the molecular constituents of the transporting complex in more detail and evaluate why the motor and cargo interaction is so unstable. This kind of weak and fluctuating interaction between various molecular pairs could not be detected by conventional techniques, thus necessitating the establishment of a new experimental system before approaching the molecular regulation problem.
Collapse
Affiliation(s)
- Sumio Terada
- Department of Cell Biology and Anatomy, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
186
|
Abstract
Neurofilament assembly requires at minimum the polymerization of neurofilament light chain (NF-L) with either neurofilament medium chain (NF-M) or neurofilament heavy chain (NF-H) subunits, but requirements for their axonal transport have long been controversial. Using a gene deletion approach, we generated mice containing only NF-L or NF-M. In vivo pulse radiolabeling analyses in retinal ganglion cell neurons revealed that NF-L alone is incapable of efficient transport, whereas nearly one-half of the normal level of NF-M is transported along optic axons in the absence of the other triplet subunits. Under these conditions, however, NF-M transport is completely abolished by deleting alpha-internexin. Our results strongly suggest that efficient neurofilament protein transport in vivo minimally requires hetero-oligomer formation. They also show that NF-M can partner with intermediate filament proteins other than the NF-H and NF-L subunits in neurons to support slow transport and possibly other functions of neuronal intermediate filaments.
Collapse
|
187
|
Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci 2003. [PMID: 14523099 DOI: 10.1523/jneurosci.23-26-08967.2003] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Impairment of axonal transport leads to neurodegeneration and synapse loss. Glutamate and amyloid beta-protein (Abeta) have critical roles in the pathogenesis of Alzheimer's disease (AD). Here we show that both agents rapidly inhibit fast axonal transport in cultured rat hippocampal neurons. The effect of glutamate (100 microm), but not of Abeta25-35 (20 microm), was reversible, was mimicked by NMDA or AMPA, and was blocked by NMDA and AMPA antagonists and by removal of extracellular Ca2+. The effect of Abeta25-35 was progressive and irreversible, was prevented by the actin-depolymerizing agent latrunculin B, and was mimicked by the actin-polymerizing agent jasplakinolide. Abeta25-35 induced intracellular actin aggregation, which was prevented by latrunculin B. Abeta31-35 but not Abeta15-20 exerted effects similar to those of Abeta25-35. Full-length Abeta1-42 incubated for 7 d, which specifically contained 30-100 kDa molecular weight assemblies, also caused an inhibition of axonal transport associated with intracellular actin aggregation, whereas freshly dissolved Abeta1-40, incubated Abeta1-40, and fresh Abeta1-42 had no effect. These results suggest that glutamate inhibits axonal transport via activation of NMDA and AMPA receptors and Ca2+ influx, whereas Abeta exerts its inhibitory effect via actin polymerization and aggregation. The ability of Abeta to inhibit axonal transport seems to require active amino acid residues, which is probably present in the 31-35 sequence. Full-length Abeta may be effective when it represents a structure in which these active residues can access the cell membrane. Our results may provide insight into the early pathogenetic mechanisms of AD.
Collapse
|
188
|
Helfand BT, Mendez MG, Pugh J, Delsert C, Goldman RD. A role for intermediate filaments in determining and maintaining the shape of nerve cells. Mol Biol Cell 2003; 14:5069-81. [PMID: 14595112 PMCID: PMC284808 DOI: 10.1091/mbc.e03-06-0376] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To date, the functions of most neural intermediate filament (IF) proteins have remained elusive. Peripherin is a type III intermediate filament (IF) protein that is expressed in developing and in differentiated neurons of the peripheral and enteric nervous systems. It is also the major IF protein expressed in PC12 cells, a widely used model for studies of peripheral neurons. Dramatic increases in peripherin expression have been shown to coincide with the initiation and outgrowth of axons during development and regeneration, suggesting that peripherin plays an important role in axon formation. Recently, small interfering RNAs (siRNA) have provided efficient ways to deplete specific proteins within mammalian cells. In this study, it has been found that peripherin-siRNA depletes peripherin and inhibits the initiation, extension, and maintenance of neurites in PC12 cells. Furthermore, the results of these experiments demonstrate that peripherin IF are critical determinants of the overall shape and architecture of neurons.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
189
|
Clarke EJ, Allan VJ. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs. CELL MOTILITY AND THE CYTOSKELETON 2003; 56:13-26. [PMID: 12905528 DOI: 10.1002/cm.10131] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cytokeratin intermediate filaments are prominent constituents of developing Xenopus oocytes and eggs, forming radial and cortical networks. In order to investigate the dynamics of the cortical cytokeratin network, we expressed EGFP-tagged Xenopus cytokeratin 1(8) in oocytes and eggs. The EGFP-cytokeratin co-assembled with endogenous partner cytokeratin proteins to form fluorescent filaments. Using time-lapse confocal microscopy, cytokeratin filament assembly was monitored in live Xenopus oocytes at different stages of oogenesis, and in the artificially-activated mature egg during the first cell cycle. In stage III to V oocytes, cytokeratin proteins formed a loose cortical geodesic network, which became more tightly bundled in stage VI oocytes. Maturation of oocytes into metaphase II-arrested eggs induced disassembly of the EGFP-cytokeratin network. Imaging live eggs after artificial activation allowed us to observe the reassembly of cytokeratin filaments in the vegetal cortex. The earliest observable structures were loose foci, which then extended into curly filament bundles. The position and orientation of these bundles altered with time, suggesting that forces were acting upon them. During cortical rotation, the cytokeratin network realigned into a parallel array that translocated in a directed manner at 5 microm/minute, relative to stationary cortex. The cytokeratin filaments are, therefore, moving in association with the bulk cytoplasm of the egg, suggesting that they may provide a structural role at the moving interface between cortex and cytoplasm.
Collapse
Affiliation(s)
- Emma J Clarke
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | |
Collapse
|
190
|
Rao MV, Nixon RA. Defective neurofilament transport in mouse models of amyotrophic lateral sclerosis: a review. Neurochem Res 2003; 28:1041-7. [PMID: 12737529 DOI: 10.1023/a:1023259207015] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neurofilament proteins synthesized in the cell body of neurons are assembled and transported into axons, where they influence axon radial growth, axonal transport, and nerve conduction velocities. In diseased states, neurofilaments accumulate in cell bodies and proximal axons of affected neurons, and these lesions are characteristic of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), spinal muscular atrophy (SMA), Charcot-Marie-Tooth disease type 2 (CMT2), and hereditary sensory motor neuropathy. Although the molecular mechanisms that contribute to these accumulations are not yet identified, transgenic mouse models are beginning to provide insight into the role of neurofilament transport in disease-related dysfunction of neurons. This review addresses axonal transport in mouse models of ALS and the special significance of neurofilament transport in this disease.
Collapse
Affiliation(s)
- Mala V Rao
- Center for Dementia Research, Nathan Kline Institute/Department of Psychiatry, NYU School of Medicine, 140 Old Orangeburg Road, Orangeburg, New York 10962, USA.
| | | |
Collapse
|
191
|
Helfand BT, Loomis P, Yoon M, Goldman RD. Rapid transport of neural intermediate filament protein. J Cell Sci 2003; 116:2345-59. [PMID: 12711702 DOI: 10.1242/jcs.00526] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peripherin is a neural intermediate filament protein that is expressed in peripheral and enteric neurons, as well as in PC12 cells. A determination of the motile properties of peripherin has been undertaken in PC12 cells during different stages of neurite outgrowth. The results reveal that non-filamentous, non-membrane bound peripherin particles and short peripherin intermediate filaments, termed 'squiggles', are transported at high speed throughout PC12 cell bodies, neurites and growth cones. These movements are bi-directional, and the majority require microtubules along with their associated molecular motors, conventional kinesin and cytoplasmic dynein. Our data demonstrate that peripherin particles and squiggles can move as components of a rapid transport system capable of delivering cytoskeletal subunits to the most distal regions of neurites over relatively short time periods.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 11-145, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
192
|
Ackerley S, Thornhill P, Grierson AJ, Brownlees J, Anderton BH, Leigh PN, Shaw CE, Miller CCJ. Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 2003; 161:489-95. [PMID: 12743103 PMCID: PMC2172950 DOI: 10.1083/jcb.200303138] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurofilaments possess side arms that comprise the carboxy-terminal domains of neurofilament middle and heavy chains (NFM and NFH); that of NFH is heavily phosphorylated in axons. Here, we demonstrate that phosphorylation of NFH side arms is a mechanism for regulating transport of neurofilaments through axons. Mutants in which known NFH phosphorylation sites were mutated to preclude phosphorylation or mimic permanent phosphorylation display altered rates of transport in a bulk transport assay. Similarly, application of roscovitine, an inhibitor of the NFH side arm kinase Cdk5/p35, accelerates neurofilament transport. Analyses of neurofilament movement in transfected living neurons demonstrated that a mutant mimicking permanent phosphorylation spent a higher proportion of time pausing than one that could not be phosphorylated. Thus, phosphorylation of NFH slows neurofilament transport, and this is due to increased pausing in neurofilament movement.
Collapse
Affiliation(s)
- Steven Ackerley
- Department of Neuroscience, The Institute of Psychiatry, Denmark Hill, London SE5 8AF, UK
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Affiliation(s)
- Erik W Dent
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
194
|
Liovic M, Mogensen MM, Prescott AR, Lane EB. Observation of keratin particles showing fast bidirectional movement colocalized with microtubules. J Cell Sci 2003; 116:1417-27. [PMID: 12640027 DOI: 10.1242/jcs.00363] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Keratin intermediate filament networks were observed in living cultured epithelial cells using the incorporation of fluorescently tagged keratin from a transfected enhanced green fluorescent protein (EGFP) construct. In steady-state conditions EGFP-keratin exists not only as readily detectable intermediate filaments, but also as small particles, of which there are two types: a less mobile population (slow or static S particles) and a highly dynamic one (fast or F particles). The dynamic F particles move around the cell very fast and in a non-random way. Their movement is composed of a series of steps, giving an overall characteristic zig-zag trajectory. The keratin particles are found all over the cell and their movement is aligned with microtubules; treatment of cells with nocodazole has an inhibitory effect on keratin particle movement, suggesting the involvement of microtubule motor proteins. Double-transfection experiments to visualize tubulin and keratin together suggest that the movement of keratin particles can be bidirectional, as particles are seen moving both towards and away from the centrosome area. Using field emission scanning and transmission electron microscopy combined with immunogold labelling, we also detected particulate keratin structures in untransfected epithelial cells, suggesting that keratin particles may be a natural component of keratin filament dynamics in living cells.
Collapse
Affiliation(s)
- Mirjana Liovic
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
195
|
Xia CH, Roberts EA, Her LS, Liu X, Williams DS, Cleveland DW, Goldstein LSB. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J Cell Biol 2003; 161:55-66. [PMID: 12682084 PMCID: PMC2172877 DOI: 10.1083/jcb.200301026] [Citation(s) in RCA: 265] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To test the hypothesis that fast anterograde molecular motor proteins power the slow axonal transport of neurofilaments (NFs), we used homologous recombination to generate mice lacking the neuronal-specific conventional kinesin heavy chain, KIF5A. Because null KIF5A mutants die immediately after birth, a synapsin-promoted Cre-recombinase transgene was used to direct inactivation of KIF5A in neurons postnatally. Three fourths of such mutant mice exhibited seizures and death at around 3 wk of age; the remaining animals survived to 3 mo or longer. In young mutant animals, fast axonal transport appeared to be intact, but NF-H, as well as NF-M and NF-L, accumulated in the cell bodies of peripheral sensory neurons accompanied by a reduction in sensory axon caliber. Older animals also developed age-dependent sensory neuron degeneration, an accumulation of NF subunits in cell bodies and a reduction in axons, loss of large caliber axons, and hind limb paralysis. These data support the hypothesis that a conventional kinesin plays a role in the microtubule-dependent slow axonal transport of at least one cargo, the NF proteins.
Collapse
Affiliation(s)
- Chun-Hong Xia
- Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0683, USA
| | | | | | | | | | | | | |
Collapse
|
196
|
Beaulieu JM, Julien JP. Peripherin-mediated death of motor neurons rescued by overexpression of neurofilament NF-H proteins. J Neurochem 2003; 85:248-56. [PMID: 12641746 DOI: 10.1046/j.1471-4159.2003.01653.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous studies, we showed that overexpression of peripherin, a neuronal intermediate filament (IF) protein, in mice deficient for neurofilament light (NF-L) subunits induced a progressive adult-onset degeneration of spinal motor neurons characterized by the presence of IF inclusion bodies reminiscent of axonal spheroids found in amyotrophic lateral sclerosis (ALS). In contrast, the overexpression of human neurofilament heavy (NF-H) proteins provoked the formation of massive perikaryal IF protein accumulations with no loss of motor neurons. To further investigate the toxic properties of IF protein inclusions, we generated NF-L null mice that co-express both peripherin and NF-H transgenes. The axonal count in L5 ventral roots from 6 and 8-month-old transgenic mice showed that NF-H overexpression rescued the peripherin-mediated degeneration of motor neurons. Our analysis suggests that the protective effect of extra NF-H proteins is related to the sequestration of peripherin into the perikaryon of motor neurons, thereby abolishing the development of axonal IF inclusions that might block transport. These findings illustrate the importance of IF protein stoichiometry in formation, localization and toxicity of neuronal inclusion bodies.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Centre for Research in Neurosciences, McGill University, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | |
Collapse
|
197
|
Abstract
Neurofilaments are one of the major components of the neuronal cytoskeleton and are responsible for maintaining the calibre of axons. They are modified by post-translational changes that are regulated in complex fashions including by the interaction with neighbouring glial cells. Neurofilament accumulations are seen in several neurological diseases and neurofilament mutations have now been associated with Charcot-Marie-Tooth disease, Parkinson's disease and amyotrophic lateral sclerosis. In this review, we discuss the structure, normal function and molecular pathology of neurofilaments.
Collapse
Affiliation(s)
- Ammar Al-Chalabi
- Departments of Neuroscience and Neurology, Institute of Psychiatry, King's College London, London SE5 8AF, UK.
| | | |
Collapse
|
198
|
Abstract
Membranous and nonmembranous cargoes are transported along axons in the fast and slow components of axonal transport, respectively. Recent observations on the movement of cytoskeletal polymers in axons suggest that slow axonal transport is generated by fast motors and that the slow rate is due to rapid movements interrupted by prolonged pauses. This supports a unified perspective for fast and slow axonal transport based on rapid movements of diverse cargo structures that differ in the proportion of the time that they spend moving. A Flash feature (http://www.jcb.org/cgi/content/full/jcb.200212017/DC1) accompanies this Mini-Review.
Collapse
Affiliation(s)
- Anthony Brown
- The Ohio State University, Neurobiotechnology Center, Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
199
|
|
200
|
Chan WKH, Yabe JT, Pimenta AF, Ortiz D, Shea TB. Growth cones contain a dynamic population of neurofilament subunits. CELL MOTILITY AND THE CYTOSKELETON 2003; 54:195-207. [PMID: 12589678 DOI: 10.1002/cm.10084] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurofilaments (NFs) are classically considered to transport in a primarily anterograde direction along axons, and to undergo bulk degradation within the synapse or growth cone (GC). We compared overall NF protein distribution with that of newly expressed NF subunits within NB2a/d1 cells by transfection with a construct encoding green fluorescent protein (GFP) conjugated NF-M subunits. GCs lacked phosphorylated NF epitopes, and steady-state levels of non-phosphosphorylated NF subunits within GC were markedly reduced compared to those of neurite shaft as indicated by conventional immunofluorescence. However, GCs contained significant levels of GFP-tagged subunits in the form of punctate or short filamentous structures that in some cases exceeded that visualized along the shaft itself, suggesting that GCs contained a relatively higher concentration of newly synthesized subunits. GFP-tagged NF subunits within GCs co-localized with non-phosphorylated NF immunoreactivity. GFP-tagged subunits were observed within GC filopodia in which steady-state levels of NF subunits were too low to be detected by conventional immunofluorescence. Selective localization of fluorescein versus rhodamine fluorescene was observed within GCs following expression of NF-M conjugated to DsRed1-E5, which shifts from fluorescein to rhodamine fluorescence within hours after expression; axonal shafts contained a more even distribution of fluorescein and rhodamine fluorescence, further indicating that GCs contained relatively higher levels of the most-recently expressed subunits. GFP-tagged structures were rapidly extracted from GCs under conditions that preserved axonal structures. These short filamentous and punctate structures underwent rapid bi-directional movement within GCs. Movement of GFP-tagged structures within GCs ceased following application of nocodazole, cytochalasin B, and the kinase inhibitor olomoucine, indicating that their motility was dependent upon microtubules and actin and, moreover, was due to active transport rather than simple diffusion. Treatment with the protease inhibitor calpeptin increased overall NF subunits, but increased those within the GC to a greater extent than those along the shaft, indicating that subunits in the GC undergo more rapid turnover than do those within the shaft. Some GCs contained coiled aggregates of GFP-tagged NFs that appeared to be contiguous with axonal NFs. NFs extended from these aggregates into the advancing GC as axonal neurites elongated. These data are consistent with the presence of a population of dynamic NF subunits within GCs that is apparently capable of participating in regional filament formation during axonal elongation, and support the notion that NF polymerization and transport need not necessarily occur in a uniform proximal-distal manner.
Collapse
Affiliation(s)
- Walter K-H Chan
- Center for Cellular Neurobiology and Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts-Lowell, MA 01854, USA
| | | | | | | | | |
Collapse
|