151
|
West RR, Malmstrom T, McIntosh JR. Kinesinsklp5+ andklp6+ are required for normal chromosome movement in mitosis. J Cell Sci 2002; 115:931-40. [PMID: 11870212 DOI: 10.1242/jcs.115.5.931] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proper mitotic chromosome segregation requires dynamic interactions between spindle microtubules and kinetochores. Here we demonstrate that two related fission yeast kinesins, klp5+ and klp6+, are required for normal chromosome segregation in mitosis. Null mutants frequently lack a normal metaphase chromosome alignment. Chromosome pairs move back and forth along the spindle for an extended period prior to sister chromatid separation, a phenotype reminiscent of the loss of CENP-E in metazoans. Ultimately, sister chromatids segregate, regardless of chromosome position along the spindle, and viable daughter cells are usually produced. The initiation of anaphase B is sometimes delayed, but the rate of spindle elongation is similar to wildtype. Despite a delay, anaphase B often begins before anaphase A is completed. The klp5Δ and klp6Δ null mutants are synthetically lethal with a deletion of the spindle assembly checkpoint gene, bub1+, several mutants in components of the anaphase promoting complex, and a cold sensitive allele of the kinetochore and microtubule-binding protein, Dis1p. Klp5p-GFP and Klp6p-GFP localize to kinetochores from prophase to the onset of anaphase A, but relocalize to the spindle midzone during anaphase B. These data indicate that Klp5p and Klp6p are kinetochore kinesins required for normal chromosome movement in prometaphase.
Collapse
Affiliation(s)
- Robert R West
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | |
Collapse
|
152
|
Troxell CL, Sweezy MA, West RR, Reed KD, Carson BD, Pidoux AL, Cande WZ, McIntosh JR. pkl1(+)and klp2(+): Two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 2001; 12:3476-88. [PMID: 11694582 PMCID: PMC60269 DOI: 10.1091/mbc.12.11.3476] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Revised: 07/25/2001] [Accepted: 08/29/2001] [Indexed: 11/11/2022] Open
Abstract
We have identified Klp2p, a new kinesin-like protein (KLP) of the KAR3 subfamily in fission yeast. The motor domain of this protein is 61% identical and 71% similar to Pkl1p, another fission yeast KAR3 protein, yet the two enzymes are different in behavior and function. Pkl1p is nuclear throughout the cell cycle, whereas Klp2p is cytoplasmic during interphase. During mitosis Klp2p enters the nucleus where it forms about six chromatin-associated dots. In metaphase-arrested cells these migrate back and forth across the nucleus. During early anaphase they segregate with the chromosomes into two sets of about three, fade, and are replaced by other dots that form on the spindle interzone. Neither klp2(+) nor pkl1(+) is essential, and the double deletion is also wild type for both vegetative and sexual reproduction. Each deletion rescues different alleles of cut7(ts), a KLP that contributes to spindle formation and elongation. When either or both deletions are combined with a dynein deletion, vegetative growth is normal, but sexual reproduction fails: klp2 Delta,dhc1-d1 in karyogamy, pkl1 Delta,dhc1-d1 in multiple phases of meiosis, and the triple deletion in both. Deletion of Klp2p elongates a metaphase-arrested spindle, but pkl1 Delta shortens it. The anaphase spindle of klp2 Delta becomes longer than the cell, leading it to curl around the cell's ends. Apparently, Klp2p promotes spindle disassembly and contributes to the behavior of mitotic chromosomes.
Collapse
Affiliation(s)
- C L Troxell
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 2001; 114:3529-42. [PMID: 11682612 DOI: 10.1242/jcs.114.19.3529] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms that specify precisely where mammalian kinetochores form within arrays of centromeric heterochromatin remain largely unknown. Localization of CENP-A exclusively beneath kinetochore plates suggests that this distinctive histone might direct kinetochore formation by altering the structure of heterochromatin within a sub-region of the centromere. To test this hypothesis, we experimentally mistargeted CENP-A to non-centromeric regions of chromatin and determined whether other centromere-kinetochore components were recruited. CENP-A-containing non-centromeric chromatin assembles a subset of centromere-kinetochore components, including CENP-C, hSMC1, and HZwint-1 by a mechanism that requires the unique CENP-A N-terminal tail. The sequence-specific DNA-binding protein CENP-B and the microtubule-associated proteins CENP-E and HZW10 were not recruited, and neocentromeric activity was not detected. Experimental mistargeting of CENP-A to inactive centromeres or to acentric double-minute chromosomes was also not sufficient to assemble complete kinetochore activity. The recruitment of centromere-kinetochore proteins to chromatin appears to be a unique function of CENP-A, as the mistargeting of other components was not sufficient for assembly of the same complex. Our results indicate at least two distinct steps in kinetochore assembly: (1) precise targeting of CENP-A, which is sufficient to assemble components of a centromere-prekinetochore scaffold; and (2) targeting of kinetochore microtubule-associated proteins by an additional mechanism present only at active centromeres.
Collapse
Affiliation(s)
- A A Van Hooser
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
McEwen BF, Chan GK, Zubrowski B, Savoian MS, Sauer MT, Yen TJ. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol Biol Cell 2001; 12:2776-89. [PMID: 11553716 PMCID: PMC59712 DOI: 10.1091/mbc.12.9.2776] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
CENP-E is a kinesin-like protein that when depleted from mammalian kinetochores leads to mitotic arrest with a mixture of aligned and unaligned chromosomes. In the present study, we used immunofluorescence, video, and electron microscopy to demonstrate that depletion of CENP-E from kinetochores via antibody microinjection reduces kinetochore microtubule binding by 23% at aligned chromosomes, and severely reduces microtubule binding at unaligned chromosomes. Disruption of CENP-E function also reduces tension across the centromere, increases the incidence of spindle pole fragmentation, and results in monooriented chromosomes approaching abnormally close to the spindle pole. Nevertheless, chromosomes show typical patterns of congression, fast poleward motion, and oscillatory motions. Furthermore, kinetochores of aligned and unaligned chromosomes exhibit normal patterns of checkpoint protein localization. These data are explained by a model in which redundant mechanisms enable kinetochore microtubule binding and checkpoint monitoring in the absence of CENP-E at kinetochores, but where reduced microtubule-binding efficiency, exacerbated by poor positioning at the spindle poles, results in chronically monooriented chromosomes and mitotic arrest. Chromosome position within the spindle appears to be a critical determinant of CENP-E function at kinetochores.
Collapse
Affiliation(s)
- B F McEwen
- Division Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | | | | | | | | | |
Collapse
|
155
|
Eaker S, Pyle A, Cobb J, Handel MA. Evidence for meiotic spindle checkpoint from analysis of spermatocytes from Robertsonian-chromosome heterozygous mice. J Cell Sci 2001; 114:2953-65. [PMID: 11686299 DOI: 10.1242/jcs.114.16.2953] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice heterozygous for Robertsonian centric fusion chromosomal translocations frequently produce aneuploid sperm. In this study RBJ/Dn× C57BL/6J F1 males, heterozygous for four Robertsonian translocations (2N=36), were analyzed to determine effects on germ cells of error during meiosis. Analysis of sperm by three color fluorescence in situ hybridization revealed significantly elevated aneuploidy, thus validating Robertsonian heterozygous mice as a model for production of chromosomally abnormal gametes. Primary spermatocytes from heterozygous males exhibited abnormalities of chromosome pairing in meiotic prophase and metaphase. In spite of prophase abnormalities, the prophase/metaphase transition occurred. However, an increased frequency of cells with misaligned condensed chromosomes was observed. Cytological analysis of both young and adult heterozygous mice revealed increased apoptosis in spermatocytes during meiotic metaphase I. Metaphase spermatocytes with misaligned chromosomes accounted for a significant proportion of the apoptotic spermatocytes, suggesting that a checkpoint process identifies aberrant meioses. Immunofluorescence staining revealed that kinetochores of chromosomes that failed to align on the spindle stained more intensely for kinetochore antigens CENP-E and CENP-F than did aligned chromosomes. Taken together, these observations are consistent with detection of malattached chromosomes by a meiotic spindle checkpoint mechanism that monitors attachment and/or congression of homologous chromosome pairs. However, the relatively high frequency of gametic aneuploidy suggests that the checkpoint mechanism does not efficiently eliminate all germ cells with chromosomal abnormalities.
Collapse
Affiliation(s)
- S Eaker
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, USA
| | | | | | | |
Collapse
|
156
|
DeLuca JG, Newton CN, Himes RH, Jordan MA, Wilson L. Purification and characterization of native conventional kinesin, HSET, and CENP-E from mitotic hela cells. J Biol Chem 2001; 276:28014-21. [PMID: 11382767 DOI: 10.1074/jbc.m102801200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed a strategy for the purification of native microtubule motor proteins from mitotic HeLa cells and describe here the purification and characterization of human conventional kinesin and two human kinesin-related proteins, HSET and CENP-E. We found that the 120-kDa HeLa cell conventional kinesin is an active motor that induces microtubule gliding at approximately 30 microm/min at room temperature. This active form of HeLa cell kinesin does not contain light chains, although light chains were detected in other fractions. HSET, a member of the C-terminal kinesin subfamily, was also purified in native form for the first time, and the protein migrates as a single band at approximately 75 kDa. The purified HSET is an active motor that induces microtubule gliding at a rate of approximately 5 microm/min, and microtubules glide for an average of 3 microm before ceasing movement. Finally, we purified native CENP-E, a kinesin-related protein that has been implicated in chromosome congression during mitosis, and we found that this form of CENP-E does not induce microtubule gliding but is able to bind to microtubules.
Collapse
Affiliation(s)
- J G DeLuca
- Department of Molecular, Cellular, and Developmental Biology and the Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
157
|
Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106:83-93. [PMID: 11461704 DOI: 10.1016/s0092-8674(01)00410-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Miki H, Setou M, Kaneshiro K, Hirokawa N. All kinesin superfamily protein, KIF, genes in mouse and human. Proc Natl Acad Sci U S A 2001; 98:7004-11. [PMID: 11416179 PMCID: PMC34614 DOI: 10.1073/pnas.111145398] [Citation(s) in RCA: 474] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intracellular transport is essential for morphogenesis and functioning of the cell. The kinesin superfamily proteins (KIFs) have been shown to transport membranous organelles and protein complexes in a microtubule- and ATP-dependent manner. More than 30 KIFs have been reported in mice. However, the nomenclature of KIFs has not been clearly established, resulting in various designations and redundant names for a single KIF. Here, we report the identification and classification of all KIFs in mouse and human genome transcripts. Previously unidentified murine KIFs were found by a PCR-based search. The identification of all KIFs was confirmed by a database search of the total human genome. As a result, there are a total of 45 KIFs. The nomenclature of all KIFs is presented. To understand the function of KIFs in intracellular transport in a single tissue, we focused on the brain. The expression of 38 KIFs was detected in brain tissue by Northern blotting or PCR using cDNA. The brain, mainly composed of highly differentiated and polarized cells such as neurons and glia, requires a highly complex intracellular transport system as indicated by the increased number of KIFs for their sophisticated functions. It is becoming increasingly clear that the cell uses a number of KIFs and tightly controls the direction, destination, and velocity of transportation of various important functional molecules, including mRNA. This report will set the foundation of KIF and intracellular transport research.
Collapse
Affiliation(s)
- H Miki
- Department of Cell Biology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
159
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
160
|
Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K, Denoulet P, Larcher JC. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J Biol Chem 2001; 276:12839-48. [PMID: 11278895 DOI: 10.1074/jbc.m011380200] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties.
Collapse
Affiliation(s)
- C Bonnet
- Biochimie Cellulaire, CNRS FRE 2219, Université Pierre et Marie Curie, 9 quai Saint-Bernard, Case 265, 75252 Paris, Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
161
|
Pickett-Heaps JD, Forer A. Pac-Man does not resolve the enduring problem of anaphase chromosome movement. PROTOPLASMA 2001; 215:16-20. [PMID: 11732055 DOI: 10.1007/bf01280300] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Pac-Man hypothesis suggests that poleward movement of chromosomes during anaphase A is brought about by: disassembly of kinetochore microtubules (MTs) at the kinetochore; generation of the poleward force exclusively at or very close to the kinetochore; and the required energy coming from coupled disassembly of these MTs. This model has become widely accepted and cited as the sole or major mechanism of anaphase A. Rarely acknowledged are several significant phenomena that refute some or all of these postulates. We summarise these anomalies as follows: poleward movement of chromosomes occurring without insertion of any MTs at the kinetochore; "anaphase" shortening of kinetochore fibres in spindles entirely devoid of chromosomes and, presumably, kinetochores; continued movement of chromosomes while their severed kinetochore stub elongated poleward after treatment with UV microbeams; and fluxing of tubulin subunits through kinetochore MTs during anaphase A, indicating that during anaphase, kinetochore MTs disassemble partly or solely at the poles.
Collapse
Affiliation(s)
- J D Pickett-Heaps
- School of Botany, University of Melbourne, Parkville, Victoria, 3052, Australia
| | | |
Collapse
|
162
|
Abstract
In all eukaryotes, a microtubule-based structure known as the spindle is responsible for accurate chromosome segregation during cell division. Spindle assembly and function require localized regulation of microtubule dynamics and the activity of a variety of microtubule-based motor proteins. Recent work has begun to uncover the molecular mechanisms that underpin this process. Here we describe the structural and dynamic properties of the spindle, and introduce the current concepts regarding how a bipolar spindle is assembled and how it functions to segregate chromosomes.
Collapse
Affiliation(s)
- T Wittmann
- Department of Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
163
|
Sharp DJ, Rogers GC, Scholey JM. Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat Cell Biol 2000; 2:922-30. [PMID: 11146657 DOI: 10.1038/35046574] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of chromosomes during mitosis occurs on a bipolar, microtubule-based protein machine, the mitotic spindle. It has long been proposed that poleward chromosome movements that occur during prometaphase and anaphase A are driven by the microtubule motor cytoplasmic dynein, which binds to kinetochores and transports them toward the minus ends of spindle microtubules. Here we evaluate this hypothesis using time-lapse confocal microscopy to visualize, in real time, kinetochore and chromatid movements in living Drosophila embryos in the presence and absence of specific inhibitors of cytoplasmic dynein. Our results show that dynein inhibitors disrupt the alignment of kinetochores on the metaphase spindle equator and also interfere with kinetochore- and chromatid-to-pole movements during anaphase A. Thus, dynein is essential for poleward chromosome motility throughout mitosis in Drosophila embryos.
Collapse
Affiliation(s)
- D J Sharp
- Section of Molecular and Cellular Biology, University of California-Davis, 1 Shields Avenue, Davis, California 95616, USA
| | | | | |
Collapse
|
164
|
Infante AS, Stein MS, Zhai Y, Borisy GG, Gundersen GG. Detyrosinated (Glu) microtubules are stabilized by an ATP-sensitive plus-end cap. J Cell Sci 2000; 113 ( Pt 22):3907-19. [PMID: 11058078 DOI: 10.1242/jcs.113.22.3907] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Many cell types contain a subset of long-lived, ‘stable’ microtubules that differ from dynamic microtubules in that they are enriched in post-translationally detyrosinated tubulin (Glu-tubulin). Elevated Glu tubulin does not stabilize the microtubules and the mechanism for the stability of Glu microtubules is not known. We used detergent-extracted cell models to investigate the nature of Glu microtubule stability. In these cell models, Glu microtubules did not incorporate exogenously added tubulin subunits on their distal ends, while >70% of the bulk microtubules did. Ca(2+)-generated fragments of Glu microtubules incorporated tubulin, showing that Glu microtubule ends are capped. Consistent with this, Glu microtubules in cell models were resistant to dilution-induced breakdown. Known microtubule end-associated proteins (EB1, APC, p150(Glued) and vinculin focal adhesions) were not localized on Glu microtubule ends. ATP, but not nonhydrolyzable analogues, induced depolymerization of Glu microtubules in cell models. Timelapse and photobleaching studies showed that ATP triggered subunit loss from the plus end. ATP breakdown of Glu microtubules was inhibited by AMP-PNP and vanadate, but not by kinase or other inhibitors. Additional experiments showed that conventional kinesin or kif3 were not involved in Glu microtubule capping. We conclude that Glu microtubules are stabilized by a plus-end cap that includes an ATPase with properties similar to kinesins.
Collapse
Affiliation(s)
- A S Infante
- Integrated Program in Cellular, Molecular and Biophysical Studies and Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
165
|
King JM, Hays TS, Nicklas RB. Dynein is a transient kinetochore component whose binding is regulated by microtubule attachment, not tension. J Cell Biol 2000; 151:739-48. [PMID: 11076960 PMCID: PMC2169441 DOI: 10.1083/jcb.151.4.739] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2000] [Accepted: 09/11/2000] [Indexed: 11/30/2022] Open
Abstract
Cytoplasmic dynein is the only known kinetochore protein capable of driving chromosome movement toward spindle poles. In grasshopper spermatocytes, dynein immunofluorescence staining is bright at prometaphase kinetochores and dimmer at metaphase kinetochores. We have determined that these differences in staining intensity reflect differences in amounts of dynein associated with the kinetochore. Metaphase kinetochores regain bright dynein staining if they are detached from spindle microtubules by micromanipulation and kept detached for 10 min. We show that this increase in dynein staining is not caused by the retraction or unmasking of dynein upon detachment. Thus, dynein genuinely is a transient component of spermatocyte kinetochores. We further show that microtubule attachment, not tension, regulates dynein localization at kinetochores. Dynein binding is extremely sensitive to the presence of microtubules: fewer than half the normal number of kinetochore microtubules leads to the loss of most kinetochoric dynein. As a result, the bulk of the dynein leaves the kinetochore very early in mitosis, soon after the kinetochores begin to attach to microtubules. The possible functions of this dynein fraction are therefore limited to the initial attachment and movement of chromosomes and/or to a role in the mitotic checkpoint.
Collapse
Affiliation(s)
- J M King
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
166
|
Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol 2000; 10:1319-28. [PMID: 11084331 DOI: 10.1016/s0960-9822(00)00769-7] [Citation(s) in RCA: 402] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Survivin is a mammalian protein that carries a motif typical of the inhibitor of apoptosis (IAP)proteins, first identified in baculoviruses. Although baculoviral IAP proteins regulate cell death, the yeast Survivin homolog Bir1 is involved in cell division. To determine the function of Survivin in mammals, we analyzed the pattern of localization of Survivin protein during the cell cycle, and deleted its gene by homologous recombination in mice. RESULTS In human cells, Survivin appeared first on centromeres bound to a novel para-polar axis during prophase/metaphase, relocated to the spindle midzone during anaphase/telophase, and disappeared at the end of telophase. In the mouse, Survivin was required for mitosis during development. Null embryos showed disrupted microtubule formation, became polyploid, and failed to survive beyond 4.5days post coitum. This phenotype, and the cell-cycle localization of Survivin, resembled closely those of INCENP. Because the yeast homolog of INCENP, Sli15, regulates the Aurora kinase homolog Ipl1p, and the yeast Survivin homolog Bir1 binds to Ndc10p, a substrate of Ipl1p, yeast Survivin, INCENP and Aurora homologs function in concert during cell division. CONCLUSIONS In vertebrates, Survivin and INCENP have related roles in mitosis, coordinating events such as microtubule organization, cleavage-furrow formation and cytokinesis. Like their yeast homologs Bir1 and Sli15, they may also act together with the Aurora kinase.
Collapse
Affiliation(s)
- A G Uren
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, 3050,., Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Proper division of the cell requires coordination between chromosome segregation by the mitotic spindle and cleavage of the cell by the cytokinetic apparatus. Interactions between the mitotic spindle, the contractile ring and the plasma membrane ensure that the cleavage furrow is properly placed between the segregating chromosomes and that new membrane compartments are formed to produce two daughter cells. The microtubule midzone is able to stimulate the cortex of the cell to ensure proper ingression and completion of the cleavage furrow. Specialized microtubule structures are responsible for directing membrane vesicles to the site of cell cleavage, and vesicle fusion is required for the proper completion of cytokinesis.
Collapse
Affiliation(s)
- A F Straight
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
168
|
Abstract
Two cases of marker chromosomes derived from a non-centromeric location were studied to determine the characteristics of these markers with respect to the presence of functional centromeres and whether an associated phenotype could be described. The markers were characterized by fluorescence in situ hybridization and centromeric protein studies. Assessments were done to identify clinical features. Case 1 is a girl referred at age 1.5 years with swirly areas of hyperpigmentation, bilateral preauricular pits, hypotonia, developmental delay, and seizures. Case 2 is a male first evaluated as a newborn and then later during the first year of life. He had streaky hypopigmentation, right preauricular pit, accessory nipples, postaxial polydactyly, asymmetric cerebral ventricles, duplicated right kidney, a right pulmonary artery stenosis, and seizures. Mosaicism for an extra marker from the 3qter region was present in both cases. Both markers had a constriction near one end and were C-band negative. Centromeric protein studies indicated absence of CENP-B, presence of CENP-C (data for case 1 only), and presence of CENP-E. Marker chromosomes were thus identified with a chromosomal origin far from their usual centromeric region and yet appeared to have functional centromeres. These two cases did not permit a specific clinical phenotype to be ascribed to the presence of tetrasomy for 3q26.2 approximately 3q27.2-->3qter.
Collapse
Affiliation(s)
- I Teshima
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
169
|
Abstract
The mitotic spindle uses microtubule-based motor proteins to assemble itself and to segregate sister chromatids. It is becoming clear that motors invoke several distinct mechanisms to generate the forces that drive mitosis. Moreover, in carrying out its function, the spindle appears to pass through a series of transient steady-state structures, each established by a delicate balance of forces generated by multiple complementary and antagonistic motors. Transitions from one steady state to the next can occur when a change in the activity of a subset of mitotic motors tips the balance.
Collapse
Affiliation(s)
- D J Sharp
- Section of Molecular and Cellular Biology, University of California-Davis, 95616, USA
| | | | | |
Collapse
|
170
|
Fowler KJ, Saffery R, Kile BT, Irvine DV, Hudson DF, Trowell HE, Choo KH. Genetic mapping of mouse centromere protein (Incenp and Cenpe) genes. CYTOGENETICS AND CELL GENETICS 2000; 82:67-70. [PMID: 9763662 DOI: 10.1159/000015066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inner centromere protein (INCENP) and centromere protein E (CENPE) are two functionally important proteins of the higher eukaryotic centromere. Using a mouse Incenp genomic DNA and a mouse Cenpe cDNA to analyze recombinant inbred mouse sets, as well as interspecific backcross panels, we have mapped these genes to the proximal regions of mouse Chromosomes 19 and 6, respectively. Comparison of Cenpe and human CENPE, which maps to chromosome region 4q24-->q25, has further identified a new region of homology between the two species.
Collapse
Affiliation(s)
- K J Fowler
- The Murdoch Institute, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
171
|
Sugimoto K, Fukuda R, Himeno M. Centromere/kinetochore localization of human centromere protein A (CENP-A) exogenously expressed as a fusion to green fluorescent protein. Cell Struct Funct 2000; 25:253-61. [PMID: 11129795 DOI: 10.1247/csf.25.253] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Three human centromere proteins, CENP-A, CENP-B and CENP-C, are a set of autoantigens specifically recognized by anticentromere antibodies often produced by patients with scleroderma. Microscopic observation has indicated that CENP-A and CENP-C localize to the inner plate of metaphase kinetochore, while CENP-B localizes to the centromere heterochromatin beneath the kinetochore. The antigenic structure, called "prekinetochore", is also present in interphase nuclei, but little is known about its molecular organization and the relative position of these antigens. Here, to visualize prekinetochore in living cells, we first obtained a stable human cell line, MDA-AF8-A2, in which human CENP-A is exogenously expressed as a fusion to a green fluorescent protein of Aequorea victoria. Simultaneous staining with anti-CENP-B and anti-CENP-C antibodies showed that the recombinant CENP-A colocalized with the endogenous CENP-C and constituted small discrete dots attaching to larger amorphous mass of CENP-B heterochromatin. When the cell growth was arrested in G1/ S phase with hydroxyurea, CENP-B heterochromatin was sometimes highly extended, while the relative location between GFP-fused CENP-A and the endogenous CENP-C was not affected. These results indicated that the fluorescent CENP-A faithfully localizes to the centromere/kinetochore throughout the cell cycle. We then obtained several mammalian cell lines where the same GFP-fused human CENP-A construct was stably expressed and their centromere/kinetochore is fluorescent throughout the cell cycle. These cell lines will further be used for visualizing the prekinetochore locus in interphase nuclei as well as analyzing kinetochore dynamics in the living cells.
Collapse
Affiliation(s)
- K Sugimoto
- Division of Applied Biochemistry, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Japan.
| | | | | |
Collapse
|
172
|
Yucel JK, Marszalek JD, McIntosh JR, Goldstein LS, Cleveland DW, Philp AV. CENP-meta, an essential kinetochore kinesin required for the maintenance of metaphase chromosome alignment in Drosophila. J Cell Biol 2000; 150:1-11. [PMID: 10893249 PMCID: PMC2185570 DOI: 10.1083/jcb.150.1.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 06/02/2000] [Indexed: 11/22/2022] Open
Abstract
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element-mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements.
Collapse
Affiliation(s)
- Jennifer K. Yucel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Janet D. Marszalek
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
| | - J. Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alastair Valentine Philp
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
173
|
Yucel JK, Marszalek JD, McIntosh JR, Goldstein LS, Cleveland DW, Philp AV. CENP-meta, an Essential Kinetochore Kinesin Required for the Maintenance of Metaphase Chromosome Alignment in Drosophila. J Cell Biol 2000. [DOI: 10.1083/jcb.150.1.1a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CENP-meta has been identified as an essential, kinesin-like motor protein in Drosophila. The 257-kD CENP-meta protein is most similar to the vertebrate kinetochore-associated kinesin-like protein CENP-E, and like CENP-E, is shown to be a component of centromeric/kinetochore regions of Drosophila chromosomes. However, unlike CENP-E, which leaves the centromere/kinetochore region at the end of anaphase A, the CENP-meta protein remains associated with the centromeric/kinetochore region of the chromosome during all stages of the Drosophila cell cycle. P-element–mediated disruption of the CENP-meta gene leads to late larval/pupal stage lethality with incomplete chromosome alignment at metaphase. Complete removal of CENP-meta from the female germline leads to lethality in early embryos resulting from defects in metaphase chromosome alignment. Real-time imaging of these mutants with GFP-labeled chromosomes demonstrates that CENP-meta is required for the maintenance of chromosomes at the metaphase plate, demonstrating that the functions required to establish and maintain chromosome congression have distinguishable requirements.
Collapse
Affiliation(s)
- Jennifer K. Yucel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Janet D. Marszalek
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
| | - J. Richard McIntosh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Don W. Cleveland
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
- Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Alastair Valentine Philp
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
174
|
Blangy A, Chaussepied P, Nigg EA. Rigor-type mutation in the kinesin-related protein HsEg5 changes its subcellular localization and induces microtubule bundling. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:174-82. [PMID: 9634214 DOI: 10.1002/(sici)1097-0169(1998)40:2<174::aid-cm6>3.0.co;2-f] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HsEg5 is a human kinesin-related motor protein essential for the formation of a bipolar mitotic spindle. It interacts with the mitotic centrosomes in a phosphorylation-dependent manner. To investigate further the mechanisms involved in targetting HsEg5 to the spindle apparatus, we expressed various mutants of HsEg5 in HeLa cells. All these mutants share a mutation of Thr-112 in the N-terminal motor domain, resulting in the inactivation of the ATP binding domain. In vitro, the HsEg5-T112N mutant motor domain showed a nucleotide-independent microtubule association, typical of a kinesin protein binding to microtubules in a rigor state. In vivo, overexpression of the HsEg5 rigor mutant in HeLa cells induced, in interphase, microtubule bundling, and, in mitosis, the formation of monopolar mitotic spindles similar to those observed after microinjection of anti-HsEg5 antibodies. Localization of the HsEg5 rigor mutant on cytoplasmic microtubules did not require the C-terminal tail domain but was lost when the stalk domain was also deleted. Sucrose gradient centrifugation experiments showed that microtubule bundling was most likely caused by the binding of HsEg5 mutants in a dimeric state. These results demonstrate that the precise subcellular localization of HsEg5 in vivo is regulated not only by the phosphorylation of the tail domain but also by the oligomeric state of the protein.
Collapse
Affiliation(s)
- A Blangy
- Swiss Institute for Experimental Cancer Research, Epalinges.
| | | | | |
Collapse
|
175
|
Wrench GA, Snyder JA. Cytochalasin J treatment significantly alters mitotic spindle microtubule organization and kinetochore structure in PtK1 cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:112-24. [PMID: 9015200 DOI: 10.1002/(sici)1097-0169(1997)36:2<112::aid-cm2>3.0.co;2-b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has previously been demonstrated that treatment of mitotic PtK1 cells with 10-20 microg/ml cytochalasin J (CJ) blocks or slows chromosome motion and has a significant effect on spindle architecture [Snyder and Cohen, 1995: Cell Motil. Cytoskeleton 32:245-257]. Spindle microtubules (MTs) were shown to reorganize within the spindle domain, with kinetochore MTs (kMTs) reduced in number and non-kinetochore MTs (nkMTs) shown to splay outside the original spindle domain. In some cases, bundles of MTs were shown to be refocused away from the original spindle poles, creating the appearance of a multi-polar spindle. In this paper we use serial section electron microscopy, coupled with computer-assisted reconstruction techniques, to determine the rearrangement of spindle MTs and chromosome position following brief treatments of mitotic cells with 10-20 microg/ml CJ at various stages of mitosis. CJ treatment of prometaphase cells reduces the number of kMTs and the size and organization of the kinetochore lamina. Instead of kinetochore bundles of MTs aligned parallel to one another and running from kinetochore to pole, this class of MTs is highly fragmented. Non-kinetochore MTs are also highly fragmented, usually less than 2 microm long, and remain relatively straight over short distances, with some MTs arranged at an oblique angle to the longitudinal spindle axis. In approximately 30% of cells treated with CJ, the failure of a small number of chromosomes to attach to spindle fibers can be documented. These chromosomes show a significant change in the organization of the kinetochore laminae. Light microscopic analysis of cells treated with CJ reveals loss of chromosome congression, with chromsomes usually located at the periphery of the spindle and some completely detached from the spindle. Cells treated with 10 microg/ml CJ for 10 min and released into tissue culture medium show a resumption of chromosome motion within a few minutes, both during congression and anaphase. Where kMTs are inserted into kinetochores, chromosome motion is seen; where chromosomes fail to attach to the spindle, no chromosome motion is observed. Cells treated in metaphase show a delayed entry into anaphase and a reduced rate of anaphase A, with the arms of some chromosomes remaining in the interzone region. Our results suggest that CJ-sensitive molecules play a role in the organization of spindle MTs, as well as their functional association to kinetochores.
Collapse
Affiliation(s)
- G A Wrench
- Department of Biological Sciences, University of Denver, CO 80208, USA
| | | |
Collapse
|
176
|
Lee J, Miyano T, Dai Y, Wooding P, Yen TJ, Moor RM. Specific regulation of CENP-E and kinetochores during meiosis I/meiosis II transition in pig oocytes. Mol Reprod Dev 2000; 56:51-62. [PMID: 10737967 DOI: 10.1002/(sici)1098-2795(200005)56:1<51::aid-mrd7>3.0.co;2-n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To understand the mechanisms which regulate meiosis-specific cell cycle and chromosome distribution in mammalian oocytes, the level and the localization of CENP-E and the kinetochore number and direction on a half bivalent were examined during pig oocyte maturation. CENP-E is a kinetochore motor protein whose intracellular level and localization are strictly regulated in the somatic cell cycle. The localizations of CENP-E on meiotic chromosomes from diakinesis stage to anaphase I and at the spindle midzone at telophase I were shown by immunofluorescent confocal microscopy to be similar to those in somatic cells of pig and other species. Further, ultrastructural analysis revealed the presence of CENP-E on fibrous corona and outer plate of kinetochores of the meiotic chromosomes. However, unlike mitosis, CENP-E staining was continuously detected either at the spindle midzone or on the kinetochores of segregated chromosomes during the first polar body emission. Consistent with this, immunoblot analysis revealed that CENP-E level remained high during meiosis I/meiosis II (MI/MII) transition and that some of CENP-E survived through the transition even in cycloheximide-treated oocytes in which cyclin B1 was completely degraded. Furthermore, examinations of CENP-E signals in confocal microscopy and kinetochores in electron microscopy in MI and MII oocytes provide the cytological evidence in mammalian oocytes which suggests that each sister chromatid in a pair has its own kinetochore which localizes side-by-side so that two sister chromatids on a half bivalent are oriented toward and connected to the same pole in MI.
Collapse
Affiliation(s)
- J Lee
- Laboratory of Protein Function, The Babraham Institute, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
177
|
Srayko M, Buster DW, Bazirgan OA, McNally FJ, Mains PE. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev 2000. [DOI: 10.1101/gad.14.9.1072] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans meiotic spindle is morphologically distinct from the first mitotic spindle, yet both structures form in the same cytoplasm ∼20 minutes apart. Themei-1 and mei-2 genes of C. elegans are required for the establishment of the oocyte meiotic spindle but are not required for mitotic spindle function. mei-1 encodes an AAA ATPase family member with similarity to the p60 catalytic subunit of the heterodimeric sea urchin microtubule-severing protein, katanin. We report that mei-2 encodes a 280-amino acid protein containing a region similar to the p80-targeting subunit of katanin. MEI-1 and MEI-2 antibodies decorate the polar ends of meiotic spindle microtubules and meiotic chromatin. We find that the subcellular location of MEI-2 depends on wild-type mei-1 activity and vice versa. These experiments, combined with MEI-1 and MEI-2's similarity to p60 and p80 katanin, suggest that the C. elegans proteins function as a complex. In support of this idea, MEI-1 and MEI-2 physically associate in HeLa cells. Furthermore, co-expression of MEI-1 and MEI-2 in HeLa cells results in the disassembly of microtubules. These data lead us to conclude that MEI-1/MEI-2 microtubule-severing activity is required for meiotic spindle organization in C. elegans.
Collapse
|
178
|
Gatti M, Giansanti MG, Bonaccorsi S. Relationships between the central spindle and the contractile ring during cytokinesis in animal cells. Microsc Res Tech 2000; 49:202-8. [PMID: 10816260 DOI: 10.1002/(sici)1097-0029(20000415)49:2<202::aid-jemt13>3.0.co;2-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During late anaphase and telophase, animal cells develop a bundle of antiparallel, interdigitating microtubules between the two daughter nuclei. Recent data indicate that this structure, called the central spindle, plays an essential role during cytokinesis. Studies in Drosophila and on vertebrate cells strongly suggest that the molecular signals for cytokinesis specifically emanate from the central spindle midzone. Moreover, the analysis of Drosophila mutants defective in cytokinesis has revealed a cooperative interaction between the central spindle microtubules and the contractile ring: when either of these structures is perturbed, the proper assembly of the other is disrupted. Based on these results we propose a model for the role of the central spindle during cytokinesis. We suggest that the interaction between central spindle microtubules and cortical actin filaments leads to two early events crucial for cytokinesis: the positioning of the contractile ring, and the stabilization of the plus ends of the interdigitating microtubules that comprise the central spindle. The latter event would provide the cell with a specialized microtubule scaffold that could mediate the translocation of plus-end-directed molecular motors to the cell's equator. Among the cargoes transported by these motors could be proteins involved in the regulation and execution of cytokinesis.
Collapse
Affiliation(s)
- M Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università di Roma "La Sapienza," P. A. Mozo 5, 00185 Roma, Italy.
| | | | | |
Collapse
|
179
|
Aagaard L, Schmid M, Warburton P, Jenuwein T. Mitotic phosphorylation of SUV39H1, a novel component of active centromeres, coincides with transient accumulation at mammalian centromeres. J Cell Sci 2000; 113 ( Pt 5):817-29. [PMID: 10671371 DOI: 10.1242/jcs.113.5.817] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres of eukaryotes are frequently associated with constitutive heterochromatin and their activity appears to be coregulated by epigenetic modification of higher order chromatin. Recently, we isolated murine (Suv39h1) and human (SUV39H1) homologues of the dominant Drosophila suppressor of position effect variegation Su(var)3-9, which is also related to the S. pombe silencing factor Clr4. We have shown that mammalian Su(var)3-9 homologues encode novel centromeric proteins on metaphase-arrested chromosomes. Here, we describe a detailed analysis of the chromatin distribution of human SUV39H1 during the cell cycle. Although there is significant heterochromatic overlap between SUV39H1 and M31 (HP1(beta)) during interphase, mitotic SUV39H1 displays a more restricted spatial and temporal association pattern with metaphase chromosomes than M31 (HP1(beta)), or the related HP1(α) gene product. SUV39H1 specifically accumulates at the centromere during prometaphase but dissociates from centromeric positions at the meta- to anaphase transition. In addition, SUV39H1 selectively associates with the active centromere of a dicentric chromosome and also with a neocentromere. Interestingly, SUV39H1 is shown to be a phosphoprotein with modifications at serine and, to a lesser degree, also at threonine residues. Whereas SUV39H1 steady-state protein levels appear constant during the cell cycle, two additional phosphorylated isoforms are detected in mitotic extracts. This intriguing localisation and modification pattern would be consistent with a regulatory role(s) for SUV39H1 in participating in higher order chromatin organisation at mammalian centromeres.
Collapse
Affiliation(s)
- L Aagaard
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Dr Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
180
|
Gitlits VM, Toh BH, Loveland KL, Sentry JW. The glycolytic enzyme enolase is present in sperm tail and displays nucleotide-dependent association with microtubules. Eur J Cell Biol 2000; 79:104-11. [PMID: 10727018 DOI: 10.1078/s0171-9335(04)70012-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examined the expression and localisation of enolase (2-phospho-D-glycerate hydrolase) in differentiating rat spermatogenic cells. We found that enolase is most abundant in mature spermatozoa and in residual cytoplasmic bodies detached from elongating spermatids with little to no enolase detected in meiotic primary spermatocytes and round spermatids. We localised enolase mostly to the tail of mature spermatozoa by immunoblotting and by immunofluorescence. RT-PCR analysis of differentiating spermatogenic cells detected only the alpha isoform of enolase. As several glycolytic enzymes are known to associate with microtubules prepared from brain, we investigated the association of enolase with brain and testis microtubules. We found that only a small fraction of testis and brain-derived cytosolic enolase (4.9% and 11.2%, respectively) co-sediments with microtubules stabilised in the presence of taxol. In the presence of certain nucleotides in excess (3 mM ATP, CTP, GTP and ITP) the association of enolase with microtubules was disrupted, however, this was not the case for UTP. This observation is consistent with the finding that in the presence of 0.5 mM AMP-PNP, a nonhydrolysable analogue of ATP, there is an increased association of enolase with microtubules. We propose that the nucleotide-dependent association of enolase with microtubules regulates enzyme activity by linking energy production to utilisation.
Collapse
Affiliation(s)
- V M Gitlits
- Department of Pathology and Immunology, Monash Medical School, Alfred Hospital, Prahan, Victoria/Australia
| | | | | | | |
Collapse
|
181
|
Goldstein LS, Philp AV. The road less traveled: emerging principles of kinesin motor utilization. Annu Rev Cell Dev Biol 1999; 15:141-83. [PMID: 10611960 DOI: 10.1146/annurev.cellbio.15.1.141] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteins of the kinesin superfamily utilize a conserved catalytic motor domain to generate movements in a wide variety of cellular processes. In this review, we discuss the rapid expansion in our understanding of how eukaryotic cells take advantage of these proteins to generate force and movement in diverse functional contexts. We summarize several recent examples revealing that the simplest view of a kinesin motor protein binding to and translocating a cargo along a microtubule track is inadequate. In fact, this paradigm captures only a small subset of the many ways in which cells harness force production of the generation of intracellular movements and functions. We also highlight several situations where the catalytic kinesin motor domain may not be used to generate movement, but instead may be used in other biochemical and functional contexts. Finally, we review some recent ideas about kinesin motor regulation, redundancy, and cargo attachment strategies.
Collapse
Affiliation(s)
- L S Goldstein
- Howard Hughes Medical Institute, Department of Pharmacology, University of California San Diego, La Jolla 92093-0683, USA.
| | | |
Collapse
|
182
|
Purohit A, Tynan SH, Vallee R, Doxsey SJ. Direct interaction of pericentrin with cytoplasmic dynein light intermediate chain contributes to mitotic spindle organization. J Cell Biol 1999; 147:481-92. [PMID: 10545494 PMCID: PMC2151190 DOI: 10.1083/jcb.147.3.481] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1999] [Accepted: 09/27/1999] [Indexed: 11/26/2022] Open
Abstract
Pericentrin is a conserved protein of the centrosome involved in microtubule organization. To better understand pericentrin function, we overexpressed the protein in somatic cells and assayed for changes in the composition and function of mitotic spindles and spindle poles. Spindles in pericentrin-overexpressing cells were disorganized and mispositioned, and chromosomes were misaligned and missegregated during cell division, giving rise to aneuploid cells. We unexpectedly found that levels of the molecular motor cytoplasmic dynein were dramatically reduced at spindle poles. Cytoplasmic dynein was diminished at kinetochores also, and the dynein-mediated organization of the Golgi complex was disrupted. Dynein coimmunoprecipitated with overexpressed pericentrin, suggesting that the motor was sequestered in the cytoplasm and was prevented from associating with its cellular targets. Immunoprecipitation of endogenous pericentrin also pulled down cytoplasmic dynein in untransfected cells. To define the basis for this interaction, pericentrin was coexpressed with cytoplasmic dynein heavy (DHCs), intermediate (DICs), and light intermediate (LICs) chains, and the dynamitin and p150(Glued) subunits of dynactin. Only the LICs coimmunoprecipitated with pericentrin. These results provide the first physiological role for LIC, and they suggest that a pericentrin-dynein interaction in vivo contributes to the assembly, organization, and function of centrosomes and mitotic spindles.
Collapse
Affiliation(s)
- Aruna Purohit
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Sharon H. Tynan
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Richard Vallee
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Stephen J. Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
183
|
Maney T, Ginkel LM, Hunter AW, Wordeman L. The kinetochore of higher eucaryotes: a molecular view. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 194:67-131. [PMID: 10494625 DOI: 10.1016/s0074-7696(08)62395-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This review summarizes results concerning the molecular nature of the higher eucaryotic kinetochore. The first major section of this review includes kinetochore proteins whose general functions remain to be determined, precluding their entry into a discrete functional category. Many of the proteins in this section, however, are likely to be involved in kinetochore formation or structure. The second major section is concerned with how microtubule motor proteins function to cause chromosome movement. The microtubule motors dynein, CENP-E, and MCAK have all been observed at the kinetochore. While their precise functions are not well understood, all three are implicated in chromosome movement during mitosis. Finally, the last section deals with kinetochore components that play a role in the spindle checkpoint; a checkpoint that delays mitosis until all kinetochores have attached to the mitotic spindle. Brief reviews of kinetochore morphology and of an important technical breakthrough that enabled the molecular dissection of the kinetochore are also included.
Collapse
Affiliation(s)
- T Maney
- Department of Physiology and Biophysics, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
184
|
Mitsuuchi Y, Johnson SW, Sonoda G, Tanno S, Golemis EA, Testa JR. Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 1999; 18:4891-8. [PMID: 10490823 DOI: 10.1038/sj.onc.1203080] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AKT2 is a serine/threonine kinase implicated in human ovarian and pancreatic cancers. AKT2 is activated by a variety of growth factors and insulin via phosphatidylinositol 3-kinase (PI3K). However, its normal cellular role is not well understood. To gain insight into the function of AKT2, we performed yeast two-hybrid system to screen for interacting proteins. Using this technique, we identified a novel interactor, designated APPL, which contains a pleckstrin homology (PH) domain, a phosphotyrosine binding (PTB) domain and a leucine zipper, classes of motifs defined in signaling molecules as functional interaction domains with specific targets. The PH domain of APPL shows similarity to those found in GTPase-activating proteins such as oligophrenin-1 and Graf, whereas its PTB domain exhibits homology with CED-6, an adaptor protein that promotes engulfment of apoptotic cells, and IB1, a transactivator of the GLUT2 gene. APPL is highly expressed in skeletal muscle, heart, ovary and pancreas, tissues in which AKT2 mRNA is abundant. APPL interacts with the inactive form of AKT2; moreover, APPL binds to the PI3K catalytic subunit, p110alpha. These data suggest that APPL is an adaptor that may tether inactive AKT2 to p110alpha in the cytoplasm and thereby may expedite recruitment of AKT2 and p110alpha to the cell membrane upon mitogenic stimulation. Furthermore, the APPL gene was mapped to human chromosome 3p14.3-p21.1, where deletions and other rearrangements have often been reported in a variety of tumor types. The identification of APPL may facilitate further analysis of the physiological and oncogenic activities of AKT2.
Collapse
Affiliation(s)
- Y Mitsuuchi
- Molecular Oncology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
185
|
O'Toole ET, Winey M, McIntosh JR. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 1999; 10:2017-31. [PMID: 10359612 PMCID: PMC25406 DOI: 10.1091/mbc.10.6.2017] [Citation(s) in RCA: 233] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle pole body (SPB) is the major microtubule-organizing center of budding yeast and is the functional equivalent of the centrosome in higher eukaryotic cells. We used fast-frozen, freeze-substituted cells in conjunction with high-voltage electron tomography to study the fine structure of the SPB and the events of early spindle formation. Individual structures were imaged at 5-10 nm resolution in three dimensions, significantly better than can be achieved by serial section electron microscopy. The SPB is organized in distinct but coupled layers, two of which show ordered two-dimensional packing. The SPB central plaque is anchored in the nuclear envelope with hook-like structures. The minus ends of nuclear microtubules (MTs) are capped and are tethered to the SPB inner plaque, whereas the majority of MT plus ends show a distinct flaring. Unbudded cells containing a single SPB retain 16 MTs, enough to attach to each of the expected 16 chromosomes. Their median length is approximately 150 nm. MTs growing from duplicated but not separated SPBs have a median length of approximately 130 nm and interdigitate over the bridge that connects the SPBs. As a bipolar spindle is formed, the median MT length increases to approximately 300 nm and then decreases to approximately 30 nm in late anaphase. Three-dimensional models confirm that there is no conventional metaphase and that anaphase A occurs. These studies complement and extend what is known about the three-dimensional structure of the yeast mitotic spindle and further our understanding of the organization of the SPB in intact cells.
Collapse
Affiliation(s)
- E T O'Toole
- Boulder Laboratory for Three-dimensional Fine Structure, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | | | |
Collapse
|
186
|
Abstract
Many of the kinesin microtubule motor proteins discovered during the past 8-9 years have roles in spindle assembly and function or chromosome movement during meiosis or mitosis. The discovery of kinesin motor proteins with a clear involvement in spindle and chromosome motility, together with recent evidence that cytoplasmic dynein plays a role in chromosome distribution, has attracted great interest. The identification of microtubule motors that function in chromosome distribution represents a major advance in understanding the forces that underlie chromosome and spindle movements during cell division.
Collapse
Affiliation(s)
- S A Endow
- Department of Microbiology, Duke University Medical Center, Durham, NC USA.
| |
Collapse
|
187
|
Tyler-Smith C, Gimelli G, Giglio S, Floridia G, Pandya A, Terzoli G, Warburton PE, Earnshaw WC, Zuffardi O. Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet 1999; 64:1440-4. [PMID: 10205277 PMCID: PMC1377882 DOI: 10.1086/302380] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An unusual Y chromosome with a primary constriction inside the long-arm heterochromatin was found in the amniocytes of a 38-year-old woman. The same Y chromosome was found in her husband and brother-in-law, thus proving that it was already present in the father. FISH with alphoid DNA showed hybridization signals at the usual position of the Y centromere but not at the primary constriction. Centromere proteins (CENP)-A, CENP-C, and CENP-E could not be detected at the site of the canonic centromere but were present at the new constriction, whereas CENP-B was not detected on this Y chromosome. Experiments with 82 Y-specific loci distributed throughout the chromosome confirmed that no gross deletion or rearrangement had taken place, and that the Y chromosome belonged to a haplogroup whose members have a mean alphoid array of 770 kb (range 430-1,600 kb), whereas that of this case was approximately 250 kb. Thus, this Y chromosome appeared to be deleted for part of the alphoid DNA. It seems likely that this deletion was responsible for the silencing of the normal centromere and that the activation of the neocentromere prevented the loss of this chromosome. Alternatively, neocentromere activation could have occurred first and stimulated inactivation of the normal centromere by partial deletion. Whatever the mechanism, the presence of this chromosome in three generations demonstrates that it functions sufficiently well in mitosis for male sex determination and fertility and that neocentromeres can be transmitted normally at meiosis.
Collapse
Affiliation(s)
- C Tyler-Smith
- CRC Chromosome Molecular Biology Group, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Kinesin motors are presumed to transport various membrane compartments within neurons, but their specific in vivo functions, cargoes, and expression patterns in the brain are unclear. We have investigated the distribution of KIF3A, a member of the heteromeric family of kinesins, in the vertebrate retina. We find KIF3A at two distinct sites within photoreceptors: at the basal body of the connecting cilium axoneme and at the synaptic ribbon. Immunoelectron microscopy of the photoreceptor ribbon synapse shows KIF3A to be concentrated both at the ribbon matrix and on vesicles docked at the ribbon, a result that is consistent with the presence of both detergent-extractable and resistant KIF3A fractions at these synapses. KIF3A is also present in the inner plexiform layer, again at presynaptic ribbons. These findings suggest that within a single cell, the photoreceptor, one kinesin polypeptide, KIF3A, can serve two distinct functions, one specific for ribbon synapses.
Collapse
|
189
|
Zhu X. Structural requirements and dynamics of mitosin-kinetochore interaction in M phase. Mol Cell Biol 1999; 19:1016-24. [PMID: 9891037 PMCID: PMC116032 DOI: 10.1128/mcb.19.2.1016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitosin is a 350-kDa human nuclear protein which transiently associates with centromeres and spindle poles in M phase. Ultrastructure studies reveal that it is located at the outer kinetochore plate. In this work, we explored the detailed structural basis and dynamics of the mitosin-kinetochore interaction. Two major regions important for targeting to centromeres were identified by analyzing different deletion mutants expressed in CHO cells: (i) the "core region" between amino acids 2792 and 2887, which was essential for the centromere localization of mitosin; and (ii) the internal repeats between residues 2094 and 2487, which cooperated with the core region to achieve strong mitosin-kinetochore interaction. The core region is characteristic of two leucine zipper motifs. Deletion of either motif abolished the centromere localization activity. In addition, Cys2864, adjacent to the second motif, was also essential for the activity of the core region. In contrast, the internal repeats alone were insufficient for centromere localization. We propose that this region may serve as a regulatory domain to facilitate interaction of the core region with the kinetochore. We showed that mitosin molecules entering nuclei after nuclear envelope breakdown (NEBD) were not assembled onto kinetochores efficiently, suggesting that the mitosin-kinetochore interaction is stabilized prior to NEBD. This result supports the idea of an ordered process for kinetochore assembly. Our data also suggest that mitosin might interact with chromatin in interphase. Evidence for coordinated regulation between the centromere-targeting and the putative chromatin-binding activities is also provided.
Collapse
Affiliation(s)
- X Zhu
- Shanghai Research Center of Life Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
190
|
Abstract
Cytokinesis is a crucial but poorly understood process of cell proliferation. Recently, molecular genetic analyses of fungal cytokinesis have led to an appreciation of contractile mechanisms in simple eukaryotes, and studies in animal and plant cells have led to new insights into the role of microtubules in the cleavage process. These findings suggest that fundamental mechanisms of cytokinesis may be highly conserved among eukaryotic organisms.
Collapse
Affiliation(s)
- C Field
- Department of Cell Biology Harvard Medical School 240 Longwood Avenue Boston MA 02115 USA
| | | | | |
Collapse
|
191
|
Kullmann F, Judex M, Ballhorn W, Jüsten HP, Wessinghage D, Welsh J, Yen TJ, Lang B, Hittle JC, McClelland M, Gay S, Schölmerich J, Müller-Ladner U. Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts. ARTHRITIS RESEARCH 1999; 1:71-80. [PMID: 11056662 PMCID: PMC17776 DOI: 10.1186/ar13] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/1999] [Revised: 10/05/1999] [Accepted: 10/11/1999] [Indexed: 11/10/2022]
Abstract
UNLABELLED Articular destruction by invading synovial fibroblasts is a typical feature in rheumatoid arthritis (RA),. Recent data support the hypothesis that key players in this scenario are transformed-appearing synovial fibroblasts at the site of invasion into articular cartilage and bone. They maintain their aggressive phenotype toward cartilage, even when first cultured and thereafter coimplanted together with normal human cartilage into severe combined immunodeficient mice for and extended period of time. However, little is known about the upregulation of genes that leads to this aggressive fibroblast phenotype. To inhibit this progressive growth without interfering with pathways of physiological matrix remodelling, identification of pathways that operate specifically in RA synovial fibroblasts is required. In order to achieve this goal, identification of genes showing upregulation restricted to RA synovial fibroblasts is essential. AIMS To identify specifically expressed genes using RNA arbitrarily primed (RAP)-polymerase chain reaction (PCR) for differential display in patients with RA. METHODS RNA was extracted from cultured synovial fibroblasts from 10 patients with RA, four patients with osteoarthritis (OA), and one patient with psoriatic arthritis. RAP-PCR was performed using different arbitrary primers for first-strand and second-strand synthesis. First-strand and second-strand synthesis were performed using arbitrary primers: US6 (5'-GTGGTGACAG-3') for first strand, and Nuclear 1+ (5'ACGAAGAAGAG-3'), OPN28 (5'GCACCAGGGGG-3'), Kinase A2+(5'-GGTGCCTTTGG-3') and OPN24 (5'AGGGGCACCA-3') for second strand synthesis. PCR reactions were loaded onto 8 mol/l urea/6% polyacrylamide-sequencing gels and electrophoressed. Gel slices carrying the target fragment were then excised with a razor blade, eluated and reamplified. After verifying their correct size and purity on 4% agarose gels, the reamplified products derived from the single-strand confirmation polymorphism gel were cloned, and five clones per transcript were sequenced. Thereafter, a genbank analysis was performed. Quantitative reverse transcription PCRj of the segments was performed using the PCR MIMIC technique. In-situ expression of centromere kinesin-like protein-E (CENP-E) messenger (m)RNA in RA synovium was assessed using digoxigenin-labelled riboprobes, and CENP-E protein expression in fibroblasts and synovium was performed by immunogold-silver immunohistochemistry and cytochemistry. Functional analysis of CENP-E was done using different approaches (eg glucocorticoid stimulation, serum starvation and growth rate analysis of synovial fibroblasts that expressed CENP-E). RESULTS In RA, amplification of a distinct PCR product suitable for sequencing could be observed. The indicated complementary DNA fragment of 434 base pairs from RA mRNA corresponded to nucleotides 6615-7048 in the human centromere kinesin-like protein CENP-E mRNA (GenBank accession No. emb/Z15005). The isolated sequence shared greater than 99% nucleic acid (P=2.9e(-169)) identify with the human centromere kinesin-like protein CENP-E. Two base changes at positions 6624 (A to C) and 6739 (A to G) did not result in alteration in the amino acid sequence, and therefore 100% amino acid identity could be confirmed. The amplification of 10 clones of the cloned RAP product revealed the presence of CENP-E mRNA in every fibroblast culture examined, showing from 50% (271.000 +/- 54.000 phosphor imager arbitrary units) up to fivefold (961.000 +/- 145.000 phosphor image arbitrary units) upregulation when compared with OA fibroblasts. Neither therapy with disease-modifying antirheumatic drugs such as methotrexate, gold, resochine or cyclosporine A, nor therapy with oral steroids influenced CENP-E expression in the RA fibroblasts. Of the eight RA fibroblast populations from RA patients who were receiving disease-modifying antirheumatic drugs, five showed CENP-E upregulation; and of the eight fibroblast populations from RA patients receiving steroids, four showed CENP-E upregulation. Numerous synovial cells of the patients with RA showed a positive in situ signal for the isolated CENP-E gene segment confirming CENP-E mRNA production in rheumatoid synovium, whereas in OA synovial tissue CENP-E mRNA could not be detected. In addition, CENP-E expression was independent from medication. This was further confirmed by analysis of the effect of prednisolone on CENP-E expression, which revealed no alteration in CENP-E mRNA after exposure to different (physiological) concentrations of prednisolone. Serum starvation also could not suppress CENP-E mRNA completely. DISCUSSION Since its introduction in 1992, numerous variants of the differential display method and continuous improvements including RAP-PCR have proved to have both efficiency and reliability in examination of differentially regulated genes. The results of the present study reveal that RAP-PCR is a suitable method to identify differentially expressed genes in rheumatoid synovial fibroblasts. The mRNA, which has been found to be upregulated in rheumatoid synovial fibroblasts, codes for a kinesin-like motor protein named CENP-E, which was first characterized in 1991. It is a member of a family of centromere-associated proteins, of which six (CENP-A to CENP-F) are currently known. CENP-E itself is a kinetochore motor, which accumulates transiently at kinetochores in the G2 phase of the cell cycle before mitosis takes place, appears to modulate chromosome movement and spindle elongation,and is degraded at the end of mitosis. The presence or upregulation of CENP-E has never been associated with RA.The three-dimensional structure of CENP-E includes a coiled-coil domain. This has important functions and shows links to known pathways in RA pathophysiology. Coiled-coil domains can also be found in jun and fos oncogene products, which are frequently upregulated in RA synovial fibroblasts. They are also involved in DNA binding and transactivation processes resembling the situation in AP-1 (Jun/Fos)-dependent DNA-binding in rheumatoid synovium. Most interestingly, these coiled-coil motifs are crucial for the assembly of viral proteins, and the upregulation of CENP-E might reflect the influence of infectious agents in RA synovium. We also performed experiments showing that serum starvation decreased, but did not completely inhibit CENP-E mRNA expression. This shows that CENP-E is related to, but does not completely depend on proliferation of these cells. In addition, we determined the growth rate of CENP-E high and low expressors, showing that it was independent from the amount of CENP-E expression. supporting the statement that upregulation of CENP-E reflects an activated RA fibroblast phenotype. In summary, the results of the present study support the hypothesis that CENP-E, presumably independently from medication, may not only be upregulated, but may also be involved in RA pathophysiology.
Collapse
Affiliation(s)
- F Kullmann
- Department of Internal Medicine I, University of Regensburg, Regensburg, Bavaria, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
|
193
|
Wiemann S, Rechmann S, Benes V, Voss H, Schwager C, Vlcek C, Stegemann J, Zimmermann J, Erfle H, Paces V, Ansorge W. Sequencing and analysis of 51 kb on the right arm of chromosome XV from Saccharomyces cerevisiae reveals 30 open reading frames. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(19960315)12:3<281::aid-yea904>3.0.co;2-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
194
|
Jiang W, Jimenez G, Wells NJ, Hope TJ, Wahl GM, Hunter T, Fukunaga R. PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell 1998; 2:877-85. [PMID: 9885575 DOI: 10.1016/s1097-2765(00)80302-0] [Citation(s) in RCA: 278] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have identified a novel human protein, PRC1, that is involved in cytokinesis. PRC1 is a good substrate for several CDKs in vitro and is phosphorylated in vivo at sites that are phosphorylated by CDK in vitro, strongly suggesting that PRC1 is an in vivo CDK substrate. PRC1 has sequence homology to the budding yeast anaphase spindle elongation factor Ase1p. Like Ase1p, PRC1 protein levels are high during S and G2/M and drop dramatically after cells exit mitosis and enter G1. PRC1 is a nuclear protein in interphase, becomes associated with mitotic spindles in a highly dynamic manner during mitosis, and localizes to the cell mid-body during cytokinesis. Microinjection of anti-PRC1 antibodies into HeLa cells blocked cellular cleavage, but not nuclear division, indicating a functional role for PRC1 in the process of cytokinesis.
Collapse
Affiliation(s)
- W Jiang
- Salk Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
195
|
Chen G, Nguyen PH, Courey AJ. A role for Groucho tetramerization in transcriptional repression. Mol Cell Biol 1998; 18:7259-68. [PMID: 9819412 PMCID: PMC109307 DOI: 10.1128/mcb.18.12.7259] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1998] [Accepted: 09/04/1998] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Groucho (Gro) protein is a corepressor required by a number of DNA-binding transcriptional repressors. Comparison of Gro with its homologues in other eukaryotic organisms reveals that Gro contains, in addition to a conserved C-terminal WD repeat domain, a conserved N-terminal domain, which has previously been implicated in transcriptional repression. We determined, via a variety of hydrodynamic measurements as well as protein cross-linking, that native Gro is a tetramer in solution and that tetramerization is mediated by two putative amphipathic alpha-helices (termed leucine zipper-like motifs) found in the N-terminal region. Point mutations in the leucine zipper-like motifs that block tetramerization also block repression by Gro, as assayed in cultured Drosophila cells with Gal4-Gro fusion proteins. Furthermore, the heterologous tetramerization domain from p53 fully substitutes for the Gro tetramerization domain in transcriptional repression. These findings suggest that oligomerization is essential for Gro-mediated repression and that the primary function of the conserved N-terminal domain is to mediate this oligomerization.
Collapse
Affiliation(s)
- G Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
196
|
Chan GK, Schaar BT, Yen TJ. Characterization of the kinetochore binding domain of CENP-E reveals interactions with the kinetochore proteins CENP-F and hBUBR1. J Cell Biol 1998; 143:49-63. [PMID: 9763420 PMCID: PMC2132809 DOI: 10.1083/jcb.143.1.49] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/1998] [Revised: 07/23/1998] [Indexed: 12/04/2022] Open
Abstract
We have identified a 350-amino acid domain in the kinetochore motor CENP-E that specifies kinetochore binding in mitosis but not during interphase. The kinetochore binding domain was used in a yeast two-hybrid screen to isolate interacting proteins that included the kinetochore proteins CENP-E, CENP-F, and hBUBR1, a BUB1-related kinase that was found to be mutated in some colorectal carcinomas (Cahill, D.P., C. Lengauer, J. Yu, G.J. Riggins, J.K. Wilson, S.D. Markowitz, K.W. Kinzler, and B. Vogelstein. 1998. Nature. 392:300-303). CENP-F, hBUBR1, and CENP-E assembled onto kinetochores in sequential order during late stages of the cell cycle. These proteins therefore define discrete steps along the kinetochore assembly pathway. Kinetochores of unaligned chromosome exhibited stronger hBUBR1 and CENP-E staining than those of aligned chromosomes. CENP-E and hBUBR1 remain colocalized at kinetochores until mid-anaphase when hBUBR1 localized to portions of the spindle midzone that did not overlap with CENP-E. As CENP-E and hBUBR1 can coimmunoprecipitate with each other from HeLa cells, they may function as a motor-kinase complex at kinetochores. However, the complex distribution pattern of hBUBR1 suggests that it may regulate multiple functions that include the kinetochore and the spindle midzone.
Collapse
Affiliation(s)
- G K Chan
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
197
|
Zecevic M, Catling AD, Eblen ST, Renzi L, Hittle JC, Yen TJ, Gorbsky GJ, Weber MJ. Active MAP kinase in mitosis: localization at kinetochores and association with the motor protein CENP-E. J Cell Biol 1998; 142:1547-58. [PMID: 9744883 PMCID: PMC2141767 DOI: 10.1083/jcb.142.6.1547] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/1998] [Revised: 07/23/1998] [Indexed: 02/07/2023] Open
Abstract
To investigate possible involvement of the mitogen-activated protein (MAP) kinases ERK1 and ERK2 (extracellular signal-regulated kinases) in somatic cell mitosis, we have used indirect immunofluorescence with a highly specific phospho-MAP kinase antibody and found that a portion of the active MAP kinase is localized at kinetochores, asters, and the midbody during mitosis. Although the aster labeling was constant from the time of nuclear envelope breakdown, the kinetochore labeling first appeared at early prometaphase, started to fade during chromosome congression, and then disappeared at midanaphase. At telophase, active MAP kinase localized at the midbody. Based on colocalization and the presence of a MAP kinase consensus phosphorylation site, we identified the kinetochore motor protein CENP-E as a candidate mitotic substrate for MAP kinase. CENP-E was phosphorylated in vitro by MAP kinase on sites that are known to regulate its interactions with microtubules and was found to associate in vivo preferentially with the active MAP kinase during mitosis. Therefore, the presence of active MAP kinase at specific mitotic structures and its interaction with CENP-E suggest that MAP kinase could play a role in mitosis at least in part by altering the ability of CENP-E to mediate interactions between chromosomes and microtubules.
Collapse
Affiliation(s)
- M Zecevic
- Department of Microbiology and Cancer Center, University of Virginia, Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Maney T, Hunter AW, Wagenbach M, Wordeman L. Mitotic centromere-associated kinesin is important for anaphase chromosome segregation. J Cell Biol 1998; 142:787-801. [PMID: 9700166 PMCID: PMC2148171 DOI: 10.1083/jcb.142.3.787] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mitotic centromere-associated kinesin (MCAK) is recruited to the centromere at prophase and remains centromere associated until after telophase. MCAK is a homodimer that is encoded by a single gene and has no associated subunits. A motorless version of MCAK that binds centromeres but not microtubules disrupts chromosome segregation during anaphase. Antisense-induced depletion of MCAK results in the same defect. MCAK overexpression induces centromere-independent bundling and eventual loss of spindle microtubule polymer suggesting that centromere-associated bundling and/or depolymerization activity is required for anaphase. Live cell imaging indicates that MCAK may be required to coordinate the onset of sister centromere separation.
Collapse
Affiliation(s)
- T Maney
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
199
|
Starr DA, Williams BC, Hays TS, Goldberg ML. ZW10 helps recruit dynactin and dynein to the kinetochore. J Cell Biol 1998; 142:763-74. [PMID: 9700164 PMCID: PMC2148168 DOI: 10.1083/jcb.142.3.763] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1998] [Revised: 07/01/1998] [Indexed: 02/08/2023] Open
Abstract
Mutations in the Drosophila melanogaster zw10 gene, which encodes a conserved, essential kinetochore component, abolish the ability of dynein to localize to kinetochores. Several similarities between the behavior of ZW10 protein and dynein further support a role for ZW10 in the recruitment of dynein to the kinetochore: (a) in response to bipolar tension across the chromosomes, both proteins mostly leave the kinetochore at metaphase, when their association with the spindle becomes apparent; (b) ZW10 and dynein both bind to functional neocentromeres of structurally acentric minichromosomes; and (c) the localization of both ZW10 and dynein to the kinetochore is abolished in cells mutant for the gene rough deal. ZW10's role in the recruitment of dynein to the kinetochore is likely to be reasonably direct, because dynamitin, the p50 subunit of the dynactin complex, interacts with ZW10 in a yeast two-hybrid screen. Since in zw10 mutants no defects in chromosome behavior are observed before anaphase onset, our results suggest that dynein at the kinetochore is essential for neither microtubule capture nor congression to the metaphase plate. Instead, dynein's role at the kinetochore is more likely to be involved in the coordination of chromosome separation and/or poleward movement at anaphase onset.
Collapse
Affiliation(s)
- D A Starr
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | |
Collapse
|
200
|
Yoda K, Ando S, Okuda A, Kikuchi A, Okazaki T. In vitro assembly of the CENP-B/alpha-satellite DNA/core histone complex: CENP-B causes nucleosome positioning. Genes Cells 1998; 3:533-48. [PMID: 9797455 DOI: 10.1046/j.1365-2443.1998.00210.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have studied the nucleosome structure formed from alpha-satellite DNA bound with CENP-B and core histones, in order to develop a previous proposal that the CENP-B dimer may play a critical role in the assembly of higher order structures of the human centromere by juxtaposing CENP-B boxes in long alpha-satellite arrays. RESULTS The dimeric structure of CENP-B was sufficiently stable to bundle together two 3.5 kbp DNA fragments when each DNA contained a CENP-B box. When the same length of DNA included two CENP-B boxes, the intra-molecular interaction with the CENP-B dimer predominated, resulting in the formation of loop structures. The in vitro assembly of CENP-B/alpha-satellite DNA/core histone complexes with the aid of nucleosome assembly protein-1 (NAP-1) permitted an investigation into the nucleosome arrangement in alpha-satellite DNA with CENP-B bound to CENP-B boxes. Footprint analyses with micrococcal nuclease (MNase) revealed that CENP-B causes nucleosome positioning between pairs of CENP-B boxes with unique hypersensitive sites created on both sides. CONCLUSION We propose that CENP-B functions as a structural factor in the centromere region in order to establish a unique, centromere specific pattern of nucleosome positioning.
Collapse
Affiliation(s)
- K Yoda
- Bioscience Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-01, Japan
| | | | | | | | | |
Collapse
|