151
|
Ameri J, Ståhlberg A, Pedersen J, Johansson JK, Johannesson MM, Artner I, Semb H. FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 2010; 28:45-56. [PMID: 19890880 DOI: 10.1002/stem.249] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor (FGF) signaling controls axis formation during endoderm development. Studies in lower vertebrates have demonstrated that FGF2 primarily patterns the ventral foregut endoderm into liver and lung, whereas FGF4 exhibits broad anterior-posterior and left-right patterning activities. Furthermore, an inductive role of FGF2 during dorsal pancreas formation has been shown. However, whether FGF2 plays a similar role during human endoderm development remains unknown. Here, we show that FGF2 specifies hESC-derived definitive endoderm (DE) into different foregut lineages in a dosage-dependent manner. Specifically, increasing concentrations of FGF2 inhibits hepatocyte differentiation, whereas intermediate concentration of FGF2 promotes differentiation toward a pancreatic cell fate. At high FGF2 levels specification of midgut endoderm into small intestinal progenitors is increased at the expense of PDX1(+) pancreatic progenitors. High FGF2 concentrations also promote differentiation toward an anterior foregut pulmonary cell fate. Finally, by dissecting the FGF receptor intracellular pathway that regulates pancreas specification, we demonstrate for the first time to the best of our knowledge that induction of PDX1(+) pancreatic progenitors relies on FGF2-mediated activation of the MAPK signaling pathway. Altogether, these observations suggest a broader gut endodermal patterning activity of FGF2 that corresponds to what has previously been advocated for FGF4, implying a functional switch from FGF4 to FGF2 during evolution. Thus, our results provide new knowledge of how cell fate specification of human DE is controlled-facts that will be of great value for future regenerative cell therapies.
Collapse
Affiliation(s)
- Jacqueline Ameri
- Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
152
|
Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 2010; 20:244-56. [PMID: 20188563 DOI: 10.1016/j.tcb.2010.01.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/11/2023]
Abstract
Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.
Collapse
|
153
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
154
|
Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239:16-33. [PMID: 19544585 DOI: 10.1002/dvdy.22009] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue-specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs.
Collapse
Affiliation(s)
- Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
155
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
156
|
De Robertis EM. Spemann's organizer and the self-regulation of embryonic fields. Mech Dev 2009; 126:925-41. [PMID: 19733655 PMCID: PMC2803698 DOI: 10.1016/j.mod.2009.08.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 02/05/2023]
Abstract
Embryos and developing organs have the remarkable ability of self-regenerating after experimental manipulations. In the Xenopus blastula half-embryos can regenerate the missing part, producing identical twins. Studies on the molecular nature of Spemann's organizer have revealed that self-regulation results from the battle between two signaling centers under reciprocal transcriptional control. Long-range communication between the dorsal and ventral sides is mediated by the action of growth factor antagonists - such as the BMP antagonist Chordin - that regulate the flow of BMPs within the embryonic morphogenetic field. BMPs secreted by the dorsal Spemann organizer tissue are released by metalloproteinases of the Tolloid family, which cleave Chordin at a distance of where they were produced. The dorsal center secretes Chordin, Noggin, BMP2 and ADMP. The ventral center of the embryo secretes BMP4, BMP7, Sizzled, Crossveinless-2 and Tolloid-related. Crossveinless-2 binds Chordin/BMP complexes, facilitating their flow towards the ventral side, where BMPs are released by Tolloid allowing peak BMP signaling. Self-regulation occurs because transcription of ventral genes is induced by BMP while transcription of dorsal genes is repressed by BMP signals. This assures that for each action of Spemann's organizer there is a reaction in the ventral side of the embryo. Because both dorsal and ventral centers express proteins of similar biochemical activities, they can compensate for each other. A novel biochemical pathway of extracellular growth factor signaling regulation has emerged from these studies in Xenopus. This remarkable dorsal-ventral positional information network has been conserved in evolution and is ancestral to all bilateral animals.
Collapse
Affiliation(s)
- E M De Robertis
- Howard Hughes Medical Institute, Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA.
| |
Collapse
|
157
|
Lee SJ, Kim S, Choi SC, Han JK. XPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis. Mech Dev 2009; 127:49-61. [PMID: 19909807 DOI: 10.1016/j.mod.2009.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 11/02/2009] [Accepted: 11/05/2009] [Indexed: 12/24/2022]
Abstract
Retinoic acid (RA) signaling is important for the early steps of nephrogenic cell fate specification. Here, we report a novel target gene of RA signaling named XPteg (Xenopus proximal tubules-expressed gene) which is critical for pronephric development. XPteg starts to be expressed at the earliest stage of embryonic kidney specification and was restricted to the pronephric proximal tubules during kidney development. Anti-sense morpholino (MO)-mediated knockdown of XPteg perturbed formation of pronephros as demonstrated by reduced expression of pronephric tubule markers. Conversely, overexpression of XPteg promoted endogenous and ectopic expression of those markers and expanded pronephric tubules. Treatment of retinoic acid induced the expression of XPteg in the pronephric field without protein synthesis. Furthermore, we found that the pronephric defects caused by a dominant negative RA receptor could be rescued by coexpression of XPteg. Taken together, these results suggest that XPteg functions as a direct transcriptional target of RA signaling to regulate pronephric tubulogenesis in Xenopus early development.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, South Korea
| | | | | | | |
Collapse
|
158
|
Samuel LJ, Latinkić BV. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling. PLoS One 2009; 4:e7650. [PMID: 19862329 PMCID: PMC2763344 DOI: 10.1371/journal.pone.0007650] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 10/07/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.
Collapse
Affiliation(s)
- Lee J. Samuel
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Branko V. Latinkić
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
- * E-mail:
| |
Collapse
|
159
|
Kriebitz NN, Kiecker C, McCormick L, Lumsden A, Graham A, Bell E. PRDC regulates placode neurogenesis in chick by modulating BMP signalling. Dev Biol 2009; 336:280-92. [PMID: 19836367 DOI: 10.1016/j.ydbio.2009.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 01/09/2023]
Abstract
The epibranchial placodes generate the neurons of the geniculate, petrosal, and nodose cranial sensory ganglia. Previously, it has been shown that bone morphogenetic proteins (BMPs) are involved in the formation of these structures. However, it has been unclear as to whether BMP signalling has an ongoing function in directing the later development of the epibranchial placodes, and how this signalling is regulated. Here, we demonstrate that BMPs maintain placodal neurogenesis and that their activity is modulated by a member of the Cerberus/Dan family of BMP antagonists, Protein Related to Dan and Cerberus (PRDC). We find that Bmp4 is expressed in the epibranchial placodes while Bmp7 and PRDC are expressed in the pharyngeal pouches. The timing and regional expression of these three genes suggest that BMP7 is involved in inducing placode neurogenesis and BMP4 in maintaining it and that BMP activity is modulated by PRDC. To investigate this hypothesis, we have performed both gain- and loss- of-function experiments with PRDC and find that it can modulate the BMP signals that induce epibranchial neurogenesis: a gain of PRDC function results in a loss of Bmp4 and hence placode neurogenesis is inhibited; conversely, a loss of PRDC function induces ectopic Bmp4 and an expansion of placode neurogenesis. This modulation is therefore necessary for the number and positioning of the epibranchial neurons.
Collapse
Affiliation(s)
- Nadja N Kriebitz
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunts House, Kings College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
160
|
FOLEY ANNC, STERN CLAUDIOD. Evolution of vertebrate forebrain development: how many different mechanisms? J Anat 2009. [DOI: 10.1046/j.1469-7580.199.parts1-2.5.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
161
|
Rogers C, Moody SA, Casey E. Neural induction and factors that stabilize a neural fate. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:249-62. [PMID: 19750523 PMCID: PMC2756055 DOI: 10.1002/bdrc.20157] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neural ectoderm of vertebrates forms when the bone morphogenetic protein (BMP) signaling pathway is suppressed. Herein, we review the molecules that directly antagonize extracellular BMP and the signaling pathways that further contribute to reduce BMP activity in the neural ectoderm. Downstream of neural induction, a large number of "neural fate stabilizing" (NFS) transcription factors are expressed in the presumptive neural ectoderm, developing neural tube and ultimately in neural stem cells. Herein, we review what is known about their activities during normal development to maintain a neural fate and regulate neural differentiation. Further elucidation of how the NFS genes interact to regulate neural specification and differentiation should ultimately prove useful for regulating the expansion and differentiation of neural stem and progenitor cells.
Collapse
Affiliation(s)
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, The George Washington University
| | - Elena Casey
- Department of Biology, Georgetown University
| |
Collapse
|
162
|
Yasuoka Y, Kobayashi M, Kurokawa D, Akasaka K, Saiga H, Taira M. Evolutionary origins of blastoporal expression and organizer activity of the vertebrate gastrula organizer gene lhx1 and its ancient metazoan paralog lhx3. Development 2009; 136:2005-14. [DOI: 10.1242/dev.028530] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the LIM homeobox gene lhx1 (lim1) is specific to the vertebrate gastrula organizer. Lhx1 functions as a transcriptional regulatory core protein to exert `organizer' activity in Xenopus embryos. Its ancient paralog, lhx3 (lim3),is expressed around the blastopore in amphioxus and ascidian, but not vertebrate, gastrulae. These two genes are thus implicated in organizer evolution, and we addressed the evolutionary origins of their blastoporal expression and organizer activity. Gene expression analysis of organisms ranging from cnidarians to chordates suggests that blastoporal expression has its evolutionary root in or before the ancestral eumetazoan for lhx1,but possibly in the ancestral chordate for lhx3, and that in the ascidian lineage, blastoporal expression of lhx1 ceased, whereas endodermal expression of lhx3 has persisted. Analysis of organizer activity using Xenopus embryos suggests that a co-factor of LIM homeodomain proteins, Ldb, has a conserved function in eumetazoans to activate Lhx1, but that Lhx1 acquired organizer activity in the bilaterian lineage,Lhx3 acquired organizer activity in the deuterostome lineage and ascidian Lhx3 acquired a specific transactivation domain to confer organizer activity on this molecule. Knockdown analysis using cnidarian embryos suggests that Lhx1 is required for chordin expression in the blastoporal region. These data suggest that Lhx1 has been playing fundamental roles in the blastoporal region since the ancestral eumetazoan arose, that it contributed as an`original organizer gene' to the evolution of the vertebrate gastrula organizer, and that Lhx3 could be involved in the establishment of organizer gene networks.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Kobayashi
- Department of Biological Sciences, Graduate School of Science and Engineering,Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397,Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura Kanagawa, 238-0225, Japan
| | - Koji Akasaka
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, 1024 Koajiro, Misaki, Miura Kanagawa, 238-0225, Japan
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering,Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachiohji, Tokyo 192-0397,Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
163
|
Joó JG. Recent perspectives on the genetic background of neural tube defects with special regard to iniencephaly. Expert Rev Mol Diagn 2009; 9:281-93. [PMID: 19379086 DOI: 10.1586/erm.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iniencephaly is a rare and mostly lethal type of neural tube defect. The pattern of inheritance of this group of malformations is multifactorial, rendering the identification of the underlying causes. Numerous studies have been conducted to elucidate the genetic basis of human neurulation. Essential signaling pathways of the development of the CNS include the planar cell polarity pathway, which is important for the initiation of neural tube closure, as well as the sonic hedgehog pathway, which regulates the neural plate bending. Genes influencing the different stages of neurulation have been investigated for their eventual role in the development of these malformations. Among the environmental factors, folic acid seems to be the most important modifier of the risk of human neural tube defects. Genes of the folate metabolism pathways have also been investigated to identify mutations resulting in increased risk of neural tube defects. In this review we have attempted to summarize the knowledge on iniencephaly and neural tube defects, with special regard to genetic factors of the etiology.
Collapse
Affiliation(s)
- József Gábor Joó
- 1st Department of Obstetrics and Gynecology, Faculty of General Medicine, Semmelweis University, 1088 Budapest, Baross utca 27, Hungary.
| |
Collapse
|
164
|
Nakajima Y, Okamoto H, Kubo T. Expression cloning of Xenopus zygote arrest 2 (Xzar2) as a novel epidermalization-promoting factor in early embryos of Xenopus laevis. Genes Cells 2009; 14:583-95. [PMID: 19371384 DOI: 10.1111/j.1365-2443.2009.01291.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In vertebrates, BMPs are known to induce epidermal fate at the expense of neural fate. To further explore the molecular mechanisms of epidermal differentiation, we have developed an expression cloning system for isolating cDNAs that encode intrinsic proteins with epidermal-inducing activity. Under our conditions, 92.5% of the dissociated animal cap cells treated with the conditioned medium from H(2)O-injected control oocytes differentiated into neural tissue, which developed neural fibers and expressed a neural marker (NCAM). In contrast, when dissociated animal cap cells were treated with the supernatant collected from the culture of BMP-4 mRNA-injected oocytes, the microcultures differentiated into epidermal tissue, which developed cilium. The cells expressed an epidermal marker (keratin), but not NCAM. Using the dissociated animal cap cells in a functional screening system, we cloned a cDNA encoding a novel polypeptide, Xenopus zygote arrest 2 (Xzar2). Over-expression of Xzar2 caused anterior defects and suppressed expressions of the neural markers. The epidermalization-promoting activity of Xzar2 was substantially not affected by over-expression of the BMP signaling antagonists Smad6 and 7, and a dominant negative receptor for BMP (tBR). Our results suggest that Xzar2 is involved in epidermal fate determination mainly through signaling pathways distinct from that of BMP-Smad during early embryogenesis.
Collapse
Affiliation(s)
- Yuka Nakajima
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | | | | |
Collapse
|
165
|
Abstract
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated at various stages, and extracellulary, mainly regulated by certain classes of molecules termed as BMP antagonists and pro-BMP factors. BMP antagonists inhibit BMP function by prohibiting them from binding their cognate receptors, whereas pro-BMP factors stimulate BMP function. In this review, the functions of these BMP regulators will be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Motoko Yanagita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
166
|
Meadows SM, Salanga MC, Krieg PA. Kruppel-like factor 2 cooperates with the ETS family protein ERG to activate Flk1 expression during vascular development. Development 2009; 136:1115-25. [PMID: 19244281 DOI: 10.1242/dev.029538] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The VEGF receptor, FLK1, is essential for differentiation of the endothelial lineage and for embryonic vascular development. Using comparative genomics, we have identified conserved ETS and Krüppel-like factor (KLF) binding sites within the Flk1 enhancer. In transgenic studies, mutation of either site results in dramatic reduction of Flk1 reporter expression. Overexpression of KLF2 or the ETS transcription factor ERG is sufficient to induce ectopic Flk1 expression in the Xenopus embryo. Inhibition of KLF2 function in the Xenopus embryo results in a dramatic reduction in Flk1 transcript levels. Furthermore, we show that KLF2 and ERG associate in a physical complex and that the two proteins synergistically activate transcription of Flk1. Since the ETS and KLF protein families have independently been recognized as important regulators of endothelial gene expression, cooperation between the two families has broad implications for gene regulation during development, normal physiology and vascular disease.
Collapse
Affiliation(s)
- Stryder M Meadows
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
167
|
Faunes F, Sánchez N, Castellanos J, Vergara IA, Melo F, Larraín J. Identification of novel transcripts with differential dorso-ventral expression in Xenopus gastrula using serial analysis of gene expression. Genome Biol 2009; 10:R15. [PMID: 19210784 PMCID: PMC2688288 DOI: 10.1186/gb-2009-10-2-r15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/25/2008] [Accepted: 02/11/2009] [Indexed: 11/12/2022] Open
Abstract
Comparison of dorsal and ventral transcriptomes of Xenopus tropicalis gastrulae using serial analysis of gene expression provides at least 86 novel differentially expressed transcripts. Background Recent evidence from global studies of gene expression indicates that transcriptomes are more complex than expected. Xenopus has been typically used as a model organism to study early embryonic development, particularly dorso-ventral patterning. In order to identify novel transcripts involved in dorso-ventral patterning, we compared dorsal and ventral transcriptomes of Xenopus tropicalis at the gastrula stage using serial analysis of gene expression (SAGE). Results Of the experimental tags, 54.5% were confidently mapped to transcripts and 125 showed a significant difference in their frequency of occurrence between dorsal and ventral libraries. We selected 20 differentially expressed tags and assigned them to specific transcripts using bioinformatics and reverse SAGE. Five mapped to transcripts with known dorso-ventral expression and the frequency of appearance for these tags in each library is in agreement with the expression described by other methods. The other 15 tags mapped to transcripts with no previously described asymmetric expression along the dorso-ventral axis. The differential expression of ten of these novel transcripts was validated by in situ hybridization and/or RT-PCR. We can estimate that this SAGE experiment provides a list of at least 86 novel transcripts with differential expression along the dorso-ventral axis. Interestingly, the expression of some novel transcripts was independent of β-catenin. Conclusions Our SAGE analysis provides a list of novel transcripts with differential expression in the dorso-ventral axis and a large number of orphan tags that can be used to identify novel transcripts and to improve the current annotation of the X. tropicalis genome.
Collapse
Affiliation(s)
- Fernando Faunes
- Center for Cell Regulation and Pathology and Center for Aging and Regeneration, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | | | | | | | | | | |
Collapse
|
168
|
Experimental embryological methods for analysis of neural induction in the amphibian. Methods Mol Biol 2008. [PMID: 19030815 DOI: 10.1007/978-1-60327-483-8_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
169
|
Wills A, Dickinson K, Khokha M, Baker JC. Bmp signaling is necessary and sufficient for ventrolateral endoderm specification in Xenopus. Dev Dyn 2008; 237:2177-86. [PMID: 18651654 PMCID: PMC4497515 DOI: 10.1002/dvdy.21631] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Here we show that Bmp signaling is necessary and sufficient for the specification of ventral endoderm in Xenopus embryos. Overexpression of Bmp4 in ectoderm induces markers of endoderm, including Sox17beta, Mixer, and VegT, but cannot induce the expression of the dorsoanterior markers, Xhex and Cerberus. Furthermore, knockdown approaches using overexpression of Bmp antagonists and morpholinos designed against Bmp4, Bmp2, and Bmp7 demonstrate that Bmp signaling is critical for ventral, but not dorsoanterior endoderm formation. This activity is not simply a result of embryonic dorsalization as markers for dorsal endoderm are not expanded. We further show that endodermal cells of either ventral or dorsal character do not form when both Wnt and Bmp signals are abolished. Overall, this report strongly suggests that Bmp plays an essential role in ventral endoderm specification.
Collapse
Affiliation(s)
- Andrea Wills
- Department of Molecular and Cellular Biology, University of California, Berkeley, California, USA
| | | | | | | |
Collapse
|
170
|
Smith JC, Hagemann A, Saka Y, Williams PH. Understanding how morphogens work. Philos Trans R Soc Lond B Biol Sci 2008; 363:1387-92. [PMID: 18198154 DOI: 10.1098/rstb.2007.2256] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In this article, we describe the mechanisms by which morphogens in the Xenopus embryo exert their long-range effects. Our results are consistent with the idea that signalling molecules such as activin and the nodal-related proteins traverse responding tissue not by transcytosis or by cytonemes but by movement through the extracellular space. We suggest, however, that additional experiments, involving real-time imaging of morphogens, are required for a real understanding of what influences signalling range and the shape of a morphogen gradient.
Collapse
Affiliation(s)
- J C Smith
- Wellcome Trust/CR-UK Gurdon Institute, Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | | | | | |
Collapse
|
171
|
Fujii H, Sakai M, Nishimatsu SI, Nohno T, Mochii M, Orii H, Watanabe K. VegT, eFGF and Xbra cause overall posteriorization while Xwnt8 causes eye-level restricted posteriorization in synergy with chordin in early Xenopus development. Dev Growth Differ 2008; 50:169-80. [PMID: 18318733 DOI: 10.1111/j.1440-169x.2008.01014.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined several candidate posterior/mesodermal inducing molecules using permanent blastula-type embryos (PBEs) as an assay system. Candidate molecules were injected individually or in combination with the organizer factor chordin mRNA. Injection of chordin alone resulted in a white hemispherical neural tissue surrounded by a large circular cement gland, together with anterior neural gene expression and thus the development of the anterior-most parts of the embryo, without mesodermal tissues. When VegT, eFGF or Xbra mRNAs were injected into a different blastomere of the chordin-injected PBEs, the embryos elongated and formed eye, muscle and pigment cells, and expressed mesodermal and posterior neural genes. These embryos formed the full spectrum of the anteroposterior embryonic axis. In contrast, injection of CSKA-Xwnt8 DNA into PBEs injected with chordin resulted in eye formation and expression of En2, a midbrain/hindbrain marker, and Xnot, a notochord marker, but neither elongation, muscle formation nor more posterior gene expression. Injection of chordin and posteriorizing molecules into the same cell did not result in elongation of the embryo. Thus, by using PBEs as the host test system we show that (i) overall anteroposterior neural development, mesoderm (muscle) formation, together with embryo elongation can occur through the synergistic effect(s) of the organizer molecule chordin, and each of the 'verall posteriorizing molecules'eFGF, VegT and Xbra; (ii) Xwnt8-mediated posteriorization is restricted to the eye level and is independent of mesoderm formation; and (iii) proper anteroposterior patterning requires a separation of the dorsalizing and posteriorizing gene expression domains.
Collapse
Affiliation(s)
- Hidefumi Fujii
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori Akou, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | |
Collapse
|
172
|
Asashima M, Michiue T, Kurisaki A. Elucidation of the role of activin in organogenesis using a multiple organ induction system with amphibian and mouse undifferentiated cells in vitro. Dev Growth Differ 2008; 50 Suppl 1:S35-45. [DOI: 10.1111/j.1440-169x.2008.00990.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
173
|
Abstract
The Wnt signaling pathway is an ancient and evolutionarily conserved pathway that regulates crucial aspects of cell fate determination, cell migration, cell polarity, neural patterning and organogenesis during embryonic development. The Wnts are secreted glycoproteins and comprise a large family of nineteen proteins in humans hinting to a daunting complexity of signaling regulation, function and biological output. To date major signaling branches downstream of the Fz receptor have been identified including a canonical or Wnt/beta-catenin dependent pathway and the non-canonical or beta-catenin-independent pathway which can be further divided into the Planar Cell Polarity and the Wnt/Ca(2+) pathways, and these branches are being actively dissected at the molecular and biochemical levels. In this review, we will summarize the most recent advances in our understanding of these Wnt signaling pathways and the role of these pathways in regulating key events during embryonic patterning and morphogenesis.
Collapse
Affiliation(s)
- Yuko Komiya
- Department of Biochemistry; University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School
| | - Raymond Habas
- Department of Biochemistry; University of Medicine and Dentistry of New Jersey—Robert Wood Johnson Medical School
- The Cancer Institute of New Jersey; Piscataway, New Jersey USA
| |
Collapse
|
174
|
Tavares AT, Andrade S, Silva AC, Belo JA. Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryo. Development 2008; 134:2051-60. [PMID: 17507406 DOI: 10.1242/dev.000901] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The TGF-beta-related molecule Nodal plays an essential and conserved role in left-right patterning of the vertebrate embryo. Previous reports have shown that the zebrafish and mouse Cerberus-related proteins Charon and Cerberus-like-2 (Cerl-2), respectively, act in the node region to prevent the Nodal signal from crossing to the right side, whereas chick Cerberus (cCer) has an unclear function in the left-side mesoderm. In this study, we investigate the transcriptional regulation and function of cCer in left-right development. By analyzing the enhancer activity of cCer 5' genomic sequences in electroporated chick embryos, we identified a cCer left-side enhancer that contains two FoxH1 and one SMAD binding site. We show that these Nodal-responsive elements are necessary and sufficient for the activation of transcription in the left-side mesoderm. In transgenic mouse embryos, cCer regulatory sequences behave as in chick embryos, suggesting that the cis-regulatory sequences of Cerberus-related genes have diverged during vertebrate evolution. Moreover, our findings from cCer overexpression and knockdown experiments indicate that cCer is a negative-feedback regulator of Nodal asymmetric signaling. We propose that cCer and mouse Cerl-2 have evolved distinct regulatory mechanisms but retained a conserved function in left-right development, which is to restrict Nodal activity to the left side of the embryo.
Collapse
|
175
|
Spence JR, Wells JM. Translational embryology: using embryonic principles to generate pancreatic endocrine cells from embryonic stem cells. Dev Dyn 2008; 236:3218-27. [PMID: 17973329 DOI: 10.1002/dvdy.21366] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Diseases that affect endodermally derived organs such as the lungs, liver, and pancreas include cystic fibrosis, chronic hepatitis, and diabetes, respectively. Despite the prevalence of these diseases, cures remain elusive. While several promising transplantation-based therapies exist for some diseases such as Type 1 diabetes, they are currently limited by the availability of donor-derived tissues. Embryonic stem cells are a promising and renewable source of tissue for transplantation; however, directing their differentiation into specific, adult cell lineages remains a significant challenge. In this review, we will focus on one endodermally derived organ, the pancreas, and discuss how studies of embryonic pancreas development have been used as the basis for the directed, step-wise differentiation of mouse and human embryonic stem cells into pancreatic endocrine cells that are capable of rescuing Type 1 diabetes in animal models.
Collapse
Affiliation(s)
- Jason R Spence
- Division of Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati Ohio 45229-3039, USA
| | | |
Collapse
|
176
|
Asashima M, Kurisaki A, Michiue T. In Vitro Control of Organogenesis by ActivinA Treatment of Amphibian and Mouse Stem Cells. Stem Cells 2008. [DOI: 10.1007/978-1-4020-8274-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
177
|
Abstract
Over the past decade the adoption and refinement of the GAL4 system by the Drosophila field has resulted in a wide array of tools with which the researcher can drive transgene expression in a precise spatiotemporal pattern. The GAL4 system relies on two components: (1) GAL4, a transcriptional activator from yeast, which is expressed in a tissue-specific manner and (2) a transgene under the control of the upstream activation sequence that is bound by GAL4 (UASG). The two components are brought together in a simple genetic cross. In the progeny of the cross, the transgene is only transcribed in those cells or tissues expressing the GAL4 protein. Recent modifications of the GAL4 system have improved the control of both the initiation and the spatial restriction of transgene expression. Here we describe the GAL4 system highlighting the properties that make it a powerful tool for the analysis of gene function in Drosophila and higher organisms.
Collapse
Affiliation(s)
- David A Elliott
- Wellcome Trust/Cancer Research UK Gurdon Institute, and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
178
|
Ishibashi H, Matsumura N, Hanafusa H, Matsumoto K, De Robertis E, Kuroda H. Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mech Dev 2008; 125:58-66. [PMID: 18036787 PMCID: PMC2292103 DOI: 10.1016/j.mod.2007.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 10/04/2007] [Accepted: 10/09/2007] [Indexed: 11/17/2022]
Abstract
The blastula Chordin- and Noggin-expressing (BCNE) center located in the dorsal animal region of the Xenopus blastula embryo contains both prospective anterior neuroectoderm and Spemann organizer precursor cells. Here we show that, contrary to previous reports, the canonical Wnt target homeobox genes, Double knockdown of these genes using antisense morpholinos in Xenopus laevis blocked head formation, reduced the expression of the other BCNE center genes, upregulated Bmp4 expression, and nullified hyperdorsalization by lithium chloride. Moreover, gain- and loss-of-function experiments showed that Siamois and Twin expression is repressed by the vegetal transcription factor VegT. We propose that VegT expression causes maternal beta-Catenin signals to restrict Siamois and Twin expression to the BCNE region. A two-step inhibition of BMP signals by Siamois and Twin-- first by transcriptional repression of Bmp4 and then by activation of the expression of the BMP inhibitors Chordin and Noggin--in the BCNE center is required for head formation.
Collapse
Affiliation(s)
- Hideyuki Ishibashi
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Noriko Matsumura
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hiroshi Hanafusa
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan
| | - E.M. De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA 90095-1662, USA
| | - Hiroki Kuroda
- Faculty of Education (Biology), Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
179
|
Vonica A, Gumbiner BM. The Xenopus Nieuwkoop center and Spemann-Mangold organizer share molecular components and a requirement for maternal Wnt activity. Dev Biol 2007; 312:90-102. [PMID: 17964564 PMCID: PMC2170525 DOI: 10.1016/j.ydbio.2007.09.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 10/22/2022]
Abstract
In Xenopus embryos, the dorso-ventral and antero-posterior axes are established by the Spemann-Mangold organizer. According to the prevalent model of early development, the organizer is induced by the dorsalizing Nieuwkoop signal, which is secreted by the Nieuwkoop center. Formation of the center requires the maternal Wnt pathway, which is active on the dorsal side of embryos. Nevertheless, the molecular nature of the Nieuwkoop signal remains unclear. Since the Nieuwkoop center and the organizer both produce dorsalizing signals in vitro, we asked if they might share molecular components. We find that vegetal explants, the source of Nieuwkoop signal in recombination assays, express a number of organizer genes. The product of one of these genes, chordin, is required for signaling, suggesting that the organizer and the center share at least some molecular components. Furthermore, experiments with whole embryos show that maternal Wnt activity is required in the organizer just as it is needed in the Nieuwkoop center in vitro. We conclude that the maternal Wnt pathway generates the Nieuwkoop center in vitro and the organizer in vivo by activating a common set of genes, without the need of an intermediary signaling step.
Collapse
Affiliation(s)
- Alin Vonica
- The Laboratory of Vertebrate Embryology, The Rockefeller University, P.O. Box 32, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
180
|
Westmoreland JJ, Takahashi S, Wright CVE. Xenopus Lefty requires proprotein cleavage but not N-linked glycosylation to inhibit nodal signaling. Dev Dyn 2007; 236:2050-61. [PMID: 17584861 DOI: 10.1002/dvdy.21210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The Nodal and Nodal-related morphogens are utilized for the specification of distinct cellular identity throughout development by activating discrete target genes in a concentration-dependant manner. Lefty is a principal extracellular antagonist involved in the spatiotemporal regulation of the Nodal morphogen gradient during mesendoderm induction. The Xenopus Lefty proprotein contains a single N-linked glycosylation motif in the mature domain and two potential cleavage sites that would be expected to produce long (Xlefty(L)) and short (Xlefty(S)) isoforms. Here we demonstrate that both isoforms were secreted from Xenopus oocytes, but that Xlefty(L) is the only isoform detected when embryonic tissue was analyzed. In mesoderm induction assays, Xlefty(L) is the functional blocker of Xnr signaling. When secreted from oocytes, vertebrate Lefty molecules were N-linked glycosylated. However, glycan addition was not required to inhibit Xnr signaling and did not influence its movement through the extracellular space. These findings demonstrate that Lefty molecules undergo post-translational modifications and that some of these modifications are required for the Nodal inhibitory function.
Collapse
Affiliation(s)
- Joby J Westmoreland
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
181
|
Michiue T, Danno H, Tanibe M, Ikuzawa M, Asashima M. Xenopus galectin-VIa shows highly specific expression in cement glands and is regulated by canonical Wnt signaling. Gene Expr Patterns 2007; 7:852-7. [PMID: 17706467 DOI: 10.1016/j.modgep.2007.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 06/22/2007] [Accepted: 07/02/2007] [Indexed: 11/16/2022]
Abstract
Anterior-posterior neural patterning of Xenopus embryo is determined during gastrulation and then followed by differentiation of neural structures including brain and eye. The cement gland is a mucus-secreting neural organ located in the anterior end of the neural plate. This study analyzed expression patterns of Xenopus galectin-VIa (Xgalectin-VIa) by whole-mount in situ hybridization, and found highly restricted expression of this gene in the cement gland region. These patterns were similar to those of XAG-1 and XCG, known cement gland-specific genes. In addition, Xgalectin-VIa was expressed in the dorsal edge of eye vesicles, the otic vesicle, and in part of the hatching gland at the tadpole stage. Although the spatial expression pattern was similar, the temporal expression of Xgalectin-VIa differed from that of XAG-1 and XCG. RT-PCR analysis showed only weak Xgalectin-VIa expression in early neurula embryos, whereas both XAG-1 and CGS were strongly expressed at that stage. We also showed that Xgalectin-VIa expression is repressed by enhancement of Wnt signaling and increased by its inhibition. Furthermore, Xgalectin-VIa expression was activated by neural-gene inducer Xotx2, as is the case for XAG-1 and CGS. Together, these results indicated that Xgalectin-VIa possesses different features from other cement gland genes and is a novel and useful marker of the cement gland in developing embryos.
Collapse
Affiliation(s)
- Tatsuo Michiue
- Organ Development Research Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba-city, Ibaraki 305-3962, Japan
| | | | | | | | | |
Collapse
|
182
|
Carmona-Fontaine C, Acuña G, Ellwanger K, Niehrs C, Mayor R. Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm. Dev Biol 2007; 309:208-21. [PMID: 17669393 DOI: 10.1016/j.ydbio.2007.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/13/2007] [Accepted: 07/06/2007] [Indexed: 12/13/2022]
Abstract
It is known the interactions between the neural plate and epidermis generate neural crest (NC), but it is unknown why the NC develops only at the lateral border of the neural plate and not in the anterior fold. Using grafting experiments we show that there is a previously unidentified mechanism that precludes NC from the anterior region. We identify prechordal mesoderm as the tissue that inhibits NC in the anterior territory and show that the Wnt/beta-catenin antagonist Dkk1, secreted by this tissue, is sufficient to mimic this NC inhibition. We show that Dkk1 is required for preventing the formation of NC in the anterior neural folds as loss-of-function experiments using a Dkk1 blocking antibody in Xenopus as well as the analysis of Dkk1-null mouse embryos transform the anterior neural fold into NC. This can be mimicked by Wnt/beta-catenin signaling activation without affecting the anterior posterior patterning of the neural plate, or placodal specification. Finally, we show that the NC cells induced at the anterior neural fold are able to migrate and differentiate as normal NC. These results demonstrate that anterior regions of the embryo lack NC because of a mechanism, conserved from fish to mammals, that suppresses Wnt/beta-catenin signaling via Dkk1.
Collapse
|
183
|
Smith J, Wardle F, Loose M, Stanley E, Patient R. Germ layer induction in ESC--following the vertebrate roadmap. CURRENT PROTOCOLS IN STEM CELL BIOLOGY 2007; Chapter 1:Unit 1D.1. [PMID: 18785165 DOI: 10.1002/9780470151808.sc01d01s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Controlled differentiation of pluripotential cells takes place routinely and with great success in developing vertebrate embryos. It therefore makes sense to take note of how this is achieved and use this knowledge to control the differentiation of embryonic stem cells (ESCs). An added advantage is that the differentiated cells resulting from this process in embryos have proven functionality and longevity. This unit reviews what is known about the embryonic signals that drive differentiation in one of the most informative of the vertebrate animal models of development, the amphibian Xenopus laevis. It summarizes their identities and the extent to which their activities are dose-dependent. The unit details what is known about the transcription factor responses to these signals, describing the networks of interactions that they generate. It then discusses the target genes of these transcription factors, the effectors of the differentiated state. Finally, how these same developmental programs operate during germ layer formation in the context of ESC differentiation is summarized.
Collapse
Affiliation(s)
- Jim Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
184
|
Yamaguti M, Cho KWY, Hashimoto C. Xenopus hairy2b specifies anterior prechordal mesoderm identity within Spemann's organizer. Dev Dyn 2007; 234:102-13. [PMID: 16059909 DOI: 10.1002/dvdy.20523] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Spemann's organizer is a region of the gastrula stage embryo that contains future anterior endodermal and dorsal mesodermal tissues. During gastrulation, the dorsal mesoderm is divided into the prechordal mesoderm and the chordamesoderm. However, little is known regarding how this division is established. We analyzed the role of the anterior prechordal mesoderm-specific gene Xhairy2b in the regionalization of the organizer. We found that mesoderm-inducing transforming growth factor-beta signaling induced Xhairy2b expression. On the other hand, the ectopic expression of Xhairy2b induced the expression of organizer-specific genes and resulted in the formation of a secondary dorsal axis lacking head and notochord structures. We also showed that Xhairy2b down-regulated the expression of ventral mesodermal, anterior endodermal, and chordamesodermal genes. In Xhairy2b-depleted embryos, defects in the specification of anterior prechordal mesoderm identity were observed as the border between the prechordal mesoderm and the chordamesoderm was anteriorly shifted. These results suggest that Xhairy2b establishes the identity of the anterior prechordal mesoderm within Spemann's organizer by inhibiting the formation of neighboring tissues.
Collapse
Affiliation(s)
- Mami Yamaguti
- Department of Biology, Graduate School of Science, Osaka University, Japan
| | | | | |
Collapse
|
185
|
Beloussov LV, Korvin-Pavlovskaya EG, Luchinskaya NN, Kornikova ES. Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
186
|
Abstract
We have characterized two signaling pathways that induce heart tissue during embryonic development. The first is initiated by the Wnt antagonist Dickkopf1 (Dkk1) and involves the homeodomain transcription factor Hex. Other Wnt antagonists are less effective and the potency of Dkk1 might be due to synergy between Wnt antagonizing and another, novel activity emanating from its amino terminal cysteine-rich domain. The second signal is initiated by Nodal and its co-receptor Cripto. Importantly, both the Dkk1/Wnt antagonism and Nodal pathways act on the endoderm that underlies the future heart to control secretion of diffusible factors that induce cardiogenesis in adjacent mesoderm. In this article, we summarize data that Dkk1 induces cardiogenic differentiation cell non-autonomously through the action of the homeodomain transcription factor Hex. We also discuss recent data showing that Nodal also acts indirectly through stimulation of the secreted protein Cerberus, which is a member of the differential-screening selected aberrant in neuroblastoma (DAN) family of secreted proteins. Finally, we present the model that signaling from Dkk1 regulates novel activities, in addition to Wnt antagonism, which are essential for progression beyond initiation of cardiogenesis to control later stages of cardiomyocyte differentiation and myocardial tissue organization.
Collapse
Affiliation(s)
- Ann C Foley
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
187
|
Coolen M, Sauka-Spengler T, Nicolle D, Le-Mentec C, Lallemand Y, Silva CD, Plouhinec JL, Robert B, Wincker P, Shi DL, Mazan S. Evolution of axis specification mechanisms in jawed vertebrates: insights from a chondrichthyan. PLoS One 2007; 2:e374. [PMID: 17440610 PMCID: PMC1847705 DOI: 10.1371/journal.pone.0000374] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/22/2007] [Indexed: 12/31/2022] Open
Abstract
The genetic mechanisms that control the establishment of early polarities and their link with embryonic axis specification and patterning seem to substantially diverge across vertebrates. In amphibians and teleosts, the establishment of an early dorso-ventral polarity determines both the site of axis formation and its rostro-caudal orientation. In contrast, amniotes retain a considerable plasticity for their site of axis formation until blastula stages and rely on signals secreted by extraembryonic tissues, which have no clear equivalents in the former, for the establishment of their rostro-caudal pattern. The rationale for these differences remains unknown. Through detailed expression analyses of key development genes in a chondrichthyan, the dogfish Scyliorhinus canicula, we have reconstructed the ancestral pattern of axis specification in jawed vertebrates. We show that the dogfish displays compelling similarities with amniotes at blastula and early gastrula stages, including the presence of clear homologs of the hypoblast and extraembryonic ectoderm. In the ancestral state, these territories are specified at opposite poles of an early axis of bilateral symmetry, homologous to the dorso-ventral axis of amphibians or teleosts, and aligned with the later forming embryonic axis, from head to tail. Comparisons with amniotes suggest that a dorsal expansion of extraembryonic ectoderm, resulting in an apparently radial symmetry at late blastula stages, has taken place in their lineage. The synthesis of these results with those of functional analyses in model organisms supports an evolutionary link between the dorso-ventral polarity of amphibians and teleosts and the embryonic-extraembryonic organisation of amniotes. It leads to a general model of axis specification in gnathostomes, which provides a comparative framework for a reassessment of conservations both among vertebrates and with more distant metazoans.
Collapse
Affiliation(s)
- Marion Coolen
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Tatjana Sauka-Spengler
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | - Delphine Nicolle
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Chantal Le-Mentec
- Equipe Développement et Evolution des Vertébrés, UPRES-A 8080, Université Paris-Sud, Orsay, France
| | - Yvan Lallemand
- Unité de Génétique Moléculaire de la Morphogenèse, URA Centre National de la Recherche Scientifique (CNRS) 2578, Institut Pasteur, Paris, France
| | - Corinne Da Silva
- Genoscope and UMR Centre National de la Recherche Scientifique (CNRS) 8030, Evry, France
| | - Jean-Louis Plouhinec
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
| | - Benoît Robert
- Unité de Génétique Moléculaire de la Morphogenèse, URA Centre National de la Recherche Scientifique (CNRS) 2578, Institut Pasteur, Paris, France
| | - Patrick Wincker
- Genoscope and UMR Centre National de la Recherche Scientifique (CNRS) 8030, Evry, France
| | - De-Li Shi
- UMR7622, Université Pierre et Marie Curie, Paris, France
| | - Sylvie Mazan
- Equipe Développement et Evolution des Vertébrés, UMR 6218, Université d'Orléans, Orleans, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
188
|
|
189
|
Ramis JM, Collart C, Smith JC. Xnrs and activin regulate distinct genes during Xenopus development: activin regulates cell division. PLoS One 2007; 2:e213. [PMID: 17299593 PMCID: PMC1790703 DOI: 10.1371/journal.pone.0000213] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/19/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The mesoderm of the amphibian embryo is formed through an inductive interaction in which vegetal cells of the blastula-staged embryo act on overlying equatorial cells. Candidate mesoderm-inducing factors include members of the transforming growth factor type beta family such as Vg1, activin B, the nodal-related proteins and derrière. METHODOLOGY AND PRINCIPLE FINDINGS Microarray analysis reveals different functions for activin B and the nodal-related proteins during early Xenopus development. Inhibition of nodal-related protein function causes the down-regulation of regionally expressed genes such as chordin, dickkopf and XSox17alpha/beta, while genes that are mis-regulated in the absence of activin B tend to be more widely expressed and, interestingly, include several that are involved in cell cycle regulation. Consistent with the latter observation, cells of the involuting dorsal axial mesoderm, which normally undergo cell cycle arrest, continue to proliferate when the function of activin B is inhibited. CONCLUSIONS/SIGNIFICANCE These observations reveal distinct functions for these two classes of the TGF-beta family during early Xenopus development, and in doing so identify a new role for activin B during gastrulation.
Collapse
Affiliation(s)
- Joana M. Ramis
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kindgom
| | - Clara Collart
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kindgom
| | - James C. Smith
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge, United Kindgom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
190
|
Yelin R, Kot H, Yelin D, Fainsod A. Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation 2007; 75:393-403. [PMID: 17286601 DOI: 10.1111/j.1432-0436.2006.00147.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is the combination of developmental, morphological, and neurological defects that result from exposing human embryos to ethanol (EtOH). Numerous embryonic structures are affected, leading to a complex viable phenotype affecting among others, the anterior/posterior axis, head, and eye formation. Recent studies have provided evidence suggesting that EtOH teratogenesis is mediated in part through a reduction in retinoic acid (RA) levels, targeting mainly the embryonic organizer (Spemann's organizer) and its subsequent functions. EtOH-treated Xenopus embryos were subjected to an analysis of gene expression patterns. Analysis of organizer-specific genes revealed a transient delay in the invagination of gsc- and chordin-positive cells that eventually reach their normal rostro-caudal position. Dorsal midline genes show defects along the rostro-caudal axis, lacking either their rostral (Xbra and Xnot2) or caudal (FoxA4b and Shh) expression domains. Head-specific markers like Otx2, en2, and Shh show abnormal expression patterns. Otx2 exhibits a reduction in expression levels, while en2 becomes restricted along the dorsal/ventral axis. During neurula stages, Shh becomes up-regulated in the rostral region and it is expressed in an abnormal pattern. These results and histological analysis suggest the existence of malformations in the brain region including a lack of the normal fore brain ventricle. An increase in the size of both the prechordal plate and the notochord was observed, while the spinal cord is narrower. The reduction in head and eye size was accompanied by changes in the eye markers, Pax6 and Tbx3. Our results provide evidence for the early molecular changes induced by EtOH exposure during embryogenesis, and may explain some of the structural changes that are part of the EtOH teratogenic phenotype also in FASD individuals.
Collapse
Affiliation(s)
- Ronit Yelin
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
191
|
Rorick AM, Mei W, Liette NL, Phiel C, El-Hodiri HM, Yang J. PP2A:B56ε is required for eye induction and eye field separation. Dev Biol 2007; 302:477-93. [PMID: 17074314 DOI: 10.1016/j.ydbio.2006.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 09/29/2006] [Accepted: 10/05/2006] [Indexed: 12/18/2022]
Abstract
Eye induction and eye field separation are the earliest events during vertebrate eye development. Both of these processes occur much earlier than the formation of optic vesicles. The insulin-like growth factor (IGF) pathway appears to be essential for eye induction, yet it remains unclear how IGF downstream pathways are involved in eye induction. As a consequence of eye induction, a single eye anlage is specified in the anterior neural plate. Subsequently, this single eye anlage is divided into two symmetric eye fields in response to Sonic Hedgehog (Shh) secreted from the prechordal mesoderm. Here, we report that B56epsilon regulatory subunit of protein phosphatase 2A (PP2A) is involved in Xenopus eye induction and subsequent eye field separation. We provide evidence that B56epsilon is required for the IGF/PI3K/Akt pathway and that interfering with the PI3K/Akt pathway inhibits eye induction. In addition, we show that B56epsilon regulates the Hedgehog (Hh) pathway during eye field separation. Thus, B56epsilon is involved in multiple signaling pathways and plays critical roles during early development.
Collapse
Affiliation(s)
- Anna M Rorick
- Columbus Children's Research Institute, Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | | | |
Collapse
|
192
|
Albazerchi A, Stern CD. A role for the hypoblast (AVE) in the initiation of neural induction, independent of its ability to position the primitive streak. Dev Biol 2007; 301:489-503. [PMID: 17010966 DOI: 10.1016/j.ydbio.2006.08.057] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 07/29/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
The mouse anterior visceral endoderm (AVE) has been implicated in embryonic polarity: it helps to position the primitive streak and some have suggested that it might act as a "head organizer", inducing forebrain directly. Here we explore the role of the hypoblast (the chick equivalent of the AVE) in the early steps of neural induction and patterning. We report that the hypoblast can induce a set of very early markers that are later expressed in the nervous system and in the forebrain, but only transiently. Different combinations of signals are responsible for different aspects of this early transient induction: FGF initiates expression of Sox3 and ERNI, retinoic acid can induce Cyp26A1 and only a combination of low levels of FGF8 together with Wnt- and BMP-antagonists can induce Otx2. BMP- and Wnt-antagonists and retinoic acid, in different combinations, can maintain the otherwise transient induction of these markers. However, neither the hypoblast nor any of these factors or combinations thereof can induce the definitive neural marker Sox2 or the formation of a mature neural plate or a forebrain, suggesting that the hypoblast is not a head organizer and that other signals remain to be identified. Interestingly, FGF and retinoids, generally considered as caudalizing factors, are shown here to play a role in the induction of a transient "pre-neural/pre-forebrain" state.
Collapse
Affiliation(s)
- Amanda Albazerchi
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
193
|
Evolution of the mechanisms and molecular control of endoderm formation. Mech Dev 2007; 124:253-78. [PMID: 17307341 DOI: 10.1016/j.mod.2007.01.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 12/24/2006] [Accepted: 01/03/2007] [Indexed: 01/13/2023]
Abstract
Endoderm differentiation and movements are of fundamental importance not only for subsequent morphogenesis of the digestive tract but also to enable normal patterning and differentiation of mesoderm- and ectoderm-derived organs. This review defines the tissues that have been called endoderm in different species, their cellular origin and their movements. We take a comparative approach to ask how signaling pathways leading to embryonic and extraembryonic endoderm differentiation have emerged in different organisms, how they became integrated and point to specific gaps in our knowledge that would be worth filling. Lastly, we address whether the gastrulation movements that lead to endoderm internalization are coupled with its differentiation.
Collapse
|
194
|
Guzzo RM, Foley AC, Ibarra YM, Mercola M. Signaling Pathways in Embryonic Heart Induction. CARDIOVASCULAR DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(07)18005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
195
|
Benini F, Onorati M, Altamura S, Manfioletti G, Vignali R. Identification and developmental expression of Xenopus hmga2β. Biochem Biophys Res Commun 2006; 351:392-7. [PMID: 17070502 DOI: 10.1016/j.bbrc.2006.10.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 10/08/2006] [Indexed: 10/24/2022]
Abstract
HMGA proteins are "architectural modifiers" of the chromatin, characterized by three conserved "AT-hook" motifs, with which they bind AT-rich regions of the DNA, to assist in gene transcription. We report the identification and developmental expression of Xenopus laevis hmga2beta (Xlhmga2beta). We provide evidence of two forms of hmga2 (Xlhmga2alpha and Xlhmga2beta) and of a splicing variant for Xlhmga2beta with an additional AT-hook. By comparing X. laevis and X. tropicalis hmga2 DNA sequences to those of other organisms we show a high conservation of the Xlhmga2beta variant. By RT-PCR, Xlhmga2beta transcripts are first detected before the midblastula transition (MBT), and then become more abundant. By in situ hybridization, localized transcripts are first detected at neurula stages, in the presumptive central nervous system (CNS). At tailbud and tadpole stages, Xlhmga2beta mRNA is detected in the CNS, in the otic vesicles, in neural crest cell derivatives, in the notochord, and in the medio-lateral mesoderm.
Collapse
Affiliation(s)
- Francesca Benini
- Dipartimento di Biologia, Laboratori di Biologia Cellulare e dello Sviluppo, Università di Pisa, via Carducci 13, 56010 Ghezzano (Pisa), Italy
| | | | | | | | | |
Collapse
|
196
|
Tashiro S, Sedohara A, Asashima M, Izutsu Y, Maéno M. Characterization of myeloid cells derived from the anterior ventral mesoderm in the Xenopus laevis embryo. Dev Growth Differ 2006; 48:499-512. [PMID: 17026714 DOI: 10.1111/j.1440-169x.2006.00885.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A recent study revealed the presence of a unique population of myeloid cells in the anterior ventral (AV) mesoderm of Xenopus laevis embryo, as characterized by the expression of peroxidase 2 (POX2), which encodes for a leukocyte-specific enzyme. The current report further characterized the POX2-positive cells in terms of their contribution to hematopoiesis in tadpole and regulatory mechanism in differentiation. Grafting experiments with cytogenetically labeled tissues revealed that AV-derived mesoderm supplies a transient population of migrating leukocytes in the mesenchyme of early tadpole. These cells were rarely found in blood vessels at any stages. Using a ventral marginal zone explant system, we demonstrated that dkk1, shown as a heart inducer in this system, has a strong ability to induce the expression of POX2. Injection of a high dose dkk1 RNA induced a heart marker while a low dose of dkk1 preferentially induced the expression of POX2, suggesting that dkk1 works as a morphogen to determine the different lineages. Overall results indicate that wnt signal inhibitors induce leukocytes at the early neurula stage and that these cells spread to the entire body and exist until the ventral blood island-derived leukocytes appear in the body.
Collapse
Affiliation(s)
- Sumihisa Tashiro
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | | | | | | | | |
Collapse
|
197
|
Fletcher G, Jones GE, Patient R, Snape A. A role for GATA factors in Xenopus gastrulation movements. Mech Dev 2006; 123:730-45. [PMID: 16949798 DOI: 10.1016/j.mod.2006.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/12/2006] [Accepted: 07/16/2006] [Indexed: 01/12/2023]
Abstract
Gastrulation movements in Xenopus laevis are becoming increasingly well characterised, however the molecular mechanisms involved are less clear. Active migration of the leading edge mesendoderm across the fibronectin-coated blastocoel roof is necessary for further development of tissues such as head mesoderm, heart, blood and liver. The zinc finger transcription factors GATA4 and GATA6 are expressed in this migratory tissue during gastrulation, but their role here is unknown. This study further characterises the expression of GATA4 and 6 during gastrulation, and investigates their function in migratory behaviour. Gain-of-function experiments with these GATA factors induce cell spreading, polarisation and migration in non-motile presumptive ectoderm cells. Expression of a dominant-interfering form of GATA6, which inhibits transactivation of GATA targets, severely impairs the ability of dorsal leading edge mesendoderm to spread and translocate on fibronectin. Mosaic inhibition of GATA activity indicates that GATA factors function cell autonomously to induce cell spreading and movement in dorsal mesendoderm. Knockdown of specific GATA factors using anti-sense morpholinos indicates that GATA4 and GATA6 both contribute to dorsal mesendoderm migration in vitro. GATA4 and GATA6 are known to be involved in cell-specification of mesoderm and endoderm-derived tissues, but this is the first description of an additional role for these factors in cell migration.
Collapse
Affiliation(s)
- Georgina Fletcher
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guys Campus, London SE1 1UL, UK
| | | | | | | |
Collapse
|
198
|
Heeg-Truesdell E, LaBonne C. Neural induction in Xenopus requires inhibition of Wnt-β-catenin signaling. Dev Biol 2006; 298:71-86. [PMID: 16879817 DOI: 10.1016/j.ydbio.2006.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 06/05/2006] [Accepted: 06/06/2006] [Indexed: 12/22/2022]
Abstract
Canonical Wnt signals have been implicated in multiple events during early embryogenesis, including primary axis formation, neural crest induction, and A-P patterning of the neural plate. The mechanisms by which Wnt signals can direct distinct fates in cell types that are closely linked both temporally and spatially remains poorly understood. However, recent work has suggested that the downstream transcriptional mediators of this pathway, Lef/Tcf family DNA binding proteins, may confer distinct outcomes on these signals in some cellular contexts. In this study, we first examined whether inhibitory mutants of XTcf3 and XLef1 might block distinct Wnt-dependent signaling events during the diversification of cell fates in the early embryonic ectoderm. We found that a Wnt-unresponsive mutant of XTcf3 potently blocks neural crest formation, whereas an analogous mutant of XLef1 does not, and that the difference in activity mapped to the C-terminus of the proteins. Significantly, the inhibitory XTcf3 mutant also blocked expression of markers of anterior-most cell types, including cement gland and sensory placodes, indicating that Wnt signals are required for rostral as well as caudal ectodermal fates. Unexpectedly, we also found that blocking canonical Wnt signals in the ectoderm, using the inhibitory XTcf3 mutant or by other means, dramatically expanded the size of the neural plate, as evidenced by the increased expression of early pan-neural markers such as Sox3 and Nrp1. Conversely, we find that upregulation of canonical Wnt signals interferes with the induction of the neural plate, and this activity can be separated experimentally from Wnt-mediated neural crest induction. Together these findings provide important and novel insights into the role of canonical Wnt signals during the patterning of vertebrate ectoderm and indicate that Wnt inhibition plays a central role in the process of neural induction.
Collapse
Affiliation(s)
- Elizabeth Heeg-Truesdell
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Il 60208, USA
| | | |
Collapse
|
199
|
De Marco P, Merello E, Mascelli S, Capra V. Current perspectives on the genetic causes of neural tube defects. Neurogenetics 2006; 7:201-21. [PMID: 16941185 DOI: 10.1007/s10048-006-0052-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Neural tube defects (NTDs) are a group of severe congenital abnormalities resulting from the failure of neurulation. The pattern of inheritance of these complex defects is multifactorial, making it difficult to identify the underlying causes. Scientific research has rapidly progressed in experimental embryology and molecular genetics to elucidate the basis of neurulation. Crucial mechanisms of neurulation include the planar cell polarity pathway, which is essential for the initiation of neural tube closure, and the sonic hedgehog signaling pathway, which regulates neural plate bending. Genes influencing neurulation have been investigated for their contribution to human neural tube defects, but only genes with well-established role in convergent extension provide an exciting new set of candidate genes. Biochemical factors such as folic acid appear to be the greatest modifiers of NTDs risk in the human population. Consequently, much research has focused on genes of folate-related metabolic pathways. Variants of several such genes have been found to be significantly associated with the risk of neural tube defects in more studies. In this manuscript, we reviewed the current perspectives on the causes of neural tube defects and highlighted that we are still a long way from understanding the etiology of these complex defects.
Collapse
Affiliation(s)
- Patrizia De Marco
- U.O. Neurochirurgia, Istituto G. Gaslini, Largo G. Gaslini 5, 16148, Genova, Italy
| | | | | | | |
Collapse
|
200
|
Müller II, Knapik EW, Hatzopoulos AK. Expression of the protein related to Dan and Cerberus gene-prdc-During eye, pharyngeal arch, somite, and swim bladder development in zebrafish. Dev Dyn 2006; 235:2881-8. [PMID: 16921498 DOI: 10.1002/dvdy.20925] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The protein related to Dan and Cerberus, or PRDC, is a secreted glycoprotein, which belongs to the DAN subfamily of bone morphogenetic protein (BMP) antagonists. In zebrafish, prdc is expressed initially around 17 hours postfertilization in the developing eyes and the first two pharyngeal arches. Expression in the eye starts in the outer layers of the optic cup. Later, prdc expression domains are juxtaposed at the edges of the optic cup surrounding the choroid fissure, then gradually becoming restricted to a small site in the ventral marginal zone. Prdc expression in the arch mesenchyme expands stepwise to the remaining posterior arches. Prdc is also detectable in the ventral part of the somites and the mesenchyme of the swim bladder. The relatively late appearance during development is a unique feature of Prdc among BMP antagonists. Moreover, the complexity of the prdc expression pattern suggests possible roles in eye development, pharyngeal arch remodeling, somitogenesis, and swim bladder organogenesis.
Collapse
Affiliation(s)
- Iris I Müller
- Vanderbilt University Medical Center, Division of Genetic Medicine, Nashville, Tennessee, USA
| | | | | |
Collapse
|