151
|
Sosnowska B, Mazidi M, Penson P, Gluba-Brzózka A, Rysz J, Banach M. The sirtuin family members SIRT1, SIRT3 and SIRT6: Their role in vascular biology and atherogenesis. Atherosclerosis 2017; 265:275-282. [DOI: 10.1016/j.atherosclerosis.2017.08.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/11/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
|
152
|
Abstract
Cardiovascular disease, including atherosclerosis and atherosclerosis-associated complications, is an increasing cause of morbidity and mortality in human immunodeficiency virus (HIV) patients in the post-antiretroviral therapy era. HIV alone accelerates atherosclerosis. Antiretroviral therapy; HIV-associated comorbidities, such as dyslipidemia, drug abuse, and opportunistic infections; and lifestyle are risk factors for HIV-associated atherosclerosis. However, our current understanding of HIV-associated atherogenesis is very limited and has largely been obtained from clinical observation. There is a pressing need to experimentally unravel the missing link between HIV and atherosclerosis. Understanding these mechanisms will help to better develop and design novel therapeutic interventions for the treatment of HIV-associated cardiovascular disease. HIV mainly infects T cells and macrophages resulting in the induction of oxidative and endoplasmic reticulum stress, the formation of the inflammasome, and the dysregulation of autophagy. These mechanisms may contribute to HIV-associated atherogenesis. In this review, we will summarize our current understanding and propose potential mechanisms of HIV-associated atherosclerosis.
Collapse
Affiliation(s)
- Alison Kearns
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Jennifer Gordon
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Tricia H Burdo
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| | - Xuebin Qin
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
153
|
Sachdev U, Lotze MT. Perpetual change: autophagy, the endothelium, and response to vascular injury. J Leukoc Biol 2017; 102:221-235. [PMID: 28626046 PMCID: PMC6608075 DOI: 10.1189/jlb.3ru1116-484rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
Current studies of vascular health, aging, and autophagy emphasize how the endothelium adapts to stress and contributes to disease. The endothelium is far from an inert barrier to blood-borne cells, pathogens, and chemical signals; rather, it actively translates circulating mediators into tissue responses, changing rapidly in response to physiologic stressors. Macroautophagy-the cellular ingestion of effete organelles and protein aggregates to provide anabolic substrates to fuel bioenergetics in times of stress-plays an important role in endothelial cell homeostasis, vascular remodeling, and disease. These roles include regulating vascular tone, sustaining or limiting cell survival, and contributing to the development of atherosclerosis secondary to infection, inflammation, and angiogenesis. Autophagy modulates these critical functions of the endothelium in a dynamic and perpetual response to tissue and intravascular cues.
Collapse
Affiliation(s)
- Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
154
|
Gong M, Zhuo X, Ma A. STAT6 Upregulation Promotes M2 Macrophage Polarization to Suppress Atherosclerosis. Med Sci Monit Basic Res 2017; 23:240-249. [PMID: 28615615 PMCID: PMC5484610 DOI: 10.12659/msmbr.904014] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Macrophages are highly heterogeneous and plastic cells that are involved in all stages of atherogenesis. They can undergo polarization by shifting between M1 and M2 functional phenotypes. However, the role of macrophage polarization and the molecular mechanism in modulating atherosclerotic plaque stability remain incompletely understood. Our study investigated the role of STAT6 in regulating macrophage phenotypes to affect atherosclerotic plaque stability. Material/Methods A murine atherosclerosis model with vulnerable plaques was induced with high-cholesterol diet and PCCP surgeries in ApoE−/− mice. Murine macrophages RAW264.7 treated with ox-LDL or IL-4 were used to simulate the in vitro process. pcDNA3.1(−)/STAT6-expressing vectors were transfected into RAW264.7 to evaluate its effect on cell polarization and the involved molecules. Results Unstable plaques presented significantly increased M1 markers (CD86 and iNOS) and less M2 markers (Arg-1 and TGF-β) than the stable plaques. Moreover, we found that STAT6 and p-STAT6 were greatly decreased in the vulnerable plaques and ox-LDL-induced macrophages, while their expression was elevated after IL-4 stimulation. The overexpression of STAT6 substantially reversed the ox-LDL-stimulated macrophage apoptosis and lipid accumulation. STAT6 upregulation promoted the differentiation of macrophage to M2 subtype as reflected by the increased expression of Arg-1 and TGF-β. Furthermore, we found that STAT6 overexpression activated the Wnt-β-catenin signaling by enhancing the translocation of β-catenin, while β-catenin suppression inhibited STAT6 overexpression-induced M2 polarization. Conclusions STAT6 facilitated atherosclerotic plaque stabilization by promoting the polarization of macrophages to M2 subtype and antagonizing ox-LDL-induced cell apoptosis and lipid deposition in a Wnt-β-catenin-dependent manner.
Collapse
Affiliation(s)
- Min Gong
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland).,Department of Cardiology, Xi'an Central Hospital, Xi'an, Shaanxi, China (mainland)
| | - Xiaozhen Zhuo
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| | - Aiqun Ma
- Department of Cardiovascular Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
155
|
miR-155 Promotes ox-LDL-Induced Autophagy in Human Umbilical Vein Endothelial Cells. Mediators Inflamm 2017; 2017:9174801. [PMID: 28659666 PMCID: PMC5474275 DOI: 10.1155/2017/9174801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/11/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
As an evolutionarily conserved metabolic process, autophagy is involved in the process of atherosclerosis (AS). MicroRNA-155 (miR-155), a multifunctional miRNA, plays an important role in many physiological and pathological conditions, including AS and autophagy. However, the effect of miR-155 on the regulation of autophagy in endothelial cells has not been reported to date. Therefore, the objective of our study was to investigate the role of miR-155 in autophagy induced by oxidized low-density lipoprotein (ox-LDL) in human umbilical vein endothelial cells (HUVECs). Our results demonstrated that ox-LDL induced autophagy in HUVECs and increased the expression of miR-155 significantly. Overexpression of miR-155 improved autophagic activity, whereas low expression of miR-155 inhibited autophagic activity. Therefore, the data demonstrated that miR-155 has a modulating effect on the autophagy of vascular endothelial cells.
Collapse
|
156
|
Shao BZ, Ke P, Xu ZQ, Wei W, Cheng MH, Han BZ, Chen XW, Su DF, Liu C. Autophagy Plays an Important Role in Anti-inflammatory Mechanisms Stimulated by Alpha7 Nicotinic Acetylcholine Receptor. Front Immunol 2017; 8:553. [PMID: 28559895 PMCID: PMC5432615 DOI: 10.3389/fimmu.2017.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) has been reported to alleviate neuroinflammation. Here, we aimed to determine the role of autophagy in α7nAChR-mediated inhibition of neuroinflammation and its underlying mechanism. Experimental autoimmune encephalomyelitis (EAE) mice and lipopolysaccharide-stimulated BV2 microglia were used as in vivo and in vitro models of neuroinflammation, respectively. The severity of EAE was evaluated with neurological scoring. Autophagy-related proteins (Beclin 1, LC3-II/I, p62/SQSTM1) were detected by immunoblot. Autophagosomes were observed using transmission electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy flux. The mRNA levels of interleukin-6 (IL-6), IL-1β, IL-18, and tumor necrosis factor-α (TNF-α) were detected by real-time PCR. We used 3-methyladenine (3-MA) and autophagy-related gene 5 small interfering RNA (Atg5 siRNA) to block autophagy in vivo and in vitro, respectively. Activating α7nAChR with PNU282987 ameliorates EAE severity and spinal inflammatory infiltration in EAE mice. PNU282987 treatment also enhanced monocyte/microglia autophagy (Beclin 1, LC3-II/I ratio, p62/SQSTM1, colocalization of CD45- or CD68-positive cells with LC3) both in spinal cord and spleen from EAE mice. The beneficial effects of PNU282987 on EAE mice were partly abolished by 3-MA, an autophagy inhibitor. In vitro, PNU282987 treatment increased autophagy and promoted autophagy flux. Blockade of autophagy by Atg5 siRNA or bafilomycin A1 attenuated the inhibitory effect of PNU282987 on IL-6, IL-1β, IL-18, and TNF-α mRNA. Our results demonstrate for the first time that activating α7nAChR enhances monocyte/microglia autophagy, which suppresses neuroinflammation and thus plays an alleviative role in EAE.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Ping Ke
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Wei Wei
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ming-He Cheng
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Bin-Ze Han
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Xiong-Wen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Ding-Feng Su
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
157
|
The role of autophagy in asparaginase-induced immune suppression of macrophages. Cell Death Dis 2017; 8:e2721. [PMID: 28358370 PMCID: PMC5386542 DOI: 10.1038/cddis.2017.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023]
Abstract
Erwinia asparaginase, a bacteria-derived enzyme drug, has been used in the treatment of various cancers, especially acute lymphoblastic leukemia (ALL). One of the most significant side effects associated with asparaginase administration is immune suppression, which limits its application in clinic. Macrophages are phagocytic immune cells and have a central role in inflammation and host defense. We reported here that asparaginase disturbed the function of macrophages including phagocytosis, proliferation, ROS and nitric oxide secretion, interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) secretion, and major histocompatibility complex II (MHC-II) molecule expression, thus induced immune suppression in interferon-γ and lipopolysaccharide-stimulated macrophages. We also observed that asparaginase inhibited autophagy in macrophages via activating Akt/mTOR and suppressing Erk1/2 signaling pathway as evidenced by less formation of autophagosomes, downregulation of autophagy-related protein LC3-II, and decreased number of autophagy-like vacuoles. Further study discovered that treatment with autophagy inhibitor 3-MA in place of asparaginase on activated macrophages could also downregulate phagocytosis, cytokine secretion, and MHC-II expression. Moreover, incubation with autophagy inducer trehalose restored the capacity of phagocytosis, IL-6 and TNF-α secretion, and MHC-II expression in macrophages. These results prove the important role of autophagy in the function of macrophages, and activation of autophagy can overcome asparaginase-induced immune suppression in macrophages.
Collapse
|
158
|
Guo FX, Hu YW, Zheng L, Wang Q. Shear Stress in Autophagy and Its Possible Mechanisms in the Process of Atherosclerosis. DNA Cell Biol 2017; 36:335-346. [PMID: 28287831 DOI: 10.1089/dna.2017.3649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Autophagy can eliminate harmful components and maintain cellular homeostasis in response to a series of extracellular insults in eukaryotes. More and more studies show that autophagy plays vital roles in the development of atherosclerosis. Atherosclerosis is a multifactorial disease and shear stress acts as a key role in its process. Understanding the role of shear stress in autophagy may offer insight into atherosclerosis therapies, especially emerging targeted therapy. In this article, we retrospect related studies to summarize the present comprehension of the association between autophagy and atherosclerosis onset and progression.
Collapse
Affiliation(s)
- Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University , Guangzhou, China
| |
Collapse
|
159
|
Inhibiting reactive oxygen species-dependent autophagy enhanced baicalein-induced apoptosis in oral squamous cell carcinoma. J Nat Med 2017; 71:433-441. [PMID: 28176233 DOI: 10.1007/s11418-017-1076-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Autophagy modulation has been considered a potential therapeutic strategy for oral squamous cell carcinoma (OSCC). A previous study confirmed that baicalein might possess significant anti-carcinogenic activity. However, whether baicalein induces autophagy and its role in cell death in OSCC are still unclear. The aim of this study was to investigate the anticancer activity and molecular targets of baicalein in OSCC in vitro. In this study, we found that baicalein induced significant apoptosis in OSCC cells Cal27. In addition to showing apoptosis induction, we also demonstrated baicalein-induced autophagic response in Cal27 cells. Moreover, pharmacologically or genetically blocking autophagy enhanced baicalein-induced apoptosis, indicating the cytoprotective role of autophagy in baicalein-treated Cal27 cells. Importantly, we found that baicalein triggered reactive oxygen species (ROS) generation in Cal27 cells. Furthermore, N-acetyl-cysteine, a ROS scavenger, abrogated the effects of baicalein on ROS-dependent autophagy. Therefore, we found that baicalein increased autophagy through the promotion of ROS signaling pathways in OSCC. These data also suggest that a strategy of blocking ROS-dependent autophagy to enhance the activity of baicalein warrants further attention for the treatment of OSCC.
Collapse
|
160
|
Brophy ML, Dong Y, Wu H, Rahman HNA, Song K, Chen H. Eating the Dead to Keep Atherosclerosis at Bay. Front Cardiovasc Med 2017; 4:2. [PMID: 28194400 PMCID: PMC5277199 DOI: 10.3389/fcvm.2017.00002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 12/22/2022] Open
Abstract
Atherosclerosis is the primary cause of coronary heart disease (CHD), ischemic stroke, and peripheral arterial disease. Despite effective lipid-lowering therapies and prevention programs, atherosclerosis is still the leading cause of mortality in the United States. Moreover, the prevalence of CHD in developing countries worldwide is rapidly increasing at a rate expected to overtake those of cancer and diabetes. Prominent risk factors include the hardening of arteries and high levels of cholesterol, which lead to the initiation and progression of atherosclerosis. However, cell death and efferocytosis are critical components of both atherosclerotic plaque progression and regression, yet, few currently available therapies focus on these processes. Thus, understanding the causes of cell death within the atherosclerotic plaque, the consequences of cell death, and the mechanisms of apoptotic cell clearance may enable the development of new therapies to treat cardiovascular disease. Here, we review how endoplasmic reticulum stress and cholesterol metabolism lead to cell death and inflammation, how dying cells affect plaque progression, and how autophagy and the clearance of dead cells ameliorates the inflammatory environment of the plaque. In addition, we review current research aimed at alleviating these processes and specifically targeting therapeutics to the site of the plaque.
Collapse
Affiliation(s)
- Megan L Brophy
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Yunzhou Dong
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hao Wu
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - H N Ashiqur Rahman
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Kai Song
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| | - Hong Chen
- Karp Family Research Laboratories, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital , Boston, MA , USA
| |
Collapse
|
161
|
Ke P, Shao BZ, Xu ZQ, Chen XW, Liu C. Intestinal Autophagy and Its Pharmacological Control in Inflammatory Bowel Disease. Front Immunol 2017; 7:695. [PMID: 28119697 PMCID: PMC5220102 DOI: 10.3389/fimmu.2016.00695] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022] Open
Abstract
Intestinal mucosal barrier, mainly composed of the intestinal mucus layer and the epithelium, plays a critical role in nutrient absorption as well as protection from pathogenic microorganisms. It is widely acknowledged that the damage of intestinal mucosal barrier or the disturbance of microorganism balance in the intestinal tract contributes greatly to the pathogenesis and progression of inflammatory bowel disease (IBD), which mainly includes Crohn’s disease and ulcerative colitis. Autophagy is an evolutionarily conserved catabolic process that involves degradation of protein aggregates and damaged organelles for recycling. The roles of autophagy in the pathogenesis and progression of IBD have been increasingly studied. This present review mainly describes the roles of autophagy of Paneth cells, macrophages, and goblet cells in IBD, and finally, several potential therapeutic strategies for IBD taking advantage of autophagy.
Collapse
Affiliation(s)
- Ping Ke
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Bo-Zong Shao
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Zhe-Qi Xu
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Xiong-Wen Chen
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| | - Chong Liu
- Department of Pharmacology, Second Military Medical University , Shanghai , China
| |
Collapse
|
162
|
Gonzalez L, Trigatti BL. Macrophage Apoptosis and Necrotic Core Development in Atherosclerosis: A Rapidly Advancing Field with Clinical Relevance to Imaging and Therapy. Can J Cardiol 2016; 33:303-312. [PMID: 28232016 DOI: 10.1016/j.cjca.2016.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular diseases represent 1 of the main causes of death worldwide, and atherosclerosis is 1 of the major contributors leading to ischemic heart disease. Macrophages actively participate in all stages of atherosclerosis development, from plaque initiation to the transition to vulnerable plaques. Macrophage apoptosis, in particular, has been recognized as a critical step in the formation of the necrotic core, a key characteristic of unstable lesions. In this review, we discuss the role of macrophage apoptosis and clearance of apoptotic cells by efferocytosis in the development of atherosclerosis, with particular emphasis on their contribution to the development of the necrotic core and the clinical implications of this process for plaque stabilization. We consider the molecular triggers of macrophage apoptosis during atherogenesis, the role of endoplasmic reticulum (ER) stress, the roles of key cellular mediators of apoptosis and efferocytosis, and mechanisms of defective efferocytosis in the progression of atherosclerotic plaques. Finally, we discuss the important clinical implications of rapidly evolving macrophage science, such as novel approaches to imaging vulnerable atherosclerotic plaques with macrophage-sensitive positron emission tomography and magnetic resonance imaging, the role of macrophages in mediating beneficial pleiotropic actions of lipid-lowering therapies, and novel therapeutic modalities targeting ER stress, autophagy, and deficient efferocytosis. Advances in understanding the critical role of macrophages in the progression and destabilization of atherosclerosis have the potential to greatly improve the prevention and management of atherosclerotic diseases over the next decade.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo Louis Trigatti
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
163
|
Ruparelia N, Chai JT, Fisher EA, Choudhury RP. Inflammatory processes in cardiovascular disease: a route to targeted therapies. Nat Rev Cardiol 2016; 14:133-144. [PMID: 27905474 DOI: 10.1038/nrcardio.2016.185] [Citation(s) in RCA: 315] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory processes are firmly established as central to the development and complications of cardiovascular diseases. Elevated levels of inflammatory markers have been shown to be predictive of future cardiovascular events. The specific targeting of these processes in experimental models has been shown to attenuate myocardial and arterial injury, reduce disease progression, and promote healing. However, the translation of these observations and the demonstration of clear efficacy in clinical practice have been disappointing. A major limitation might be that tools currently used to measure 'inflammation' are insufficiently precise and do not provide information about disease site and activity, or discriminate between functionally important activation pathways. The challenge, therefore, is to make measures of inflammation that are more meaningful, and which can guide specific targeted therapies. In this Review, we consider the roles of inflammatory processes in the related pathologies of atherosclerosis and acute myocardial infarction, by providing an evaluation of the known and emerging inflammatory pathways. We highlight contemporary techniques to characterize and quantify inflammation, and consider how they might be used to guide specific treatments. Finally, we discuss emerging opportunities in the field, including their current limitations and challenges that are the focus of ongoing study.
Collapse
Affiliation(s)
- Neil Ruparelia
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK
| | - Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| | - Edward A Fisher
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,The Center for the Prevention of Cardiovascular Disease and the Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford, OX3 9DU, UK.,Acute Vascular Imaging Centre, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DU, UK
| |
Collapse
|
164
|
Li Q, Dong QT, Yang YJ, Tian XQ, Jin C, Huang PS, Jiang LP, Chen GH. AMPK-mediated cardioprotection of atorvastatin relates to the reduction of apoptosis and activation of autophagy in infarcted rat hearts. Am J Transl Res 2016; 8:4160-4171. [PMID: 27830000 PMCID: PMC5095309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Atorvastatin (ATV) has an important pro-survival role in cardiomyocytes after acute myocardial infarction (AMI). The objectives of this study were to: 1) determine whether ATV could affect autophagy of cardiomyocytes via the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, and 2) investigate the balance between autophagy and apoptosis pathways. Male Wistar rats (n = 100) were randomly divided into sham, control, ATV, Compound C, and ATV+ Compound C groups. In this AMI model, drug treatments were administered for 1 week before induction of MI by surgical ligation, and measurements were taken 1 and 4 weeks after AMI induction. Transthoracic echocardiography showed that the ejection fraction in the ATV group increased by 11.7% ± 6.83% over the control group 4 weeks after AMI. The fibrosis, infarcted area, and inflammatory level were determined by pathological and histological studies; these were found to be decreased substantially with ATV treatment (P<0.05). The expression of apoptotic, autophagic, and AMPK pathway proteins was detected by immunohistochemical staining and western blotting, while expression of their corresponding genes was measured with real-time polymerase chain reaction (PCR). ATV treatment increased AMPK/mTOR activity and the expression of autophagic protein LC3 in infarcted myocardium (P<0.05). The treatment also inhibited induction of pro-apoptotic protein Bax. AMPK inhibitor Compound C reversed these beneficial effects. In conclusion, ATV improves survival of cardiomyocytes and decreases alterations in morphology and function of infarcted hearts by inducing autophagy and inhibiting apoptosis through the activation of AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Qiu-Ting Dong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Xia-Qiu Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Lei-Pei Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037, People's Republic of China
| |
Collapse
|
165
|
Yang Y, Zhao C, Yang P, Wang X, Wang L, Chen A. Autophagy in cardiac metabolic control: Novel mechanisms for cardiovascular disorders. Cell Biol Int 2016; 40:944-54. [PMID: 27191043 DOI: 10.1002/cbin.10626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023]
Abstract
As an extensively studied quality control system, autophagy is responsible for clearance of dysfunctional organelles and damaged marcomolecules in cells. In addition to its biological recycling function, autophagy plays a significant role in the pathogenesis of metabolic syndromes such as obesity and diabetes. In particular, metabolic disorders contribute to cardiovascular disease development. As energy required to maintain cardiac cells functional is immense, disturbances in the balance between anabolic and catabolic metabolism possibly contribute to cardiovascular disorders. Therefore, an urgent need to expand our knowledge on the role of autophagy on the metabolic regulation of hearts emerges. In this review, the potential relationship between autophagic activity and cardiac metabolism is explored and we also discuss how dysregulated autophagy leads to severe cardiac disorders from the perspective of metabolic control.
Collapse
Affiliation(s)
- Yufei Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Cong Zhao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Pingzhen Yang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Lizi Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| | - Aihua Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, China
| |
Collapse
|
166
|
Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:695-712. [PMID: 27146293 DOI: 10.1007/s00210-016-1252-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
The HMG Co-enzyme inhibitors and new lipid-modifying agents expand their new therapeutic target options in the field of medical profession. Statins have been described as the most effective class of drugs to reduce serum cholesterol levels. Since the discovery of the first statin nearly 30 years ago, these drugs have become the main therapeutic approach to lower cholesterol levels. The present scientific research demonstrates numerous non-lipid modifiable effects of statins termed as pleiotropic effects of statins, which could be beneficial for the treatment of various devastating disorders. The most important positive effects of statins are anti-inflammatory, anti-proliferative, antioxidant, immunomodulatory, neuroprotective, anti-diabetes, and antithrombotic, improving endothelial dysfunction and attenuating vascular remodeling besides many others which are discussed under the scope of this review. In particular, inhibition of Rho and its downstream target, Rho-associated coiled-coil-containing protein kinase (ROCK), and their agonistic action on peroxisome proliferator-activated receptors (PPARs) can be viewed as the principle mechanisms underlying the pleiotropic effects of statins. With gradually increasing knowledge of new therapeutic targets of statins, their use has also been advocated in chronic inflammatory disorders for example rheumatoid arthritis (RA) and in systemic lupus erythematosus (SLE). In the scope of review, we highlight statins and their pleiotropic effects with reference to their harmful and beneficial effects as a novel approach for their use in the treatment of devastating disorders. Graphical abstract Pleiotropic effect of statins.
Collapse
|
167
|
Mondal D, Mathur A, Chandra PK. Tripping on TRIB3 at the junction of health, metabolic dysfunction and cancer. Biochimie 2016; 124:34-52. [DOI: 10.1016/j.biochi.2016.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/04/2016] [Indexed: 12/16/2022]
|