151
|
Xiao T, Luo J, Wu Z, Li F, Zeng O, Yang J. Effects of hydrogen sulfide on myocardial fibrosis and PI3K/AKT1-regulated autophagy in diabetic rats. Mol Med Rep 2015; 13:1765-73. [PMID: 26676365 DOI: 10.3892/mmr.2015.4689] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
Myocardial fibrosis is the predominant pathological characteristic of diabetic myocardial damage. Previous studies have indicated that hydrogen sulfide (H2S) has beneficial effects in the treatment of various cardiovascular diseases. However, there is little research investigating the effect of H2S on myocardial fibrosis in diabetes. The present study aimed to investigate the effects of H2S on the progression of myocardial fibrosis induced by diabetes. Diabetes was induced in rats by intraperitoneal injection of streptozotocin. Sodium hydrosulfide (NaHS) was used as an exogenous donor of H2S. After 8 weeks, expression levels of cystathionine-γ-lyase were determined by western blot analysis and morphological changes in the myocardium were assessed by hematoxylin and eosin staining and Masson staining. The hydroxyproline content and fibrosis markers were determined by a basic hydrolysis method and western blot analysis, respectively. Autophagosomes were observed under transmission electron microscopy. Expression levels of autophagy-associated proteins and their upstream signaling molecules were also evaluated by western blotting. The results of the current study indicated that diabetes induced marked myocardial fibrosis, enhanced myocardial autophagy and suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase/RAC-α serine/threonine-protein kinase (PI3K/AKT1) signaling pathway. By contrast, following treatment with NaHS, myocardial fibrosis was ameliorated, myocardial autophagy was decreased and the PI3K/AKT1 pathway suppression was reversed. The results of the present study demonstrated that the protective effect of H2S against diabetes-induced myocardial fibrosis may be associated with the attenuation of autophagy via the upregulation of the PI3K/AKT1 signaling pathway.
Collapse
Affiliation(s)
- Ting Xiao
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Luo
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhixiong Wu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ou Zeng
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
152
|
Nishida K, Otsu K. Autophagy during cardiac remodeling. J Mol Cell Cardiol 2015; 95:11-8. [PMID: 26678624 DOI: 10.1016/j.yjmcc.2015.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/23/2015] [Accepted: 12/04/2015] [Indexed: 11/18/2022]
Abstract
Despite progress in cardiovascular research and evidence-based therapies, heart failure is a leading cause of morbidity and mortality in industrialized countries. Cardiac remodeling is a chronic maladaptive process, characterized by progressive ventricular dilatation, cardiac hypertrophy, fibrosis, and deterioration of cardiac performance, and arises from interactions between adaptive modifications of cardiomyocytes and negative aspects of adaptation such as cardiomyocyte death and fibrosis. Autophagy has evolved as a conserved process for bulk degradation and recycling of cytoplasmic components, such as long-lived proteins and organelles. Accumulating evidence demonstrates that autophagy plays an essential role in cardiac remodeling to maintain cardiac function and cellular homeostasis in the heart. This review discusses some recent advances in understanding the role of autophagy during cardiac remodeling. This article is part of a Special Issue entitled: Autophagy in the Heart.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, SE5 9NU, UK.
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London, SE5 9NU, UK
| |
Collapse
|
153
|
Wang XY, Fan XS, Cai L, Liu S, Cong XF, Chen X. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis. Apoptosis 2015; 20:273-84. [PMID: 25633408 DOI: 10.1007/s10495-014-1074-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.
Collapse
Affiliation(s)
- Xian-Yun Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | | | | | | | | | | |
Collapse
|
154
|
Sciarretta S, Boppana VS, Umapathi M, Frati G, Sadoshima J. Boosting autophagy in the diabetic heart: a translational perspective. Cardiovasc Diagn Ther 2015; 5:394-402. [PMID: 26543826 DOI: 10.3978/j.issn.2223-3652.2015.07.02] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diabetes, obesity, and dyslipidemia are main risk factors that promote the development of cardiovascular diseases. These metabolic abnormalities are frequently found to be associated together in a highly morbid clinical condition called metabolic syndrome. Metabolic derangements promote endothelial dysfunction, atherosclerotic plaque formation and rupture, cardiac remodeling and dysfunction. This evidence strongly encourages the elucidation of the mechanisms through which obesity, diabetes, and metabolic syndrome induce cellular abnormalities and dysfunction in order to discover new therapeutic targets and strategies for their prevention and treatment. Numerous studies employing both dietary and genetic animal models of obesity and diabetes have demonstrated that autophagy, an intracellular system for protein degradation, is impaired in the heart under these conditions. This suggests that autophagy reactivation may represent a future potential therapeutic intervention to reduce cardiac maladaptive alterations in patients with metabolic derangements. In fact, autophagy is a critical mechanism to preserve cellular homeostasis and survival. In addition, the physiological activation of autophagy protects the heart during stress, such as acute ischemia, starvation, chronic myocardial infarction, pressure overload, and proteotoxic stress. All these aspects will be discussed in our review article together with the potential ways to reactivate autophagy in the context of obesity, metabolic syndrome, and diabetes.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- 1 Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA ; 2 IRCCS Neuromed, Pozzilli (IS) 86077, Italy ; 3 Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina 04100, Italy
| | - V Subbarao Boppana
- 1 Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA ; 2 IRCCS Neuromed, Pozzilli (IS) 86077, Italy ; 3 Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina 04100, Italy
| | - Mahaa Umapathi
- 1 Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA ; 2 IRCCS Neuromed, Pozzilli (IS) 86077, Italy ; 3 Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina 04100, Italy
| | - Giacomo Frati
- 1 Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA ; 2 IRCCS Neuromed, Pozzilli (IS) 86077, Italy ; 3 Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina 04100, Italy
| | - Junichi Sadoshima
- 1 Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA ; 2 IRCCS Neuromed, Pozzilli (IS) 86077, Italy ; 3 Department of Medical-Surgical Sciences and Biotechnologies, University of Rome "Sapienza", Latina 04100, Italy
| |
Collapse
|
155
|
Yuan X, Zhang L, Wang S, Ou Y, Wang Q, Peng W, Luo H, Cheng Z, Zhu X. Mitochondrial apoptosis and autophagy in the process of adipose-derived stromal cell differentiation into astrocytes. Cell Biol Int 2015; 40:156-65. [PMID: 26399453 DOI: 10.1002/cbin.10548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/19/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Lili Zhang
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Shujuan Wang
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Ya Ou
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Quanquan Wang
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Wei Peng
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Hongjie Luo
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Zanzan Cheng
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| | - Xuhong Zhu
- Department of Neurology; Affiliated Kailuan General Hospital of North China University of Science and Technology; Tangshan 063000 Hebei Province China
| |
Collapse
|
156
|
Pushparaj C, Das A, Purroy R, Nàger M, Herreros J, Pamplona R, Cantí C. Voltage-gated calcium channel blockers deregulate macroautophagy in cardiomyocytes. Int J Biochem Cell Biol 2015; 68:166-75. [PMID: 26429067 DOI: 10.1016/j.biocel.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 09/04/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Voltage-gated calcium channel blockers are widely used for the management of cardiovascular diseases, however little is known about their effects on cardiac cells in vitro. We challenged neonatal ventricular cardiomyocytes (CMs) with therapeutic L-type and T-type Ca(2+) channel blockers (nifedipine and mibefradil, respectively), and measured their effects on cell stress and survival, using fluorescent microscopy, Q-PCR and Western blot. Both nifedipine and mibefradil induced a low-level and partially transient up-regulation of three key mediators of the Unfolded Protein Response (UPR), indicative of endoplasmic (ER) reticulum stress. Furthermore, nifedipine triggered the activation of macroautophagy, as evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3), decreased levels of polyubiquitin-binding protein p62/SQSTM1 and ubiquitinated protein aggregates, that was followed by cell death. In contrast, mibefradil inhibited CMs constitutive macroautophagy and did not promote cell death. The siRNA-mediated gene silencing approach confirmed the pharmacological findings for T-type channels. We conclude that L-type and T-type Ca(2+) channel blockers induce ER stress, which is divergently transduced into macroautophagy induction and inhibition, respectively, with relevance for cell viability. Our work identifies VGCCs as novel regulators of autophagy in the heart muscle and provides new insights into the effects of VGCC blockers on CMs homeostasis, that may underlie both noxious and cardioprotective effects.
Collapse
Affiliation(s)
- Charumathi Pushparaj
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Arindam Das
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Rosa Purroy
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Mireia Nàger
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Judit Herreros
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Reinald Pamplona
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain
| | - Carles Cantí
- Universitat de Lleida, Institut de Recerca Biomèdica de Lleida (IRBLleida), Spain.
| |
Collapse
|
157
|
|
158
|
Hu N, Yang L, Dong M, Ren J, Zhang Y. Deficiency in adiponectin exaggerates cigarette smoking exposure-induced cardiac contractile dysfunction: Role of autophagy. Pharmacol Res 2015; 100:175-89. [PMID: 26276084 DOI: 10.1016/j.phrs.2015.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/17/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Second hand smoke is an independent risk factor for cardiovascular disease. Adiponectin (APN), an adipose-derived adipokine, has been shown to offer cardioprotective effect through an AMPK-dependent manner. This study was designed to evaluate the impact of adiponectin deficiency on second hand smoke-induced cardiac pathology and underlying mechanisms using a mouse model of side-stream smoke exposure. Adult wild-type (WT) and adiponectin knockout (APNKO) mice were placed in a chamber exposed to cigarette smoke for 1 hour daily for 40 days. Echocardiographic, cardiomyocyte function, and intracellular Ca2+ handling were evaluated. Autophagy and apoptosis were examined using western blot. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining was used to evaluate reactive oxygen species (ROS) generation. Masson trichrome staining was employed to measure interstitial fibrosis. Our data revealed that adiponectin deficiency provoked smoke exposure-induced cardiomyopathy (compromised fractional shortening, disrupted cardiomyocyte function and intracellular Ca2+ homeostasis, apoptosis and ROS generation). In addition, these detrimental effects of side-stream smoke were accompanied by defective autophagolysosome formation, the effect of which was exacerbated by adiponectin deficiency. Blocking autophagolysosome formation using bafilomycin A1 (BafA1) negated the cardioprotective effect of rapamycin against smoke extract. Induction of autophagy using rapamycin and AMPKα activation using AICAR rescued against smoke extract-induced myopathic anomalies in APNKO mice. Our data suggest that adiponectin serves as an indispensable cardioprotective factor against side-stream smoke exposure-induced myopathic changes possibly through facilitating autophagolysosome formation.
Collapse
Affiliation(s)
- Nan Hu
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Lifang Yang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Department of Anesthesiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Maolong Dong
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Department of Burn and Cutaneous Surgery, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China
| | - Jun Ren
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| | - Yingmei Zhang
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi'an 710032, China; Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
159
|
Munasinghe PE, Riu F, Dixit P, Edamatsu M, Saxena P, Hamer NSJ, Galvin IF, Bunton RW, Lequeux S, Jones G, Lamberts RR, Emanueli C, Madeddu P, Katare R. Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway. Int J Cardiol 2015; 202:13-20. [PMID: 26386349 DOI: 10.1016/j.ijcard.2015.08.111] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Diabetes promotes progressive loss of cardiac cells, which are replaced by a fibrotic matrix, resulting in the loss of cardiac function. In the current study we sought to identify if excessive autophagy plays a major role in inducing this progressive loss. METHODS AND RESULTS Immunofluorescence and western blotting analysis of the right atrial appendages collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery showed a marked increase in the level of autophagy in the diabetic heart, as evidenced by increased expression of autophagy marker LC3B-II and its mediator Beclin-1 and decreased expression of p62, which incorporates into autophagosomes to be efficiently degraded. Moreover, a marked activation of pro-apoptotic caspase-3 was observed. Electron microscopy showed increased autophagosomes in the diabetic heart. In vivo measurement of autophagic flux by choloroquine injection resulted in further enhancement of LC3B-II in the diabetic myocardium, confirming increased autophagic activity in the type-2 diabetic heart. Importantly, in-vitro genetic depletion of beclin-1 in high glucose treated adult rat cardiomyocytes markedly inhibited the level of autophagy and subsequent apoptotic cell death. CONCLUSIONS These findings demonstrate the pathological role of autophagy in the type-2 diabetic heart, opening up a potentially novel therapeutic avenue for the treatment of diabetic heart disease.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis Regulatory Proteins/biosynthesis
- Apoptosis Regulatory Proteins/genetics
- Autophagy/genetics
- Beclin-1
- Blotting, Western
- Cells, Cultured
- Diabetes Mellitus, Experimental
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Cardiomyopathies/genetics
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Female
- Gene Expression Regulation
- Humans
- In Situ Nick-End Labeling
- Male
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, Obese
- Microscopy, Electron
- Myocardium/metabolism
- Myocardium/ultrastructure
- RNA/genetics
- RNA, Small Interfering/genetics
- Rats
- Rats, Zucker
- Signal Transduction/genetics
Collapse
Affiliation(s)
| | - Federica Riu
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Parul Dixit
- Department of Physiology-HeartOtago, University of Otago, New Zealand
| | - Midori Edamatsu
- Department of Physiology-HeartOtago, University of Otago, New Zealand
| | - Pankaj Saxena
- Department of Cardiovascular Surgery, University of Otago, New Zealand
| | - Nathan S J Hamer
- Department of Physiology-HeartOtago, University of Otago, New Zealand
| | - Ivor F Galvin
- Department of Cardiovascular Surgery, University of Otago, New Zealand
| | - Richard W Bunton
- Department of Cardiovascular Surgery, University of Otago, New Zealand
| | | | - Greg Jones
- Department of Surgery, University of Otago, New Zealand
| | - Regis R Lamberts
- Department of Physiology-HeartOtago, University of Otago, New Zealand
| | - Costanza Emanueli
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- School of Clinical Sciences, Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, New Zealand.
| |
Collapse
|
160
|
Di Lullo L, Gorini A, Russo D, Santoboni A, Ronco C. Left Ventricular Hypertrophy in Chronic Kidney Disease Patients: From Pathophysiology to Treatment. Cardiorenal Med 2015; 5:254-66. [PMID: 26648942 DOI: 10.1159/000435838] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases represent the main causes of morbidity and mortality in patients with chronic kidney disease (CKD). According to a well-established classification, cardiovascular involvement in CKD can be set in the context of cardiorenal syndrome type 4. Left ventricular hypertrophy (LVH) represents a key feature to provide an accurate picture of systolic-diastolic left heart involvement in CKD patients. Cardiovascular involvement is present in about 80% of prevalent hemodialysis patients, and it is evident in CKD patients since stage IIIb-IV renal disease (according to the K/DOQI CKD classification). According to the definition of cardiorenal syndrome type 4, kidney disease is detected before the development of heart failure, although timing of the diagnosis is not always possible. The evaluation of LVH is a bit heterogeneous, and few standard imaging methods can provide the accuracy of either CT- or MRI-derived left ventricular mass. Key principles in the treatment of LVH in CKD patients are mainly based on anemia and blood pressure control, together with the management of secondary hyperparathyroidism and sudden cardiac death prevention. This review is mainly focused on the clinical aspects of CKD-related LVH to provide practical guidelines both for cardiologists and nephrologists in the daily clinical approach to CKD patients.
Collapse
Affiliation(s)
- Luca Di Lullo
- Department of Nephrology and Dialysis, L. Parodi Delfino Hospital, Colleferro, Italy
| | - Antonio Gorini
- Department of Nephrology and Dialysis, L. Parodi Delfino Hospital, Colleferro, Italy
| | - Domenico Russo
- Division of Nephrology, University of Naples Federico II, Naples, Italy
| | - Alberto Santoboni
- Department of Nephrology and Dialysis, L. Parodi Delfino Hospital, Colleferro, Italy
| | - Claudio Ronco
- International Renal Research Institute, S. Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
161
|
Jiang H, Xiao J, Kang B, Zhu X, Xin N, Wang Z. PI3K/SGK1/GSK3β signaling pathway is involved in inhibition of autophagy in neonatal rat cardiomyocytes exposed to hypoxia/reoxygenation by hydrogen sulfide. Exp Cell Res 2015; 345:134-40. [PMID: 26163895 DOI: 10.1016/j.yexcr.2015.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/19/2015] [Accepted: 07/06/2015] [Indexed: 11/16/2022]
Abstract
Excessive autophagy aggravates myocardial ischemia/reperfusion (IR) injury. Hydrogen sulfide (H2S) has been shown to possess a strong cardioprotective effect due to its anti-necrosis, anti-apoptosis, anti-oxidant and anti-inflammatory properties. Our previous study showed that H2S could also protect the myocardium against IR injury through its anti-autophagy effect in vivo, but the underlying mechanism remains unclear. The aim of the present study was to determine whether PI3K/SGK1/GSK3β signaling pathway was involved in the anti-autophagy effect of H2S against myocardial hypoxia/reoxygenation (HR) injury in vitro. Autophagy was significantly increased in cardiomyocytes subjected to HR, but it was down-regulated by H2S (NaHS donor). Blocking PI3K by LY294002 (a PI3K inhibitor) or knocking down SGK1 by SGK1 siRNA augmented autophagy and attenuated the anti-autophagy effect of H2S. However, blocking GSK3β by tws119 (a GSK3β inhibitor) produced an opposite effect. In addition, while treatment of neonatal rat cardiomyocytes with HR reduced cell viability and augmented cell injury, H2S significantly reversed it. Blocking PI3K or knocking down SGK1 aggravated HR injury and weakened the protective effect of H2S, while blocking GSK3β produced an opposite effect. In conclusion, H2S can inhibit autophagy in neonatal rat cardiomyocytes exposed to H/R and exert a cardioprotective effect at least partly by regulating PI3K/SGK1/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Huan Jiang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Kang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoyan Zhu
- Department of Physiology, Second Military Medical University, Shanghai, China
| | - Ni Xin
- Department of Physiology, Second Military Medical University, Shanghai, China.
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
162
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
163
|
Nishida K, Yamaguchi O, Otsu K. Degradation systems in heart failure. J Mol Cell Cardiol 2015; 84:212-22. [PMID: 25981331 DOI: 10.1016/j.yjmcc.2015.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 11/29/2022]
Abstract
Heart failure is a complex clinical syndrome that results from any structural or functional impairment of ventricular filling or the ejection of blood, and is a leading cause of morbidity and mortality in industrialized countries. The mechanisms underlying the development of heart failure are multiple, complex and not well understood. Cardiac mass and its homeostasis are maintained by the balance between protein synthesis and degradation, and an imbalance is likely to result in cellular dysfunction and disease. The protein degradation systems are the principle mechanisms for maintaining cellular homeostasis via protein quality control. Three major protein degradation systems have been identified, namely the calpain system, autophagy, and the ubiquitin proteasome system. Proinflammatory mediators involve the development and progression of heart failure. DNA and RNA degradation systems play a critical role in regulating inflammation and maintaining cellular homeostasis mediated by damaged DNA clearance and posttranscriptional regulation, respectively. This review discusses some recent advances in understanding the role of these degradation systems in heart failure.
Collapse
Affiliation(s)
- Kazuhiko Nishida
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London British Heart Foundation Centre of Excellence, London SE5 9NU, UK.
| |
Collapse
|
164
|
Yamac AH, Sevgili E, Kucukbuzcu S, Nasifov M, Ismailoglu Z, Kilic E, Ercan C, Jafarov P, Uyarel H, Bacaksiz A. Role of cathepsin D activation in major adverse cardiovascular events and new-onset heart failure after STEMI. Herz 2015; 40:912-20. [PMID: 25911051 DOI: 10.1007/s00059-015-4311-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/13/2015] [Accepted: 03/22/2015] [Indexed: 01/19/2023]
Abstract
AIM Increased serum levels of the activated aspartic lysosomal endopeptidase cathepsin D (CatD) have been found in patients with acute myocardial infarction (AMI). However, to date there have been no analyses of clinical follow-up data measuring the enzyme course and its role in the development of post-MI heart failure. This study aimed to evaluate the role of serum CatD activity in the development of heart failure in patients with ST-segment elevation acute myocardial infarction (STEMI). PATIENTS AND METHODS Eighty-eight consecutive patients (79.5 % men, mean age 57.4 ± 10.2 years) with STEMI were included in this study. Serum CatD activity was measured directly after primary percutaneous coronary intervention (PCI), before discharge, and at the 6-month follow-up. Patients were monitored for major adverse cardiovascular events (MACE), defined as hospitalization due to cardiovascular causes, recurrent nonfatal myocardial infarction, unplanned PCI, new-onset heart failure, and cardiovascular mortality. RESULTS Serum CatD activity was significantly higher in patients with AMI after PCI and during follow-up (FU) than that in age-matched controls (16.2 ± 7.5 and 29.8 ± 8.9 vs. 8.5 ± 4.2 RFU; p < 0.001 for each time point). At the 6-month follow-up, serum CatD activity in these patients was inversely related to new-onset cardiac dysfunction compared with patients with preserved and improved LVEF after treatment (23.1 ± 3.2 vs. 28.8 ± 7.0 and 29.7 ± 5.0 RFU respectively, p < 0.01). Patients suffering from MACE during a follow-up period of 6 months had lower serum levels of activated CatD than those without any MACE (23.8 ± 4.6 vs 29.6 ± 6.9 RFU; p < 0.001). CONCLUSIONS Serum CatD activity as a marker of healthy endogenous phagocytosis and remodeling was impaired in patients with new-onset cardiac dysfunction, and lower levels of serum CatD were associated with MACE at the 6-month post-MI follow-up.
Collapse
Affiliation(s)
- Aylin Hatice Yamac
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey.
| | - Emrah Sevgili
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Sitki Kucukbuzcu
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Muharrem Nasifov
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Ziya Ismailoglu
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Elif Kilic
- Faculty of Medicine, Department of Biochemistry, BezmiÂlem Foundation University, Istanbul, Turkey
| | - Cilem Ercan
- Faculty of Medicine, Department of Medical Biology, BezmiÂlem Foundation University, Istanbul, Turkey
| | - Parviz Jafarov
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Hüseyin Uyarel
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| | - Ahmet Bacaksiz
- Faculty of Medicine, Department of Cardiology, BezmiÂlem Foundation University, Adnan Menderes Avenue, Vatan Street, 34093, Fatih/Istanbul, Turkey
| |
Collapse
|
165
|
Hamada J, Baasanjav A, Ono N, Murata K, Kako K, Ishida J, Fukamizu A. Possible involvement of downregulation of the apelin-APJ system in doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 308:H931-41. [DOI: 10.1152/ajpheart.00703.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/09/2015] [Indexed: 01/03/2023]
Abstract
Apelin peptide is an endogenous ligand of APJ (a putative receptor protein related to the angiotensin II type 1 receptor), which is a member of a G protein-coupled receptor superfamily with seven transmembrane domains. Recent findings have suggested that the apelin-APJ system plays a potential role in cardiac contraction and cardioprotection. In the present study, we show that the apelin-APJ system is disrupted in doxorubicin (Dox)-induced cardiotoxicity. We found downregulation of apelin and APJ mRNA expression in C57Bl/6J mouse hearts on days 1 and 5 after Dox administration (20 mg/kg ip). Plasma apelin levels and cardiac APJ protein expression were significantly decreased on day 5 after Dox injection. Cardiac apelin contents were reduced on day 1 but increased to basal levels on day 5 after Dox injection. We also examined the effects of APJ gene deletion on Dox-induced cardiotoxicity. Compared with wild-type mice, APJ knockout mice showed a significant depression in cardiac contractility on day 5 after Dox (15 mg/kg ip) treatment followed by a decrease in 14-day survival rates. Moreover, Dox-induced myocardial damage, cardiac protein carbonylation, and autophagic dysfunction were accelerated in APJ knockout mice. Rat cardiac H9c2 cells showed Dox-induced decreases in viability, which were prevented by APJ overexpression and the combination with apelin treatment. These results suggest that the suppression of APJ expression after Dox administration can exacerbate Dox-induced cardiotoxicity, which may be responsible for depressed protective function of the endogenous apelin-APJ system. Modulation of the apelin-APJ system may hold promise for the treatment of Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Juri Hamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; and
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Altansarnai Baasanjav
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Natsumi Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Kazuya Murata
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Koichiro Kako
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; and
| | - Junji Ishida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; and
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; and
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
166
|
Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116:531-49. [PMID: 25634975 DOI: 10.1161/circresaha.116.303584] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.
Collapse
Affiliation(s)
- David I Brown
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
167
|
Yu P, Zhang Y, Li C, Li Y, Jiang S, Zhang X, Ding Z, Tu F, Wu J, Gao X, Li L. Class III PI3K-mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure. J Cell Mol Med 2015; 19:1710-9. [PMID: 25851780 PMCID: PMC4511367 DOI: 10.1111/jcmm.12547] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/08/2015] [Indexed: 01/20/2023] Open
Abstract
Pathological cardiac hypertrophy often leads to heart failure. Activation of autophagy has been shown in pathological hypertrophic hearts. Autophagy is regulated positively by Class III phosphoinositide 3-kinase (PI3K). However, it is unknown whether Class III PI3K plays a role in the transition of cardiac hypertrophy to heart failure. To address this question, we employed a previously established cardiac hypertrophy model in heat shock protein 27 transgenic mice which shares common features with several types of human cardiomyopathy. Age-matched wild-type mice served as control. Firstly, a prolonged activation of autophagy, as reflected by autophagosome accumulation, increased LC3 conversion and decreased p62 protein levels, was detected in hypertrophic hearts from adaptive stage to maladaptive stage. Moreover, morphological abnormalities in myofilaments and mitochondria were presented in the areas accumulated with autophagosomes. Secondly, activation of Class III PI3K Vacuolar protein sorting 34 (Vps34), as demonstrated by upregulation of Vps34 expression, increased interaction of Vps34 with Beclin-1, and deceased Bcl-2 expression, was demonstrated in hypertrophic hearts from adaptive stage to maladaptive stage. Finally, administration with Wortmaninn, a widely used autophagy inhibitor by suppressing Class III PI3K activity, significantly decreased autophagy activity, improved morphologies of intracellular apartments, and most importantly, prevented progressive cardiac dysfunction in hypertrophic hearts. Collectively, we demonstrated that Class III PI3K plays a central role in the transition of cardiac hypertrophy to heart failure via a prolonged activation of autophagy in current study. Class III PI3K may serve as a potential target for the treatment and management of maladaptive cardiac hypertrophy.
Collapse
Affiliation(s)
- Peng Yu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yangyang Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Fei Tu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jun Wu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Liu Li
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
168
|
Ischaemia-induced autophagy leads to degradation of gap junction protein connexin43 in cardiomyocytes. Biochem J 2015; 467:231-45. [DOI: 10.1042/bj20141370] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
GJIC (gap junction intercellular communication) between cardiomyocytes is essential for synchronous heart contraction and relies on Cx (connexin)-containing channels. Increased breakdown of Cx43 has been often associated with various cardiac diseases. However, the mechanisms whereby Cx43 is degraded in ischaemic heart remain unknown. The results obtained in the present study, using both HL-1 cells and organotypic heart cultures, show that simulated ischaemia induces degradation of Cx43 that can be prevented by chemical or genetic inhibitors of autophagy. Additionally, ischaemia-induced degradation of Cx43 results in GJIC impairment in HL-1 cells, which can be restored by autophagy inhibition. In cardiomyocytes, ubiquitin signals Cx43 for autophagic degradation, through the recruitment of the ubiquitin-binding proteins Eps15 (epidermal growth factor receptor substrate 15) and p62, that assist in Cx43 internalization and targeting to autophagic vesicles, via LC3 (light chain 3). Moreover, we establish that degradation of Cx43 in ischaemia or I/R (ischaemia/reperfusion) relies upon different molecular players. Indeed, degradation of Cx43 during early periods of ischaemia depends on AMPK (AMP-activated protein kinase), whereas in late periods of ischaemia and I/R Beclin 1 is required. In the Langendorff-perfused heart, Cx43 is dephosphorylated in ischaemia and degraded during I/R, where Cx43 degradation correlates with autophagy activation. In summary, the results of the present study provide new evidence regarding the molecular mechanisms whereby Cx43 is degraded in ischaemia, which may contribute to the development of new strategies that aim to preserve GJIC and cardiac function in ischaemic heart.
Collapse
|
169
|
Yao T, Ying X, Zhao Y, Yuan A, He Q, Tong H, Ding S, Liu J, Peng X, Gao E, Pu J, He B. Vitamin D receptor activation protects against myocardial reperfusion injury through inhibition of apoptosis and modulation of autophagy. Antioxid Redox Signal 2015; 22:633-50. [PMID: 25365634 PMCID: PMC4346660 DOI: 10.1089/ars.2014.5887] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To determine the roles of vitamin D receptor (VDR) in ischemia/reperfusion-induced myocardial injury and to investigate the underlying mechanisms involved. RESULTS The endogenous VDR expression was detected in the mouse heart, and myocardial ischemia/reperfusion (MI/R) upregulated VDR expression. Activation of VDR by natural and synthetic agonists reduced myocardial infarct size and improved cardiac function. Mechanistically, VDR activation inhibited endoplasmic reticulum (ER) stress (determined by the reduction of CCAAT/enhancer-binding protein homologous protein expression and caspase-12 activation), attenuated mitochondrial impairment (determined by the decrease of mitochondrial cytochrome c release and caspase-9 activation), and reduced cardiomyocyte apoptosis. Furthermore, VDR activation significantly inhibited MI/R-induced autophagy dysfunction (determined by the inhibition of Beclin 1 over-activation, the reduction of autophagosomes, the LC3-II/LC3-I ratio, p62 protein abundance, and the restoration of autophagy flux). Moreover, VDR activation inhibited MI/R-induced oxidative stress through a metallothionein-dependent mechanism. The cardioprotective effects of VDR agonists mentioned earlier were impaired in the setting of cardiac-specific VDR silencing. In contrast, adenovirus-mediated cardiac VDR overexpression decreased myocardial infarct size and improved cardiac function through attenuating oxidative stress, and inhibiting apoptosis and autophagy dysfunction. INNOVATION AND CONCLUSION Our data demonstrate that VDR is a novel endogenous self-defensive and cardioprotective receptor against MI/R injury, via mechanisms (at least in part) reducing oxidative stress, and inhibiting apoptosis and autophagy dysfunction-mediated cell death.
Collapse
Affiliation(s)
- Tianbao Yao
- 1 Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Delbridge LMD, Mellor KM, Taylor DJR, Gottlieb RA. Myocardial autophagic energy stress responses--macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 2015; 308:H1194-204. [PMID: 25747748 DOI: 10.1152/ajpheart.00002.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022]
Abstract
An understanding of the role of autophagic processes in the management of cardiac metabolic stress responses is advancing rapidly and progressing beyond a conceptualization of the autophagosome as a simple cell recycling depot. The importance of autophagy dysregulation in diabetic cardiomyopathy and in ischemic heart disease - both conditions comprising the majority of cardiac disease burden - has now become apparent. New findings have revealed that specific autophagic processes may operate in the cardiomyocyte, specialized for selective recognition and management of mitochondria and glycogen particles in addition to protein macromolecular structures. Thus mitophagy, glycophagy, and macroautophagy regulatory pathways have become the focus of intensive experimental effort, and delineating the signaling pathways involved in these processes offers potential for targeted therapeutic intervention. Chronically elevated macroautophagic activity in the diabetic myocardium is generally observed in association with structural and functional cardiomyopathy; yet there are also numerous reports of detrimental effect of autophagy suppression in diabetes. Autophagy induction has been identified as a key component of protective mechanisms that can be recruited to support the ischemic heart, but in this setting benefit may be mitigated by adverse downstream autophagic consequences. Recent report of glycophagy upregulation in diabetic cardiomyopathy opens up a novel area of investigation. Similarly, a role for glycogen management in ischemia protection through glycophagy initiation is an exciting prospect under investigation.
Collapse
Affiliation(s)
- Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia;
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, New Zealand; and
| | - David J R Taylor
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
171
|
Park M, Sabetski A, Kwan Chan Y, Turdi S, Sweeney G. Palmitate induces ER stress and autophagy in H9c2 cells: implications for apoptosis and adiponectin resistance. J Cell Physiol 2015; 230:630-9. [PMID: 25164368 DOI: 10.1002/jcp.24781] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
The association between obesity and heart failure is well documented and recent studies have indicated that understanding the physiological role of autophagy will be of great significance. Cardiomyocyte apoptosis is one component of cardiac remodeling which leads to heart failure and in this study we used palmitate-treated H9c2 cells as an in vitro model of lipotoxicity to investigate the role of autophagy in cell death. Temporal analysis revealed that palmitate (100 μM) treatment induced a gradual increase of intracellular lipid accumulation as well as apoptotic cell death. Palmitate induced autophagic flux, determined via increased LC3-II formation and p62 degradation as well as by detecting reduced colocalization of GFP with RFP in cells overexpressing tandem fluorescent GFP/RFP-LC3. The increased level of autophagy indicated by these measures were confirmed using transmission electron microscopy (TEM). Upon inhibiting autophagy using bafilomycin we observed an increased level of palmitate-induced cell death assessed by Annexin V/PI staining, detection of active caspase-3 and MTT cell viability assay. Interestingly, using TEM and p-PERK or p-eIF2α detection we observed increased endoplasmic reticulum (ER) stress in response to palmitate. Autophagy was induced as an adaptive response against ER stress since it was sensitive to ER stress inhibition. Palmitate-induced ER stress also induced adiponectin resistance, assessed via AMPK phosphorylation, via reducing APPL1 expression. This effect was independent of palmitate-induced autophagy. In summary, our data indicate that palmitate induces autophagy subsequent to ER stress and that this confers a prosurvival effect against lipotoxicity-induced cell death. Palmitate-induced ER stress also led to adiponecin resistance.
Collapse
Affiliation(s)
- Min Park
- Department of Biology, York University, Toronto, Canada
| | | | | | | | | |
Collapse
|
172
|
Martins-Marques T, Ribeiro-Rodrigues T, Pereira P, Codogno P, Girao H. Autophagy and ubiquitination in cardiovascular diseases. DNA Cell Biol 2015; 34:243-51. [PMID: 25602806 DOI: 10.1089/dna.2014.2765] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A main function of the heart is to pump blood to the tissues and organs of the body. Although formed by different types of cells, the cardiomyocytes are the ones responsible for the coordinated and synchronized heart contraction. Given their low mitotic activity, cardiomyocytes largely depend on protein degradation mechanisms to maintain proteostasis and energetic balance. Autophagy, one of the main pathways whereby cells eliminate damaged, nonfunctional, or obsolete proteins, and organelles, is vital to ensure cell function, including in cardiomyocytes, both in rest and stress conditions. However, the impact of autophagy activation in the heart, being either protective or harmful, is not consensual and likely depends upon the severity of the stimuli and consequently the autophagy players involved. One of the signals that direct proteins for autophagy degradation, namely in the context of heart disorders, is ubiquitin. Indeed, the attachment of ubiquitin moieties to a target substrate and further recognition by autophagy adaptors constitute a main regulatory pathway that directs proteins to the lysosome. Therefore, a better understanding of the mechanisms and signals that regulate the autophagy process in the heart, including substrates targeting, is of utmost importance to design new approaches directed to this degradation pathway. We have previously shown that ubiquitination of the gap junction (GJ) protein Connexin43 (Cx43) triggers its degradation by autophagy through a process that requires the ubiquitin adaptors epidermal growth factor receptor substrate 15 (Eps15) and p62. This is particularly relevant in the heart because GJs, that form intercellular channels, are responsible for the rapid and efficient anisotropic propagation of the electrical impulse through the cardiomyocytes, essential for synchronized contraction of the cardiac muscle. In this review, we present recent studies devoted to the involvement of autophagy in heart homeostasis, with a particular focus on ubiquitin and GJs.
Collapse
Affiliation(s)
- Tania Martins-Marques
- 1 Centre of Ophthalmology and Vision Sciences, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra , Coimbra, Portugal
| | | | | | | | | |
Collapse
|
173
|
The role of autophagic degradation in the heart. J Mol Cell Cardiol 2015; 78:73-9. [DOI: 10.1016/j.yjmcc.2014.09.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022]
|
174
|
5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis 2014; 20:455-65. [DOI: 10.1007/s10495-014-1083-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
175
|
Jaishy B, Zhang Q, Chung HS, Riehle C, Soto J, Jenkins S, Abel P, Cowart LA, Van Eyk JE, Abel ED. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res 2014; 56:546-561. [PMID: 25529920 DOI: 10.1194/jlr.m055152] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a catabolic process involved in maintaining energy and organelle homeostasis. The relationship between obesity and the regulation of autophagy is cell type specific. Despite adverse consequences of obesity on cardiac structure and function, the contribution of altered cardiac autophagy in response to fatty acid overload is incompletely understood. Here, we report the suppression of autophagosome clearance and the activation of NADPH oxidase (Nox)2 in both high fat-fed murine hearts and palmitate-treated H9C2 cardiomyocytes (CMs). Defective autophagosome clearance is secondary to superoxide-dependent impairment of lysosomal acidification and enzyme activity in palmitate-treated CMs. Inhibition of Nox2 prevented superoxide overproduction, restored lysosome acidification and enzyme activity, and reduced autophagosome accumulation in palmitate-treated CMs. Palmitate-induced Nox2 activation was dependent on the activation of classical protein kinase Cs (PKCs), specifically PKCβII. These findings reveal a novel mechanism linking lipotoxicity with a PKCβ-Nox2-mediated impairment in pH-dependent lysosomal enzyme activity that diminishes autophagic turnover in CMs.
Collapse
Affiliation(s)
- Bharat Jaishy
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Quanjiang Zhang
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Heaseung S Chung
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21224
| | - Christian Riehle
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Jamie Soto
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - Stephen Jenkins
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Patrick Abel
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403
| | - Jennifer E Van Eyk
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD 21224; Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD 21224; Bayview Proteomics Center, Johns Hopkins University, Baltimore, MD 21224
| | - E Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242.
| |
Collapse
|
176
|
Hydrogen-rich saline attenuates ischemia-reperfusion injury in skeletal muscle. J Surg Res 2014; 194:471-480. [PMID: 25588949 DOI: 10.1016/j.jss.2014.12.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/25/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND To investigate the potential beneficial effect of hydrogen-rich saline (HRS) in ischemia-reperfusion (IR) injury of skeletal muscle. METHODS Three experimental groups were established in male Sprague-Dawley rats: (1) sham group, (2) IR with normal saline group, (3) and IR with HRS group. A rat model of skeletal muscle IR injury was induced by 3-h tourniquet occlusion on its left hind limb and 4-h reperfusion. Normal saline and HRS (1.0 mL/100 g) were administered intraperitoneally at 10 min before reperfusion, respectively. Muscle and serum samples were analyzed for detecting the levels of myeloperoxidase (MPO), superoxide dismutase (SOD), malondialdehyde (MDA), and hydroxyl radical (•OH). Muscle samples were assessed by wet/dry rate, hematoxylin and eosin histologic assessment, Bcl2, Bax, cytochrome C, LC3B, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and electron microscopy. RESULTS The wet/dry ratio increased significantly in the IR group (P < 0.01 compared with that in the sham group) and decreased significantly in IR with HRS groups (4.12 ± 0.14 versus 4.12 ± 0.14, P < 0.01 compared with that in the IR group). Muscle tissues and serum of the IR group had significantly increased levels of MPO, MDA, •OH content, and decreased SOD activities compared with the sham group (P < 0.01). The activity of SOD in the IR with HRS group was greatly elevated compared with that in the IR group (295.028 ± 9.288 versus 249.190 ± 5.450 in muscle tissues; 91.627 ± 2.604 versus 73.4045 ± 6.487 in serum; P < 0.01), whereas the levels of MPO, MDA, and •OH content were clearly reduced (MPO: 0.5649 ± 0.0724 versus 1.0984 ± 0.0824 in muscle tissues; 0.7257 ± 0.1232 versus 1.3147 ± 0.0531 in serum. MDA: 4.457 ± 0.650 versus 7.107 ± 0.597 in muscle tissues; 2.531 ± 0.434 versus 4.626 ± 0.237 in serum. •OH: 16.451 ± 0.806 versus 19.871 ± 0.594 in muscle tissues; 500.212 ± 7.387 versus 621.352 ± 7.591 in serum, P < 0.01). The integrated optical density of positive amethyst staining increased significantly in the IR group (P < 0.01 compared with that in the sham group) and decreased significantly in IR with HRS group (928.79 ± 234.537 versus 3005.972 ± 83.567, P < 0.01 compared with that in the IR group). Muscle tissues of the IR group had significantly increased levels of Bax, cytochrome C, LC3B content, and decreased Bcl2 activities compared with those in the sham group (P < 0.01). The activity of Bcl2 in the IR with HRS group was greatly elevated compared with that in the IR group (0.2635 ± 0.0704 versus 0.1242 ± 0.0662; P < 0.01), whereas the levels of Bax, cytochrome C, and LC3B content were clearly reduced (Bax: 0.3103 ± 0.0506 versus 0.5122 ± 0.0148; cytochrome C: 0.4194 ± 0.1116 versus 0.8127 ± 0.0166; LC3B: 0.5884 ± 0.0604 versus 1.3758 ± 0.0319; respectively, P < 0.01). CONCLUSIONS HRS seems to be effective in attenuating IR injury in skeletal muscle via its antioxidant, anti-apoptosis, and anti-autophagy effect.
Collapse
|
177
|
Huang J, Huang C, Luo Y, Liu S, Chen X. Role of MiR-30a in cardiomyocyte autophagy induced by Angiotensin II. J Renin Angiotensin Aldosterone Syst 2014; 16:1-5. [PMID: 25501305 DOI: 10.1177/1470320314562060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/27/2014] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate whether MiR-30a regulates autophagy by regulating the Beclin-1 protein, which is the marker for autophagosomes during myocardial injury, when induced by angiotensin II (Ang II). METHODS We randomly assigned 20 rats into two equal groups: Control group and Ang II group. We detected the expression of MiR-30a by quantitative real-time polymerase chain reaction (RT-PCR), and we employed western blotting to detect the protein expression of Beclin-1. RESULTS In this study, we found that Ang II induced cardiomyocyte autophagy, together with down-regulation of MiR-30a and upregulation of the Beclin-1 protein. We also found that the Beclin-1 protein is regulated by MiR-30a, by transferring a MiR-30a mimic or AMO-204 into the cardiomyocytes. CONCLUSION These studies provided evidence that MiR-30a plays an important role in regulating autophagy through the Beclin-1 protein, during myocardial injury induced by Ang II.
Collapse
Affiliation(s)
- Jionghua Huang
- Department of Cardiology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunlin Huang
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yishan Luo
- Department of Cardiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ximing Chen
- Department of Cardiology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
178
|
Zhou X, An G, Chen J. Hydrogen sulfide improves left ventricular function in smoking rats via regulation of apoptosis and autophagy. Apoptosis 2014; 19:998-1005. [PMID: 24658667 DOI: 10.1007/s10495-014-0978-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The present study was designed to investigate the protective effects of hydrogen sulfide (H2S) against cigarette smoking-induced left ventricular dysfunction in rats. Left ventricular structure and function were assessed using two-dimensional echocardiography. Cardiomyocyte apoptosis was determined by Annexin V/PI and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. Cardiac autophagy was evaluated by detection of autophagy-related protein expression and observation of autophagosomes. Our results indicated that administration of NaHS (a donor of H2S) could protect against smoking-induced left ventricular systolic dysfunction. H2S was found to exert anti-apoptotic effects in the myocardium of smoking rats by inhibiting JNK and P38 mitogen-activated protein kinases pathways and activating PI3K/Akt signaling. Moreover, H2S could also reduce smoking-induced autophagic cell death via regulation of AMPK/mTOR signaling pathway. In conclusion, our study demonstrates that H2S can improve left ventricular systolic function in smoking rats via regulation of apoptosis and autophagy.
Collapse
|
179
|
Del Re DP. The hippo signaling pathway: implications for heart regeneration and disease. Clin Transl Med 2014; 3:27. [PMID: 26932373 PMCID: PMC4884045 DOI: 10.1186/s40169-014-0027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
Control of cell number and organ size is critical for appropriate development and tissue homeostasis. Studies in both Drosophila and mammals have established the Hippo signaling pathway as an important modulator of organ size and tumorigenesis. Upon activation, this kinase cascade modulates gene expression through the phosphorylation and inhibition of transcription co-activators that are involved in cell proliferation, differentiation, growth and apoptosis. Hippo signaling serves to limit organ size and suppress malignancies, and has been implicated in tissue regeneration following injury. These outcomes highlight the important role that Hippo signaling plays in regulating both physiologic and pathologic processes. In this review, an overview of the signaling pathway will be discussed as well as recent work that has investigated its role in cardiac development, regeneration and disease.
Collapse
Affiliation(s)
- Dominic P Del Re
- Cardiovascular Research Institute and Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Newark, 07103, NJ, USA.
| |
Collapse
|
180
|
Matsuzaki T, Matsushita T, Tabata Y, Saito T, Matsumoto T, Nagai K, Kuroda R, Kurosaka M. Intra-articular administration of gelatin hydrogels incorporating rapamycin–micelles reduces the development of experimental osteoarthritis in a murine model. Biomaterials 2014; 35:9904-9911. [DOI: 10.1016/j.biomaterials.2014.08.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 12/19/2022]
|
181
|
Chen-Scarabelli C, Agrawal PR, Saravolatz L, Abuniat C, Scarabelli G, Stephanou A, Loomba L, Narula J, Scarabelli TM, Knight R. The role and modulation of autophagy in experimental models of myocardial ischemia-reperfusion injury. J Geriatr Cardiol 2014; 11:338-48. [PMID: 25593583 PMCID: PMC4294150 DOI: 10.11909/j.issn.1671-5411.2014.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 11/21/2022] Open
Abstract
A physiological sequence called autophagy qualitatively determines cellular viability by removing protein aggregates and damaged cytoplasmic constituents, and contributes significantly to the degree of myocardial ischemia-reperfusion (I/R) injury. This tightly orchestrated catabolic cellular 'housekeeping' process provides cells with a new source of energy to adapt to stressful conditions. This process was first described as a pro-survival mechanism, but increasing evidence suggests that it can also lead to the demise of the cell. Autophagy has been implicated in the pathogenesis of multiple cardiac conditions including myocardial I/R injury. However, a debate persists as to whether autophagy acts as a protective mechanism or contributes to the injurious effects of I/R injury in the heart. This controversy may stem from several factors including the variability in the experimental models and species, and the methodology used to assess autophagy. This review provides updated knowledge on the modulation and role of autophagy in isolated cardiac cells subjected to I/R, and the growing interest towards manipulating autophagy to increase the survival of cardiac myocytes under conditions of stress-most notably being I/R injury. Perturbation of this evolutionarily conserved intracellular cleansing autophagy mechanism, by targeted modulation through, among others, mammalian target of rapamycin (mTOR) inhibitors, adenosine monophosphate-activated protein kinase (AMPK) modulators, calcium lowering agents, resveratrol, longevinex, sirtuin activators, the proapoptotic gene Bnip3, IP3 and lysosome inhibitors, may confer resistance to heart cells against I/R induced cell death. Thus, therapeutic manipulation of autophagy in the challenged myocardium may benefit post-infarction cardiac healing and remodeling.
Collapse
Affiliation(s)
- Carol Chen-Scarabelli
- VA Ann Arbor Health Care System, University of Michigan, 2215 Fuller Rd, Ann Arbor, MI 48105, USA
| | - Pratik R. Agrawal
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | - Louis Saravolatz
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Cadigia Abuniat
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Gabriele Scarabelli
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Anastasis Stephanou
- Medical and Molecular Biology Unit, University College London, UCL, 30 Guildford St., London, WC1N 1EH, UK
| | - Leena Loomba
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | - Tiziano M. Scarabelli
- Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
- St John Hospital and Medical Center, Wayne State University School of Medicine, 22101 Moross Rd., Detroit, MI 48236, USA
| | - Richard Knight
- Medical and Molecular Biology Unit, University College London, UCL, 30 Guildford St., London, WC1N 1EH, UK
| |
Collapse
|
182
|
Nakaoka M, Iwai-Kanai E, Katamura M, Okawa Y, Mita Y, Matoba S. An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy. Biochem Biophys Res Commun 2014; 456:250-6. [PMID: 25446079 DOI: 10.1016/j.bbrc.2014.11.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 01/07/2023]
Abstract
Alpha-adrenergic agonists is known to be protective in cardiac myocytes from apoptosis induced by beta-adrenergic stimulation. Although there has been a recent focus on the role of cardiac autophagy in heart failure, its role in heart failure with adrenergic overload has not yet been elucidated. In the present study, we investigated the contribution of autophagy to cardiac failure during adrenergic overload both in vitro and in vivo. Neonatal rat cardiac myocytes overexpressing GFP-tagged LC3 were prepared and stimulated with the alpha1-adrenergic agonist, phenylephrine (PE), the beta-adrenergic agonist, isoproterenol (ISO), or norepinephrine (NE) in order to track changes in the formation of autophagosomes in vitro. All adrenergic stimulators increased cardiac autophagy by stimulating autophagic flux. Blocking autophagy by the knockdown of autophagy-related 5 (ATG5) exacerbated ISO-induced apoptosis and negated the anti-apoptotic effects of PE, which indicated the cardioprotective role of autophagy during adrenergic overload. PE-induced cardiac autophagy was mediated by the PI3-kinase/Akt pathway, but not by MEK/ERK, whereas both pathways mediated the anti-apoptotic effects of PE. Knock down of Akt1 was the most essential among the three Akt family members examined for the induction of cardiac autophagy. The four-week administration of PE kept the high level of cardiac autophagy without heart failure in vivo, whereas autophagy levels in a myocardium impaired by four-week persistent administration of ISO or NE were the same with the control state. These present study indicated that cardiac autophagy played a protective role during adrenergic overload and also that the Akt pathway could mediate cardiac autophagy for the anti-apoptotic effects of the alpha-adrenergic pathway.
Collapse
Affiliation(s)
- Mikihiko Nakaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eri Iwai-Kanai
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Faculty of Health Care, Tenri Health Care University, 80-1 Bessho-cho, Tenri, Nara 632-0018, Japan.
| | - Maki Katamura
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoshifumi Okawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuichiro Mita
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
183
|
α-Synemin localizes to the M-band of the sarcomere through interaction with the M10 region of titin. FEBS Lett 2014; 588:4625-30. [PMID: 25447537 DOI: 10.1016/j.febslet.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/26/2023]
Abstract
α-Synemin contains a unique 312 amino acid insert near the end of its C-terminal tail. Therefore we set out to determine if the insert is a site of protein-protein interaction that regulates the sub-cellular localization of this large isoform of synemin. Yeast-two hybrid analysis indicated that this region is a binding site for the M10 region of titin. This was confirmed with GST pull-down assays. Co-immunoprecipitation of endogenous proteins indicated close association of the two proteins in vivo and immunostaining of cardiomyocytes demonstrated co-localization of the proteins at the M-band of the sarcomere.
Collapse
|
184
|
Zhang YY, Meng C, Zhang XM, Yuan CH, Wen MD, Chen Z, Dong DC, Gao YH, Liu C, Zhang Z. Ophiopogonin D attenuates doxorubicin-induced autophagic cell death by relieving mitochondrial damage in vitro and in vivo. J Pharmacol Exp Ther 2014; 352:166-74. [PMID: 25378375 DOI: 10.1124/jpet.114.219261] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
It has been reported that ophiopogonin D (OP-D), a steroidal glycoside and an active component extracted from Ophiopogon japonicas, promotes antioxidative protection of the cardiovascular system. However, it is unknown whether OP-D exerts protective effects against doxorubicin (DOX)-induced autophagic cardiomyocyte injury. Here, we demonstrate that DOX induced excessive autophagy through the generation of reactive oxygen species (ROS) in H9c2 cells and in mouse hearts, which was indicated by a significant increase in the number of autophagic vacuoles, LC3-II/LC3-I ratio, and upregulation of the expression of GFP-LC3. Pretreatment with OP-D partially attenuated the above phenomena, similar to the effects of treatment with 3-methyladenine. In addition, OP-D treatment significantly relieved the disruption of the mitochondrial membrane potential by antioxidative effects through downregulating the expression of both phosphorylated c-Jun N-terminal kinase and extracellular signal-regulated kinase. The ability of OP-D to reduce the generation of ROS due to mitochondrial damage and, consequently, to inhibit autophagic activity partially accounts for its protective effects in the hearts against DOX-induced toxicity.
Collapse
Affiliation(s)
- Ying-Yu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Chen Meng
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Xin-Mu Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Cai-Hua Yuan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Ming-Da Wen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Zhong Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Da-Chuan Dong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Yan-Hong Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Chang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| | - Zhao Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (Y.-Y.Z., C.M., C.-H.Y., M.-D.W., Z.C., D.-C.D., Y.-H.G., C.L., Z.Z.); Department of Clinical Medicine, Changchun Medical College, Changchun, China (Y.-Y.Z.); and Department of Biopharmaceutical, School of Pharmacy, Jilin University, Changchun, China (X.-M.Z)
| |
Collapse
|
185
|
Ma L, Li Y. SIRT1: role in cardiovascular biology. Clin Chim Acta 2014; 440:8-15. [PMID: 25444742 DOI: 10.1016/j.cca.2014.10.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 09/02/2014] [Accepted: 10/24/2014] [Indexed: 01/22/2023]
Abstract
SIRT1 (silent information regulator two protein) is a type III protein deacetylase that regulates a variety of important metabolic and physiologic processes including stress resistance, metabolism, apoptosis and energy balance. It reverses cholesterol transport and reduces risk for development of atherosclerosis and cardiovascular disease. The following review highlights the potential role of SIRT1 on cardiovascular biology and function.
Collapse
Affiliation(s)
- Lina Ma
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yun Li
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
186
|
Macrophage migration inhibitory factor (MIF) knockout preserves cardiac homeostasis through alleviating Akt-mediated myocardial autophagy suppression in high-fat diet-induced obesity. Int J Obes (Lond) 2014; 39:387-96. [PMID: 25248618 PMCID: PMC4355049 DOI: 10.1038/ijo.2014.174] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/05/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
Background Macrophage migration inhibitory factor (MIF) plays a role in the development of obesity and diabetes. However, whether MIF plays a role in fat diet-induced obesity and associated cardiac anomalies still remains unknown. The aim of this study was to examine the impact of MIF knockout on high fat diet-induced obesity, obesity-associated cardiac anomalies and the underlying mechanisms involved with a focus on Akt-mediated autophagy. Methods Adult male wild-type (WT) and MIF knockout (MIF−/−) mice were placed on 45% high fat diet for 5 months. Oxygen consumption, CO2 production, respiratory exchange ratio (RER), locomotor activity, and heat generation were measured using energy calorimeter. Echocardiographic, cardiomyocyte mechanical and intracellular Ca2+ properties were assessed. Apoptosis was examined using TUNEL staining and western blot analysis. Akt signaling pathway and autophagy markers were evaluated. Cardiomyocytes isolated from WT and MIF−/− mice were treated with recombinant mouse MIF (rmMIF). Results High fat diet feeding elicited increased body weight gain, insulin resistance, and caloric disturbance in WT and MIF−/− mice. High fat diet induced unfavorable geometric, contractile and histological changes in the heart, the effects of which were alleviated by MIF knockout. In addition, fat diet-induced cardiac anomalies were associated with Akt activation and autophagy suppression, which were nullified by MIF deficiency. In cardiomyocytes from WT mice, autophagy was inhibited by exogenous rmMIF through Akt activation. In addition, MIF knockout rescued palmitic acid-induced suppression of cardiomyocyte autophagy, the effect of which was nullified by rmMIF. Conclusions These results indicate that MIF knockout preserved obesity-associated cardiac anomalies without affecting fat diet-induced obesity, probably through restoring myocardial autophagy in an Akt-dependent manner. Our findings provide new insights for the role of MIF in obesity and associated cardiac anomalies.
Collapse
|
187
|
Song L, Su M, Wang S, Zou Y, Wang X, Wang Y, Cui H, Zhao P, Hui R, Wang J. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J Cell Mol Med 2014; 18:2266-74. [PMID: 25209900 PMCID: PMC4224559 DOI: 10.1111/jcmm.12380] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/30/2014] [Indexed: 01/15/2023] Open
Abstract
The molecular mechanisms that drive the development of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) remain elusive. Accumulated evidence suggests that microRNAs are essential regulators of cardiac remodelling. We have been suggested that microRNAs could play a role in the process of HCM. To uncover which microRNAs were changed in their expression, microRNA microarrays were performed on heart tissue from HCM patients (n = 7) and from healthy donors (n = 5). Among the 13 microRNAs that were differentially expressed in HCM, miR-451 was the most down-regulated. Ectopic overexpression of miR-451 in neonatal rat cardiomyocytes (NRCM) decreased the cell size, whereas knockdown of endogenous miR-451 increased the cell surface area. Luciferase reporter assay analyses demonstrated that tuberous sclerosis complex 1 (TSC1) was a direct target of miR-451. Overexpression of miR-451 in both HeLa cells and NRCM suppressed the expression of TSC1. Furthermore, TSC1 was significantly up-regulated in HCM myocardia, which correlated with the decreased levels of miR-451. As TSC1 is a known positive regulator of autophagy, we examined the role of miR-451 in the regulation of autophagy. Overexpression of miR-451 in vitro inhibited the formation of the autophagosome. Conversely, miR-451 knockdown accelerated autophagosome formation. Consistently, an increased number of autophagosomes was observed in HCM myocardia, accompanied by up-regulated autophagy markers, and the lipidated form of LC3 and Beclin-1. Taken together, our findings indicate that miR-451 regulates cardiac hypertrophy and cardiac autophagy by targeting TSC1. The down-regulation of miR-451 may contribute to the development of HCM and may be a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Lei Song
- State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Xiao J, Zhu X, Ji G, Yang Q, Kang B, Zhao J, Yao F, Wu L, Ni X, Wang Z. Ulinastatin protects cardiomyocytes against ischemia‑reperfusion injury by regulating autophagy through mTOR activation. Mol Med Rep 2014; 10:1949-53. [PMID: 25109305 DOI: 10.3892/mmr.2014.2450] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/06/2013] [Indexed: 11/05/2022] Open
Abstract
Autophagy is significant in myocardial ischemia-reperfusion (IR) injury. Ulinastatin has been demonstrated to protect cardiomyocytes against IR through inducing anti-inflammatory effects. However, whether ulinastatin has an anti‑autophagic effect is yet to be elucidated. The present study aimed to investigate the effect of ulinastatin on the regulation of autophagy during IR injury. Cardiomyocytes of neonatal rats were randomly divided into control, hypoxia-reoxygenation (HR) and ulinastatin groups. In order to investigate whether mammalian target of rapamycin (mTOR) is involved in mediating the protective effect of ulinastatin, cells were treated with the mTOR inhibitor, rapamycin 30 min prior to ulinastatin treatment. To demonstrate the anti-autophagic effect of ulinastatin in vivo, a rat IR model was established. Ulinastatin (1x104 U/kg body weight) was administered 30 min prior to the induction of IR via peritoneal injection. Light chain 3 (LC3), phosphorylated (p)‑mTOR, p‑protein kinase B (Akt) and p‑P70S6 kinase (p‑P70S6K) protein expression were assessed using western blot analysis. In addition, cell vitality, myocardial infarct size and lactate dehydrogenase (LDH) levels were measured. LC3‑Ⅱ protein expression was found to be downregulated, while p‑Akt, p‑mTOR and p‑P70S6K protein expression were observed to be upregulated by ulinastatin. In addition, cell vitality was found to increase and LDH was observed to decrease in the ulinastatin group compared with the HR group in vitro. Furthermore, rapamycin was found to attenuate the myocardial protective effect that is induced by ulinastatin. In vivo, ulinastatin was found to downregulate LC3‑Ⅱ protein expression, and reduce myocardium infarct size and LDH serum levels. These findings indicate that ulinastatin exhibits a myocardial protective effect against IR injury by regulating autophagy through mTOR activation.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiaoyan Zhu
- Department of Physiology, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Guangyu Ji
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Qian Yang
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Bo Kang
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Jianquan Zhao
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Feng Yao
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Lihui Wu
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xin Ni
- Department of Physiology, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhinong Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
189
|
Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis 2014; 5:e1325. [PMID: 25032848 PMCID: PMC4123081 DOI: 10.1038/cddis.2014.287] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/28/2014] [Accepted: 06/03/2014] [Indexed: 01/14/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in posttranscriptional regulation of gene expression, and exerting regulatory roles in plethora of biological processes. In recent years, miRNAs have received increased attention for their crucial role in health and disease, including in cardiovascular disease. This review summarizes the role of miRNAs in regulation of cardiac cell death/cell survival pathways, including apoptosis, autophagy and necrosis. It is envisaged that these miRNAs may explain the mechanisms behind the pathogenesis of many cardiac diseases, and, most importantly, may provide new avenues for therapeutic intervention that will limit cardiomyocyte cell death before it irreversibly affects cardiac function. Through an in-depth literature analysis coupled with integrative bioinformatics (pathway and synergy analysis), we dissect here the landscape of complex relationships between the apoptosis-regulating miRNAs in the context of cardiomyocyte cell death (including regulation of autophagy–apoptosis cross talk), and examine the gaps in our current understanding that will guide future investigations.
Collapse
|
190
|
Wang F, Xiao J, Shen Y, Yao F, Chen Y. Estrogen protects cardiomyocytes against lipopolysaccharide by inhibiting autophagy. Mol Med Rep 2014; 10:1509-12. [PMID: 25017426 DOI: 10.3892/mmr.2014.2365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 03/27/2014] [Indexed: 11/05/2022] Open
Abstract
Autophagy has a significant role in myocardial injury induced by lipopolysaccharide (LPS). Estrogen (E2) has been demonstrated to protect cardiomyocytes against apoptosis; however, it remains to be determined whether it exhibits anti‑autophagic effects. The aim of the present study was to investigate whether estrogen-regulated autophagy attenuates cardiomyocyte injury induced by LPS. The cardiomyocytes of neonatal rats were randomized to the control (Con), LPS and estrogen + LPS groups. The LPS group was treated with 1 µg LPS for 24 h and the estrogen + LPS group was treated with 10‑8 M estrogen 30 min prior to treatment with LPS. Cardiomyocyte autophagy was quantitated by investigating the mRNA and protein level of autophagy‑related genes (Atgs). The mRNA expression of Atg5 and Beclin1 were measured by quantitative polymerase chain reaction and the microtubule‑associated protein light chain 3 (LC3) protein expression was measured by western blot analysis. To demonstrate the cardiomyocyte protection of estrogen, cell vitality and serum lactate dehydrogenase (LDH) levels were measured following LPS treatment. It was identified that LPS induced cardiomyocyte injury, together with the upregulation of Atg5, Beclin1 mRNA and LC3‑II protein. Furthermore, estrogen attenuated the effect of LPS. The present study provides evidence that estrogen has a myocardial protective role against injury induced by LPS by regulating autophagy.
Collapse
Affiliation(s)
- Fengmei Wang
- Department of Obstetrics and Gynaecology, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Yaofeng Shen
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Feng Yao
- Department of Anesthesiology, Shanghai Chest Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Yu Chen
- Department of Obstetrics and Gynaecology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
191
|
Jung J, Choi JH, Lee Y, Park JW, Oh IH, Hwang SG, Kim KS, Kim GJ. Human placenta-derived mesenchymal stem cells promote hepatic regeneration in CCl4 -injured rat liver model via increased autophagic mechanism. Stem Cells 2014; 31:1584-96. [PMID: 23592412 DOI: 10.1002/stem.1396] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) have great potential for cell therapy in regenerative medicine, including liver disease. Even though ongoing research is dedicated to the goal of bringing MSCs to clinical applications, further understanding of the complex underlying mechanisms is required. Autophagy, a type II programmed cell death, controls cellular recycling through the lysosomal system in damaged cells or tissues. However, it is still unknown whether MSCs can trigger autophagy to enhance regeneration and/or to provide a therapeutic effect as cellular survival promoters. We therefore investigated autophagy's activation in carbon tetrachloride (CCl4 )-injured rat liver following transplantation with chorionic plate-derived MSCs (CP-MSCs) isolated from placenta. The expression markers for apoptosis, autophagy, cell survival, and liver regeneration were analyzed. Whereas caspase 3/7 activities were reduced (p < .05), the expression levels of hypoxia-inducible factor-1α (HIF-1α) and factors for autophagy, survival, and regeneration were significantly increased by CP-MSCs transplantation. Decreased necrotic cells (p < .05) and increased autophagic signals (p < .005) were observed in CCl4 -treated primary rat hepatocytes during in vitro coculture with CP-MSCs. Furthermore, the upregulation of HIF-1α promotes the regeneration of damaged hepatic cells through an autophagic mechanism marked by increased levels of light chain 3 II (LC 3II). These results suggest that the administration of CP-MSCs promotes repair by systemically concomitant mechanisms involving HIF-1α and autophagy. These findings provide further understanding of the mechanisms involved in these processes and will help develop new cell-based therapeutic strategies for regenerative medicine in liver disease.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Biomedical Science, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Sharifi-Sanjani M, Shoushtari AH, Quiroz M, Baust J, Sestito SF, Mosher M, Ross M, McTiernan CF, St Croix CM, Bilonick RA, Champion HC, Isenberg JS. Cardiac CD47 drives left ventricular heart failure through Ca2+-CaMKII-regulated induction of HDAC3. J Am Heart Assoc 2014; 3:e000670. [PMID: 24922625 PMCID: PMC4309049 DOI: 10.1161/jaha.113.000670] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Left ventricular heart failure (LVHF) remains progressive and fatal and is a formidable health problem because ever‐larger numbers of people are diagnosed with this disease. Therapeutics, while relieving symptoms and extending life in some cases, cannot resolve this process and transplant remains the option of last resort for many. Our team has described a widely expressed cell surface receptor (CD47) that is activated by its high‐affinity secreted ligand, thrombospondin 1 (TSP1), in acute injury and chronic disease; however, a role for activated CD47 in LVHF has not previously been proposed. Methods and Results In experimental LVHF TSP1‐CD47 signaling is increased concurrent with up‐regulation of cardiac histone deacetylase 3 (HDAC3). Mice mutated to lack CD47 displayed protection from transverse aortic constriction (TAC)‐driven LVHF with enhanced cardiac function, decreased cellular hypertrophy and fibrosis, decreased maladaptive autophagy, and decreased expression of HDAC3. In cell culture, treatment of cardiac myocyte CD47 with a TSP1‐derived peptide, which binds and activates CD47, increased HDAC3 expression and myocyte hypertrophy in a Ca2+/calmodulin protein kinase II (CaMKII)‐dependent manner. Conversely, antibody blocking of CD47 activation, or pharmacologic inhibition of CaMKII, suppressed HDAC3 expression, decreased myocyte hypertrophy, and mitigated established LVHF. Downstream gene suppression of HDAC3 mimicked the protective effects of CD47 blockade and decreased hypertrophy in myocytes and mitigated LVHF in animals. Conclusions These data identify a proximate role for the TSP1‐CD47 axis in promoting LVHF by CaKMII‐mediated up‐regulation of HDAC3 and suggest novel therapeutic opportunities.
Collapse
Affiliation(s)
- Maryam Sharifi-Sanjani
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (M.S.S., M.Q., J.B., S.F.S., H.C.C., J.S.I.) Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA (M.S.S., H.C.C., J.S.I.)
| | - Ali Hakim Shoushtari
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA (A.H.S., H.C.C.)
| | - Marisol Quiroz
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (M.S.S., M.Q., J.B., S.F.S., H.C.C., J.S.I.)
| | - Jeffrey Baust
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (M.S.S., M.Q., J.B., S.F.S., H.C.C., J.S.I.)
| | - Samuel F Sestito
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (M.S.S., M.Q., J.B., S.F.S., H.C.C., J.S.I.)
| | - Mackenzie Mosher
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA (M.M., M.R., C.M.S.C.)
| | - Mark Ross
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA (M.M., M.R., C.M.S.C.)
| | - Charles F McTiernan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (C.F.M.T.)
| | - Claudette M St Croix
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA (M.M., M.R., C.M.S.C.)
| | - Richard A Bilonick
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA (R.A.B.)
| | - Hunter C Champion
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (M.S.S., M.Q., J.B., S.F.S., H.C.C., J.S.I.) Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA (M.S.S., H.C.C., J.S.I.) Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA (A.H.S., H.C.C.)
| | - Jeffrey S Isenberg
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA (M.S.S., M.Q., J.B., S.F.S., H.C.C., J.S.I.) Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA (M.S.S., H.C.C., J.S.I.)
| |
Collapse
|
193
|
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, even despite recent scientific and technological advances and comprehensive preventive strategies. The cardiac myocyte is a voracious consumer of energy, and alterations in metabolic substrate availability and consumption are hallmark features of these disorders. Autophagy, an evolutionarily ancient response to metabolic insufficiency, has been implicated in the pathogenesis of a wide range of heart pathologies. However, the precise role of autophagy in these contexts remains obscure owing to its multifarious actions. Here, we review recently derived insights regarding the role of autophagy in cardiac hypertrophy and heart failure, highlighting its effects on metabolism.
Collapse
Affiliation(s)
- Zhao V Wang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | | | | |
Collapse
|
194
|
Huang CT, Huang DY, Hu CJ, Wu D, Lin WW. Energy adaptive response during parthanatos is enhanced by PD98059 and involves mitochondrial function but not autophagy induction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:531-43. [PMID: 24321770 DOI: 10.1016/j.bbamcr.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
Parthanatos is a programmed necrotic demise characteristic of ATP (adenosine triphosphate) consumption due to NAD+ (nicotinamide adenine dinucleotide) depletion by poly(ADP-ribose) polymerase 1 (PARP1)-dependent poly(ADP-ribosyl)ation on target proteins. However, how the bioenergetics is adaptively regulated during parthanatos, especially under the condition of macroautophagy deficiency, remains poorly characterized. Here, we demonstrated that the parthanatic inducer N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) triggered ATP depletion followed by recovery in mouse embryonic fibroblasts (MEFs). Notably, Atg5-/- MEFs showed great susceptibility to MNNG with disabled ATP-producing capacity. Moreover, the differential energy-adaptive responses in wild-type (WT) and Atg5-/- MEFs were unequivocally worsened by inhibition ofAMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and mitochondrial activity. Importantly, Atg5-/- MEFs disclosed diminished SIRT1 and mitochondrial activity essential to the energy restoration during parthanatos. Strikingly, however, parthanatos cannot be exasperated by bafilomycin A1 and MNNG neither provokes microtubule-associated protein 1A/1B-light chain 3 (LC3) lipidation and p62 elimination, suggesting that parthanatos does not induce autophagic flux. Intriguingly, we reported unexpectedly that PD98059, even at low concentration insufficient to inhibit MEK, can promote mitochondrial activity and facilitate energy-restoring process during parthanatos, without modulating DNA damage responses as evidenced by PARP1 activity, p53 expression, and gammaH2AX (H2A histone family, member X (H2AX), phosphorylated on Serine 139) induction. Therefore, we propose that Atg5 deficiency confers an infirmity to overcome the energy crisis during parthanatos and further underscore the deficits in mitochondrial quality control, but not incapability of autophagy induction, that explain the vulnerability in Atg5-deficient cells. Collectively, our results provide a comprehensive energy perspective for an improved treatment to alleviate parthanatos-related tissue necrosis and disease progression and also provide a future direction for drug development on the basis of PD98059 as an efficacious compound against parthanatos.
Collapse
|
195
|
Ma S, Wang Y, Chen Y, Cao F. The role of the autophagy in myocardial ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2014; 1852:271-6. [PMID: 24859226 DOI: 10.1016/j.bbadis.2014.05.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/12/2014] [Indexed: 02/08/2023]
Abstract
Autophagy is an intracellular process responsible for damaged or unnecessary protein and organelle degradation. In the heart, autophagy occurs at basal level and dysregulated autophagy is associated with a variety of cardiovascular diseases. Autophagy is enhanced in ischemia as well as in the reperfusion phase during cardiac ischemia reperfusion (I/R) injury. More importantly, recent studies revealed that autophagy exerted both beneficial and detrimental effects in pathology of cardiac ischemia reperfusion. This paper is to review the functional significance of autophagy in cardiac ischemia reperfusion injury and discuss underlying signaling pathways. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Collapse
Affiliation(s)
- Sai Ma
- Department of Cardiology, Chinese PLA General Hospital, 28# Fuxing Street, Beijing 100852, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yabin Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, 28# Fuxing Street, Beijing 100852, China
| | - Feng Cao
- Department of Cardiology, Chinese PLA General Hospital, 28# Fuxing Street, Beijing 100852, China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127# Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
196
|
Gedik N, Thielmann M, Kottenberg E, Peters J, Jakob H, Heusch G, Kleinbongard P. No evidence for activated autophagy in left ventricular myocardium at early reperfusion with protection by remote ischemic preconditioning in patients undergoing coronary artery bypass grafting. PLoS One 2014; 9:e96567. [PMID: 24797938 PMCID: PMC4010496 DOI: 10.1371/journal.pone.0096567] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/08/2014] [Indexed: 11/30/2022] Open
Abstract
Objective Remote ischemic preconditioning (RIPC) by repeated brief limb ischemia/reperfusion reduces myocardial injury in patients undergoing coronary artery bypass grafting (CABG). Activation of signal transducer and activator of transcription 5 (STAT5) in left ventricular (LV) myocardium at early reperfusion is associated with such protection. Autophagy, i.e., removal of dysfunctional cellular components through lysosomes, has been proposed as one mechanism of cardioprotection. Therefore, we analyzed whether or not the protection by RIPC is associated with activated autophagy. Methods CABG patients were randomized to undergo RIPC (3×5 min blood pressure cuff inflation/5 min deflation) or placebo (cuff deflated) before skin incision (n = 10/10). Transmural myocardial biopsies were taken from the LV before cardioplegia (baseline) and at early (5–10 min) reperfusion. RIPC-induced protection was reflected by decreased serum troponin I concentration area under the curve (194±17 versus 709±129 ng/ml × 72 h, p = 0.002). Western blotting for beclin-1-phosphorylation and protein expression of autophagy-related gene 5–12 (ATG5-12) complex, light chain 3 (LC3), parkin, and p62 was performed. STAT3-, STAT5- and extracellular signal-regulated protein kinase 1/2 (ERK1/2)-phosphorylation was used as positive control to confirm signal activation by ischemia/reperfusion. Results Signals of all analyzed autophagy proteins did not differ between baseline and early reperfusion and not between RIPC and placebo. STAT5-phosphorylation was greater at early reperfusion only with RIPC (2.2-fold, p = 0.02). STAT3- and ERK1/2-phosphorylation were greater at early reperfusion with placebo and RIPC (≥2.7-fold versus baseline, p≤0.05). Conclusion Protection through RIPC in patients undergoing CABG surgery does not appear to be associated with enhanced autophagy in LV myocardium at early reperfusion.
Collapse
Affiliation(s)
- Nilgün Gedik
- Institut für Pathophysiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Matthias Thielmann
- Klinik für Thorax- und Kardiovaskuläre Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Eva Kottenberg
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Heinz Jakob
- Klinik für Thorax- und Kardiovaskuläre Chirurgie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gerd Heusch
- Institut für Pathophysiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
197
|
Poranki DR, Van Dyke ME. The effect of gamma keratose on cell viability in vitro after thermal stress and the regulation of cell death pathway-specific gene expression. Biomaterials 2014; 35:4646-55. [DOI: 10.1016/j.biomaterials.2014.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/23/2014] [Indexed: 11/27/2022]
|
198
|
Xu Q, Meng S, Liu B, Li MQ, Li Y, Fang L, Li YG. MicroRNA-130aregulates autophagy of endothelial progenitor cells through Runx3. Clin Exp Pharmacol Physiol 2014; 41:351-7. [PMID: 24750349 DOI: 10.1111/1440-1681.12227] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 01/30/2023]
Affiliation(s)
- Quanfu Xu
- Department of Cardiology; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Shu Meng
- Department of Cardiology; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Bo Liu
- Department of Cardiology; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Mao-Quan Li
- Department of Interventional Radiology; Tenth People's Hospital of Tongji University; Shanghai China
| | - Yeting Li
- Department of Cardiology; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Lu Fang
- Vascular Pharmacology Laboratory; Baker Heart and Diabetes Institute; Melbourne Vic. Australia
| | - Yi-Gang Li
- Department of Cardiology; Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
199
|
Hou X, Hu Z, Xu H, Xu J, Zhang S, Zhong Y, He X, Wang N. Advanced glycation endproducts trigger autophagy in cadiomyocyte via RAGE/PI3K/AKT/mTOR pathway. Cardiovasc Diabetol 2014; 13:78. [PMID: 24725502 PMCID: PMC3998738 DOI: 10.1186/1475-2840-13-78] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 02/14/2014] [Indexed: 02/06/2023] Open
Abstract
Methods Rat neonate cardiomyocytes were cultured and treated with AGEs at different concentration. Two classic autophagy markers, microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1, were detected by western blot assay. The inhibition of RAGE and phosphatidylinositol 3-phosphate kinase (PI3K)/Akt/mTOR pathway were applied to cells, respectively. Results AGEs administration enhanced the expression of Beclin-1 and LC3 II in cardiomyocytes, increased the number of autophagic vacuoles and impaired the cell viability in dose-dependant manners. Also, AGEs inhibited the PI3K/Akt/mTOR pathway via RAGE. Inhibition of RAGE with RAGE antibody reduced expression of Beclin-1 and LC3 II/I and inhibited the cellular autophagy, accompanied by the reactivation of PI3K/Akt/mTOR pathway in cultured cells. Notably, the presence of inhibition of PI3K/Akt/mTOR pathway abolished the protective effect of RAGE inhibition on cardiomyocytes. Conclusion This study provides evidence that AGEs induces cardiomyocyte autophagy by, at least in part, inhibiting the PI3K/Akt/mTOR pathway via RAGE. Previous studies showed that the accumulation of advanced glycation end products (AGEs) induce cardiomyocyte apoptoisis, leading to heart dysfunction. However, the effect of AGEs on another cell death pathway, autophagy, in cardiomyocytes remains unknown.
Collapse
Affiliation(s)
- Xuwei Hou
- Department of Cardiology, Hangzhou Hospital, Nanjing Medical University & Hangzhou First Municipal Hospital, Hangzhou 310006, China.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Xiao M, Li L, Li C, Zhang P, Hu Q, Ma L, Zhang H. Role of autophagy and apoptosis in wound tissue of deep second-degree burn in rats. Acad Emerg Med 2014; 21:383-91. [PMID: 24730400 PMCID: PMC4114170 DOI: 10.1111/acem.12352] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/11/2013] [Accepted: 10/31/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The pathogenesis of burn wound progression is poorly understood. Contributing factors include continuous loss of blood perfusion, excessive inflammation, and elevated apoptosis levels in wound tissue. Macroautophagy (here referred to simply as "autophagy") is associated with many chronic diseases. The authors hypothesized that autophagy is involved in burn wound progression in a rat model of deep second-degree burn. METHODS Deep second-degree burns were modeled using a brass rod heated to 100°C applied for 6 seconds to the back skin of Wistar rats. Full-thickness biopsies were obtained from burned and nonburned controls at several times postburn. Western blotting and immunohistochemical (IHC) staining determined expression of the autophagy markers Light Chain 3 (LC3) and beclin-1. Apoptosis was determined by terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) assay and laser Doppler flowmetry (LDF)-measured tissue perfusion. Myeloperoxidase (MPO) activity assay measured inflammation. Hematoxylin and eosin (H&E) and Masson's trichrome staining-determined pathology and wound depth. RESULTS The LC3 and beclin-1 protein level in burn wounds decreased to one-fourth of normal levels (p<0.01) over 24 hours and then began to increase but still did not reach their normal level. TUNEL-positive cells in burn wounds were 3.7-fold (p<0.01) elevated over 48 hours and then decreased slightly, yet still remained higher than in normal skin. The burn wound progressed in depth over 72 hours. In addition, significant decrease in LDF values and upregulation of MPO activity were observed. Enhanced LC3-positive cells were observed in the deep dermal layer of burn wounds as shown by IHC staining. CONCLUSIONS A reduction in autophagy and blood flow and an increase in apoptosis and inflammation were observed in burn wounds early during the course of burn injury progression. This suggests that autophagy, complemented by apoptosis, play important roles in burn progression. Enhanced autophagy in the deep dermis may be a prosurvival mechanism against ischemia and inflammation after burn injury.
Collapse
Affiliation(s)
- Mengjing Xiao
- The Department of Burn and Plastic SurgeryBurn Institute First Affiliated Hospital of General Hospital of PLABeijingChina
| | - Ligen Li
- The Department of Burn and Plastic SurgeryBurn Institute First Affiliated Hospital of General Hospital of PLABeijingChina
| | - Chenxi Li
- The Department of Burn and Plastic SurgeryBurn Institute First Affiliated Hospital of General Hospital of PLABeijingChina
| | - Peirong Zhang
- The Hematology DepartmentBeijing Daopei HospitalBeijingChina
| | - Quan Hu
- The Department of Burn and Plastic SurgeryBurn Institute First Affiliated Hospital of General Hospital of PLABeijingChina
| | - Li Ma
- The Department of Burn and Plastic SurgeryBurn Institute First Affiliated Hospital of General Hospital of PLABeijingChina
| | - Haijun Zhang
- The Department of Burn and Plastic SurgeryBurn Institute First Affiliated Hospital of General Hospital of PLABeijingChina
| |
Collapse
|