151
|
Arcangeli S, Rotiroti MC, Bardelli M, Simonelli L, Magnani CF, Biondi A, Biagi E, Tettamanti S, Varani L. Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Mol Ther 2017; 25:1933-1945. [PMID: 28479045 DOI: 10.1016/j.ymthe.2017.04.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
Chimeric antigen receptor (CAR)-redirected T lymphocytes are a promising immunotherapeutic approach and object of pre-clinical evaluation for the treatment of acute myeloid leukemia (AML). We developed a CAR against CD123, overexpressed on AML blasts and leukemic stem cells. However, potential recognition of low CD123-positive healthy tissues, through the on-target, off-tumor effect, limits safe clinical employment of CAR-redirected T cells. Therefore, we evaluated the effect of context-dependent variables capable of modulating CAR T cell functional profiles, such as CAR binding affinity, CAR expression, and target antigen density. Computational structural biology tools allowed for the design of rational mutations in the anti-CD123 CAR antigen binding domain that altered CAR expression and CAR binding affinity without affecting the overall CAR design. We defined both lytic and activation antigen thresholds, with early cytotoxic activity unaffected by either CAR expression or CAR affinity tuning but later effector functions impaired by low CAR expression. Moreover, the anti-CD123 CAR safety profile was confirmed by lowering CAR binding affinity, corroborating CD123 is a good therapeutic target antigen. Overall, full dissection of these variables offers suitable anti-CD123 CAR design optimization for the treatment of AML.
Collapse
MESH Headings
- Binding Sites
- Cytotoxicity, Immunologic
- Gene Expression
- Humans
- Immunomodulation
- Immunotherapy, Adoptive
- Interleukin-3 Receptor alpha Subunit/antagonists & inhibitors
- Interleukin-3 Receptor alpha Subunit/chemistry
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Models, Molecular
- Molecular Conformation
- Protein Binding
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins
- Structure-Activity Relationship
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Silvia Arcangeli
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Maria Caterina Rotiroti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Marco Bardelli
- Istituto di Ricerca in Biomedicina, Università degli Studi della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Luca Simonelli
- Istituto di Ricerca in Biomedicina, Università degli Studi della Svizzera Italiana, 6500 Bellinzona, Switzerland
| | - Chiara Francesca Magnani
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Ettore Biagi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy.
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Ospedale San Gerardo/Fondazione MBBM, 20900 Monza, Italy
| | - Luca Varani
- Istituto di Ricerca in Biomedicina, Università degli Studi della Svizzera Italiana, 6500 Bellinzona, Switzerland
| |
Collapse
|
152
|
Wang X, Xiao Q, Wang Z, Feng WL. CAR-T therapy for leukemia: progress and challenges. Transl Res 2017; 182:135-144. [PMID: 27855281 DOI: 10.1016/j.trsl.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 01/07/2023]
Abstract
Despite the rapid development of therapeutic strategies, leukemia remains a type of difficult-to-treat hematopoietic malignancy that necessitates introduction of more effective treatment options to improve life expectancy and quality of patients. Genetic engineering in adoptively transferred T cells to express antigen-specific chimeric antigen receptors (CARs) has proved highly powerful and efficacious in inducing sustained responses in patients with refractory malignancies, as exemplified by the success of CD19-targeting CAR-T treatment in patients with relapsed acute lymphoblastic leukemia. Recent strategies, including manipulating intracellular activating domains and transducing viral vectors, have resulted in better designed and optimized CAR-T cells. This is further facilitated by the rapid identification of an accumulating number of potential leukemic antigens that may serve as therapeutic targets for CAR-T cells. This review will provide a comprehensive background and scrutinize recent important breakthrough studies on anti-leukemia CAR-T cells, with focus on recently identified antigens for CAR-T therapy design and approaches to overcome critical challenges.
Collapse
Affiliation(s)
- Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhe Wang
- Department of Melanoma Medical Oncology, and the University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Wen-Li Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
153
|
Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res 2017; 15:635-650. [PMID: 28356330 DOI: 10.1158/1541-7786.mcr-16-0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022]
Abstract
The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - John Maher
- Kings College London, CAR Mechanics Group, Guy's Hospital, London, United Kingdom
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
154
|
Lopez-Lastra S, Di Santo JP. Modeling Natural Killer Cell Targeted Immunotherapies. Front Immunol 2017; 8:370. [PMID: 28405194 PMCID: PMC5370275 DOI: 10.3389/fimmu.2017.00370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
Animal models have extensively contributed to our understanding of human immunobiology and to uncover the underlying pathological mechanisms occurring in the development of diseases. However, mouse models do not reproduce the genetic and molecular complexity inherent in human disease conditions. Human immune system (HIS) mouse models that are susceptible to human pathogens and can recapitulate human hematopoiesis and tumor immunobiology provide one means to bridge the interspecies gap. Natural killer cells are the founding member of the innate lymphoid cell family. They exert a rapid and strong immune response against tumor and pathogen-infected cells. Their antitumor features have long been exploited for therapeutic purposes in the context of cancer. In this review, we detail the development of highly immunodeficient mouse strains and the models currently used in cancer research. We summarize the latest improvements in adoptive natural killer (NK) cell therapies and the development of novel NK cell sources. Finally, we discuss the advantages of HIS mice to study the interactions between human NK cells and human cancers and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Lopez-Lastra
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
- Université Paris-Sud (Paris-Saclay), Paris, France
| | - James P. Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| |
Collapse
|
155
|
Modification of cytokine-induced killer cells with folate receptor alpha (FRα)-specific chimeric antigen receptors enhances their antitumor immunity toward FRα-positive ovarian cancers. Mol Immunol 2017; 85:293-304. [PMID: 28360017 DOI: 10.1016/j.molimm.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 12/20/2022]
Abstract
Folate receptor alpha (FRα) is aberrantly expressed in ovarian cancers but largely absent in normal tissues, and therefore represents an attractive target for immunotherapy. In recent years, modification of T cells with chimeric antigen receptor (CAR) targeting FRα has been reported to improve antitumor immunity of T cells. However, there are limited data regarding CAR-modified cytokine-induced killer (CAR-CIK) cells. In the present study, we modified CIK cells with FRα-specific CARs and investigated their antitumor immunity against ovarian cancers. We found that both non-transduced and mock CAR-transduced CIK cells showed only low antitumor activity against either FRα-positive (FRα+) or FRα-negative (FRα-) targets. However, all three generations of CAR-modified CIK cells showed enhanced antitumor activity against FRα+ targets, but not FRα- targets. First-generation ζ-CAR-CIK cells increased production of IFN-γ, enhanced short-term cytotoxicity against FRα+ ovarian cancer cells, and showed modest and short-term suppression of established tumors; while second-generation 28ζ- and third-generation 28BBζ-CAR-CIK cells showed significant proliferation, enhanced secretion of IL-2, eliminated the FRα+ ovarian cancer cells in long-term co-culture, and showed dramatic and long-term inhibition of tumor growth and prolonged survival of xenograft-bearing mice. It is noteworthy that the 28BBζ-CAR was more potent in the modification of CIK cells than 28ζ-CAR both in vitro and in vivo. Moreover, CAR-CIK cells showed more efficient anticancer activity compared with CAR-T cells in vitro, but less efficient than CAR-T cells in vivo. According to these results, we conclude that modification of CIK cells with FRα-specific CARs enhances their antitumor immunity to FRα+ ovarian cancers. The third-generation 28BB-ζ CAR containing 4-1BB co-stimulation was more efficient in modification of CIK cells than either first-generation ζ-CAR or second-generation CD28-ζ-CAR.
Collapse
|
156
|
Barrett AJ. Antibody darts on target for acute myelogenous leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:80. [PMID: 28275625 DOI: 10.21037/atm.2017.01.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- A John Barrett
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
157
|
Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood 2017; 129:2395-2407. [PMID: 28246194 DOI: 10.1182/blood-2016-08-736041] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/21/2017] [Indexed: 01/25/2023] Open
Abstract
We and others previously reported potent antileukemia efficacy of CD123-redirected chimeric antigen receptor (CAR) T cells in preclinical human acute myeloid leukemia (AML) models at the cost of severe hematologic toxicity. This observation raises concern for potential myeloablation in patients with AML treated with CD123-redirected CAR T cells and mandates novel approaches for toxicity mitigation. We hypothesized that CAR T-cell depletion with optimal timing after AML eradication would preserve leukemia remission and allow subsequent hematopoietic stem cell transplantation. To test this hypothesis, we compared 3 CAR T-cell termination strategies: (1) transiently active anti-CD123 messenger RNA-electroporated CART (RNA-CART123); (2) T-cell ablation with alemtuzumab after treatment with lentivirally transduced anti-CD123-4-1BB-CD3ζ T cells (CART123); and (3) T-cell ablation with rituximab after treatment with CD20-coexpressing CART123 (CART123-CD20). All approaches led to rapid leukemia elimination in murine xenograft models of human AML. Subsequent antibody-mediated depletion of CART123 or CART123-CD20 did not impair leukemia remission. Time-course studies demonstrated that durable leukemia remission required CAR T-cell persistence for 4 weeks prior to ablation. Upon CAR T-cell termination, we further demonstrated successful hematopoietic engraftment with a normal human donor to model allogeneic stem cell rescue. Results from these studies will facilitate development of T-cell depletion strategies to augment the feasibility of CAR T-cell therapy for patients with AML.
Collapse
|
158
|
Abstract
PURPOSE OF REVIEW The impact of immunotherapy has grown exponentially in the past 5 years. Principle illustrations are encouraging results with engineered T cells expressing a chimeric antigen receptor (CAR). This experimental therapy is developing simultaneously in pediatric and adult clinical trials, making this field particularly relevant and exciting for pediatric oncologists. RECENT FINDINGS CAR-modified T cells targeting CD19 have produced dramatic antitumor responses in patients with relapsed/refractory B cell acute lymphoblastic leukemia. Clinical trials from several institutions, in both children and adults, using distinct CAR T cell products have demonstrated similar high complete remission rates of 61-93%, with durable remissions observed. Although the development of CARs for other malignancies has lagged behind, research into novel approaches to overcome inherent challenges is promising. SUMMARY Clinical trials of CAR-modified T cells have produced unprecedented results and are anticipated to have a broader impact as this approach expands into other indications, including other cancers and frontline therapy. The potential for long-term disease control, if fully realized, will have a transformative impact on the field.
Collapse
|
159
|
Kenderian SS, Porter DL, Gill S. Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse. Biol Blood Marrow Transplant 2017; 23:235-246. [PMID: 27638367 PMCID: PMC5237606 DOI: 10.1016/j.bbmt.2016.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Hematopoietic cell transplantation (HCT) remains an important and potentially curative option for most hematologic malignancies. As a form of immunotherapy, allogeneic HCT (allo-HCT) offers the potential for durable remissions but is limited by transplantation- related morbidity and mortality owing to organ toxicity, infection, and graft-versus-host disease. The recent positive outcomes of chimeric antigen receptor T (CART) cell therapy in B cell malignancies may herald a paradigm shift in the management of these disorders and perhaps other hematologic malignancies as well. Clinical trials are now needed to address the relative roles of CART cells and HCT in the context of transplantation-eligible patients. In this review, we summarize the state of the art of the development of CART cell therapy for leukemia, lymphoma, and myeloma and discuss our perspective of how CART cell therapy can be applied in the context of HCT.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD3 Complex/genetics
- CD3 Complex/immunology
- Cells, Cultured
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/genetics
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Genes, Synthetic
- Genetic Vectors
- Graft vs Host Disease/prevention & control
- Hematologic Neoplasms/therapy
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Multicenter Studies as Topic
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transduction, Genetic
- Transplantation Conditioning
Collapse
Affiliation(s)
- Saad S Kenderian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David L Porter
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
160
|
Kenderian SS, June CH, Gill S. Generating and Expanding Autologous Chimeric Antigen Receptor T Cells from Patients with Acute Myeloid Leukemia. Methods Mol Biol 2017; 1633:267-276. [PMID: 28735493 DOI: 10.1007/978-1-4939-7142-8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adoptive transfer of genetically engineered T cells can lead to profound and durable responses in patients with hematologic malignancies, generating enormous enthusiasm among scientists, clinicians, patients, and biotechnology companies. The success of adoptive cellular immunotherapy depends upon the ability to manufacture good quality T cells. We discuss here the methodologies and reagents that are used to generate T cells for the preclinical study of chimeric antigen receptor T cell therapy for acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Saad S Kenderian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology/Oncology, Center for Cellular Immunotherapies, Smilow Center for Translational Research, 8-100, 3400 Civic Center Blvd, Philadelphia, PA, 19146, USA.
| |
Collapse
|
161
|
Masarova L, Kantarjian H, Garcia-Mannero G, Ravandi F, Sharma P, Daver N. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 995:73-95. [PMID: 28321813 DOI: 10.1007/978-3-319-53156-4_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is the most common leukemia among adults and is associated with a poor prognosis, especially in patients with adverse prognostic factors, older age, or relapsed disease. The last decade has seen a surge in successful immune-based therapies in various solid tumors; however, the role of immune therapies in AML remains poorly defined. This chapter describes the rationale, clinical data, and toxicity profiles of immune-based therapeutic modalities in AML including naked and conjugated monoclonal antibodies, bispecific T-cell engager antibodies, chimeric antigen receptor (CAR)-T cells, and checkpoint blockade via blockade of PD1/PDL1 or CTLA4. Monoclonal antibodies commonly used in AML therapy target highly expressed "leukemia" surface antigens and include (1) naked antibodies against common myeloid markers such as anti-CD33 (e.g., lintuzumab), (2) antibody-drug conjugates linked to either, (a) a highly potent toxin such as calicheamicin, pyrrolobenzodiazepine, maytansine, or others in various anti-CD33 (gemtuzumab ozogamicin, SGN 33A), anti-123 (SL-401), and anti-CD56 (lorvotuzumab mertansine) formulations, or (b) radioactive particles, such as 131I, 213Bi, or 225Ac-labeled anti-CD33 or CD45 antibodies. Novel monoclonal antibodies that recruit and promote proximity-induced cytotoxicity of tumor cells by T cells (bispecific T-cell engager [BiTE] such as anti CD33/CD3, e.g., AMG 330) or block immune checkpoint pathways such as CTLA4 (e.g., ipilimumab) or PD1/PD-L1 (e.g., nivolumab) unleashing the patients T cells to fight leukemic cells are being evaluated in clinical trials in patients with AML. The numerous ongoing clinical trials with immunotherapies in AML will improve our understanding of the biology of AML and allow us to determine the best approaches to immunotherapy in AML.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibody Specificity
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Humans
- Immunotherapy/methods
- Immunotherapy, Adoptive
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Molecular Targeted Therapy
- Signal Transduction/drug effects
- T-Lymphocytes/microbiology
- T-Lymphocytes/transplantation
- Tumor Microenvironment
Collapse
Affiliation(s)
- Lucia Masarova
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | | | - Farhad Ravandi
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Padmanee Sharma
- Immunotherapy Platform, MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
162
|
Sander FE, Rydström A, Bernson E, Kiffin R, Riise R, Aurelius J, Anderson H, Brune M, Foà R, Hellstrand K, Thorén FB, Martner A. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia. Oncotarget 2016; 7:7586-96. [PMID: 26863635 PMCID: PMC4884940 DOI: 10.18632/oncotarget.7210] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
Preventing relapse after chemotherapy remains a challenge in acute myeloid leukemia (AML). Eighty-four non-transplanted AML patients in first complete remission received relapse-preventive immunotherapy with histamine dihydrochloride and low-dose interleukin-2 in an international phase IV trial (ClinicalTrials.gov; NCT01347996). Blood samples were drawn during cycles of immunotherapy and analyzed for CD8+ (cytotoxic) T cell phenotypes in blood. During the first cycle of therapy, a re-distribution of cytotoxic T cells was observed comprising a reduction of T effector memory cells and a concomitant increase of T effector cells. The dynamics of T cell subtypes during immunotherapy prognosticated relapse and survival, in particular among older patients and remained significantly predictive of clinical outcome after correction for potential confounders. Presence of CD8+ T cells with specificity for leukemia-associated antigens identified patients with low relapse risk. Our results point to novel aspects of T cell-mediated immunosurveillance in AML and provide conceivable biomarkers in relapse-preventive immunotherapy.
Collapse
Affiliation(s)
- Frida Ewald Sander
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rydström
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Rebecca Riise
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Johan Aurelius
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Harald Anderson
- Department of Cancer Epidemiology, University of Lund, Lund, Sweden
| | - Mats Brune
- Department of Hematology, University of Gothenburg, Gothenburg, Sweden
| | - Robin Foà
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik B Thorén
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
163
|
Rotiroti MC, Arcangeli S, Casucci M, Perriello V, Bondanza A, Biondi A, Tettamanti S, Biagi E. Acute Myeloid Leukemia Targeting by Chimeric Antigen Receptor T Cells: Bridging the Gap from Preclinical Modeling to Human Studies. Hum Gene Ther 2016; 28:231-241. [PMID: 27967241 DOI: 10.1089/hum.2016.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric high-risk patients, thus demanding advanced and personalized therapies. In this regard, different targeted immunotherapeutic approaches are available, ranging from naked monoclonal antibodies (mAb) to conjugated and multifunctional mAbs (i.e., BiTEs and DARTs). Recently, researchers have focused their attention on novel techniques of genetic manipulation specifically to redirect cytotoxic T cells endowed with chimeric antigen receptors (CARs) toward selected tumor associated antigens. So far, CAR T cells targeting the CD19 antigen expressed by B-cell origin hematological cancers have gained impressive clinical results, leading to the possibility of translating the CAR platform to treat other hematological malignancies such as AML. However, one of the main concerns in the field of AML CAR immunotherapy is the identification of an ideal target cell surface antigen, being highly expressed on tumor cells but minimally present on healthy tissues, together with the design of an anti-AML CAR appropriately balancing efficacy and safety profiles. The current review focuses mainly on AML target antigens and the related immunotherapeutic approaches developed so far, deeply dissecting methods of CAR T cell safety improvements, when designing novel CARs approaching human studies.
Collapse
Affiliation(s)
- Maria Caterina Rotiroti
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Silvia Arcangeli
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Monica Casucci
- 2 Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University , Milan, Italy
| | - Vincenzo Perriello
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Attilio Bondanza
- 2 Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University , Milan, Italy
| | - Andrea Biondi
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Sarah Tettamanti
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| | - Ettore Biagi
- 1 Molecular Therapy Unit, Tettamanti Research Center, Pediatric Clinic, University of Milano Bicocca , San Gerardo Hospital/MBBM Foundation, Monza, Italy
| |
Collapse
|
164
|
Minagawa K, Jamil MO, AL-Obaidi M, Pereboeva L, Salzman D, Erba HP, Lamb LS, Bhatia R, Mineishi S, Di Stasi A. In Vitro Pre-Clinical Validation of Suicide Gene Modified Anti-CD33 Redirected Chimeric Antigen Receptor T-Cells for Acute Myeloid Leukemia. PLoS One 2016; 11:e0166891. [PMID: 27907031 PMCID: PMC5132227 DOI: 10.1371/journal.pone.0166891] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
Background Approximately fifty percent of patients with acute myeloid leukemia can be cured with current therapeutic strategies which include, standard dose chemotherapy for patients at standard risk of relapse as assessed by cytogenetic and molecular analysis, or high-dose chemotherapy with allogeneic hematopoietic stem cell transplant for high-risk patients. Despite allogeneic hematopoietic stem cell transplant about 25% of patients still succumb to disease relapse, therefore, novel strategies are needed to improve the outcome of patients with acute myeloid leukemia. Methods and findings We developed an immunotherapeutic strategy targeting the CD33 myeloid antigen, expressed in ~ 85–90% of patients with acute myeloid leukemia, using chimeric antigen receptor redirected T-cells. Considering that administration of CAR T-cells has been associated with cytokine release syndrome and other potential off-tumor effects in patients, safety measures were here investigated and reported. We genetically modified human activated T-cells from healthy donors or patients with acute myeloid leukemia with retroviral supernatant encoding the inducible Caspase9 suicide gene, a ΔCD19 selectable marker, and a humanized third generation chimeric antigen receptor recognizing human CD33. ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells had a 75±3.8% (average ± standard error of the mean) chimeric antigen receptor expression, were able to specifically lyse CD33+ targets in vitro, including freshly isolated leukemic blasts from patients, produce significant amount of tumor-necrosis-factor-alpha and interferon-gamma, express the CD107a degranulation marker, and proliferate upon antigen specific stimulation. Challenging ΔCD19 selected inducible Caspase9-CAR.CD33 T-cells with programmed-death-ligand-1 enriched leukemia blasts resulted in significant killing like observed for the programmed-death-ligand-1 negative leukemic blasts fraction. Since the administration of 10 nanomolar of a non-therapeutic dimerizer to activate the suicide gene resulted in the elimination of only 76.4±2.0% gene modified cells in vitro, we found that co-administration of the dimerizer with either the BCL-2 inhibitor ABT-199, the pan-BCL inhibitor ABT-737, or mafosfamide, resulted in an additive effect up to complete cell elimination. Conclusions This strategy could be investigated for the safety of CAR T-cell applications, and targeting CD33 could be used as a ‘bridge” therapy for patients coming to allogeneic hematopoietic stem cell transplant, as anti-leukemia activity from infusing CAR.CD33 T-cells has been demonstrated in an ongoing clinical trial. Albeit never performed in the clinical setting, our future plan is to investigate the utility of iC9-CAR.CD33 T-cells as part of the conditioning therapy for an allogeneic hematopoietic stem cell transplant for acute myeloid leukemia, together with other myelosuppressive agents, whilst the activation of the inducible Caspase9 suicide gene would grant elimination of the infused gene modified T-cells prior to stem cell infusion to reduce the risk of engraftment failure as the CD33 is also expressed on a proportion of the donor stem cell graft.
Collapse
MESH Headings
- B7-H1 Antigen/pharmacology
- Biphenyl Compounds/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Caspase 9/genetics
- Caspase 9/immunology
- Cell Engineering
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cellular Reprogramming
- Clinical Trials as Topic
- Cyclophosphamide/analogs & derivatives
- Cyclophosphamide/pharmacology
- Cytotoxicity, Immunologic
- Genetic Vectors
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lysosomal-Associated Membrane Protein 1/genetics
- Lysosomal-Associated Membrane Protein 1/immunology
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/pathology
- Nitrophenols/pharmacology
- Piperazines/pharmacology
- Primary Cell Culture
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Sialic Acid Binding Ig-like Lectin 3/antagonists & inhibitors
- Sialic Acid Binding Ig-like Lectin 3/genetics
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sulfonamides/pharmacology
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/immunology
Collapse
Affiliation(s)
- Kentaro Minagawa
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Muhammad O. Jamil
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Mustafa AL-Obaidi
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Larisa Pereboeva
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Donna Salzman
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Harry P. Erba
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Lawrence S. Lamb
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Ravi Bhatia
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Shin Mineishi
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Antonio Di Stasi
- Hematology/Oncology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
165
|
Gammaitoni L, Giraudo L, Macagno M, Leuci V, Mesiano G, Rotolo R, Sassi F, Sanlorenzo M, Zaccagna A, Pisacane A, Senetta R, Cangemi M, Cattaneo G, Martin V, Coha V, Gallo S, Pignochino Y, Sapino A, Grignani G, Carnevale-Schianca F, Aglietta M, Sangiolo D. Cytokine-Induced Killer Cells Kill Chemo-surviving Melanoma Cancer Stem Cells. Clin Cancer Res 2016; 23:2277-2288. [PMID: 27815354 DOI: 10.1158/1078-0432.ccr-16-1524] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/13/2016] [Accepted: 10/20/2016] [Indexed: 11/16/2022]
Abstract
Purpose: The MHC-unrestricted activity of cytokine-induced killer (CIK) cells against chemo-surviving melanoma cancer stem cells (mCSC) was explored, as CSCs are considered responsible for chemoresistance and relapses.Experimental Design: Putative mCSCs were visualized by engineering patient-derived melanoma cells (MC) with a lentiviral vector encoding eGFP under expression control by stemness gene promoter oct4 Their stemness potential was confirmed in vivo by limiting dilution assays. We explored the sensitivity of eGFP+ mCSCs to chemotherapy (CHT), BRAF inhibitor (BRAFi) or CIK cells, as single agents or in sequence, in vitro First, we treated MCs in vitro with fotemustine or dabrafenib (BRAF-mutated cases); then, surviving MCs, enriched in mCSCs, were challenged with autologous CIK cells. CIK cell activity against chemoresistant mCSCs was confirmed in vivo in two distinct immunodeficient murine models.Results: We visualized eGFP+ mCSCs (14% ± 2.1%) in 11 MCs. The tumorigenic precursor rate in vivo was higher within eGFP+ MCs (1/42) compared with the eGFP- counterpart (1/4,870). In vitro mCSCs were relatively resistant to CHT and BRAFi, but killed by CIK cells (n = 11, 8/11 autologous), with specific lysis ranging from 95% [effector:tumor ratio (E:T), 40:1] to 20% (E:T 1:3). In vivo infusion of autologous CIK cells into mice bearing xenografts from three distinct melanomas demonstrated significant tumor responses involving CHT-spared eGFP+ mCSCs (P = 0.001). Sequential CHT-immunotherapy treatment retained antitumor activity (n = 12, P = 0.001) reducing mCSC rates (P = 0.01).Conclusions: These findings are the first demonstration that immunotherapy with CIK cells is active against autologous mCSCs surviving CHT or BRAFi. An experimental platform for mCSC study and rationale for CIK cells in melanoma clinical study is provided. Clin Cancer Res; 23(9); 2277-88. ©2016 AACR.
Collapse
Affiliation(s)
- Loretta Gammaitoni
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Lidia Giraudo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Marco Macagno
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valeria Leuci
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giulia Mesiano
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Ramona Rotolo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Francesco Sassi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Martina Sanlorenzo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy.,Section of Dermatology, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandro Zaccagna
- Surgical Dermatology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Alberto Pisacane
- Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Rebecca Senetta
- Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Michela Cangemi
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Giulia Cattaneo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Valentina Martin
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Valentina Coha
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Susanna Gallo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Ymera Pignochino
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Anna Sapino
- Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Fabrizio Carnevale-Schianca
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Massimo Aglietta
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Dario Sangiolo
- Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy. .,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| |
Collapse
|
166
|
Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells. Blood Cells Mol Dis 2016; 62:49-63. [DOI: 10.1016/j.bcmd.2016.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/05/2016] [Accepted: 11/06/2016] [Indexed: 12/20/2022]
|
167
|
Abstract
The majority of patients presenting with acute myeloid leukemia (AML) initially respond to chemotherapy but post-remission therapy is required to consolidate this response and achieve long-term disease-free survival. The most effective form of post-remission therapy relies on T cell immunotherapy in the form of allogeneic hematopoietic cell transplantation (HCT). However, patients with active disease cannot usually expect to be cured with HCT. This inherent dichotomy implies that traditional T cell-based immunotherapy in the form of allogeneic HCT stops being efficacious somewhere between the measurable residual disease (MRD) and the morphologically obvious range. This is in part because the full power of T cells must be restrained in order to avoid lethal graft-versus-host disease (GVHD) and partly because only a sub-population of donor T cells are expected to be able to recognize AML cells via their T cell receptor. Chimeric antigen receptor (CAR) T cell therapy, most advanced in the treatment of patients with B-cell malignancies, may circumvent some of these limitations. However, major challenges remain to be overcome before CAR T cell therapy can be safely applied to AML.
Collapse
|
168
|
Gross G, Eshhar Z. Therapeutic Potential of T Cell Chimeric Antigen Receptors (CARs) in Cancer Treatment: Counteracting Off-Tumor Toxicities for Safe CAR T Cell Therapy. Annu Rev Pharmacol Toxicol 2016; 56:59-83. [PMID: 26738472 DOI: 10.1146/annurev-pharmtox-010814-124844] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A chimeric antigen receptor (CAR) is a recombinant fusion protein combining an antibody-derived targeting fragment with signaling domains capable of activating T cells. Recent early-phase clinical trials have demonstrated the remarkable ability of CAR-modified T cells to eliminate B cell malignancies. This review describes the choice of target antigens and CAR manipulations to maximize antitumor specificity. Benefits and current limitations of CAR-modified T cells are discussed, with a special focus on the distribution of tumor antigens on normal tissues and the risk of on-target, off-tumor toxicities in the clinical setting. We present current methodologies for pre-evaluating these risks and review the strategies for counteracting potential off-tumor effects. Successful implementation of these approaches will improve the safety and efficacy of CAR T cell therapy and extend the range of cancer patients who may be treated.
Collapse
Affiliation(s)
- Gideon Gross
- Laboratory of Immunology, MIGAL, Galilee Research Institute, Kiryat Shmona 11016, Israel; .,Department of Biotechnology, Tel-Hai College, Upper Galilee 12210, Israel.,Center of Cancer Research, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Zelig Eshhar
- Center of Cancer Research, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel.,Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
169
|
Chavez-Gonzalez A, Bakhshinejad B, Pakravan K, Guzman ML, Babashah S. Novel strategies for targeting leukemia stem cells: sounding the death knell for blood cancer. Cell Oncol (Dordr) 2016; 40:1-20. [PMID: 27678246 DOI: 10.1007/s13402-016-0297-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are characterized by high self-renewal and multi-lineage differentiation capacities. CSCs are thought to play indispensable roles in the initiation, progression and metastasis of many types of cancer. Leukemias are thought to be initiated and maintained by a specific sub-type of CSC, the leukemia stem cell (LSC). An important feature of LSCs is their resistance to standard therapy, which may lead to relapse. Increasing efforts are aimed at developing novel therapeutic strategies that selectively target LSCs, while sparing their normal counterparts and, thus, minimizing adverse treatment-associated side-effects. These LSC targeting therapies aim to eradicate LSCs through affecting mechanisms that control their survival, self-renewal, differentiation, proliferation and cell cycle progression. Some LSC targeting therapies have already been proven successful in pre-clinical studies and they are now being tested in clinical studies, mainly in combination with conventional treatment regimens. CONCLUSIONS A growing body of evidence indicates that the selective targeting of LSCs represents a promising approach to improve disease outcome. Beyond doubt, the CSC hypothesis has added a new dimension to the area of anticancer research, thereby paving the way for shaping a new trend in cancer therapy.
Collapse
Affiliation(s)
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Monica L Guzman
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Ave, Box 113, New York, NY, 10065, USA.
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| |
Collapse
|
170
|
Wei F, Rong XX, Xie RY, Jia LT, Wang HY, Qin YJ, Chen L, Shen HF, Lin XL, Yang J, Yang S, Hao WC, Chen Y, Xiao SJ, Zhou HR, Lin TY, Chen YS, Sun Y, Yao KT, Xiao D. Cytokine-induced killer cells efficiently kill stem-like cancer cells of nasopharyngeal carcinoma via the NKG2D-ligands recognition. Oncotarget 2016; 6:35023-39. [PMID: 26418951 PMCID: PMC4741506 DOI: 10.18632/oncotarget.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.
Collapse
Affiliation(s)
- Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Chao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Rong Zhou
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Tao-Yan Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Shuang Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
171
|
Abstract
The immune system evolved to distinguish non-self from self to protect the organism. As cancer is derived from our own cells, immune responses to dysregulated cell growth present a unique challenge. This is compounded by mechanisms of immune evasion and immunosuppression that develop in the tumour microenvironment. The modern genetic toolbox enables the adoptive transfer of engineered T cells to create enhanced anticancer immune functions where natural cancer-specific immune responses have failed. Genetically engineered T cells, so-called 'living drugs', represent a new paradigm in anticancer therapy. Recent clinical trials using T cells engineered to express chimeric antigen receptors (CARs) or engineered T cell receptors (TCRs) have produced stunning results in patients with relapsed or refractory haematological malignancies. In this Review we describe some of the most recent and promising advances in engineered T cell therapy with a particular emphasis on what the next generation of T cell therapy is likely to entail.
Collapse
MESH Headings
- Antigen Presentation
- Antigens, CD19/immunology
- Antigens, Neoplasm/immunology
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/genetics
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Cytokines/metabolism
- Forecasting
- Gene Editing
- Gene Transfer Techniques
- Genetic Engineering
- HLA Antigens/immunology
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/therapy
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Models, Immunological
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Syndrome
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/transplantation
- Tumor Escape
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Andrew D Fesnak
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| | - Bruce L Levine
- Department of Pathology and Laboratory Medicine and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5156, USA
| |
Collapse
|
172
|
Hombach AA, Abken H. Shared target antigens on cancer cells and tissue stem cells: go or no-go for CAR T cells? Expert Rev Clin Immunol 2016; 13:151-155. [PMID: 27546707 DOI: 10.1080/1744666x.2016.1221763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Adoptive therapy with chimeric antigen receptor (CAR) T cells redirected towards CD19 produces remissions of B cell malignancies, however, it also eradicates healthy B cells sharing the target antigen. Such 'on-target off-tumor' toxicity raises serious safety concerns when the target antigen is also expressed by tissue stem cells, with the risk of lasting tissue destruction. Areas covered: We discuss CAR T cell targeting of activation antigens versus lineage associated antigens on the basis of recent experimental and animal data and the literature in the field. Expert commentary: Targeting an activation associated antigen which is transiently expressed by stem cells seems to be safe, like CAR T cells targeting CD30 spare CD30+ hematopoietic stem and progenitor cells while eliminating CD30+ lymphoma cells, whereas targeting lineage associated antigens which increase in expression during cell maturation, like folate receptor-β and CD123, is of risk to destruct tissue stem cells.
Collapse
Affiliation(s)
- Andreas A Hombach
- a Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,b Department I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| | - Hinrich Abken
- a Center for Molecular Medicine Cologne , University of Cologne , Cologne , Germany.,b Department I of Internal Medicine , University Hospital Cologne , Cologne , Germany
| |
Collapse
|
173
|
Perna F, Sadelain M. Myeloid leukemia switch as immune escape from CD19 chimeric antigen receptor (CAR) therapy. Transl Cancer Res 2016; 5:S221-S225. [PMID: 28824851 DOI: 10.21037/tcr.2016.08.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fabiana Perna
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
174
|
Tao Z, Wang M, Wang J. [Advances in immunotherapy of acute myeloid leukemia by using chimeric antigen receptor modified T cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:160-3. [PMID: 27014990 PMCID: PMC7348198 DOI: 10.3760/cma.j.issn.0253-2727.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Disease Hospital, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
175
|
Austin R, Smyth MJ, Lane SW. Harnessing the immune system in acute myeloid leukaemia. Crit Rev Oncol Hematol 2016; 103:62-77. [DOI: 10.1016/j.critrevonc.2016.04.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/13/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
|
176
|
CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia. Mol Ther 2016; 24:1615-26. [PMID: 27401038 DOI: 10.1038/mt.2016.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/01/2016] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy with CD123-specific T-cell engager proteins or with T cells expressing CD123-specific chimeric antigen receptors is actively being pursued for acute myeloid leukemia. T cells secreting bispecific engager molecules (ENG-T cells) may present a promising alternative to these approaches. To evaluate therapeutic potential, we generated T cells to secrete CD123/CD3-bispecific engager molecules. CD123-ENG T cells recognized primary acute myeloid leukemia (AML) cells and cell lines in an antigen-dependent manner as judged by cytokine production and/or tumor killing, and redirected bystander T cells to AML cells. Infusion of CD123-ENG T cells resulted in regression of AML in xenograft models conferring a significant survival advantage of treated mice in comparison to mice that received control T cells. At high effector to target ratios, CD123-ENG T cells recognized normal hematopoietic stem and progenitor cells (HSPCs) with preferential recognition of HSPCs from cord blood compared to bone marrow. We therefore introduced the CD20 suicide gene that can be targeted in vivo with rituximab into CD123-ENG T cells. The expression of CD20 did not diminish the anti-AML activity of CD123-ENG T cells, but allowed for rituximab-mediated ENG-T cell elimination. Thus, ENG-T cells coexpressing CD20 suicide and CD123 engager molecules may present a promising immunotherapeutic approach for AML.
Collapse
|
177
|
Ma Q, Garber HR, Lu S, He H, Tallis E, Ding X, Sergeeva A, Wood MS, Dotti G, Salvado B, Ruisaard K, Clise-Dwyer K, John LS, Rezvani K, Alatrash G, Shpall EJ, Molldrem JJ. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy 2016; 18:985-994. [PMID: 27265873 DOI: 10.1016/j.jcyt.2016.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a T-cell receptor (TCR)-like monoclonal antibody (8F4) that binds the PR1/HLA-A2 complex on the surface of AML cells, efficiently killing them in vitro and eliminating them in preclinical models. Humanized 8F4 (h8F4) with high affinity for the PR1/HLA-A2 epitope was used to construct an h8F4- chimeric antigen receptor (CAR) that was transduced into T cells to mediate anti-leukemia activity. METHODS Human T cells were transduced to express the PR1/HLA-A2-specific CAR (h8F4-CAR-T cells) containing the scFv of h8F4 fused to the intracellular signaling endo-domain of CD3 zeta chain through the transmembrane and intracellular costimulatory domain of CD28. RESULTS Adult human normal peripheral blood (PB) T cells were efficiently transduced with the h8F4-CAR construct and predominantly displayed an effector memory phenotype with a minor population (12%) of central memory cells in vitro. Umbilical cord blood (UCB) T cells could also be efficiently transduced with the h8F4-CAR. The PB and UCB-derived h8F4-CAR-T cells specifically recognized the PR1/HLA-A2 complex and were capable of killing leukemia cell lines and primary AML blasts in an HLA-A2-dependent manner. CONCLUSIONS Human adult PB and UCB-derived T cells expressing a CAR derived from the TCR-like 8F4 antibody rapidly and efficiently kill AML in vitro. Our data could lead to a new treatment paradigm for AML in which targeting leukemia stem cells could transfer long-term immunity to protect against relapse.
Collapse
Affiliation(s)
- Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Haven R Garber
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Sijie Lu
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Hong He
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Eran Tallis
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Xiaoling Ding
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Anna Sergeeva
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Michael S Wood
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Salvado
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn Ruisaard
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Karen Clise-Dwyer
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Lisa St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Katayoun Rezvani
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Gheath Alatrash
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Elizabeth J Shpall
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Jeffrey J Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA.
| |
Collapse
|
178
|
Chichili GR, Huang L, Li H, Burke S, He L, Tang Q, Jin L, Gorlatov S, Ciccarone V, Chen F, Koenig S, Shannon M, Alderson R, Moore PA, Johnson S, Bonvini E. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med 2016; 7:289ra82. [PMID: 26019218 DOI: 10.1126/scitranslmed.aaa5693] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Current therapies for acute myeloid leukemia (AML) are largely ineffective, and AML patients may benefit from targeted immunotherapy approaches. MGD006 is a bispecific CD3xCD123 dual-affinity re-targeting (DART) molecule that binds T lymphocytes and cells expressing CD123, an antigen up-regulated in several hematological malignancies including AML. MGD006 mediates blast killing in AML samples, together with concomitant activation and expansion of residual T cells. MGD006 is designed to be rapidly cleared, and therefore requires continuous delivery. In a mouse model of continuous administration, MGD006 eliminated engrafted KG-1a cells (an AML-M0 line) in human PBMC (peripheral blood mononuclear cell)-reconstituted NSG/β2m(-/-) mice at doses as low as 0.5 μg/kg per day for ~7 days. MGD006 binds to human and cynomolgus monkey antigens with similar affinities and redirects T cells from either species to kill CD123-expressing target cells. MGD006 was well tolerated in monkeys continuously infused with 0.1 μg/kg per day escalated weekly to up to 1 μg/kg per day during a 4-week period. Depletion of circulating CD123-positive cells was observed as early as 72 hours after treatment initiation and persisted throughout the infusion period. Cytokine release, observed after the first infusion, was reduced after subsequent administrations, even when the dose was escalated. T cells from animals with prolonged in vivo exposure exhibited unperturbed target cell lysis ex vivo, indicating no exhaustion. A transient decrease in red cell mass was observed, with no neutropenia or thrombocytopenia. These studies support clinical testing of MGD006 in hematological malignancies, including AML.
Collapse
Affiliation(s)
| | - Ling Huang
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Hua Li
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Steve Burke
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Leilei He
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Qin Tang
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Linda Jin
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Sergey Gorlatov
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | | | - Francine Chen
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Scott Koenig
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Michele Shannon
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Ralph Alderson
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Paul A Moore
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Syd Johnson
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA
| | - Ezio Bonvini
- MacroGenics Inc., 9640 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
179
|
Nakazawa Y, Matsuda K, Kurata T, Sueki A, Tanaka M, Sakashita K, Imai C, Wilson MH, Koike K. Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34(+) cells of juvenile myelomonocytic leukemia. J Hematol Oncol 2016; 9:27. [PMID: 26983639 PMCID: PMC4793548 DOI: 10.1186/s13045-016-0256-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/08/2016] [Indexed: 11/17/2022] Open
Abstract
Background Juvenile myelomonocytic leukemia (JMML) is a fatal, myelodysplastic/myeloproliferative neoplasm of early childhood. Patients with JMML have mutually exclusive genetic abnormalities in granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR, CD116) signaling pathway. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option for JMML; however, disease recurrence is a major cause of treatment failure. We investigated adoptive immunotherapy using GMR-targeted chimeric antigen receptor (CAR) for JMML. Methods We constructed a novel CAR capable of binding to GMR via its ligand, GM-CSF, and generated piggyBac transposon-based GMR CAR-modified T cells from three healthy donors and two patients with JMML. We further evaluated the anti-proliferative potential of GMR CAR T cells on leukemic CD34+ cells from six patients with JMML (two NRAS mutations, three PTPN11 mutations, and one monosomy 7), and normal CD34+ cells. Results GMR CAR T cells from healthy donors suppressed the cytokine-dependent growth of MO7e cells, but not the growth of K562 and Daudi cells. Co-culture of healthy GMR CAR T cells with CD34+ cells of five patients with JMML at effector to target ratios of 1:1 and 1:4 for 2 days significantly decreased total colony growth, regardless of genetic abnormality. Furthermore, GMR CAR T cells from a non-transplanted patient and a transplanted patient inhibited the proliferation of respective JMML CD34+ cells at onset to a degree comparable to healthy GMR CAR T cells. Seven-day co-culture of GMR CAR T cells resulted in a marked suppression of JMML CD34+ cell proliferation, particularly CD34+CD38− cell proliferation stimulated with stem cell factor and thrombopoietin on AGM-S3 cells. Meanwhile, GMR CAR T cells exerted no effects on normal CD34+ cell colony growth. Conclusions Ligand-based GMR CAR T cells may have anti-proliferative effects on stem and progenitor cells in JMML. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yozo Nakazawa
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takashi Kurata
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Akane Sueki
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Miyuki Tanaka
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan
| | - Kazuo Sakashita
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan.,Division of Hematology/Oncology, Nagano Children's Hospital, Azumino, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University School of Medicine, Niigata, Japan
| | - Matthew H Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kenichi Koike
- Department of Pediatrics, Shinshu University School of Medicine, 3-1-1, Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
180
|
Pegram HJ, Smith EL, Rafiq S, Brentjens RJ. CAR therapy for hematological cancers: can success seen in the treatment of B-cell acute lymphoblastic leukemia be applied to other hematological malignancies? Immunotherapy 2016; 7:545-61. [PMID: 26065479 DOI: 10.2217/imt.15.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has recently come into the spotlight due to impressive results in patients with B-cell acute lymphoblastic leukemia. By targeting CD19, a marker expressed most B-cell tumors, as well as normal B cells, CAR T-cell therapy has been investigated as a treatment strategy for B-cell leukemia and lymphoma. This review will discuss the successes of this therapy for the treatment of B-cell acute lymphoblastic leukemia and the challenges to this therapeutic strategy. We will also discuss application of CAR T-cell therapy to chronic lymphocytic leukemia and other B-cell malignancies including a follicular lymphoma, diffuse large B-cell lymphoma, as well as acute and plasma cell malignancies.
Collapse
Affiliation(s)
- Hollie J Pegram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric L Smith
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarwish Rafiq
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
181
|
Buckley SA, Walter RB. Update on antigen-specific immunotherapy of acute myeloid leukemia. Curr Hematol Malig Rep 2016; 10:65-75. [PMID: 25896530 DOI: 10.1007/s11899-015-0250-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among the few drugs that have shown a benefit for patients with acute myeloid leukemia (AML) in randomized clinical trials over the last several decades is the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Undoubtedly, this experience has highlighted the value of antigen-specific immunotherapy in AML. A wide variety of therapeutics directed against several different antigens on AML cells are currently explored in preclinical and early clinical studies. On the one hand, these include passive strategies such as unconjugated antibodies targeting one or more antigens, antibodies armed with drugs, toxic proteins, or radionuclides, or adoptive immunotherapies, in particular utilizing T cells engineered to express chimeric antigen receptors (CARs) or modified T cell receptor (TCR) genes; on the other hand, these include active strategies such as vaccinations. With the documented benefit for GO and the emerging data with several classes of therapeutics in other leukemias, in particular small bispecific antibodies and CAR T cells, the future is bright. Nevertheless, a number of important questions related to the choice of target antigen(s), patient population, exact treatment modality, and supportive care needs remain open. Addressing such questions in upcoming studies will ultimately be required to optimize the clinical use of antigen-specific immunotherapies in AML and ensure that such treatments become an effective, versatile tool for this disease for which the outcomes have remained unsatisfactory in many patients.
Collapse
Affiliation(s)
- Sarah A Buckley
- Hematology/Oncology Fellowship Program, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
182
|
Rashidi A, Walter RB. Antigen-specific immunotherapy for acute myeloid leukemia: where are we now, and where do we go from here? Expert Rev Hematol 2016; 9:335-50. [DOI: 10.1586/17474086.2016.1142868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
183
|
GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 2016; 127:2018-27. [PMID: 26834243 DOI: 10.1182/blood-2015-11-683649] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous hematologic malignancy, which is initiated and driven by a rare fraction of leukemia stem cells (LSCs). Despite the difficulties of identifying a common LSC phenotype, there is increasing evidence that high expression of stem cell gene signatures is associated with poor clinical outcome. Identification of functionally distinct subpopulations in this disease is therefore crucial to dissecting the molecular machinery underlying LSC self-renewal. Here, we combined next-generation sequencing technology with in vivo assessment of LSC frequencies and identified the adhesion G protein-coupled receptor 56 (GPR56) as a novel and stable marker for human LSCs for the majority of AML samples. High GPR56 expression was significantly associated with high-risk genetic subgroups and poor outcome. Analysis of GPR56 in combination with CD34 expression revealed engraftment potential of GPR56(+)cells in both the CD34(-)and CD34(+)fractions, thus defining a novel LSC compartment independent of the CD34(+)CD38(-)LSC phenotype.
Collapse
|
184
|
Goker H, Malkan UY, Demiroglu H, Buyukasik Y. Chimeric antigen receptor T cell treatment in hematologic malignancies. Transfus Apher Sci 2016; 54:35-40. [DOI: 10.1016/j.transci.2016.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
185
|
Taga T, Tomizawa D, Takahashi H, Adachi S. Acute myeloid leukemia in children: Current status and future directions. Pediatr Int 2016; 58:71-80. [PMID: 26645706 DOI: 10.1111/ped.12865] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials.
Collapse
Affiliation(s)
- Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | | | | |
Collapse
|
186
|
Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uy GL, Eissenberg LG, Gao F, Eades WC, Bonvini E, Chichili GR, Moore PA, Johnson S, Collins L, DiPersio JF. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. Blood 2016; 127:122-31. [PMID: 26531164 PMCID: PMC4705603 DOI: 10.1182/blood-2014-05-575704] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/26/2015] [Indexed: 01/28/2023] Open
Abstract
T-cell-directed killing of tumor cells using bispecific antibodies is a promising approach for the treatment of hematologic malignancies. Here we describe our preclinical work with a dual-affinity retargeting (DART) molecule generated from antibodies to CD3 and CD123, designed to redirect T cells against acute myeloid leukemia blasts. The CD3×CD123 DART (also referred to as MGD006/S80880) consists of 2 independent polypeptides, each composed of the VH of 1 antibody in tandem with the VL of the other antibody. The target antigen CD123 (interleukin 3RA) is highly and differentially expressed in acute myeloid leukemia (AML) blasts compared with normal hematopoietic stem and progenitor cells. In this study we demonstrate that the CD3×CD123 DART binds to both human CD3 and CD123 to mediate target-effector cell association, T-cell activation, proliferation, and receptor diversification. The CD3×CD123 DART also induces a dose-dependent killing of AML cell lines and primary AML blasts in vitro and in vivo. These results provide the basis for testing the CD3×CD123 DART in the treatment of patients with CD123(+) AML.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/immunology
- Apoptosis
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cell Proliferation
- Flow Cytometry
- Genes, T-Cell Receptor alpha/genetics
- Genes, T-Cell Receptor beta/genetics
- High-Throughput Nucleotide Sequencing
- Humans
- Immunoenzyme Techniques
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- Mice
- Mice, Inbred NOD
- Mice, SCID
- T-Lymphocytes/immunology
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
| | | | | | | | | | | | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | | | | | | | | | | - Lynne Collins
- Department of Radiology, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
187
|
Zhou L, Liu X, Wang X, Sun Z, Song XT. CD123 redirected multiple virus-specific T cells for acute myeloid leukemia. Leuk Res 2015; 41:76-84. [PMID: 26740053 DOI: 10.1016/j.leukres.2015.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) has been increasingly used as a curative treatment for acute myeloid leukemia (AML). However, relapse rates after HSCT in complete remission (CR) are reported between 30% and 70%. In addition, numerous studies suggested that secondary viral infection from a variety of viruses including Epstein-Barr virus (EBV), adenovirus (Adv), and cytomegalovirus (CMV) are among the most common causes of death post-HSCT. Currently, chimeric antigen receptor (CAR)-based T cells have been developed to treat AML in clinical studies, while virus-specific cytotoxic T cells (VST) have been proven to be able to effectively prevent or treat viral infection after HSCT. Thus it would be desirable to develop T cells with the ability of simultaneously targeting AML relapse and viral infection. In this article, we now describe the generation of VST cells that are engineered to express CAR for a specific AML cell-surface antigen CD123 (CD123-CAR-VST). Using Dendritic cells (DCs) pulsed with EBV, Adv, and CMV peptides as sources of viral antigens, we generated VST from A2 donor peripheral mononuclear cells (PBMC). VST were then transduced with retroviral vector encoding CD123-CAR to generate CD123-CAR-VST. We demonstrated that CD123-CAR-VST recognized EBV, Adv, and CMV epitopes and had HLA-restricted virus-specific cytotoxic effector function against EBV target. In addition, CD123-CAR-VST retained the specificity against CD123-positive AML cell lines such as MOLM13 and THP-1 in vitro. Thus our results suggested that CD123-CAR-VST might be a valuable candidate to simultaneously prevent or treat relapse and viral infection in AML HSCT recipients.
Collapse
Affiliation(s)
- Li Zhou
- Shangdong University, Jinan, Shandong, PR China; Department of Hematology, Anhui Provincial Hospital, Hefei, Anhui, PR China; Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Xin Liu
- Department of Hematology, Anhui Provincial Hospital, Hefei, Anhui, PR China
| | - Xingbing Wang
- Department of Hematology, Anhui Provincial Hospital, Hefei, Anhui, PR China
| | - Zimin Sun
- Shangdong University, Jinan, Shandong, PR China; Department of Hematology, Anhui Provincial Hospital, Hefei, Anhui, PR China.
| | - Xiao-Tong Song
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, Houston, TX, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
188
|
Whilding LM, Maher J. CAR T-cell immunotherapy: The path from the by-road to the freeway? Mol Oncol 2015; 9:1994-2018. [PMID: 26563646 PMCID: PMC5528729 DOI: 10.1016/j.molonc.2015.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 12/13/2022] Open
Abstract
Chimeric antigen receptors are genetically encoded artificial fusion molecules that can re-program the specificity of peripheral blood polyclonal T-cells against a selected cell surface target. Unparallelled clinical efficacy has recently been demonstrated using this approach to treat patients with refractory B-cell malignancy. However, the approach is technically challenging and can elicit severe toxicity in patients. Moreover, solid tumours have largely proven refractory to this approach. In this review, we describe the important structural features of CARs and how this may influence function. Emerging clinical experience is summarized in both solid tumours and haematological malignancies. Finally, we consider the particular challenges imposed by solid tumours to the successful development of CAR T-cell immunotherapy, together with a number of innovative strategies that have been developed in an effort to reverse the balance in favour of therapeutic benefit.
Collapse
Affiliation(s)
- Lynsey M Whilding
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK.
| | - John Maher
- King's College London, King's Health Partners Integrated Cancer Centre, Department of Research Oncology, Guy's Hospital Campus, Great Maze Pond, London SE1 9RT, UK; Department of Immunology, Barnet Hospital, Royal Free London NHS Foundation Trust, Barnet, Hertfordshire, EN5 3DJ, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
189
|
Cheng Y, Jia M, Chen Y, Zhao H, Luo Z, Tang Y. Re-evaluation of various molecular targets located on CD34 +CD38 -Lin - leukemia stem cells and other cell subsets in pediatric acute myeloid leukemia. Oncol Lett 2015; 11:891-897. [PMID: 26870301 DOI: 10.3892/ol.2015.3972] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 10/02/2015] [Indexed: 12/21/2022] Open
Abstract
Leukemia stem cells (LSCs) are hypothesized to be capable of driving the development of leukemia, and are responsible for disease relapse. Antibody therapy targeting cell surface antigens has significantly improved the treatment outcomes of leukemia. Therefore, it is important to identify cell surface markers that are expressed on LSCs, and that are unexpressed or expressed at reduced levels on normal hematopoietic stem cells (HSCs), in order to establish novel therapeutic targets. In the present study, the immunophenotypic characteristics of cluster of differentiation (CD)34+CD38-lineage (Lin)- stem cells were analyzed, and antigen expression levels were compared with the expression of other cell components, using multicolor flow cytometry, in 54 patients with newly diagnosed acute myeloid leukemia (AML) and 11 control patients with immune thrombocytopenia. The findings indicated that CD133 and human leukocyte antigen (HLA)-DR were expressed on normal HSCs and on AML LSCs, with no significant difference (P>0.05). By contrast, CD33, CD123 and CD44 were highly expressed on AML LSCs, and demonstrated significant differences compared with their expression on normal HSCs (CD33, 81.7 vs. 18.3%; CD123, 75.8 vs. 19.1%; CD44, 97.7 vs. 84.4%). Among the aforementioned antigens, CD33 and CD123 were promising candidates for targeted therapy for the treatment of AML. This was particularly evident for CD123 in immature AML subtype cells, which may require additional investigation within a clinical trial setting. CD44, CD133 and HLA-DR may not be suitable for leukemia targeting due to their broad and high expression levels on normal HSCs and other tissues.
Collapse
Affiliation(s)
- Yuping Cheng
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming Jia
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yuanyuan Chen
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Haizhao Zhao
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zebin Luo
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Yongmin Tang
- Department of Hematology-Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
190
|
Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25years in the making. Blood Rev 2015; 30:157-67. [PMID: 26574053 DOI: 10.1016/j.blre.2015.10.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 01/04/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy of cancer is generating enormous enthusiasm. Twenty-five years after the concept was first proposed, major advances in molecular biology, virology, and good manufacturing practices (GMP)-grade cell production have transformed antibody-T cell chimeras from a scientific curiosity to a fact of life for academic cellular immunotherapy researchers and, increasingly, for patients. In this review, we explain the preclinical concept, outline how it has been translated to the clinic, and draw lessons from the first years of CAR T cell therapy for the practicing clinician.
Collapse
Affiliation(s)
- Saar Gill
- Division of Hematology/Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA.
| | - Marcela V Maus
- Division of Hematology/Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - David L Porter
- Division of Hematology/Oncology, University of Pennsylvania Health System, Philadelphia, PA, USA
| |
Collapse
|
191
|
Mardiros A, Forman SJ, Budde LE. T cells expressing CD123 chimeric antigen receptors for treatment of acute myeloid leukemia. Curr Opin Hematol 2015; 22:484-8. [PMID: 26457961 PMCID: PMC4624420 DOI: 10.1097/moh.0000000000000190] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to discuss the rationale of targeting CD123 using chimeric antigen receptor (CAR) T cells for the treatment of leukemia. RECENT FINDINGS CD123 is a leukemia-associated antigen that expresses at high levels in leukemic stem cells and leukemic blasts and low level in normal hematopoietic stem/progenitor cells. Immune-based therapies targeting CD123 are being developed. Preclinical data suggest that CD123 CAR T cells exhibit potent antileukemic activity and various impacts on normal hematopoiesis. SUMMARY CD123 is an attractive surface target for novel antileukemic therapies. CD123 CAR T-cell-based immunotherapy is a promising treatment for patients with relapsed or refractory acute myeloid leukemia.
Collapse
Affiliation(s)
| | - Stephen J. Forman
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
- Departments of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010
| | - Lihua E Budde
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
- Departments of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010
| |
Collapse
|
192
|
Distler E, Albrecht J, Brunk A, Khan S, Schnürer E, Frey M, Mottok A, Jordán-Garrote AL, Brede C, Beilhack A, Mades A, Tomsitz D, Theobald M, Herr W, Hartwig UF. Patient-individualized CD8⁺ cytolytic T-cell therapy effectively combats minimal residual leukemia in immunodeficient mice. Int J Cancer 2015; 138:1256-68. [PMID: 26376181 DOI: 10.1002/ijc.29854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/07/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
Abstract
Adoptive transfer of donor-derived cytolytic T-lymphocytes (CTL) has evolved as a promising strategy to improve graft-versus-leukemia (GvL) effects in allogeneic hematopoietic stem-cell transplantation. However, durable clinical responses are often hampered by limited capability of transferred T cells to establish effective and sustained antitumor immunity in vivo. We therefore analyzed GvL responses of acute myeloid leukemia (AML)-reactive CD8(+) CTL with central and effector memory phenotype in a new allogeneic donor-patient specific humanized mouse model. CTL lines and clones obtained upon stimulation of naive CD45RA(+) donor CD8(+) T cells with either single HLA antigen-mismatched or HLA-matched primary AML blasts, respectively, elicited strong leukemia reactivity during cytokine-optimized short to intermediate (i.e., 2-8 weeks) culture periods. Single doses of CTL were intravenously infused into NOD/scidIL2Rcg(null) mice when engraftment with patient AML reached bone marrow infiltration of 1-5%, clinically defining minimal residual disease status. This treatment resulted in complete regression of HLA-mismatched and strong reduction of HLA-matched AML infiltration, respectively. Most importantly, mice receiving AML-reactive CTL showed significantly prolonged survival. Transferred CTL were detectable in murine bone marrow and spleen and demonstrated sustained AML-reactivity ex vivo. Moreover, injections with human IL-15 clearly promoted CTL persistence. In summary, we show that naive donor-derived CD8(+) CTL effectively combat patient AML blasts in immunodeficient mice. The donor-patient specific humanized mouse model appears suitable to evaluate therapeutic efficacy of AML-reactive CTL before adoptive transfer into patients. It may further help to identify powerful leukemia rejection antigens and T-cell receptors for redirecting immunity to leukemias even in a patient-individualized manner.
Collapse
Affiliation(s)
- Eva Distler
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Jana Albrecht
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Ariane Brunk
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Shamsul Khan
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Elke Schnürer
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Michaela Frey
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Anja Mottok
- Institute of Pathology, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany
| | - Ana-Laura Jordán-Garrote
- Department of Medicine II, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany.,Interdisziplinary Center for Clinical Research (IZKF), Zinklesweg 10, Würzburg, 97078, Germany
| | - Christian Brede
- Department of Medicine II, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany.,Interdisziplinary Center for Clinical Research (IZKF), Zinklesweg 10, Würzburg, 97078, Germany
| | - Andreas Beilhack
- Department of Medicine II, Julius-Maximilians-University Würzburg, Josef-Schneider-Str. 2, Würzburg, 97080, Germany.,Interdisziplinary Center for Clinical Research (IZKF), Zinklesweg 10, Würzburg, 97078, Germany
| | - Andreas Mades
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Dirk Tomsitz
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Matthias Theobald
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany
| | - Wolfgang Herr
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany.,Department of Medicine III-Hematology and Internal Oncology, University Hospital of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, 93053, Germany
| | - Udo F Hartwig
- Department of Medicine III-Hematology, Internal Oncology and Pneumology, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr.1, Mainz, 55101, Germany.,Research Center for Immunotherapy, University Medical Center of Johannes Gutenberg-University Mainz, Langenbeckstr. 1, Mainz, 55101, Germany
| |
Collapse
|
193
|
Angata T, Nycholat CM, Macauley MS. Therapeutic Targeting of Siglecs using Antibody- and Glycan-Based Approaches. Trends Pharmacol Sci 2015; 36:645-660. [PMID: 26435210 PMCID: PMC4593978 DOI: 10.1016/j.tips.2015.06.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 01/01/2023]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of immunomodulatory receptors whose functions are regulated by their glycan ligands. Siglecs are attractive therapeutic targets because of their cell type-specific expression pattern, endocytic properties, high expression on certain lymphomas/leukemias, and ability to modulate receptor signaling. Siglec-targeting approaches with therapeutic potential encompass antibody- and glycan-based strategies. Several antibody-based therapies are in clinical trials and continue to be developed for the treatment of lymphoma/leukemia and autoimmune disease, while the therapeutic potential of glycan-based strategies for cargo delivery and immunomodulation is a promising new approach. Here we review these strategies with special emphasis on emerging approaches and disease areas that may benefit from targeting the Siglec family.
Collapse
Affiliation(s)
- Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Corwin M Nycholat
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew S Macauley
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
194
|
Rong XX, Wei F, Lin XL, Qin YJ, Chen L, Wang HY, Shen HF, Jia LT, Xie RY, Lin TY, Hao WC, Yang J, Yang S, Cheng YS, Huang WH, Li AM, Sun Y, Luo RC, Xiao D. Recognition and killing of cancer stem-like cell population in hepatocellular carcinoma cells by cytokine-induced killer cells via NKG2d-ligands recognition. Oncoimmunology 2015; 5:e1086060. [PMID: 27141341 PMCID: PMC4839362 DOI: 10.1080/2162402x.2015.1086060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for more potent and safer approaches to eradicate cancer stem cells (CSCs) for curing cancer. In this study, we investigate cancer-killing activity (CKA) of cytokine-induced killer (CIK) cells against CSCs of hepatocellular carcinoma (HCC). To visualize CSCs in vitro by fluorescence imaging, and image and quantify CSCs in tumor xenograft-bearing mice by bioluminescence imaging, HCC cells were engineered with CSC detector vector encoding GFP and luciferase controlled by Nanog promoter. We found that CIK cells have a strong CKA in vitro against putative CSCs of HCC, as shown by tumorsphere formation and time-lapse imaging. Additionally, time-lapse recording firstly revealed that putative CSCs were attacked simultaneously by many CIK cells and finally eradicated by CIK cells, indicating the necessity of achieving sufficient effector-to-target ratios. We firstly illustrated that anti-NKG2D antibody blocking partially but significantly inhibited CKA of CIK cells against putative CSCs. More importantly, intravenous infusion of CIK cells remarkably delayed tumor growth in mice with a significant decrease in putative CSC number monitored by bioluminescence imaging. Taken together, these findings demonstrate CKA of CIK cells against putative CSCs of HCC, at least in part, by NKG2D-ligands recognition.
Collapse
Affiliation(s)
- Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wei
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Juan Qin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hui-Yan Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College , Guilin, China
| | - Rao-Ying Xie
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Shuang Cheng
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wen-Hua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering , School of Basic Medical Science, Southern Medical University , Guangzhou, China
| | - Ai-Min Li
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School , Boston, MA, USA
| | - Rong-Cheng Luo
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China; Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
195
|
Giraudo L, Gammaitoni L, Cangemi M, Rotolo R, Aglietta M, Sangiolo D. Cytokine-induced killer cells as immunotherapy for solid tumors: current evidence and perspectives. Immunotherapy 2015; 7:999-1010. [PMID: 26310715 DOI: 10.2217/imt.15.61] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are ex vivo expanded T lymphocytes endowed with potent MHC-independent antitumor activity. CIK cells are emerging as promising therapeutic approach in the field of cancer adoptive immunotherapy, with biologic features favoring their transferability into clinical applications. Aim of this review is to present the biologic characteristic of CIK cells, discussing the main preclinical findings and initial clinical applications in the field of solid tumors.
Collapse
Affiliation(s)
- Lidia Giraudo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Loretta Gammaitoni
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Michela Cangemi
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Ramona Rotolo
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Turin, Italy.,Division & Laboratory of Medical Oncology, Candiolo Cancer Institute FPO- IRCCS, Candiolo, Turin, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| |
Collapse
|
196
|
Gill S, June CH. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 2015; 263:68-89. [PMID: 25510272 DOI: 10.1111/imr.12243] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On July 1, 2014, the United States Food and Drug Administration granted 'breakthrough therapy' designation to CTL019, the anti-CD19 chimeric antigen receptor T-cell therapy developed at the University of Pennsylvania. This is the first personalized cellular therapy for cancer to be so designated and occurred 25 years after the first publication describing genetic redirection of T cells to a surface antigen of choice. The peer-reviewed literature currently contains the outcomes of more than 100 patients treated on clinical trials of anti-CD19 redirected T cells, and preliminary results on many more patients have been presented. At last count almost 30 clinical trials targeting CD19 were actively recruiting patients in North America, Europe, and Asia. Patients with high-risk B-cell malignancies therefore represent the first beneficiaries of an exciting and potent new treatment modality that harnesses the power of the immune system as never before. A handful of trials are targeting non-CD19 hematological and solid malignancies and represent the vanguard of enormous preclinical efforts to develop CAR T-cell therapy beyond B-cell malignancies. In this review, we explain the concept of chimeric antigen receptor gene-modified T cells, describe the extant results in hematologic malignancies, and share our outlook on where this modality is likely to head in the near future.
Collapse
Affiliation(s)
- Saar Gill
- Abramson Cancer Center, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
197
|
Abstract
It is well demonstrated that the immune system can control and eliminate cancer cells. Immune-mediated elimination of tumor cells has been discovered and is the basis of both cancer vaccines and cellular therapies including hematopoietic stem cell transplantation. Adoptive T cell transfer has been improved to be more specific and potent and to cause less off-target toxicity. Currently, there are two forms of engineered T cells being tested in clinical trials: T cell receptor (TCR) and chimeric antigen receptor (CAR) modified T cells. On 1 July 2014, the United States Food and Drug Administration granted ‘breakthrough therapy’ designation to anti-CD19 CAR T cell therapy. Many studies were conducted to evaluate the benefits of this exciting and potent new treatment modality. This review summarizes the history of adoptive immunotherapy, adoptive immunotherapy using CARs, the CAR manufacturing process, preclinical and clinical studies, and the effectiveness and drawbacks of this strategy.
Collapse
Affiliation(s)
- Pınar Ataca
- Ankara University Faculty of Medicine, Department of Hematology, Ankara, Turkey E-mail:
| | | |
Collapse
|
198
|
Zhang Y, Liu R, Fan D, Shi R, Yang M, Miao Q, Deng ZQ, Qian J, Zhen Y, Xiong D, Wang J. The novel structure make LDM effectively remove CD123+ AML stem cells in combination with interleukin 3. Cancer Biol Ther 2015; 16:1514-25. [PMID: 26186454 DOI: 10.1080/15384047.2015.1071733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
CD123 became a therapeutic target for acute myelocytic leukemia(AML) because of its overexpression only on AML stem cells. It is α subunit of interleukin-3 (multi-CSF, IL3) receptor. Lidamycin(LDM) is a novel antibiotic composed of an apoprotein (LDP) and a chromophore (AE). We cloned, expressed and isolated IL3LDP fusion protein first then assembled with AE in vitro. We found that131/132 amino acids of IL3 were the key factors for IL3 fusion protein stability and I131L/F132L mutation effectively improved the IL3 fusion protein stability. The toxicity of IL3LDM to CD123+ tumor cells was 2-10 times compared to LDM alone and 10000 times compared to ADR. Meanwhile, IL3LDM impaired the colony-forming ability of CD123+ stem-like cells but not to CD123 negative normal cord blood cells. Three drug delivery methods in vivo were adopted: prophylactic treatment and single/multiple-dosing administration. The tumor-free survival extended to 120 d and cancer cell invasion significantly decreased after IL3LDM continuous multiple treated. Moreover, IL3LDM had been shown to modulate apoptosis by arrested cell cycle in G2/M phase. Therefore, IL3LDM is expected to be a new drug for leukemia target therapy.
Collapse
Affiliation(s)
- Yanjun Zhang
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Rong Liu
- b Department of biochemistry ; Microbiology and Immunology ; Faculty of Medicine ; University of Ottawa ; Ottawa , ON Canada
| | - Dongmei Fan
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Rizan Shi
- c Institute of Medicinal Biotechnology Academy of Medical Sciences & Peking Union Medical College ; Beijing , China
| | - Ming Yang
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Qingfang Miao
- d Department of Pharmacology ; Shanxi Medical University ; Taiyuan, Shanxi , PR China
| | - Zhao-Qun Deng
- e Affiliated People's Hospital of Jiangsu University ; Zhenjiang, Jiangsu , PR China
| | - Jun Qian
- e Affiliated People's Hospital of Jiangsu University ; Zhenjiang, Jiangsu , PR China
| | - Yongsu Zhen
- d Department of Pharmacology ; Shanxi Medical University ; Taiyuan, Shanxi , PR China
| | - Dongsheng Xiong
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| | - Jianxiang Wang
- a State Key Laboratory of Experimental Hematology ; Institute of Hematology & Hospital of Blood Diseases ; Chinese Academy of Medical Sciences & Peking Union Medical College ; Tianjin , China
| |
Collapse
|
199
|
|
200
|
Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J Hepatol 2015; 7:980-992. [PMID: 25954480 PMCID: PMC4419101 DOI: 10.4254/wjh.v7.i7.980] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide with a poor prognosis. Few strategies have been proven efficient in HCC treatment, particularly for those patients not indicated for curative resection or transplantation. Immunotherapy has been developed for decades for cancer control and is attaining more attention as a result of encouraging outcomes of new strategies such as chimeric antigen receptor T cells and immune checkpoint blockade. Right at the front of the new era of immunotherapy, we review the immunotherapy in HCC treatment, from basic research to clinical trials, covering anything from immunomodulators, tumor vaccines and adoptive immunotherapy. The mechanisms, efficacy and safety as well as the approach particulars are unveiled to assist readers to gain a concise but extensive understanding of immunotherapy of HCC.
Collapse
|