151
|
Hartwig C, Monis WJ, Chen X, Dickman DK, Pazour GJ, Faundez V. Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes. Dev Neurobiol 2017; 78:311-330. [PMID: 28986965 DOI: 10.1002/dneu.22542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome-primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 311-330, 2018.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| | - William J Monis
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Xun Chen
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Dion K Dickman
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| |
Collapse
|
152
|
Taskiran EZ, Karaosmanoglu B, Koşukcu C, Doğan ÖA, Taylan-Şekeroğlu H, Şimşek-Kiper PÖ, Utine EG, Boduroğlu K, Alikaşifoğlu M. Homozygous indel mutation in CDH11 as the probable cause of Elsahy-Waters syndrome. Am J Med Genet A 2017; 173:3143-3152. [PMID: 28988429 DOI: 10.1002/ajmg.a.38495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 11/12/2022]
Abstract
Two sisters from a consanguineous couple were seen in genetics department for facial dysmorphic features and glaucoma. They both had broad foreheads, hypertelorism, megalocorneas, thick eyebrows with synophrys, flat malar regions, broad and bulbous noses, and mild prognathism. Both had glaucoma, younger one also had cataracts and phthisis bulbi. Other findings included bilateral partial cutaneous syndactyly of 2nd and 3rd fingers, history of impacted teeth with dentigerous cyst in the elder one, and intellectual disability (mild and borderline). The sisters were considered to have Elsahy-Waters syndrome. In order to elucidate the underlying molecular cause, sisters and their healthy parents were genotyped by SNP arrays, followed by homozygosity mapping. Homozygous regions were further analyzed by exome sequencing in one affected individual. A homozygous indel variant segregating with the condition was detected in CDH11 (c.1116_1117delinsGATCATCAG, p.(Ile372MetfsTer9)), which was then validated by using Sanger sequencing. CDH11 encodes cadherin 11 (osteo-cadherin) that regulates cell-cell adhesion, cell polarization and migration, as well as osteogenic differentiation. Further experiments revealed that CDH11 expression was decreased in patient-derived fibroblasts as compared to the heterozygous parent and another healthy donor. Immunostaining showed absence of the protein expression in patient fibroblasts. In addition, cell proliferation rate was slow and osteogenic differentiation potential was delayed. We consider that this study reveals loss-of-function mutations in CDH11 as a probable cause of this phenotype. Next generation sequencing in further patients would both prove this gene as causative, and finely delineate this clinical spectrum further contributing in identification of other possibly involved gene(s).
Collapse
Affiliation(s)
- Ekim Z Taskiran
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| | - Beren Karaosmanoglu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University, Institute of Health Sciences, Ankara, Turkey
| | - Can Koşukcu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| | - Özlem A Doğan
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | | | - Pelin Ö Şimşek-Kiper
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Eda G Utine
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Koray Boduroğlu
- Faculty of Medicine, Department of Pediatric Genetics, Hacettepe University, Ankara, Turkey
| | - Mehmet Alikaşifoğlu
- Faculty of Medicine, Department of Medical Genetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
153
|
Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, AlZahrani F, Patel N, Ibrahim N, Abdulwahab FM, Hashem M, Alhashmi N, Al Murshedi F, Al Kindy A, Alshaer A, Rumayyan A, Al Tala S, Kurdi W, Alsaman A, Alasmari A, Banu S, Sultan T, Saleh MM, Alkuraya H, Salih MA, Aldhalaan H, Ben-Omran T, Al Musafri F, Ali R, Suleiman J, Tabarki B, El-Hattab AW, Bupp C, Alfadhel M, Al Tassan N, Monies D, Arold ST, Abouelhoda M, Lashley T, Houlden H, Faqeih E, Alkuraya FS. Expanding the genetic heterogeneity of intellectual disability. Hum Genet 2017; 136:1419-1429. [PMID: 28940097 DOI: 10.1007/s00439-017-1843-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/15/2017] [Indexed: 11/30/2022]
Abstract
Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease-gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.
Collapse
Affiliation(s)
- Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yasmine T Asi
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema AlZahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nadia Alhashmi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Fathiya Al Murshedi
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Adila Al Kindy
- Department of Genetics, College of Medicine, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Ahmad Alshaer
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Rumayyan
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,Neurology Division, Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics and Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Abdulaziz Alsaman
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ali Alasmari
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Selina Banu
- Department of Pediatric Neurology, ICH and SSF Hospital Mirpur, Dhaka, 1216, Bangladesh
| | - Tipu Sultan
- Department of Pediatric Neurology, Institute of Child Health and The Children's Hospital Lahore, 381-D/2, Lahore, Pakistan
| | - Mohammed M Saleh
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Department of Ophthalmology, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hesham Aldhalaan
- Pediatric Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Fatima Al Musafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Rehab Ali
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar
| | - Jehan Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Caleb Bupp
- Spectrum Health Genetics, Grand Rapids, MI, USA
| | - Majid Alfadhel
- Genetics Division, Department of Pediatrics, King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Stefan T Arold
- Division of Biological and Environmental Sciences and Engineering (BESE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, University College London, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Spectrum Health Genetics, Grand Rapids, MI, USA. .,Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
154
|
Suleiman J, Allingham-Hawkins D, Hashem M, Shamseldin HE, Alkuraya FS, El-Hattab AW. WDR45B-related intellectual disability, spastic quadriplegia, epilepsy, and cerebral hypoplasia: A consistent neurodevelopmental syndrome. Clin Genet 2017; 93:360-364. [PMID: 28503735 DOI: 10.1111/cge.13054] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
Abstract
The advancement in genomic sequencing has greatly improved the diagnostic yield for neurodevelopmental disorders and led to the discovery of large number of novel genes associated with these disorders. WDR45B has been identified as a potential intellectual disability gene through genomic sequencing of 2 large cohorts of affected individuals. In this report we present 6 individuals from 3 unrelated families with homozygous pathogenic variants in WDR45B: c.799C>T (p.Q267*) in 1 family and c.673C>T (p.R225*) in 2 families. These individuals shared a similar phenotype including profound development delay, early-onset refractory epilepsy, progressive spastic quadriplegia and contractures, and brain malformations. Neuroimaging showed ventriculomegaly, reduced cerebral white matter volume, and thinning of cerebral gray matter. The consistency in the phenotype strongly supports that WDR45B is associated with this disease.
Collapse
Affiliation(s)
- J Suleiman
- Division of Neurology, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | | | - M Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - H E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - F S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - A W El-Hattab
- Division of Genetic and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| |
Collapse
|
155
|
Jithesh PV, Scaria V. From genomes to genomic medicine: enabling personalized and precision medicine in the Middle East. Per Med 2017; 14:377-382. [DOI: 10.2217/pme-2017-0048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Puthen Veettil Jithesh
- Division of Biomedical Informatics Research, Sidra Medical & Research Center, OPC Building, PO Box 26999, Doha, Qatar
| | - Vinod Scaria
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics & Integrative Biology, Mathura Road, Delhi 110 025, India
| |
Collapse
|
156
|
Shamseldin HE, Kurdi W, Almusafri F, Alnemer M, Alkaff A, Babay Z, Alhashem A, Tulbah M, Alsahan N, Khan R, Sallout B, Al Mardawi E, Seidahmed MZ, Meriki N, Alsaber Y, Qari A, Khalifa O, Eyaid W, Rahbeeni Z, Kurdi A, Hashem M, Alshidi T, Al-Obeid E, Abdulwahab F, Ibrahim N, Ewida N, El-Akouri K, Al Mulla M, Ben-Omran T, Pergande M, Cirak S, Al Tala S, Shaheen R, Faqeih E, Alkuraya FS. Molecular autopsy in maternal-fetal medicine. Genet Med 2017; 20:420-427. [PMID: 28749478 DOI: 10.1038/gim.2017.111] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/14/2017] [Indexed: 12/16/2022] Open
Abstract
PurposeThe application of genomic sequencing to investigate unexplained death during early human development, a form of lethality likely enriched for severe Mendelian disorders, has been limited.MethodsIn this study, we employed exome sequencing as a molecular autopsy tool in a cohort of 44 families with at least one death or lethal fetal malformation at any stage of in utero development. Where no DNA was available from the fetus, we performed molecular autopsy by proxy, i.e., through parental testing.ResultsPathogenic or likely pathogenic variants were identified in 22 families (50%), and variants of unknown significance were identified in further 15 families (34%). These variants were in genes known to cause embryonic or perinatal lethality (ALPL, GUSB, SLC17A5, MRPS16, THSD1, PIEZO1, and CTSA), genes known to cause Mendelian phenotypes that do not typically include embryonic lethality (INVS, FKTN, MYBPC3, COL11A2, KRIT1, ASCC1, NEB, LZTR1, TTC21B, AGT, KLHL41, GFPT1, and WDR81) and genes with no established links to human disease that we propose as novel candidates supported by embryonic lethality of their orthologs or other lines of evidence (MS4A7, SERPINA11, FCRL4, MYBPHL, PRPF19, VPS13D, KIAA1109, MOCS3, SVOPL, FEN1, HSPB11, KIF19, and EXOC3L2).ConclusionOur results suggest that molecular autopsy in pregnancy losses is a practical and high-yield alternative to traditional autopsy, and an opportunity for bringing precision medicine to the clinical practice of perinatology.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatima Almusafri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | - Maha Alnemer
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Alya Alkaff
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Zeneb Babay
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Price Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nada Alsahan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bahauddin Sallout
- Maternal-Fetal Medicine Department, Women's Specialized Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Elham Al Mardawi
- Department of Obstetrics and Gynecology, Security Forces Hospital, Riyadh, Saudi Arabia
| | | | - Niema Meriki
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Yasser Alsaber
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ola Khalifa
- Genetics Unit, Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wafaa Eyaid
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ahmed Kurdi
- Department of Obstetrics and Gynecology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eman Al-Obeid
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Karen El-Akouri
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | - Mariam Al Mulla
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, Qatar
| | | | - Sebahattin Cirak
- Cologne Center for Genomics, University of Cologne, Köln, Germany
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospital Program Southwest Region, Khamis Mushait, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
157
|
The genetic landscape of familial congenital hydrocephalus. Ann Neurol 2017; 81:890-897. [DOI: 10.1002/ana.24964] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
|
158
|
The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet 2017; 136:921-939. [PMID: 28600779 PMCID: PMC5502059 DOI: 10.1007/s00439-017-1821-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Abstract
In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016–December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests. Pathogenic or likely pathogenic variants that explain the clinical indications were identified in 34% (27% in panels and 43% in exomes), spanning 279 genes and including 165 novel variants. While recessive mutations dominated the landscape of solved cases (71% of mutations, and 97% of which are homozygous), a substantial minority (27%) were solved on the basis of dominant mutations. The highly consanguineous nature of the study population also facilitated homozygosity for many private mutations (only 32.5% of the recessive mutations are founder), as well as the first instances of recessive inheritance of previously assumed strictly dominant disorders (involving ITPR1, VAMP1, MCTP2, and TBP). Surprisingly, however, dual molecular diagnosis was only observed in 1.5% of cases. Finally, we have encountered candidate variants in 75 genes (ABHD6, ACY3, ADGRB2, ADGRG7, AGTPBP1, AHNAK2, AKAP6, ASB3, ATXN1L, C17orf62, CABP1, CCDC186, CCP110, CLSTN2, CNTN3, CNTN5, CTNNA2, CWC22, DMAP1, DMKN, DMXL1, DSCAM, DVL2, ECI1, EP400, EPB41L5, FBXL22, GAP43, GEMIN7, GIT1, GRIK4, GRSF1, GTRP1, HID1, IFNL1, KCNC4, LRRC52, MAP7D3, MCTP2, MED26, MPP7, MRPS35, MTDH, MTMR9, NECAP2, NPAT, NRAP, PAX7, PCNX, PLCH2, PLEKHF1, PTPN12, QKI, RILPL2, RIMKLA, RIMS2, RNF213, ROBO1, SEC16A, SIAH1, SIRT2, SLAIN2, SLC22A20, SMDT1, SRRT, SSTR1, ST20, SYT9, TSPAN6, UBR4, VAMP4, VPS36, WDR59, WDYHV1, and WHSC1) not previously linked to human phenotypes and these are presented to accelerate post-publication matchmaking. Two of these genes were independently mutated in more than one family with similar phenotypes, which substantiates their link to human disease (AKAP6 in intellectual disability and UBR4 in early dementia). If the novel candidate disease genes in this cohort are independently confirmed, the yield of WES will have increased to 83%, which suggests that most “negative” clinical exome tests are unsolved due to interpretation rather than technical limitations.
Collapse
|
159
|
Dougherty JD, Yang C, Lake AM. Systems biology in the central nervous system: a brief perspective on essential recent advancements. CURRENT OPINION IN SYSTEMS BIOLOGY 2017; 3:67-76. [PMID: 29057378 PMCID: PMC5648337 DOI: 10.1016/j.coisb.2017.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
As recent advances in human genetics have begun to more rapidly identify the individual genes contributing to risk of psychiatric disease, the spotlight now turns to understanding how disruption of these genes alters the brain, and thus behavior. Compared to other tissues, cellular complexity in the brain provides both a substantial challenge and a significant opportunity for systems biology approaches. Current methods are maturing that will allow for finally defining the 'parts list' for the functioning mouse and human brains, enabling new approaches to defining how the system goes awry in disorders of the CNS. However, the availability of tissue is certainly a challenge for systems biology of neuroscience, compared to systems biology of other tissues, where biopsy is feasible. This challenge is particularly notable for disorders caused by extremely rare genetic variants. Thus computational and systems biology approaches, as well as precise experimental models by way of genome editing, will play key roles in defining mechanisms for disorders, and their individual symptoms, across varied genetic etiologies. Here, we highlight recent progress in neurogenetics, postmortem genomics, cell-type specific profiling, and precision modeling toward defining mechanisms in disease.
Collapse
Affiliation(s)
- Joseph D. Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M. Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
160
|
Srour M, Shimokawa N, Hamdan FF, Nassif C, Poulin C, Al Gazali L, Rosenfeld JA, Koibuchi N, Rouleau GA, Al Shamsi A, Michaud JL. Dysfunction of the Cerebral Glucose Transporter SLC45A1 in Individuals with Intellectual Disability and Epilepsy. Am J Hum Genet 2017; 100:824-830. [PMID: 28434495 DOI: 10.1016/j.ajhg.2017.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
Glucose transport across the blood brain barrier and into neural cells is critical for normal cerebral physiologic function. Dysfunction of the cerebral glucose transporter GLUT1 (encoded by SLC2A1) is known to result in epilepsy, intellectual disability (ID), and movement disorder. Using whole-exome sequencing, we identified rare homozygous missense variants (c.526C>T [p.Arg176Trp] and c.629C>T [p.Ala210Val]) in SLC45A1, encoding another cerebral glucose transporter, in two consanguineous multiplex families with moderate to severe ID, epilepsy, and variable neuropsychiatric features. The variants segregate with the phenotype in these families, affect well-conserved amino acids, and are predicted to be damaging by in silico programs. Intracellular glucose transport activity of the p.Arg176Trp and p.Ala210Val SLC45A1 variants, measured in transfected COS-7 cells, was approximately 50% (p = 0.013) and 33% (p = 0.008) lower, respectively, than that of intact SLC45A1. These results indicate that residues at positions 176 and 210 are critical for the glucose transport activity of SLC45A1. All together, our data strongly suggest that recessive mutations in SLC45A1 cause ID and epilepsy. SLC45A1 thus represents the second cerebral glucose transporter, in addition to GLUT1, to be involved in neurodevelopmental disability. Identification of additional individuals with mutations in SLC45A1 will allow better definition of the associated phenotypic spectrum and the exploration of potential targeted treatment options.
Collapse
Affiliation(s)
- Myriam Srour
- Department of Pediatrics, McGill University, Montreal, QC H3A 1A4, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4, Canada.
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan; Department of Nutrition, Takasaki University of Health and Welfare, Gunma 370-0033, Japan
| | - Fadi F Hamdan
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Christina Nassif
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Chantal Poulin
- Department of Pediatrics, McGill University, Montreal, QC H3A 1A4, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4, Canada
| | - Lihadh Al Gazali
- Department of Paediatrics, College of Medicine & Health Sciences, United Arab Emirates University, PO box 15551, Al Ain, United Arab Emirates
| | | | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A4, Canada
| | - Aisha Al Shamsi
- Department of Paediatrics, Tawam Hospital, PO box 15258, Al-Ain, United Arab Emirates
| | - Jacques L Michaud
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Departments of Pediatrics and Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
161
|
Ramadan W, Patel N, Anazi S, Kentab A, Bashiri F, Hamad M, Jad L, Salih M, Alsaif H, Hashem M, Faqeih E, Shamseddin H, Alkuraya F. Confirming the recessive inheritance of SCN1B
mutations in developmental epileptic encephalopathy. Clin Genet 2017; 92:327-331. [DOI: 10.1111/cge.12999] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/14/2017] [Accepted: 02/14/2017] [Indexed: 01/17/2023]
Affiliation(s)
- W. Ramadan
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - N. Patel
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - S. Anazi
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - A.Y. Kentab
- Department of Pediatrics; College of Medicine and King Khalid University Hospital, King Saud University; Riyadh Saudi Arabia
| | - F.A. Bashiri
- Department of Pediatrics; College of Medicine and King Khalid University Hospital, King Saud University; Riyadh Saudi Arabia
| | - M.H. Hamad
- Department of Pediatrics; College of Medicine and King Khalid University Hospital, King Saud University; Riyadh Saudi Arabia
| | - L. Jad
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - M.A. Salih
- Department of Pediatrics; College of Medicine and King Khalid University Hospital, King Saud University; Riyadh Saudi Arabia
| | - H. Alsaif
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - M. Hashem
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - E. Faqeih
- Department of Pediatric Subspecialties; Children's Hospital, King Fahad Medical City; Riyadh Saudi Arabia
| | - H.E. Shamseddin
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
| | - F.S. Alkuraya
- Department of Genetics; King Faisal Specialist Hospital and Research Center; Riyadh Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine; Alfaisal University; Riyadh Saudi Arabia
| |
Collapse
|
162
|
Xu MD, Liu SL, Feng YZ, Liu Q, Shen M, Zhi Q, Liu Z, Gu DM, Yu J, Shou LM, Gong FR, Zhu Q, Duan W, Chen K, Zhang J, Wu MY, Tao M, Li W. Genomic characteristics of pancreatic squamous cell carcinoma, an investigation by using high throughput sequencing after in-solution hybrid capture. Oncotarget 2017; 8:14620-14635. [PMID: 28099906 PMCID: PMC5362430 DOI: 10.18632/oncotarget.14678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Squamous cell carcinoma (SCC) of pancreas is a rare histotype of pancreatic ductal carcinoma which is distinct from pancreatic adenocarcinoma (AC). Although there are standard treatments for pancreatic AC, no precise therapies exist for pancreatic SCC. Here, we screened 1033 cases of pancreatic cancer and identified 2 cases of pure SCC, which were pathologically diagnosed on the basis of finding definite intercellular bridges and/or focal keratin peal formation in the tumor cells. Immunohistochemistry assay confirmed the positive expression of CK5/6 and p63 in pancreatic SCC. To verify the genomic characteristics of pancreatic SCC, we employed in-solution hybrid capture targeting 137 cancer-related genes accompanied by high throughput sequencing (HTS) to compare the different genetic variants in SCC and AC of pancreas. We compared the genetic alterations of known biomarkers of pancreatic adenocarcinoma in different pancreatic cancer tissues, and identified nine mutated genes in SCC of pancreas: C7orf70, DNHD1, KPRP, MDM4, MUC6, OR51Q1, PTPRD, TCF4, TET2, and nine genes (ABCB1, CSF1R, CYP2C18, FBXW7, ITPA, KIAA0748, SOD2, SULT1A2, ZNF142) that are mutated in pancreatic AC. This study may have taken one step forward on the discovery of potential biomarkers for the targeted treatment of SCC of the pancreas.
Collapse
Affiliation(s)
- Meng-Dan Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shu-Ling Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yi-Zhong Feng
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Dong-Mei Gu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jie Yu
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Liu-Mei Shou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qi Zhu
- Xi'an Tianlong Science and Technology Co., Ltd., Xi'an 710018, China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Junning Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China
- Jiangsu Institute of Clinical Immunology, Suzhou 215006, China
- Institute of Medical Biotechnology, Soochow University, Suzhou 215021, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China
- Jiangsu Institute of Clinical Immunology, Suzhou 215006, China
| |
Collapse
|
163
|
Han C, Alkhater R, Froukh T, Minassian AG, Galati M, Liu RH, Fotouhi M, Sommerfeld J, Alfrook AJ, Marshall C, Walker S, Bauer P, Scherer SW, Riess O, Buchert R, Minassian BA, McPherson PS. Epileptic Encephalopathy Caused by Mutations in the Guanine Nucleotide Exchange Factor DENND5A. Am J Hum Genet 2016; 99:1359-1367. [PMID: 27866705 DOI: 10.1016/j.ajhg.2016.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Epileptic encephalopathies are a catastrophic group of epilepsies characterized by refractory seizures and cognitive arrest, often resulting from abnormal brain development. Here, we have identified an epileptic encephalopathy additionally featuring cerebral calcifications and coarse facial features caused by recessive loss-of-function mutations in DENND5A. DENND5A contains a DENN domain, an evolutionarily ancient enzymatic module conferring guanine nucleotide exchange factor (GEF) activity to multiple proteins serving as GEFs for Rabs, which are key regulators of membrane trafficking. DENND5A is detected predominantly in neuronal tissues, and its highest levels occur during development. Knockdown of DENND5A leads to striking alterations in neuronal development. Mechanistically, these changes appear to result from upregulation of neurotrophin receptors, leading to enhanced downstream signaling. Thus, we have identified a link between a DENN domain protein and neuronal development, dysfunction of which is responsible for a form of epileptic encephalopathy.
Collapse
Affiliation(s)
- Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Reem Alkhater
- Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Faculty of Science, Philadelphia University, Amman 11118, Jordan
| | - Arakel G Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Melissa Galati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Rui Han Liu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maryam Fotouhi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Julia Sommerfeld
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | | | - Christian Marshall
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Susan Walker
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Stephen W Scherer
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics and McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, Rare Disease Center, University of Tübingen, Tübingen 72076, Germany
| | - Berge A Minassian
- Program in Genetics and Genome Biology, Department of Pediatrics (Neurology), Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
164
|
Patel N, Anand D, Monies D, Maddirevula S, Khan AO, Algoufi T, Alowain M, Faqeih E, Alshammari M, Qudair A, Alsharif H, Aljubran F, Alsaif HS, Ibrahim N, Abdulwahab FM, Hashem M, Alsedairy H, Aldahmesh MA, Lachke SA, Alkuraya FS. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum Genet 2016; 136:205-225. [PMID: 27878435 DOI: 10.1007/s00439-016-1747-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/16/2016] [Indexed: 01/17/2023]
Abstract
Pediatric cataract is highly heterogeneous clinically and etiologically. While mostly isolated, cataract can be part of many multisystem disorders, further complicating the diagnostic process. In this study, we applied genomic tools in the form of a multi-gene panel as well as whole-exome sequencing on unselected cohort of pediatric cataract (166 patients from 74 families). Mutations in previously reported cataract genes were identified in 58% for a total of 43 mutations, including 15 that are novel. GEMIN4 was independently mutated in families with a syndrome of cataract, global developmental delay with or without renal involvement. We also highlight a recognizable syndrome that resembles galactosemia (a fulminant infantile liver disease with cataract) caused by biallelic mutations in CYP51A1. A founder mutation in RIC1 (KIAA1432) was identified in patients with cataract, brain atrophy, microcephaly with or without cleft lip and palate. For non-syndromic pediatric cataract, we map a novel locus in a multiplex consanguineous family on 4p15.32 where exome sequencing revealed a homozygous truncating mutation in TAPT1. We report two further candidates that are biallelically inactivated each in a single cataract family: TAF1A (cataract with global developmental delay) and WDR87 (non-syndromic cataract). In addition to positional mapping data, we use iSyTE developmental lens expression and gene-network analysis to corroborate the proposed link between the novel candidate genes and cataract. Our study expands the phenotypic, allelic and locus heterogeneity of pediatric cataract. The high diagnostic yield of clinical genomics supports the adoption of this approach in this patient group.
Collapse
Affiliation(s)
- Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Deepti Anand
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Talal Algoufi
- Department of Pediatrics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatrics, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Muneera Alshammari
- Department of Pediatrics, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Qudair
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hadeel Alsharif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatimah Aljubran
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haifa Alsedairy
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed A Aldahmesh
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
165
|
Shamseldin HE, Maddirevula S, Faqeih E, Ibrahim N, Hashem M, Shaheen R, Alkuraya FS. Increasing the sensitivity of clinical exome sequencing through improved filtration strategy. Genet Med 2016; 19:593-598. [PMID: 27711071 DOI: 10.1038/gim.2016.155] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clinical exome sequencing (CES) has greatly improved the diagnostic process for individuals with suspected genetic disorders. However, the majority remains undiagnosed after CES. Although understanding potential reasons for this limited sensitivity is critical for improving the delivery of clinical genomics, research in this area has been limited. MATERIALS AND METHODS We first calculated the theoretical maximum sensitivity of CES by analyzing >100 families in whom a Mendelian phenotype is mapped to a single locus. We then tested the hypothesis that positional mapping can limit the search space and thereby facilitate variant interpretation by reanalyzing 33 families with "negative" CES and applying positional mapping. RESULTS We found that >95% of families who map to a single locus harbored genic (as opposed to intergenic) variants that are potentially identifiable by CES. Our reanalysis of "negative" CES revealed likely causal variants in the majority (88%). Several of these solved cases have undergone negative whole-genome sequencing. CONCLUSION The discrepancy between the theoretical maximum and the actual clinical sensitivity of CES is primarily in the variant filtration rather than the variant capture and sequencing phase. The solution to negative CES is not necessarily in expanding the coverage but rather in devising approaches that improve variant filtration. We suggest that positional mapping is one such approach.Genet Med advance online publication 06 October 2016.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
166
|
Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans. Hum Genet 2016; 135:1191-7. [PMID: 27503289 DOI: 10.1007/s00439-016-1722-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 08/02/2016] [Indexed: 01/08/2023]
Abstract
Primary microcephaly is a clinical phenotype in which the head circumference is significantly reduced at birth due to abnormal brain development, primarily at the cortical level. Despite the marked genetic heterogeneity, most primary microcephaly-linked genes converge on mitosis regulation. Two consanguineous families segregating the phenotype of severe primary microcephaly, spasticity and failure to thrive had overlapping autozygomes in which exome sequencing identified homozygous splicing variants in CIT that segregate with the phenotype within each family. CIT encodes citron, an effector of the Rho signaling that is required for cytokinesis specifically in proliferating neuroprogenitors, as well as for postnatal brain development. In agreement with the critical role assigned to the kinase domain in effecting these biological roles, we show that both splicing variants predict variable disruption of this domain. The striking phenotypic overlap between CIT-mutated individuals and the knockout mice and rats that are specifically deficient in the kinase domain supports the proposed causal link between CIT mutation and primary microcephaly in humans.
Collapse
|