151
|
Wang J, Chu ESH, Chen HY, Man K, Go MYY, Huang XR, Lan HY, Sung JJY, Yu J. microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget 2016; 6:7325-38. [PMID: 25356754 PMCID: PMC4466688 DOI: 10.18632/oncotarget.2621] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/22/2014] [Indexed: 01/18/2023] Open
Abstract
microRNA-29b (miR-29b) is known to be associated with TGF-β-mediated fibrosis, but the mechanistic action of miR-29b in liver fibrosis remains unclear and is warranted for investigation. We found that miR-29b was significantly downregulated in human and mice fibrotic liver tissues and in primary activated HSCs. miR-29b downregulation was directly mediated by Smad3 through binding to the promoter of miR-29b in hepatic stellate cell (HSC) line LX1, whilst miR-29b could in turn suppress Smad3 expression. miR-29b transduction in the liver of mice prevented CCl4 induced-fibrogenesis, concomitant with decreased expression of α-SMA, collagen I and TIMP-1. Ectopic expression of miR-29b in activated HSCs (LX-1, HSC-T6) inhibited cell viability and colony formation, and caused cell cycle arrest in G1 phase by downregulating cyclin D1 and p21cip1. Further, miR-29b induced apoptosis in HSCs mediated by caspase-9 and PARP. miR-29b inhibited its downstream effectors of PIK3R1 and AKT3 through direct targeting their 3′UTR regions. Moreover, knockdown of PIK3R1 or AKT3 suppressed α-SMA and collagen I and induced apoptosis in both HSCs and in mice. In conclusion, miR-29b prevents liver fibrogenesis by inhibiting HSC activation and inducing HSC apoptosis through inhibiting PI3K/AKT pathway. These results provide novel mechanistic insights for the anti-fibrotic effect of miR-29b.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Gastrointestinal Cancer Biology & Therapeutics Laboratory, CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Eagle S H Chu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Gastrointestinal Cancer Biology & Therapeutics Laboratory, CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Hai-Yong Chen
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kwan Man
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Minnie Y Y Go
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xiao Ru Huang
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Hui Yao Lan
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Joseph J Y Sung
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Gastrointestinal Cancer Biology & Therapeutics Laboratory, CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong.,Gastrointestinal Cancer Biology & Therapeutics Laboratory, CUHK-Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
152
|
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that mediate mRNA cleavage, translational repression or mRNA destabilisation and are around 22–25 nucleotides in length via partial complementary binding to the 3′ untranslated region in target transcripts. They are master regulators of gene expression. Fibrosis is an important cause of morbidity and mortality in the world, and there are currently no accepted treatments for fibrosis. Many novel miRNAs are now associated with fibrosis, both organ-specific and systemic, as in the prototypical fibrotic disease systemic sclerosis. Recently, the targets of these altered miRNAs have been validated and defined new biochemical pathways. Dysregulated miRNAs are amenable to therapeutic modulation. This review will examine the role of miRNAs in fibrosis and the opportunities and challenges of targeting them.
Collapse
Affiliation(s)
- Steven O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Ellison Place, Newcastle Upon Tyne, NE1 8ST, UK.
| |
Collapse
|
153
|
Chen J, Yang F, Yu X, Yu Y, Gong Y. Cyclosporine A promotes cell proliferation, collagen and α-smooth muscle actin expressions in rat gingival fibroblasts by Smad3 activation and miR-29b suppression. J Periodontal Res 2016; 51:735-747. [PMID: 26738448 DOI: 10.1111/jre.12350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Affiliation(s)
- J. Chen
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - F. Yang
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - X. Yu
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - Y. Yu
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| | - Y. Gong
- Department of Stomatology; Zhongshan Hospital; Fudan University; Shanghai China
| |
Collapse
|
154
|
Abstract
PURPOSE OF REVIEW In this article, we summarize and discuss the most recent literature on personalized medicine in idiopathic pulmonary fibrosis (IPF), a chronic progressive and almost invariably lethal disease of unknown cause. This review is timely as major advances in our understanding of disease pathobiology and improvements in molecular techniques have recently led to the identification of potential surrogates of diagnosis, prognosis and response to treatment. RECENT FINDINGS The most promising and advanced candidate biomarkers are presented based on their proposed mechanistic pathways (e.g. alveolar epithelial cell dysfunction, immune dysregulation, microbiome, extracellular matrix remodeling and fibroproliferation, epigenetic markers and metabolomics). Recent data suggest that components of the immune system may contribute to the development of IPF. A potential role for infections as a cofactor in disease development and progression or as a trigger in disease exacerbation has also recently been proposed. SUMMARY Clinical management of IPF is unsatisfactory because of limited availability of truly effective therapies, lack of accurate predictors of disease behavior and absence of simple short-term measures of therapeutic response. A number of putative biomarkers have been identified in patients with IPF, although none has been validated to the standard necessary for their use in either therapeutic trials or clinical practice. Currently, ongoing prospective longitudinal studies will hopefully permit such validation.
Collapse
|
155
|
Bertero T, Cottrill KA, Annis S, Bhat B, Gochuico BR, Osorio JC, Rosas I, Haley KJ, Corey KE, Chung RT, Nelson Chau B, Chan SY. A YAP/TAZ-miR-130/301 molecular circuit exerts systems-level control of fibrosis in a network of human diseases and physiologic conditions. Sci Rep 2015; 5:18277. [PMID: 26667495 PMCID: PMC4678880 DOI: 10.1038/srep18277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023] Open
Abstract
The molecular origins of fibrosis affecting multiple tissue beds remain incompletely defined. Previously, we delineated the critical role of the control of extracellular matrix (ECM) stiffening by the mechanosensitive microRNA-130/301 family, as activated by the YAP/TAZ co-transcription factors, in promoting pulmonary hypertension (PH). We hypothesized that similar mechanisms may dictate fibrosis in other tissue beds beyond the pulmonary vasculature. Employing an in silico combination of microRNA target prediction, transcriptomic analysis of 137 human diseases and physiologic states, and advanced gene network modeling, we predicted the microRNA-130/301 family as a master regulator of fibrotic pathways across a cohort of seemingly disparate diseases and conditions. In two such diseases (pulmonary fibrosis and liver fibrosis), inhibition of microRNA-130/301 prevented the induction of ECM modification, YAP/TAZ, and downstream tissue fibrosis. Thus, mechanical forces act through a central feedback circuit between microRNA-130/301 and YAP/TAZ to sustain a common fibrotic phenotype across a network of human physiologic and pathophysiologic states. Such re-conceptualization of interconnections based on shared systems of disease and non-disease gene networks may have broad implications for future convergent diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Bertero
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Katherine A. Cottrill
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Sofia Annis
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | | | | | - Juan C. Osorio
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kathleen J. Haley
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kathleen E. Corey
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, USA
| | | | - Stephen Y. Chan
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
156
|
Let-7b promotes alpaca hair growth via transcriptional repression of TGFβR I. Gene 2015; 577:32-6. [PMID: 26611528 DOI: 10.1016/j.gene.2015.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 01/19/2023]
Abstract
The young male alpaca ear and the back skins were used to investigate the effect of transforming growth factor receptor-β I (TGFβR I) on alpaca hair follicles and hair growth. The expression level and location of TGFβR I in alpaca ear and dorsal skin were detected through real-time quantitative PCR (RT-PCR) and paraffin section immunohistochemical technique (ICC-P). The results shown TGFβR I was lower expression in back skin compared to ear skin and the mean density of the positive reaction in ear skin was significantly higher than back skin. The targeted relationship with let-7b was detected using the dual-luciferase reporter vector of TGFβR I, which showed a significant target relationship between let-7b and TGFβR I. After transfection with let-7b eukaryotic expression vector, the relative mRNA expression of TGFβR I in alpaca skin fibroblasts did not differ, while the relative protein level was significantly decreased. In summary, a higher TGFβR I expression level in the ear skin suggests that TGFβR I may inhibit coat hair elongation. Further studies showed TGFβR I protein was downregulated by let-7b through transcriptional repression.
Collapse
|
157
|
miR-1343 attenuates pathways of fibrosis by targeting the TGF-β receptors. Biochem J 2015; 473:245-56. [PMID: 26542979 DOI: 10.1042/bj20150821] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Irreversible respiratory obstruction resulting from progressive airway damage, inflammation and fibrosis is a feature of several chronic respiratory diseases, including cystic fibrosis (CF), idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD). The cytokine transforming growth factor β (TGF-β) has a pivotal role in promoting lung fibrosis and is implicated in respiratory disease severity. In the present study, we show that a previously uncharacterized miRNA, miR-1343, reduces the expression of both TGF-β receptor 1 and 2 by directly targeting their 3'-UTRs. After TGF-β exposure, elevated intracellular miR-1343 significantly decreases levels of activated TGF-β effector molecules, pSMAD2 (phosphorylated SMAD2) and pSMAD3 (phosphorylated SMAD3), when compared with a non-targeting control miRNA. As a result, the abundance of fibrotic markers is reduced, cell migration into a scratch wound impaired and epithelial-to-mesenchymal transition (EMT) repressed. Mature miR-1343 is readily detected in human neutrophils and HL-60 cells and is activated in response to stress in A549 lung epithelial cells. miR-1343 may have direct therapeutic applications in fibrotic lung disease.
Collapse
|
158
|
Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol 2015; 6:254. [PMID: 26594173 PMCID: PMC4633493 DOI: 10.3389/fphar.2015.00254] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and devastating disorder. It is characterized by alveolar epithelial cell injury and activation, infiltration of inflammatory cells, initiation of epithelial mesenchymal transition (EMT), aberrant proliferation and activation of fibroblasts, exaggerated deposition of extracellular matrix (ECM) proteins, and finally leading to the destruction of lung parenchyma. MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules that post-transcriptionally regulate gene expression in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis and metastasis. As a result, miRNAs have emerged as a major area of biomedical research with relevance to pulmonary fibrosis. In this context, the present review discusses specific patterns of dysregulated miRNAs in patients with IPF. Further, we discuss the current understanding of miRNAs involvement in regulating lung inflammation, TGF-β1-mediated EMT and fibroblast differentiation processes, ECM genes expression, and in the progression of lung fibrosis. The possible future directions that might lead to novel therapeutic strategies for the treatment of pulmonary fibrosis are also reviewed.
Collapse
Affiliation(s)
- Subbiah Rajasekaran
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University Tiruchirappalli, India
| | - P Rajaguru
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University Tiruchirappalli, India
| | - P S Sudhakar Gandhi
- Department of Biotechnology, Bharathidasan Institute of Technology Campus, Anna University Tiruchirappalli, India
| |
Collapse
|
159
|
Creemers EE, van Rooij E. Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. Circ Res 2015; 118:108-18. [PMID: 26538569 DOI: 10.1161/circresaha.115.305242] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022]
Abstract
Cardiac fibrosis as a result of excessive extracellular matrix deposition leads to stiffening of the heart, which can eventually lead to heart failure. An important event in cardiac fibrosis is the transformation of fibroblasts into myofibroblasts, which secrete large amounts of extracellular matrix proteins. Although the function of protein-coding genes in myofibroblast activation and fibrosis have been a topic of investigation for a long time, it has become clear that noncoding RNAs also play key roles in cardiac fibrosis. This review discusses the involvement of microRNAs and long noncoding RNAs in cardiac fibrosis and summarizes the issues related to translating these findings into real-life therapies.
Collapse
Affiliation(s)
- Esther E Creemers
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (E.E.C.); Hubrecht Institute, KNAW, Utrecht, The Netherlands (E.v.R.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (E.v.R.)
| | - Eva van Rooij
- From the Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (E.E.C.); Hubrecht Institute, KNAW, Utrecht, The Netherlands (E.v.R.); and Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (E.v.R.).
| |
Collapse
|
160
|
Abstract
Preclinical Research Idiopathic Pulmonary Fibrosis (IPF) is the most severe fibrotic lung disease and characterized by the accumulation of (myo)fibroblasts and collagen within the alveolar wall resulting in obliteration of the gas-exchange surface. Although the detailed pathogenesis is not understood, recent studies have found that several microRNAs (miRNAs) are associated with the progression of lung diseases including IPF. IPF is a fibrotic disease and, most frequently found in an aged population. In this review, the functional roles of miRNAs that are deregulated in IPF progression are discussed together with how aging affects the miRNA signature, altering the fibroblast phenotype and promoting lung fibrosis. Finally, the possibility of targeting miRNAs as a therapeutic approach for the treatment of IPF is discussed.
Collapse
|
161
|
Ji X, Wu B, Fan J, Han R, Luo C, Wang T, Yang J, Han L, Zhu B, Wei D, Chen J, Ni C. The Anti-fibrotic Effects and Mechanisms of MicroRNA-486-5p in Pulmonary Fibrosis. Sci Rep 2015; 5:14131. [PMID: 26370615 PMCID: PMC4569899 DOI: 10.1038/srep14131] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 07/30/2015] [Indexed: 01/25/2023] Open
Abstract
To identify microRNAs (miRNAs, miRs) with potential roles in lung fibrogenesis, we performed genome-wide profiling of miRNA expression in lung tissues from a silica-induced mouse model of pulmonary fibrosis using microarrays. Seventeen miRNAs were selected for validation via qRT-PCR based on the fold changes between the silica and the control group. The dysregulation of five miRNAs, including miR-21, miR-455, miR-151-3p, miR-486-5p and miR-3107, were confirmed by qRT-PCRs in silica-induced mouse model of pulmonary fibrosis and were also confirmed in a bleomycin (BLM)-induced mouse lung fibrosis. Notably, miR-486-5p levels were decreased in the serum samples of patients with silicosis, as well as in the lung tissues of patients with silicosis and idiopathic pulmonary fibrosis (IPF). In addition, as determined by luciferase assays and Western blotting, SMAD2, a crucial mediator of pulmonary fibrosis, was identified to be one of target genes of miR-486-5p. To test the potential therapeutic significance of this miRNA, we overexpressed miR-486-5p in animal models. At day 28, miR-486-5p expression significantly decreased both the distribution and severity of lung lesions compared with the silica group (P < 0.01). In addition, miR-486-5p had a similar effect in the BLM group (P < 0.001). These results indicate that miR-486-5p may inhibit fibrosis.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Baiqun Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjing Fan
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Luo
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China.,Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, China
| | - Baoli Zhu
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, China
| | - Dong Wei
- Nanjing Medical University, Affiliated Wuxi People's Hospital, Lung Transplantation Center, Jiangsu Key Laboratory of Organ Transplantation, China
| | - Jingyu Chen
- Nanjing Medical University, Affiliated Wuxi People's Hospital, Lung Transplantation Center, Jiangsu Key Laboratory of Organ Transplantation, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
162
|
MicroRNAs Regulating Signaling Pathways: Potential Biomarkers in Systemic Sclerosis. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:234-41. [PMID: 26365208 PMCID: PMC4610971 DOI: 10.1016/j.gpb.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/22/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
Abstract
Systemic sclerosis (SSc) is a multisystem fibrotic and autoimmune disease. Both genetic and epigenetic elements mediate SSc pathophysiology. This review summarizes the role of one epigenetic element, known as microRNAs (miRNAs), involved in different signaling pathways of SSc pathogenesis. The expression of key components in transforming growth factor-β (TGF-β) signaling pathway has been found to be regulated by miRNAs both upstream and downstream of TGF-β. We are specifically interested in the pathway components upstream of TGF-β, while miRNAs in other signaling pathways have not been extensively studied. The emerging role of miRNAs in vasculopathy of SSc suggests a promising new direction for future investigation. Elucidation of the regulatory role of miRNAs in the expression of signaling factors may facilitate the discovery of novel biomarkers in SSc and improve the understanding and treatment of this disease.
Collapse
|
163
|
Abstract
Systemic sclerosis is an autoimmune disease that contains an interplay between inflammation and fibrosis. The ultimate effector cell is the myofibroblast that secretes excessive matrix molecules leading to fibrosis. There is no treatment that modifies the disease and this is an unmet clinical need. In this issue of Autoimmunity, Jafarinejad-Farsaangi et al., demonstrate that restitution of microRNA-29a targets the apoptosis rheostat and leads to apoptosis in dermal fibroblasts, suggesting that in vivo targeting of the microRNA through mimics would lead to depletion of the fibroblasts.
Collapse
Affiliation(s)
- Steven O'Reilly
- a School of Biological and Biomedical Sciences, Durham University , Durham , UK
| |
Collapse
|
164
|
Jeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol 2015; 11:45-58. [PMID: 25534978 DOI: 10.1586/1744666x.2015.994507] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases are complex and enigmatic, and have presented particular challenges to researchers seeking to define their etiology and explain progression. Previous studies have implicated epigenetic influences in the development of autoimmunity. Epigenetics describes changes in gene expression related to environmental influences without alterations in the underlying genomic sequence, generally classified into three main groups: cytosine genomic DNA methylation, modification of various sidechain positions of histone proteins and noncoding RNAs feedback. The purpose of this article is to review the most relevant literature describing alterations of epigenetic marks in the development and progression of four common autoimmune diseases: systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis and Sjögren's syndrome. The contribution of DNA methylation, histone modification and noncoding RNA for each of these disorders is discussed, including examples both of candidate gene studies and larger epigenomics surveys, and in various tissue types important for the pathogenesis of each. The future of the field is speculated briefly, as is the possibility of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Matlock A Jeffries
- Department of Internal Medicine, Division of Rheumatology, Immunology and Allergy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | |
Collapse
|
165
|
Cordeiro CR, Alfaro TM, Freitas S, Cemlyn-Jones J. Idiopathic pulmonary fibrosis. Lung Cancer 2015. [DOI: 10.1183/2312508x.10009414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
166
|
Fukunaga S, Kakehashi A, Sumida K, Kushida M, Asano H, Gi M, Wanibuchi H. Integrative analyses of miRNA and proteomics identify potential biological pathways associated with onset of pulmonary fibrosis in the bleomycin rat model. Toxicol Appl Pharmacol 2015; 286:188-97. [DOI: 10.1016/j.taap.2015.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023]
|
167
|
Van der Hauwaert C, Savary G, Hennino MF, Pottier N, Glowacki F, Cauffiez C. [MicroRNAs in kidney fibrosis]. Nephrol Ther 2015. [PMID: 26216507 DOI: 10.1016/j.nephro.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis represents the final stage of most chronic kidney diseases and contributes to the progressive and irreversible decline in kidney function with accumulation of extracellular matrix components in the renal parenchyma. The molecular mechanisms governing the renal fibrosis process are complex and remain poorly understood. Recently, the profibrotic role of several microRNAs (miRNAs) has been described in kidney fibrosis. MiRNAs are a new class of, small non-coding RNAs of about 20 nucleotides that act as gene expression negative regulators at the post-transcriptional level. Seminal studies have highlighted the potential importance of miRNA as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. This review summarizes recent scientific advances on the role played by miRNAs in kidney fibrogenesis and discusses potential clinical applications as well as future research directions.
Collapse
Affiliation(s)
- Cynthia Van der Hauwaert
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - Grégoire Savary
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - Marie-Flore Hennino
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - Nicolas Pottier
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - François Glowacki
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France; Service de néphrologie, hôpital Huriez, CHRU de Lille, boulevard Michel-Polonovski, 59037 Lille cedex, France.
| | - Christelle Cauffiez
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| |
Collapse
|
168
|
Liang C, Li X, Zhang L, Cui D, Quan X, Yang W. The anti-fibrotic effects of microRNA-153 by targeting TGFBR-2 in pulmonary fibrosis. Exp Mol Pathol 2015. [PMID: 26216407 DOI: 10.1016/j.yexmp.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic lung disease with an undefined etiology and no effective treatments. By binding to cell surface receptors, transforming growth factor-β (TGF-β) plays a pivotal role in lung fibrosis. Therefore, the screening of microRNAs (miRNAs), especially those interrupting the effects of TGF-β, may provide information not only on the pathomechanism, but also on the treatment of this disease. In the present study, we found that miR-153 expression was dysregulated in the lungs of mice with experimental pulmonary fibrosis and TGF-β1 decreased miR-153 expression in pulmonary fibroblasts. Moreover, increased miR-153 levels attenuated, whereas the knock down of miR-153 promoted the pro-fibrogenic activity of TGF-β1, and miR-153 reduced the contractile and migratory activities of fibroblasts. In addition, TGFBR2, a transmembrane serine/threonine kinase receptor for TGF-β, was identified as a direct target of miR-153. Furthermore, by post-transcriptional regulation of the expression of TGFBR2, phosphorylation of SMAD2/3 was also influenced by miR-153. These data suggest that miR-153 disturbs TGF-β1 signal transduction and its effects on fibroblast activation, acting as an anti-fibrotic element in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chunlian Liang
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Xiuli Li
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Lin Zhang
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Dajiang Cui
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Xiaojuan Quan
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Weilin Yang
- Department of Geriatrics, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| |
Collapse
|
169
|
Abstract
Since their initial discovery in the early 1990s, microRNAs have now become the focus of a multitude of lines of investigation ranging from basic biology to translational applications in the clinic. Previously believed to be of no biological relevance, microRNAs regulate processes fundamental to human health and disease. In diseases of the lung, microRNAs have been implicated in developmental programming, as drivers of disease, potential therapeutic targets, and clinical biomarkers; however, several obstacles must be overcome for us to fully realize their potential therapeutic use. Here, we provide for the clinician an overview of microRNA biology in selected diseases of the lung with a focus on their potential clinical application.
Collapse
|
170
|
Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep 2015; 5:11450. [PMID: 26095125 PMCID: PMC4476113 DOI: 10.1038/srep11450] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/26/2015] [Indexed: 12/24/2022] Open
Abstract
Dense fibrotic stroma associated with pancreatic ductal adenocarcinoma (PDAC) is a major obstacle for drug delivery to the tumor bed and plays a crucial role in pancreatic cancer progression. Current, anti-stromal therapies have failed to improve tumor response to chemotherapy and patient survival. Furthermore, recent studies show that stroma impedes tumor progression, and its complete ablation accelerates PDAC progression. In an effort to understand the molecular mechanisms associated with tumor-stromal interactions, using in vitro and in vivo models and PDAC patient biopsies, we show that the loss of miR-29 is a common phenomenon of activated pancreatic stellate cells (PSCs)/fibroblasts, the major stromal cells responsible for fibrotic stromal reaction. Loss of miR-29 is correlated with a significant increase in extracellular matrix (ECM) deposition, a major component in PDAC stroma. Our in vitro miR-29 gain/loss-of-function studies document the role of miR-29 in PSC-mediated ECM stromal protein accumulation. Overexpression of miR-29 in activated stellate cells reduced stromal deposition, cancer cell viability, and cancer growth in co-culture. Furthermore, the loss of miR-29 in TGF-β1 activated PSCs is SMAD3 dependent. These results provide insights into the mechanistic role of miR-29 in PDAC stroma and its potential use as a therapeutic agent to target PDAC.
Collapse
|
171
|
Montgomery RL, Yu G, Latimer PA, Stack C, Robinson K, Dalby CM, Kaminski N, van Rooij E. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol Med 2015; 6:1347-56. [PMID: 25239947 PMCID: PMC4287936 DOI: 10.15252/emmm.201303604] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, great enthusiasm has evolved for microRNA (miRNA) therapeutics. Part of the excitement stems from the fact that a miRNA often regulates numerous related mRNAs. As such, modulation of a single miRNA allows for parallel regulation of multiple genes involved in a particular disease. While many studies have shown therapeutic efficacy using miRNA inhibitors, efforts to restore or increase the function of a miRNA have been lagging behind. The miR-29 family has gained a lot of attention for its clear function in tissue fibrosis. This fibroblast-enriched miRNA family is downregulated in fibrotic diseases which induces a coordinate increase of many extracellular matrix genes. Here, we show that intravenous injection of synthetic RNA duplexes can increase miR-29 levels in vivo for several days. Moreover, therapeutic delivery of these miR-29 mimics during bleomycin-induced pulmonary fibrosis restores endogenous miR-29 function whereby decreasing collagen expression and blocking and reversing pulmonary fibrosis. Our data support the feasibility of using miRNA mimics to therapeutically increase miRNAs and indicate miR-29 to be a potent therapeutic miRNA for treating pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Guoying Yu
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Eva van Rooij
- miRagen Therapeutics, Inc, Boulder, CO, USA Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
172
|
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol 2015; 6:272. [PMID: 26106387 PMCID: PMC4459100 DOI: 10.3389/fimmu.2015.00272] [Citation(s) in RCA: 265] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/16/2015] [Indexed: 01/04/2023] Open
Abstract
Systemic scleroderma (SSc) is one of the most complex systemic autoimmune diseases. It targets the vasculature, connective tissue-producing cells (namely fibroblasts/myofibroblasts), and components of the innate and adaptive immune systems. Clinical and pathologic manifestations of SSc are the result of: (1) innate/adaptive immune system abnormalities leading to production of autoantibodies and cell-mediated autoimmunity, (2) microvascular endothelial cell/small vessel fibroproliferative vasculopathy, and (3) fibroblast dysfunction generating excessive accumulation of collagen and other matrix components in skin and internal organs. All three of these processes interact and affect each other. The disease is heterogeneous in its clinical presentation that likely reflects different genetic or triggering factor (i.e., infection or environmental toxin) influences on the immune system, vasculature, and connective tissue cells. The roles played by other ubiquitous molecular entities (such as lysophospholipids, endocannabinoids, and their diverse receptors and vitamin D) in influencing the immune system, vasculature, and connective tissue cells are just beginning to be realized and studied and may provide insights into new therapeutic approaches to treat SSc.
Collapse
Affiliation(s)
- Debendra Pattanaik
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| | - Monica Brown
- Section of Pediatric Rheumatology, Department of Pediatrics, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Bradley C Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA
| | - Arnold E Postlethwaite
- Department of Medicine, Division of Connective Tissue Diseases, The University of Tennessee Health Science Center , Memphis, TN , USA ; Department of Veterans Affairs Medical Center , Memphis, TN , USA
| |
Collapse
|
173
|
Cui H, Xie N, Thannickal VJ, Liu G. The code of non-coding RNAs in lung fibrosis. Cell Mol Life Sci 2015; 72:3507-19. [PMID: 26026420 DOI: 10.1007/s00018-015-1939-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 02/06/2023]
Abstract
The pathogenesis of pulmonary fibrosis is a complicated and complex process that involves phenotypic abnormalities of a variety of cell types and dysregulations of multiple signaling pathways. There are numerous genetic, epigenetic and post-transcriptional mechanisms that have been identified to participate in the pathogenesis of this disease. However, efficacious therapeutics developed from these studies have been disappointingly limited. In the past several years, a group of new molecules, i.e., non-coding RNAs (ncRNAs), has been increasingly appreciated to have critical roles in the pathological progression of lung fibrosis. In this review, we summarize the recent findings on the roles of ncRNAs in the pathogenesis of this disorder. We analyze the translational potential of this group of molecules in treating lung fibrosis. We also discuss challenges and future opportunities of studying and utilizing ncRNAs in lung fibrosis.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, 901 19th St. So., BMR II 233, Birmingham, AL, 35294, USA
| | | | | | | |
Collapse
|
174
|
Knabel MK, Ramachandran K, Karhadkar S, Hwang HW, Creamer TJ, Chivukula RR, Sheikh F, Clark KR, Torbenson M, Montgomery RA, Cameron AM, Mendell JT, Warren DS. Systemic Delivery of scAAV8-Encoded MiR-29a Ameliorates Hepatic Fibrosis in Carbon Tetrachloride-Treated Mice. PLoS One 2015; 10:e0124411. [PMID: 25923107 PMCID: PMC4414421 DOI: 10.1371/journal.pone.0124411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/14/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis refers to the accumulation of excess extracellular matrix (ECM) components and represents a key feature of many chronic inflammatory diseases. Unfortunately, no currently available treatments specifically target this important pathogenic mechanism. MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress target gene expression and the development of miRNA-based therapeutics is being actively pursued for a diverse array of diseases. Because a single miRNA can target multiple genes, often within the same pathway, variations in the level of individual miRNAs can potently influence disease phenotypes. Members of the miR-29 family, which include miR-29a, miR-29b and miR-29c, are strong inhibitors of ECM synthesis and fibrosis-associated decreases in miR-29 have been reported in multiple organs. We observed downregulation of miR-29a/b/c in fibrotic livers of carbon tetrachloride (CCl4) treated mice as well as in isolated human hepatocytes exposed to the pro-fibrotic cytokine TGF-β. Importantly, we demonstrate that a single systemic injection of a miR-29a expressing adeno-associated virus (AAV) can prevent and even reverse histologic and biochemical evidence of fibrosis despite continued exposure to CCl4. The observed therapeutic benefits were associated with AAV transduction of hepatocytes but not hepatic stellate cells, which are the main ECM producing cells in fibroproliferative liver diseases. Our data therefore demonstrate that delivery of miR-29 to the hepatic parenchyma using a clinically relevant gene delivery platform protects injured livers against fibrosis and, given the consistent fibrosis-associated downregulation of miR-29, suggests AAV-miR-29 based therapies may be effective in treating a variety of fibroproliferative disorders.
Collapse
Affiliation(s)
- Matthew K. Knabel
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kalyani Ramachandran
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sunil Karhadkar
- Department of Surgery, Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Hun-Way Hwang
- Laboratory of Molecular Neuro-oncology, Rockefeller University, New York, New York, United States of America
| | - Tyler J. Creamer
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raghu R. Chivukula
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Farooq Sheikh
- Department of Cardiology, Washington Hospital Center, Washington, DC, United States of America
| | - K. Reed Clark
- Center for Gene Therapy, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Michael Torbenson
- Department of Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Robert A. Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew M. Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua T. Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Simmons Cancer Center, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel S. Warren
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
175
|
Rana I, Kompa AR, Skommer J, Wang BH, Lekawanvijit S, Kelly DJ, Krum H, Charchar FJ. Contribution of microRNA to pathological fibrosis in cardio-renal syndrome: impact of uremic toxins. Physiol Rep 2015; 3:3/4/e12371. [PMID: 25896982 PMCID: PMC4425975 DOI: 10.14814/phy2.12371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Progressive reduction in kidney function in patients following myocardial infarction (MI) is associated with an increase in circulating uremic toxins levels leading to increased extracellular matrix deposition. We have recently reported that treatment with uremic toxin adsorbent AST-120 in rats with MI inhibits serum levels of uremic toxin indoxyl sulfate (IS) and downregulates expression of cardiac profibrotic cytokine transforming growth factor beta (TGF-β1). In this study, we examined the effect of uremic toxins post-MI on cardiac microRNA-21 and microRNA-29b expression, and also the regulation of target genes and matrix remodeling proteins involved in TGFβ1 and angiotensin II signaling pathways. Sixteen weeks after MI, cardiac tissues were assessed for pathological and molecular changes. The percentage area of cardiac fibrosis was 4.67 ± 0.17 in vehicle-treated MI, 2.9 ± 0.26 in sham, and 3.32 ± 0.38 in AST-120-treated MI, group of rats. Compared to sham group, we found a twofold increase in the cardiac expression of microRNA-21 and 0.5-fold decrease in microRNA-29b in heart tissue from vehicle-treated MI. Treatment with AST-120 lowered serum IS levels and attenuated both, cardiac fibrosis and changes in expression of these microRNAs observed after MI. We also found increased mRNA expression of angiotensin-converting enzyme (ACE) and angiotensin receptor 1a (Agtr1a) in cardiac tissue collected from MI rats. Treatment with AST-120 attenuated both, expression of ACE and Agtr1a mRNA. Exposure of rat cardiac fibroblasts to IS upregulated angiotensin II signaling and altered the expression of both microRNA-21 and microRNA-29b. These results collectively suggest a clear role of IS in altering microRNA-21 and microRNA-29b in MI heart, via a mechanism involving angiotensin signaling pathway, which leads to cardiac fibrosis.
Collapse
Affiliation(s)
- Indrajeetsinh Rana
- School of Health Sciences Federation University Australia, Ballarat, Victoria, Australia
| | - Andrew R Kompa
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia Department of Medicine, University of Melbourne St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Joanna Skommer
- School of Health Sciences Federation University Australia, Ballarat, Victoria, Australia
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia
| | - Suree Lekawanvijit
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia
| | - Darren J Kelly
- Department of Medicine, University of Melbourne St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics Monash University, Melbourne, Victoria, Australia
| | - Fadi J Charchar
- School of Health Sciences Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
176
|
Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H, Jamshidi AR. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 2015; 48:369-78. [PMID: 25857445 DOI: 10.3109/08916934.2015.1030616] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The most prominent feature of systemic sclerosis (SSc) and other diseases associated with fibrosis is the prolonged activation of fibroblasts not eliminated by apoptosis, hence characterized by accumulation of more extra cellular matrix (ECM). We tend to verify if microRNA-29a (miR-29a) as an anti-fibrotic factor could induce apoptosis in SSc fibroblasts. We did not detect apoptosis in SSc fibroblasts. We found that Bcl-2 expression was upregulated in SSc fibroblasts and the ratio of Bax:Bcl-2 in these cells was significantly lower (p = 0.02) compared to normal fibroblasts. Transfection of both SSc and transforming growth factor-β (TGF-β) stimulated fibroblasts by miR-29a mimic, significantly decreased the expression of two anti-apoptotic members of the Bcl-2 family, Bcl-2 (p = 0.0005, p = 0.01) and Bcl-XL (p = 0.0001, p = 0.006), resulted in enhanced Bax:Bcl-2 ratio and induced a high rate of apoptosis. Recently, miR-29 has been introduced as an anti-fibrotic factor with potential therapeutic effect on SSc. Until now, it has not been proposed whether there is a relationship between miR-29a and apoptosis in SSc. According to our results, it seems that miR-29a is a potent inducer of apoptosis in SSc fibroblasts and an attenuator of ECM production in these cells. MiR-29a disrupted the expression profiling of Bcl-2 family proteins (Bax, Bcl-2 and Bcl-XL) which is the central point of dynamic life-death rheostat in many apoptotic pathways. Furthermore, dermal fibroblasts from patients with SSc showed elevation in TNF-α mRNA levels, while restoration of miR-29a decreases TNF-α production in these cells. Although further molecular studies are necessary to investigate the underlying apoptotic pathways, the present findings suggest that anti-fibrotic and pro-apoptotic properties of miR-29a could provide novel benefits toward the development of fibroblast-specific anti-fibrotic therapies.
Collapse
|
177
|
Meng XM, Tang PMK, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Front Physiol 2015; 6:82. [PMID: 25852569 PMCID: PMC4365692 DOI: 10.3389/fphys.2015.00082] [Citation(s) in RCA: 532] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022] Open
Abstract
TGF-β (transforming growth factor-β) is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF-β signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix), and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases (CKD). Taken together, TGF-β/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for CKD associated with renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University Hefei, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University Hefei, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong, China ; Shenzhen Research Institute, The Chinese University of Hong Kong Shenzhen, China
| |
Collapse
|
178
|
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate most of important cellular processes by inhibiting gene expression through the post-transcriptional repression of their target mRNAs. In kidneys, miRNAs have been associated in renal development, homeostasis, and physiological functions. Results from clinical and experimental animal studies demonstrate that miRNAs play essential roles in the pathogenesis of various renal diseases. Chronic kidney diseases (CKD) is characterized by renal fibrosis. Transforming growth factor beta (TGF-β) is recognized as a major mediator of renal fibrosis because it is able to stimulate the accumulation of extracellular matrix (ECM) proteins to impair normal kidney function. Recently, emerging evidence demonstrate the relationship between TGF-β signaling and miRNAs expression during renal diseases. TGF-β regulates expression of several microRNAs, such as miR-21, miR-192, miR-200, miR-433, and miR-29. MiR-21, miR-192, and miR-433 which are positively induced by TGF-β signaling play a pathological role in kidney diseases. In contrast, members in both miR-29 and miR-200 families which are inhibited by TGF-β signaling protect kidneys from renal fibrosis by suppressing the deposition of ECM and preventing epithelial-to-mesenchymal transition, respectively. Clinically, the presence of miRNAs in blood and urine has been examined to be early biomarkers for detecting renal diseases. From experimental animal studies of CKD, targeting microRNAs also provides evidence about therapeutic potential of miRNAs during renal diseases. Now, it comes to the stage to examine the exact mechanisms of miRNAs during the initiation and progression of renal diseases. Therefore, determining the function of miRNAs in renal fibrosis may facilitate the development of both early diagnosis and treatment of renal diseases.
Collapse
Affiliation(s)
- Arthur C-K Chung
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong, China ; HKBU Institute for Research and Continuing Education Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
179
|
Luo Y, Dong HY, Zhang B, Feng Z, Liu Y, Gao YQ, Dong MQ, Li ZC. miR-29a-3p Attenuates Hypoxic Pulmonary Hypertension by Inhibiting Pulmonary Adventitial Fibroblast Activation. Hypertension 2015; 65:414-20. [PMID: 25421979 DOI: 10.1161/hypertensionaha.114.04600] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ying Luo
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Hai-Ying Dong
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Bo Zhang
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Zhao Feng
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Yi Liu
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Yu-Qi Gao
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Ming-Qing Dong
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| | - Zhi-Chao Li
- From the Department of Pathology, Xijing Hospital (Y.L., M.-Q.D., Z.-C.L.), Department of Pathology and Pathophysiology (Y.L, H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), Lung Injury and Repair Center (Y.L., H.-Y.D., B.Z., Y.L., M.-Q.D., Z.-C.L.), and Department of Respiratory, Xijing Hospital (Z.F.), Fourth Military Medical University, Xi’an, People’s Republic of China; and Department of Pathophysiology and High Altitude Physiology, Third Military Medical University, Chongqing, China (Y.-Q.G.)
| |
Collapse
|
180
|
Tang YJ, Xiao J, Huang XR, Zhang Y, Yang C, Meng XM, Feng YL, Wang XJ, Hui DSC, Yu CM, Lan HY. Latent transforming growth factor-β1 protects against bleomycin-induced lung injury in mice. Am J Respir Cell Mol Biol 2015; 51:761-71. [PMID: 24885478 DOI: 10.1165/rcmb.2013-0423oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transforming growth factor (TGF)-β1 is a potent mediator known to induce lung fibrosis. However, the role of latent TGF-β1 in lung inflammation and fibrosis is unclear. To investigate the role of circulating latent TGF-β1 in bleomycin-induced lung injury, lung disease was induced in keratin-5 promoter-driven TGF-β1(wt) transgenic (Tg) mice by bleomycin. The role of latent TGF-β1 in pulmonary inflammation and fibrosis was examined at Days 7 and 28 after administration of bleomycin. Compared with littermate wild-type (WT) mice, TGF-β1(wt) Tg mice had over twofold-higher levels of latent TGF-β1 in both plasma and lung tissue, and were protected from bleomycin-induced pulmonary inflammation, such as up-regulation of IL-1β, TNF-α, and macrophage chemotactic protein-1, and infiltration of CD3(+) T cells and F4/80(+) macrophages. In addition, the severity of lung fibrosis with massive collagen matrix accumulation was markedly reduced in TGF-β1(wt) Tg mice. These protective effects were associated with higher levels of Smad7 and inactivation of both NF-κB and TGF-β/Smad3 signaling pathways, in addition to an increase in forkhead box P3 (Foxp3)-dependent regulatory T cells, but inhibition of T helper 17-mediated lung injury. In summary, mice overexpressing latent TGF-β1 are protected from bleomycin-induced lung injury. Triggering the Smad7 negative feedback mechanism to inhibit both NF-κB and TGF-β/Smad signaling pathways, and enhancing the regulatory T cell response to counter-regulate T helper 17-mediated lung injury, are potential mechanisms by which latent TGF-β1 protects against bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Yong-Jiang Tang
- 1 Department of Medicine and Therapeutics and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disorder with no effective treatment and a prognosis worse than that of lung cancer. Despite extensive research efforts, its etiology and pathogenesis still remain largely unknown. Current experimental evidence has shifted the disease paradigm from chronic inflammation towards the premise of abnormal epithelial wound repair in response to repeated epigenetic injurious stimuli in genetically predisposed individuals. Epigenetics is defined as the study of heritable changes in gene function by factors other than an individual's DNA sequence, providing valuable information regarding adaption of genes to environmental changes. Although cancer is the most studied disease with relevance to epigenetic modifications, recent data support the idea that epigenomic alterations may lead to variable disease phenotypes, including fibroproliferative lung disorders such as IPF. This review article summarizes the latest experimental and translational epigenetic studies in the research field of chronic lung disorders, mainly focusing on IPF, highlights current methodology limitations, and underlines future directions and perspectives.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, 300 Cedar St., TAC-441 South, P.O. Box 208057, New Haven, CT 06520, USA
| | | |
Collapse
|
182
|
Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 2015; 93:129-37. [PMID: 25557625 DOI: 10.1139/bcb-2014-0101] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal scarring lung disease of unknown etiology, characterized by changes in microRNA expression. Activation of transforming growth factor (TGF-β) is a key event in the development of IPF. Recent reports have also identified epigenetic modification as an important player in the pathogenesis of IPF. In this review, we summarize the main results of studies that address the role of microRNAs in IPF and highlight the synergistic actions of these microRNAs in regulating TGF-β, the primary fibrogenic mediator. We outline epigenetic regulation of microRNAs by methylation. Functional studies identify microRNAs that alter proliferative and migratory properties of fibroblasts, and induce phenotypic changes in epithelial cells consistent with epithelial-mesenchymal transition. Though these studies were performed in isolation, we identify multiple co-operative actions after assembling the results into a network. Construction of such networks will help identify disease-propelling hubs that can be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Kusum V Pandit
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
183
|
Yao HW, Li J. Epigenetic modifications in fibrotic diseases: implications for pathogenesis and pharmacological targets. J Pharmacol Exp Ther 2015; 352:2-13. [PMID: 25362107 DOI: 10.1124/jpet.114.219816] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Organ fibrosis is a complex and chronic disorder that results from a variety of acute injuries and contributes to thirty percent of naturally occurring deaths worldwide. The main feature of organ fibrosis is the excessive accumulation and deposit of extracellular matrix, thereby leading to organ dysfunction, loss of elasticity, and development of a rigid organ. Accumulating evidence shows that epigenetic remodeling, including aberrant DNA methylation and noncoding RNA expression as well as histone post-translational modifications, play important roles in the pathogenesis of fibrosis through the regulation of fibroblast activation, differentiation, and apoptosis, as well as collagen synthesis and profibrotic gene transcription. In this review, we discuss the basic regulation of DNA methylation, noncoding RNA expression, and histone post-translational modification, and their participation in the pathogenesis and development of organ fibrosis. This review also provides the latest insights into the novel biomarkers and therapeutic targets for fibrosis through modulation of epigenetic remodeling.
Collapse
Affiliation(s)
- Hong-Wei Yao
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
184
|
Papadopoulou AS, Serneels L, Achsel T, Mandemakers W, Callaerts-Vegh Z, Dooley J, Lau P, Ayoubi T, Radaelli E, Spinazzi M, Neumann M, Hébert SS, Silahtaroglu A, Liston A, D'Hooge R, Glatzel M, De Strooper B. Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice. Neurobiol Dis 2015; 73:275-88. [DOI: 10.1016/j.nbd.2014.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/05/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
|
185
|
Yu-Wai-Man C, Khaw PT. Developing novel anti-fibrotic therapeutics to modulate post-surgical wound healing in glaucoma: big potential for small molecules. EXPERT REVIEW OF OPHTHALMOLOGY 2014; 10:65-76. [PMID: 25983855 PMCID: PMC4364560 DOI: 10.1586/17469899.2015.983475] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ocular fibrosis leads to significant visual impairment and blindness in millions of people worldwide, and is one of the largest areas of unmet need in clinical ophthalmology. The antimetabolites, mitomycin C and 5-fluorouracil, are the current gold standards used primarily to prevent fibrosis after glaucoma surgery, but have potentially blinding complications like tissue damage, breakdown and infection. This review thus focuses on the development of new classes of small molecule therapeutics to prevent post-surgical fibrosis in the eye, especially in the context of glaucoma filtration surgery. We discuss recent advances and innovations in ophthalmic wound healing research, including antibodies, RNAi, gene therapy, nanoparticles, liposomes, dendrimers, proteoglycans and small molecule inhibitors. We also review the challenges involved in terms of drug delivery, duration of action and potential toxicity of new anti-fibrotic agents in the eye.
Collapse
Affiliation(s)
- Cynthia Yu-Wai-Man
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and University College London (UCL) Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peng Tee Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and University College London (UCL) Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
186
|
Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 2014; 147:91-110. [PMID: 25448041 DOI: 10.1016/j.pharmthera.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.
Collapse
Affiliation(s)
- Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Mariam Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
187
|
Johar D, Siragam V, Mahood TH, Keijzer R. New insights into lung development and diseases: the role of microRNAs. Biochem Cell Biol 2014; 93:139-48. [PMID: 25563747 DOI: 10.1139/bcb-2014-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are short endogenous noncoding RNA molecules (∼ 22 nucleotides) that can regulate gene expression at the post-transcription level. Research interest in the role of miRNAs in lung biology is emerging. MiRNAs have been implicated in a range of processes such as development, homeostasis, and inflammatory diseases in lung tissues and are capable of inducing differentiation, morphogenesis, and apoptosis. In recent years, several studies have reported that miRNAs are differentially regulated in lung development and lung diseases in response to epigenetic changes, providing new insights for their versatile role in various physiological and pathological processes in the lung. In this review, we discuss the contribution of miRNAs to lung development and diseases and possible future implications in the field of lung biology.
Collapse
Affiliation(s)
- Dina Johar
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology (adjunct), University of Manitoba and Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba R3E 3P4, Canada
| | | | | | | |
Collapse
|
188
|
Li X, Liu L, Shen Y, Wang T, Chen L, Xu D, Wen F. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts. Biochem Biophys Res Commun 2014; 454:512-7. [DOI: 10.1016/j.bbrc.2014.10.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/23/2023]
|
189
|
Booton R, Lindsay MA. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest 2014; 146:193-204. [PMID: 25010962 DOI: 10.1378/chest.13-2736] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The advent of techniques such as microarrays and high-throughput sequencing has revolutionized our ability to examine messenger RNA (mRNA) expression within the respiratory system. Importantly, these approaches have also uncovered the widespread expression of "noncoding RNAs," including microRNAs and long noncoding RNAs, which impact biologic responses through the regulation of mRNA transcription and/or translation. To date, most studies of the role of noncoding RNAs have focused on microRNAs, which regulate mRNA translation via the RNA interference pathway. These studies have shown changes in microRNA expression in cells and tissues derived from patients with asthma, pulmonary fibrosis, cystic fibrosis, COPD, and non-small cell lung cancer. Although the evidence is currently limited, we review the work that has been carried out in cell and animal models that has identified the function and mechanism of action of a small number of these microRNAs in disease etiology. In addition to microRNAs, we assess the emerging evidence that long noncoding RNAs regulate respiratory phenotype. Because these investigations into long noncoding RNAs were performed almost exclusively in non-small cell lung cancer, future work will need to extend these into other respiratory diseases and to analyze how microRNAs and long noncoding RNAs interact to regulate mRNA expression. From a clinical perspective, the targeting of noncoding RNAs as a novel therapeutic approach will require a deeper understanding of their function and mechanism of action. However, in the short term, changes in miRNA and long noncoding RNA expression are likely to be of use as biomarkers for disease stratification and/or assessment of drug action.
Collapse
Affiliation(s)
- Richard Booton
- Institute of Inflammation and Repair, The University of Manchester, Manchester, England; Manchester Academic Health Sciences Centre and North West Lung Centre, University Hospital of South Manchester, Manchester, England
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, England.
| |
Collapse
|
190
|
Abstract
Pulmonary fibrosis is a pathological condition in which lungs become scarred due to the excess extracellular matrix (ECM) deposition and structural alterations in the interstitium of lung parenchyma. Many patients with interstitial lung diseases (ILDs) caused by long-term exposure to toxic substances, chronic infections, or autoimmune responses develop fibrosis. Etiologies for many ILDs are unknown, such as idiopathic pulmonary fibrosis (IPF), a devastating, relentless form of pulmonary fibrosis with a median survival of 2-3 years. Despite several decades of research, factors that initiate and sustain the fibrotic response in lungs remain unclear and there is no effective treatment to block progression of fibrosis. Here we summarize recent findings on the antifibrotic activity of miR-29, a small noncoding regulatory RNA, in the pathogenesis of fibrosis by regulating ECM production and deposition, and epithelial-mesenchymal transition (EMT). We also describe interactions of miR-29 with multiple profibrotic and inflammatory pathways. Finally, we review the antifibrotic activity of miR-29 in animal models of fibrosis and highlight miR-29 as a promising therapeutic reagent or target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Leah Cushing
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University, College of Physicians & Surgeons, 630 West 168th Street, BB 8-810, New York, NY 10032, USA
| | | | | |
Collapse
|
191
|
Tang PMK, Lan HY. MicroRNAs in TGF-β/Smad-mediated Tissue Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
192
|
Yu JW, Duan WJ, Huang XR, Meng XM, Yu XQ, Lan HY. MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis. J Transl Med 2014; 94:978-90. [PMID: 25046436 DOI: 10.1038/labinvest.2014.91] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/21/2014] [Accepted: 06/02/2014] [Indexed: 01/03/2023] Open
Abstract
TGF-β/Smad3 signaling plays a pivotal role in the pathogenesis of peritoneal fibrosis associated with peritoneal dialysis (PD). MicroRNA-29 (miR-29) is known as a potent downstream inhibitor of TGF-β/Smad3 in renal fibrosis. In this study, we examined the therapeutic potential for miR-29b on PD-related peritoneal fibrosis in a mouse model of PD induced by daily infusion of 4.25% dextrose-containing PD fluid (PDF). MiR-29b-expressing plasmid was delivered into the peritoneum via an ultrasound-microbubble-mediated system before and at day 14 after PDF. We found that mice on PD developed peritoneal fibrosis with impaired peritoneal function, which was associated with a loss of miR-29b. In contrast, overexpression of miR-29b before the PDF infusion showed a protective effect on peritoneal fibrosis including EMT and prevented peritoneal dysfunction. Moreover, delayed miR-29b treatment until peritoneal fibrosis was established at day 14 also halted the progression of peritoneal fibrosis at day 28. Further studies identified that blockade of the Sp1-TGF-β/Smad3 pathway may be a mechanism by which miR-29b inhibited peritoneal fibrosis. In conclusion, treatment with miR-29b may represent a novel and effective therapy for PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Jian-Wen Yu
- 1] Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China [2] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen-Juan Duan
- 1] Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China [2] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- 1] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiao-Ming Meng
- Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Xue-Qing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Yao Lan
- 1] Li Ka Shing Institute of Health Sciences and Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China [2] Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
193
|
Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells. Toxicology 2014; 324:116-22. [PMID: 25091173 DOI: 10.1016/j.tox.2014.07.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/16/2014] [Accepted: 07/31/2014] [Indexed: 11/23/2022]
Abstract
Ochratoxin A (OTA) is an ubiquitous mycotoxin suspected to cause fibrotic kidney diseases. The involvement of mircoRNAs in these processes is unknown. Here, we investigated the role of the anti-fibrotic miR-29b in OTA-induced alterations of cellular collagen homeostasis. OTA exposure of human embryonic kidney cells (HEK293) cells led to an increase of collagen I, III and IV protein amounts without changes in collagen mRNA expression levels, indicating post-transcriptionally mediated mechanisms potentially involving microRNAs and 3'UTRs of collagen mRNAs. This was confirmed by enhanced luciferase activity of a collagen1A1-3'UTR reporter plasmid after OTA exposure. OTA also enhanced the luciferase activity of a reporter plasmid containing the seed region of miR-29b showing that OTA diminishes miR-29b action. Additionally, OTA induced an altered intracellular distribution of miR-29b leading to decreased cytoplasmic abundance of miR-29b. Abundantly added miR-29b (miR-29b clamp) completely prevented OTA-induced collagen formation. In summary, we show that OTA has the potential to initiate or support the development of fibrotic kidney diseases by involving post-transcriptional regulation mechanisms comprising miR-29b. OTA reduces the impact of miR-29b and thus enhances collagen protein expression. These findings allow a new perspective on how the exposure to nanomolar OTA concentrations can lead to fibrotic tissue alterations.
Collapse
|
194
|
Emerging role of epigenetics in systemic sclerosis pathogenesis. Genes Immun 2014; 15:433-9. [DOI: 10.1038/gene.2014.44] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/24/2014] [Accepted: 05/28/2014] [Indexed: 01/27/2023]
|
195
|
Abstract
MicroRNAs (miRNAs) are small molecules negatively regulating gene expression by diminishing their target mRNAs. Emerging studies have shown that miRNAs play diverse roles in diabetes mellitus. Type 1 diabetes (T1D) and T2D are two major types of diabetes. T1D is characterized by a reduction in insulin release from the pancreatic β-cells, while T2D is caused by islet β-cell dysfunction in response to insulin resistance. This review describes the miRNAs that control insulin release and production by regulating cellular membrane electrical excitability (ATP:ADP ratio), insulin granule exocytosis, insulin synthesis in β-cells, and β-cell fate and islet mass formation. This review also examines miRNAs involved the insulin resistance of liver, fat, and skeletal muscle, which change insulin sensitivity pathways (insulin receptors, glucose transporter type 4, and protein kinase B pathways). This review discusses the potential application of miRNAs in diabetes, including the use of gene therapy and therapeutic compounds to recover miRNA function in diabetes, as well as the role of miRNAs as potential biomarkers for T1D and T2D.
Collapse
Affiliation(s)
- Haiyong Chen
- Li Ka Sing Faculty of MedicineSchool of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong KongDepartment of Medicine and TherapeuticsFaculty of Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong KongCentre for Biosystems and Genome Network MedicineIoannina University, Ioannina, GreeceDepartment of Clinical OncologyQueen Elizabeth Hospital, Kowloon, Hong Kong
| | - Hui-Yao Lan
- Li Ka Sing Faculty of MedicineSchool of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong KongDepartment of Medicine and TherapeuticsFaculty of Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong KongCentre for Biosystems and Genome Network MedicineIoannina University, Ioannina, GreeceDepartment of Clinical OncologyQueen Elizabeth Hospital, Kowloon, Hong Kong
| | - Dimitrios H Roukos
- Li Ka Sing Faculty of MedicineSchool of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong KongDepartment of Medicine and TherapeuticsFaculty of Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong KongCentre for Biosystems and Genome Network MedicineIoannina University, Ioannina, GreeceDepartment of Clinical OncologyQueen Elizabeth Hospital, Kowloon, Hong Kong
| | - William C Cho
- Li Ka Sing Faculty of MedicineSchool of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong KongDepartment of Medicine and TherapeuticsFaculty of Medicine, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Shatin, Hong KongCentre for Biosystems and Genome Network MedicineIoannina University, Ioannina, GreeceDepartment of Clinical OncologyQueen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
196
|
In Crohn's disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin Sci (Lond) 2014; 127:341-50. [PMID: 24641356 DOI: 10.1042/cs20140048] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal fibrosis with stricture formation is a complication of CD (Crohn's disease) that may mandate surgical resection. Accurate biomarkers that reflect the relative contribution of fibrosis to an individual stricture are an unmet need in managing patients with CD. The miRNA-29 (miR-29) family has been implicated in cardiac, hepatic and pulmonary fibrosis. In the present study, we investigated the expression of miR-29a, miR-29b and miR-29c in mucosa overlying a stricture in CD patients (SCD) paired with mucosa from non-strictured areas (NSCD). There was significant down-regulation of the miR-29 family in mucosa overlying SCD compared with mucosa overlying NSCD. miR-29b showed the largest fold-decrease and was selected for functional analysis. Overexpression of miR-29b in CD fibroblasts led to a down-regulation of collagen I and III transcripts and collagen III protein, but did not alter MMP (matrix metalloproteinase)-3, MMP-12 and TIMP (tissue inhibitor of metalloproteinase)-1 production. TGF (transforming growth factor)-β1 up-regulated collagen I and III transcripts and collagen III protein as a consequence of the down-regulation of miR-29b, and TGF-β1-induced collagen expression was reversed by exogenous overexpression of miR-29b. Furthermore, serum levels of miR-29 were lower in patients with stricturing disease compared with those without. These findings implicate the miR-29 family in the pathogenesis of intestinal fibrosis in CD and provide impetus for the further evaluation of the miR-29 family as biomarkers.
Collapse
|
197
|
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA which exert post-transcriptional gene regulation activity by targeting messenger RNAs. miRNAs have been found to be involved in various fundamental biological processes and deregulation of miRNAs is known to result in pathological conditions. In this review, we provide an overview of recent discoveries on the role played by this class of molecules in lung development and in pulmonary diseases, such as asthma, cystic fibrosis, chronic obstructive pulmonary disease, and pulmonary artery hypertension. Considering the relevant role of these miRNAs under physiological and pathological conditions, they represent new clinical targets as well as diagnostic and prognostic tools. Therefore, this review pays special attention to recent advances and possible future directions for the use of miRNAs for clinical applications.
Collapse
Affiliation(s)
- Roberto Sessa
- Cardiovascular research institute, University of California San Francisco, CA 94158, USA
| | | |
Collapse
|
198
|
Berschneider B, Ellwanger DC, Baarsma HA, Thiel C, Shimbori C, White ES, Kolb M, Neth P, Königshoff M. miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis. Int J Biochem Cell Biol 2014; 53:432-41. [PMID: 24953558 DOI: 10.1016/j.biocel.2014.06.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/18/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of idiopathic interstitial pneumonia. MicroRNAs (miRNAs), short, single-stranded RNAs that regulate protein expression in a post-transcriptional manner, have recently been demonstrated to contribute to IPF pathogenesis. We have previously identified WNT1-inducible signaling pathway protein 1 (WISP1) as a highly expressed pro-fibrotic mediator in IPF, but the underlying mechanisms resulting in increased WISP1 expression, remain elusive. Here, we investigated whether WISP1 is a target of miRNA regulation. We applied a novel supervised machine learning approach, which predicted miR-30a/d and miR-92a target sites in regions of the human WISP1 3'UTR preferentially bound by the miRNA ribonucleoprotein complex. Both miRNAs were decreased in IPF samples, whereas WISP1 protein was increased. We demonstrated further that transforming growth factor (TGF)-β1-induced WISP1 expression in primary lung fibroblasts in vitro and lung homogenates in vivo. Notably, miR-30a and miR-92a reversed TGF-β1-induced WISP1 mRNA expression in lung fibroblasts. Moreover, miR-92a inhibition increased WISP1 protein expression in lung fibroblasts. An inverse relationship for WISP1 and miR-92a was found in a TGF-β1 dependent lung fibrosis model in vivo. Finally, we found significantly increased WISP1 expression in primary IPF fibroblasts, which negatively correlated with miR-92a level ex vivo. Altogether, our findings indicate a regulatory role of miR-92a for WISP1 expression in pulmonary fibrosis.
Collapse
Affiliation(s)
- Barbara Berschneider
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Daniel C Ellwanger
- Department of Genome-oriented Bioinformatics, Technische Universität München, Center of Life and Food Science, Freising Weihenstephan, Germany
| | - Hoeke A Baarsma
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Cedric Thiel
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany
| | - Chiko Shimbori
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, ON, Canada
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Kolb
- Department of Medicine, McMaster University, Firestone Institute for Respiratory Health, Hamilton, ON, Canada
| | - Peter Neth
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Helmholtz Zentrum Munchen, University Hospital, Ludwig-Maximilians University, Munich, Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
199
|
Smad7 inhibits AngII-mediated hypertensive nephropathy in a mouse model of hypertension. Clin Sci (Lond) 2014; 127:195-208. [PMID: 24511990 DOI: 10.1042/cs20130706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The TGFβ (transforming growth factor β)/SMAD and NF-κB (nuclear factor κB) signalling pathways play a key role in hypertensive nephropathy. The present study examined whether targeting these pathways by SMAD7, a downstream inhibitor of both pathways, blocks AngII (angiotensin II)-induced hypertensive kidney disease in mice. A doxycycline-inducible SMAD7-expressing plasmid was delivered into the kidney by a non-invasive ultrasound-microbubble technique before and after AngII infusion. Results showed that pre-treatment with SMAD7 prevented AngII-induced progressive renal injury by inhibiting an increase in proteinuria and serum creatinine while improving the glomerular filtration rate. Similarly, treatment with SMAD7 in the established hypertensive nephropathy at day 14 after AngII infusion halted the progressive renal injury. These preventive and therapeutic effects of SMAD7 on hypertensive kidney injury were associated with inhibition of AngII-induced up-regulation of SMURF2 (SMAD-specific E3 ubiquitin protein ligase 2) and Sp1 (specificity protein 1), blockade of TGFβ/Smad3-mediated renal fibrosis and suppression of NF-κB-driven renal inflammation. Moreover, overexpression of SMAD7 also prevented AngII-induced loss of renal miR-29b, an miRNA with an inhibitory role in both TGFβ/Smad3 and NF-κB pathways. In conclusion, SMAD7 may be a therapeutic agent for AngII-mediated hypertensive nephropathy. Inhibition of the Sp1/SMAD3/NF-κB/miR-29b regulatory network may be a mechanism by which SMAD7 inhibits hypertensive nephropathy.
Collapse
|
200
|
Novel insights into miRNA in lung and heart inflammatory diseases. Mediators Inflamm 2014; 2014:259131. [PMID: 24991086 PMCID: PMC4058468 DOI: 10.1155/2014/259131] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/03/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding regulatory sequences that govern posttranscriptional inhibition of genes through binding mainly at regulatory regions. The regulatory mechanism of miRNAs are influenced by complex crosstalk among single nucleotide polymorphisms (SNPs) within miRNA seed region and epigenetic modifications. Circulating miRNAs exhibit potential characteristics as stable biomarker. Functionally, miRNAs are involved in basic regulatory mechanisms of cells including inflammation. Thus, miRNA dysregulation, resulting in aberrant expression of a gene, is suggested to play an important role in disease susceptibility. This review focuses on the role of miRNA as diagnostic marker in pathogenesis of lung inflammatory diseases and in cardiac remodelling events during inflammation. From recent reports, In this context, the information about the models in which miRNAs expression were investigated including types of biological samples, as well as on the methods for miRNA validation and prediction/definition of their gene targets are emphasized in the review. Besides disease pathogenesis, promising role of miRNAs in early disease diagnosis and prognostication is also discussed. However, some miRNAs are also indicated with protective role. Thus, identifications and usage of such potential miRNAs as well as disruption of disease susceptible miRNAs using antagonists, antagomirs, are imperative and may provide a novel therapeutic approach towards combating the disease progression.
Collapse
|