151
|
Chowdhury D, Choi YE, Brault ME. Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 2013; 14:181-9. [PMID: 23385724 DOI: 10.1038/nrm3523] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the past decade, evolutionarily conserved microRNAs (miRNAs) have been characterized as regulators of almost every cellular process and signalling pathway. There is now emerging evidence that this new class of regulators also impinges on the DNA damage response (DDR). Both miRNAs and other small non-coding RNAs (ncRNAs) are induced at DNA breaks and mediate the repair process. These intriguing observations raise the possibility that crosstalk between ncRNAs and the DDR might provide a means of efficient and accurate DNA repair and facilitate the maintenance of genomic stability.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
152
|
Both OsRecQ1 and OsRDR1 are required for the production of small RNA in response to DNA-damage in rice. PLoS One 2013; 8:e55252. [PMID: 23383126 PMCID: PMC3559376 DOI: 10.1371/journal.pone.0055252] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/27/2012] [Indexed: 12/04/2022] Open
Abstract
Small RNA-mediated gene silencing pathways play important roles in the regulation of development, genome stability and various stress responses in many eukaryotes. Recently, a new type of small interfering RNAs (qiRNAs) approximately 20–21 nucleotides long in Neurospora crassa have been shown to mediate gene silencing in the DNA damage response (DDR) pathway. However, the mechanism for RNA silencing in the DDR pathway is largely unknown in plants. Here, we report that a class of small RNAs (qiRNAs) derived from rDNA was markedly induced after treatment by DNA-damaging agents [ethyl methanesulphonate (EMS and UV-C)], and that aberrant RNAs (aRNAs) as precursors were also highly induced after the DNA damage treatment in rice. However, these RNAs were completely abolished in OsRecQ1 (RecQ DNA helicase homologue) and OsRDR1 (RNA-dependent RNA polymerase homologue) mutant lines where either gene was disrupted by the insertion of rice retrotransposon Tos17 after the same treatment. DNA damage resulted in a more significant increase in cell death and a more severe inhibition of root growth in both mutant lines than in the WT. Together, these results strongly suggest that both OsRecQ1 and OsRDR1 play a pivotal role in the aRNA and qiRNA biogenesis required for the DDR and repair pathway in rice, and it may be a novel mechanism of regulation to the DDR through the production of qiRNA in plants.
Collapse
|
153
|
Zhang Z, Chang SS, Zhang Z, Xue Z, Zhang H, Li S, Liu Y. Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev 2013; 27:145-50. [PMID: 23322299 DOI: 10.1101/gad.209494.112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Quelling is an RNAi-related phenomenon that post-transcriptionally silences repetitive DNA and transposons in Neurospora. We previously identified a type of DNA damage-induced small RNA called qiRNA that originates from ribosomal DNA. To understand how small RNAs are generated from repetitive DNA, we carried out a genetic screen to identify genes required for qiRNA biogenesis. Factors directly involved in homologous recombination (HR) and chromatin remodeling factors required for HR are essential for qiRNA production. HR is also required for quelling, and quelling is also the result of DNA damage, indicating that quelling and qiRNA production share a common mechanism. Together, our results suggest that DNA damage-triggered HR-based recombination allows the RNAi pathway to recognize repetitive DNA to produce small RNA.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Jiang N, Yang Y, Janbon G, Pan J, Zhu X. Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 2012; 7:e52734. [PMID: 23300755 PMCID: PMC3530498 DOI: 10.1371/journal.pone.0052734] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/21/2012] [Indexed: 11/30/2022] Open
Abstract
microRNAs (miRNAs), endogenous posttranscriptional repressors by base-pairing of their cognate mRNAs in plants and animals, have mostly been thought lost in the kingdom of fungi. Here, we report the identification of miRNAs from the fungus Cryptococcus neoformans. With bioinformatics and Northern blotting approaches, we found that these miRNAs and their hairpin precursors were present in this fungus. The size of miR1 and miR2 is 22 nt and 18 nt, respectively. The precursors are about ∼70 nt in length that is close to mammalian pre-miRNAs. Characteristic features of miRNAs are also found in miR1/2. We demonstrated that the identified miRNAs, miR1 and miR2, caused transgene silencing via the canonical RNAi pathway. Bioinformantics analysis helps to reveal a number of identical sequences of the miR1/2 in transposable elements (TEs) and pseudogenes, prompting us to think that fungal miRNAs might be involved in the regulation of the activity of transposons and the expression of pseudogenes. This study identified functional miRNAs in C. neoformans, and sheds light on the diversity and evolutionary origin of eukaryotic miRNAs.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yaping Yang
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Guilhem Janbon
- Department of Molecular Mycology, Institute Pasteur, Paris, France
| | - Jiao Pan
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xudong Zhu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail:
| |
Collapse
|
155
|
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet 2012; 8:e1003093. [PMID: 23284289 PMCID: PMC3527224 DOI: 10.1371/journal.pgen.1003093] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022] Open
Abstract
Genome duplication, which results in polyploidy, is disruptive to fundamental biological processes. Genome duplications occur spontaneously in a range of taxa and problems such as sterility, aneuploidy, and gene expression aberrations are common in newly formed polyploids. In mammals, genome duplication is associated with cancer and spontaneous abortion of embryos. Nevertheless, stable polyploid species occur in both plants and animals. Understanding how natural selection enabled these species to overcome early challenges can provide important insights into the mechanisms by which core cellular functions can adapt to perturbations of the genomic environment. Arabidopsis arenosa includes stable tetraploid populations and is related to well-characterized diploids A. lyrata and A. thaliana. It thus provides a rare opportunity to leverage genomic tools to investigate the genetic basis of polyploid stabilization. We sequenced the genomes of twelve A. arenosa individuals and found signatures suggestive of recent and ongoing selective sweeps throughout the genome. Many of these are at genes implicated in genome maintenance functions, including chromosome cohesion and segregation, DNA repair, homologous recombination, transcriptional regulation, and chromatin structure. Numerous encoded proteins are predicted to interact with one another. For a critical meiosis gene, ASYNAPSIS1, we identified a non-synonymous mutation that is highly differentiated by cytotype, but present as a rare variant in diploid A. arenosa, indicating selection may have acted on standing variation already present in the diploid. Several genes we identified that are implicated in sister chromatid cohesion and segregation are homologous to genes identified in a yeast mutant screen as necessary for survival of polyploid cells, and also implicated in genome instability in human diseases including cancer. This points to commonalities across kingdoms and supports the hypothesis that selection has acted on genes controlling genome integrity in A. arenosa as an adaptive response to genome doubling.
Collapse
Affiliation(s)
- Jesse D. Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian J. Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Elisabeth Svedin
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Katherine S. Xue
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Brian P. Dilkes
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- Molecular Evolutionary Genetics, Interdisciplinary Life Science Program, Purdue University, West Lafayette, Indiana, United States of America
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
156
|
Liu Y, Lu X. Non-coding RNAs in DNA damage response. Am J Cancer Res 2012; 2:658-675. [PMID: 23226613 PMCID: PMC3512188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023] Open
Abstract
Genome-wide studies have revealed that human and other mammalian genomes are pervasively transcribed and produce thousands of regulatory non-protein-coding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs and long non-coding RNAs (lncRNAs). Emerging evidences suggest that these ncRNAs also play a pivotal role in genome integrity and stability via the regulation of DNA damage response (DDR). In this review, we discuss the recent finding on the interplay of ncRNAs with the canonical DDR signaling pathway, with a particular emphasis on miRNAs and lncRNAs. While the expression of ncRNAs is regulated in the DDR, the DDR is also subjected to regulation by those DNA damage-responsive ncRNAs. In addition, the roles of those Dicer- and Drosha-dependent small RNAs produced in the vicinity of double-strand breaks sites are also described.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center Houston, Texas 77030, USA
| | | |
Collapse
|
157
|
Li A, Wei G, Wang Y, Zhou Y, Zhang XE, Bi L, Chen R. Identification of intermediate-size non-coding RNAs involved in the UV-induced DNA damage response in C. elegans. PLoS One 2012; 7:e48066. [PMID: 23144846 PMCID: PMC3492359 DOI: 10.1371/journal.pone.0048066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/19/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND A network of DNA damage response (DDR) mechanisms functions coordinately to maintain genome integrity and prevent disease. The Nucleotide Excision Repair (NER) pathway is known to function in the response to UV-induced DNA damage. Although numbers of coding genes and miRNAs have been identified and reported to participate in UV-induced DNA damage response (UV-DDR), the precise role of non-coding RNAs (ncRNAs) in UV-DDR remains largely unknown. METHODOLOGY/PRINCIPAL FINDINGS We used high-throughput RNA-sequencing (RNA-Seq) to discover intermediate-size (70-500 nt) ncRNAs (is-ncRNAs) in C. elegans, using the strains of L4 larvae of wild-type (N2), UV-irradiated (N2/UV100) and NER-deficient mutant (xpa-1), and 450 novel non-coding transcripts were initially identified. A customized microarray assay was then applied to examine the expression profiles of both novel transcripts and known is-ncRNAs, and 57 UV-DDR-related is-ncRNA candidates showed expression variations at different levels between UV irradiated strains and non- irradiated strains. The top ranked is-ncRNA candidates with expression differences were further validated by qRT-PCR analysis, of them, 8 novel is-ncRNAs were significantly up-regulated after UV irradiation. Knockdown of two novel is-ncRNAs, ncRNA317 and ncRNA415, by RNA interference, resulted in higher UV sensitivity and significantly decreased expression of NER-related genes in C. elegans. CONCLUSIONS/SIGNIFICANCE The discovery of above two novel is-ncRNAs in this study indicated the functional roles of is-ncRNAs in the regulation of UV-DDR network, and aided our understanding of the significance of ncRNA involvement in the UV-induced DNA damage response.
Collapse
Affiliation(s)
- Aqian Li
- Laboratory of Non-coding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
158
|
Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J. Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 2012; 8:e1002885. [PMID: 22916030 PMCID: PMC3420925 DOI: 10.1371/journal.pgen.1002885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/22/2012] [Indexed: 11/23/2022] Open
Abstract
Introduction of DNA sequences into the genome often results in homology-dependent gene silencing in organisms as diverse as plants, fungi, flies, nematodes, and mammals. We previously showed in Cryptococcus neoformans that a repeat transgene array can induce gene silencing at a high frequency during mating (∼50%), but at a much lower frequency during vegetative growth (∼0.2%). Here we report a robust asexual co-suppression phenomenon triggered by the introduction of a cpa1::ADE2 transgene. Multiple copies of the cpa1::ADE2 transgene were ectopically integrated into the genome, leading to silencing of the endogenous CPA1 and CPA2 genes encoding the cyclosporine A target protein cyclophilin A. Given that CPA1-derived antisense siRNAs were detected in the silenced isolates, and that RNAi components (Rdp1, Ago1, and Dcr2) are required for silencing, we hypothesize that an RNAi pathway is involved, in which siRNAs function as trans factors to silence both the CPA1 and the CPA2 genes. The silencing efficiency of the CPA1 and CPA2 genes is correlated with the transgene copy number and reached ∼90% in the presence of >25 copies of the transgene. We term this transgene silencing phenomenon asexual co-suppression to distinguish it from the related sex-induced silencing (SIS) process. We further show that replication protein A (RPA), a single-stranded DNA binding complex, is required for transgene silencing, suggesting that RPA might play a similar role in aberrant RNA production as observed for quelling in Neurospora crassa. Interestingly, we also observed that silencing of the ADE2 gene occurred at a much lower frequency than the CPA1/2 genes even though it is present in the same transgene array, suggesting that factors in addition to copy number influence silencing. Taken together, our results illustrate that a transgene induced co-suppression process operates during C. neoformans vegetative growth that shares mechanistic features with quelling. The development of gene transfer methods allows the production of transgenic lines in myriad eukaryotes. Frequently, transgenic DNA is integrated into the genome and transmitted as a heritable Mendelian trait. However, the introduced transgenes are in some cases not expressed (silenced). In addition, transgenes can also provoke silencing of endogenous genes with which they share sequence homology. This phenomenon was first observed in plants and named co-suppression. In fungi the best-documented co-suppression phenomenon occurs in vegetative tissue of the filamentous fungus Neurospora crassa and is termed quelling. Here we report a robust asexual co-suppression pathway that operates in the pathogenic fungus Cryptococcus neoformans and shares molecular components with quelling. Compared with the sex induced silencing (SIS) phenomenon previously discovered in C. neoformans, which efficiently silences genes during mating (∼50%) but not during vegetative growth (∼0.2%), asexual co-suppression operates efficiently during vegetative growth to suppress transgene expression and may also silence transposons and other repetitive sequences.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ping Wang
- The Research Institute for Children, Children's Hospital, New Orleans, Louisiana, United States of America
- Department of Pediatrics and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sabrina Darwiche
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexander Idnurm
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri–Kansas City, Kansas City, Missouri, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
159
|
Li Z, Ender C, Meister G, Moore PS, Chang Y, John B. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 2012; 40:6787-99. [PMID: 22492706 PMCID: PMC3413118 DOI: 10.1093/nar/gks307] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/22/2012] [Indexed: 01/09/2023] Open
Abstract
Deep sequencing studies frequently identify small RNA fragments of abundant RNAs. These fragments are thought to represent degradation products of their precursors. Using sequencing, computational analysis, and sensitive northern blot assays, we show that constitutively expressed non-coding RNAs such as tRNAs, snoRNAs, rRNAs and snRNAs preferentially produce small 5' and 3' end fragments. Similar to that of microRNA processing, these terminal fragments are generated in an asymmetric manner that predominantly favors either the 5' or 3' end. Terminal-specific and asymmetric processing of these small RNAs occurs in both mouse and human cells. In addition to the known processing of some 3' terminal tRNA-derived fragments (tRFs) by the RNase III endonuclease Dicer, we show that several RNase family members can produce tRFs, including Angiogenin that cleaves the TψC loop to generate 3' tRFs. The 3' terminal tRFs but not the 5' tRFs are highly complementary to human endogenous retroviral sequences in the genome. Despite their independence from Dicer processing, these tRFs associate with Ago2 and are capable of down regulating target genes by transcript cleavage in vitro. We suggest that endogenous 3' tRFs have a role in regulating the unwarranted expression of endogenous viruses through the RNA interference pathway.
Collapse
MESH Headings
- Animals
- Argonaute Proteins/metabolism
- Endogenous Retroviruses/genetics
- Humans
- Mice
- Proteins/physiology
- RNA Cleavage
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA-Binding Proteins
- Ribonuclease III/physiology
- Ribonuclease, Pancreatic/metabolism
- Ribonucleases/metabolism
Collapse
Affiliation(s)
- Zhihua Li
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, Cancer Virology Program, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA and Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christine Ender
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, Cancer Virology Program, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA and Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gunter Meister
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, Cancer Virology Program, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA and Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Patrick S. Moore
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, Cancer Virology Program, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA and Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Yuan Chang
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, Cancer Virology Program, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA and Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bino John
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, Cancer Virology Program, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213, USA and Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
160
|
Michalik KM, Böttcher R, Förstemann K. A small RNA response at DNA ends in Drosophila. Nucleic Acids Res 2012; 40:9596-603. [PMID: 22848104 PMCID: PMC3479179 DOI: 10.1093/nar/gks711] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small RNAs have been implicated in numerous cellular processes, including effects on chromatin structure and the repression of transposons. We describe the generation of a small RNA response at DNA ends in Drosophila that is analogous to the recently reported double-strand break (DSB)-induced RNAs or Dicer- and Drosha-dependent small RNAs in Arabidopsis and vertebrates. Active transcription in the vicinity of the break amplifies this small RNA response, demonstrating that the normal messenger RNA contributes to the endogenous small interfering RNAs precursor. The double-stranded RNA precursor forms with an antisense transcript that initiates at the DNA break. Breaks are thus sites of transcription initiation, a novel aspect of the cellular DSB response. This response is specific to a double-strand break since nicked DNA structures do not trigger small RNA production. The small RNAs are generated independently of the exact end structure (blunt, 3'- or 5'-overhang), can repress homologous sequences in trans and may therefore--in addition to putative roles in repair--exert a quality control function by clearing potentially truncated messages from genes in the vicinity of the break.
Collapse
Affiliation(s)
- Katharina M Michalik
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, München, Germany
| | | | | |
Collapse
|
161
|
Li L, Gu W, Liang C, Liu Q, Mello CC, Liu Y. The translin-TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nat Struct Mol Biol 2012; 19:824-30. [PMID: 22773104 PMCID: PMC3414638 DOI: 10.1038/nsmb.2337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 05/30/2012] [Indexed: 01/02/2023]
Abstract
The conserved Translin-TRAX complexes, also known as C3PO, have been implicated in many biological processes, but how they function remains unclear. Recently, C3PO was shown to be an endoribonuclease that promotes RNA interference in animal cells. Here we show that C3PO does not play a significant role in RNAi in the filamentous fungus Neurospora crassa. Instead, the Neurospora C3PO functions as a ribonuclease that removes the 5′ pre-tRNA fragments after the processing of pre-tRNAs by RNase P. In addition, the translin and trax mutants have elevated levels of tRNA and protein translation and are more resistant to a cell-death inducing agent. Finally, we showed that C3PO is also involved in tRNA processing in mouse embryonic fibroblast cells. Together, this study identified the endogenous RNA substrates of C3PO and provides a potential explanation for its roles in seemingly diverse biological processes.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | |
Collapse
|
162
|
Abstract
RNA interference (RNAi) is a conserved eukaryotic gene regulatory mechanism that uses small noncoding RNAs to mediate posttranscriptional/transcriptional gene silencing. The fission yeast Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa have served as important model systems for RNAi research. Studies on these two organisms and other fungi have contributed significantly to our understanding of the mechanisms and functions of RNAi in eukaryotes. In addition, surprisingly diverse RNAi-mediated processes and small RNA biogenesis pathways have been discovered in fungi. In this review, we give an overview of different fungal RNAi pathways with a focus on their mechanisms and functions.
Collapse
Affiliation(s)
- Shwu-Shin Chang
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | |
Collapse
|
163
|
Wei KF, Wu LJ, Chen J, Chen YF, Xie DX. Structural evolution and functional diversification analyses of argonaute protein. J Cell Biochem 2012; 113:2576-85. [DOI: 10.1002/jcb.24133] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
164
|
Nunes CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. MOLECULAR PLANT PATHOLOGY 2012; 13:519-29. [PMID: 22111693 PMCID: PMC6638818 DOI: 10.1111/j.1364-3703.2011.00766.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Department of Plant Pathology, Fungal Genomics Laboratory, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
165
|
Small non-coding RNAs mount a silent revolution in gene expression. Curr Opin Cell Biol 2012; 24:333-40. [PMID: 22464106 DOI: 10.1016/j.ceb.2012.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/07/2012] [Accepted: 03/08/2012] [Indexed: 11/22/2022]
Abstract
During the past decade, it has become evident that small non-coding RNAs (ncRNAs) participate in widespread and essential regulatory mechanisms in most eukaryotic cells. Novel classes of small RNAs, their biogenesis pathways and cellular effects are continuously being described, and new properties of already established ncRNAs are still being discovered. As the list of small RNA molecules and their roles becomes more and more extensive, one can get lost in the midst of new information. In this review, we attempt to bring order to the small ncRNA transcriptome by covering some of the major milestones of recent years. We go through many of the new properties that have been attributed to already familiar RNA molecules, and introduce some of the more recent novel classes of tiny ncRNAs.
Collapse
|
166
|
Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y. A role for small RNAs in DNA double-strand break repair. Cell 2012; 149:101-12. [PMID: 22445173 DOI: 10.1016/j.cell.2012.03.002] [Citation(s) in RCA: 429] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/15/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells. We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, diRNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. Knock down of Dicer or Ago2 in human cells reduces DSB repair. Our findings reveal a conserved function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules directing chromatin modifications or the recruitment of protein complexes to DSB sites to facilitate repair.
Collapse
Affiliation(s)
- Wei Wei
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Park G, Borkovich KA. Small RNA isolation and library construction for expression profiling of small RNAs from Neurospora and Fusarium using illumina high-throughput deep sequencing. Methods Mol Biol 2012; 883:155-64. [PMID: 22589132 DOI: 10.1007/978-1-61779-839-9_12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Due to crucial roles in gene regulation, noncoding small RNAs (smRNAs) of 20-30 nucleotides (nt) have been intensively studied in mammals and plants, and are known to be implicated in significant diseases and metabolic disorders. Elucidation of biogenesis mechanisms and functional characterization of smRNAs are often achieved using tools, such as separation of small-sized RNA and high-throughput sequencing. Although RNA interference pathways such as quelling and meiotic silencing have been well described in Neurospora crassa, knowledge of smRNAs in filamentous fungi is still limited compared to other eukaryotes. As a prerequisite for study, isolation and sequence analysis of smRNAs are necessary. We developed a protocol for isolation and library construction of smRNAs of 20-30 nt for Solexa sequencing in two -filamentous fungi, N. crassa and Fusarium oxysporum f.sp. lycopersici. Using 200-300 μg total RNA, smRNA was isolated by size fractionation, ligated with adapters, and amplified by RT-PCR for Solexa sequencing. Sequence analysis of several cDNA clones showed that the cloned smRNAs were not tRNAs and rRNAs and were fungal genome specific.
Collapse
Affiliation(s)
- Gyungsoon Park
- Plasma Bioscience Research Institute, Kwangwoon University, Wolgaedong, Nowongu, Seoul, Republic of Korea
| | | |
Collapse
|
168
|
Nunes CC, Sailsbery JK, Dean RA. Characterization and application of small RNAs and RNA silencing mechanisms in fungi. FUNGAL BIOL REV 2011. [DOI: 10.1016/j.fbr.2011.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
169
|
Okamura K. Diversity of animal small RNA pathways and their biological utility. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:351-68. [PMID: 22086843 DOI: 10.1002/wrna.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Higher eukaryotes employ extensive post-transcriptional gene regulation to accomplish fine control of gene expression. The microRNA (miRNA) family plays important roles in the post-transcriptional gene regulation of broad networks of target mRNA expression. Most miRNAs are generated by a conserved mechanism involving two RNase III enzymes Drosha and Dicer. However, work from the past few years has uncovered diverse noncanonical miRNA pathways, which exploit a variety of other RNA processing enzymes. In addition, the discovery of another abundant small RNA family, endogenous short interfering RNAs (endo-siRNAs), has also broadened the catalogs of short regulatory RNAs. This review highlights recent studies that revealed novel small RNA biogenesis pathways, and discusses their relevance to gene regulatory networks.
Collapse
Affiliation(s)
- Katsutomo Okamura
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY, USA.
| |
Collapse
|
170
|
Small RNAs derived from longer non-coding RNAs. Biochimie 2011; 93:1905-15. [PMID: 21843590 DOI: 10.1016/j.biochi.2011.07.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
|
171
|
Small RNA transcriptome investigation based on next-generation sequencing technology. J Genet Genomics 2011; 38:505-13. [DOI: 10.1016/j.jgg.2011.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/28/2022]
|
172
|
Abstract
A brief historical introduction describes early attempts to silence specific genes using the antisense oligonucleotides that flourished in the 1980s. Early aspirations for therapeutic applications were almost extinguished by the unexpected complexity of oligonucleotide pharmacology. Once the biochemistry and molecular biology behind some of the pharmacology was worked out, new approaches became apparent for using oligonucleotides to treat disease. The biochemistry of small nucleic acids is outlined in Section 2. Various approaches employing oligonucleotides to control cellular functions are reviewed in Section 3. These include antisense oligonucleotides and siRNA that bind to RNA, antigene oligonucleotides that bind to DNA, and aptamers, decoys, and CpG oligonucleotides that bind to proteins.
Collapse
MESH Headings
- Aptamers, Nucleotide/chemistry
- Aptamers, Nucleotide/pharmacology
- Aptamers, Nucleotide/therapeutic use
- Communicable Diseases/drug therapy
- Communicable Diseases/pathology
- CpG Islands
- DNA/chemistry
- DNA/metabolism
- DNA, Catalytic/chemistry
- DNA, Catalytic/pharmacology
- DNA, Catalytic/therapeutic use
- Diabetes Mellitus/drug therapy
- Diabetes Mellitus/pathology
- Humans
- MicroRNAs/chemistry
- MicroRNAs/pharmacology
- MicroRNAs/therapeutic use
- Molecular Targeted Therapy/methods
- Neoplasms/drug therapy
- Neoplasms/pathology
- Neurodegenerative Diseases/drug therapy
- Neurodegenerative Diseases/pathology
- Nucleic Acid Hybridization
- Oligonucleotides/chemistry
- Oligonucleotides/pharmacology
- Oligonucleotides/therapeutic use
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/therapeutic use
- RNA, Catalytic/chemistry
- RNA, Catalytic/pharmacology
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- John Goodchild
- Department of Chemistry, Worcester State University, Worcester, MA 01602-2597, USA.
| |
Collapse
|
173
|
Dang Y, Yang Q, Xue Z, Liu Y. RNA interference in fungi: pathways, functions, and applications. EUKARYOTIC CELL 2011; 10:1148-55. [PMID: 21724934 PMCID: PMC3187057 DOI: 10.1128/ec.05109-11] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small RNA molecules of about 20 to 30 nucleotides function in gene regulation and genomic defense via conserved eukaryotic RNA interference (RNAi)-related pathways. The RNAi machinery consists of three core components: Dicer, Argonaute, and RNA-dependent RNA polymerase. In fungi, the RNAi-related pathways have three major functions: genomic defense, heterochromatin formation, and gene regulation. Studies of Schizosaccharomyces pombe and Neurospora, and other fungi have uncovered surprisingly diverse small RNA biogenesis pathways, suggesting that fungi utilize RNAi-related pathways in various cellular processes to adapt to different environmental conditions. These studies also provided important insights into how RNAi functions in eukaryotic systems in general. In this review, we will discuss our current understanding of the fungal RNAi-related pathways and their functions, with a focus on filamentous fungi. We will also discuss how RNAi can be used as a tool in fungal research.
Collapse
Affiliation(s)
- Yunkun Dang
- Department of Physiology, ND13.214A, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040, USA.
| | | | | | | |
Collapse
|
174
|
Genetic dissection of PARylation in the filamentous fungus Neurospora crassa. Methods Mol Biol 2011. [PMID: 21870276 DOI: 10.1007/978-1-61779-270-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
PARylation is a posttranslational protein modification carried out by PAR polymerases (PARPs). These enzymes function as ADP-ribose transferases that add polymers of ADP-ribose (PAR) to target proteins. PARP proteins have critical functions impacting the aspects of normal human health, such as aging, as well as disease development, particularly cancer. Recently, the powerful antitumor PARP inhibitor Olaparib was shown to be effective in blocking the progression of BRCA1/2-associated tumors, prompting Bruce Alberts to call for an expansion of cancer research beyond utilization of cancer cell lines to include model organisms, such as bacteria, yeast, worms, flies, and mice. Although Dr. Alberts did not specifically mention the filamentous fungus Neurospora crassa, it is now known that Neurospora is the only genetically tractable model eukaryote with completely dispensable PARylation. PARylation in Neurospora can be entirely eliminated by disruption of a single predicted ORF, encoding a nuclear localized PARP protein termed Neurospora PARP ortholog (NPO). We, thus, present this initial genetic characterization of PARylation in N. crassa as evidence of the supreme advantage of using Neurospora as a tool for the genetic dissection of PARP and PARylation and emphasize the power of this system to advance unparalleled contributions to knowledge in this field.
Collapse
|
175
|
Sobala A, Hutvagner G. Transfer RNA-derived fragments: origins, processing, and functions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:853-62. [PMID: 21976287 DOI: 10.1002/wrna.96] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deep sequencing approaches have revealed multiple types of small RNAs with known and unknown functions. In this review we focus on a recently identified group of small RNAs that are derived from transfer RNAs (tRNAs), tRNA fragments (tRFs). We review the mechanism of their processing and their functions in mammalian cells, and highlight points of possible cross-talk between tRFs and the canonical small RNA pathway characterized by small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). We also propose a nomenclature that is based on their processing characteristics.
Collapse
Affiliation(s)
- Andrew Sobala
- Wellcome Trust Centre for Gene Regulation and Expression, Dundee University, Dundee, UK
| | | |
Collapse
|
176
|
Wang L, Yu X, Wang H, Lu YZ, de Ruiter M, Prins M, He YK. A novel class of heat-responsive small RNAs derived from the chloroplast genome of Chinese cabbage (Brassica rapa). BMC Genomics 2011; 12:289. [PMID: 21639890 PMCID: PMC3126784 DOI: 10.1186/1471-2164-12-289] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 06/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-coding small RNAs play critical roles in various cellular processes in a wide spectrum of eukaryotic organisms. Their responses to abiotic stress have become a popular topic of economic and scientific importance in biological research. Several studies in recent years have reported a small number of non-coding small RNAs that map to chloroplast genomes. However, it remains uncertain whether small RNAs are generated from chloroplast genome and how they respond to environmental stress, such as high temperature. Chinese cabbage is an important vegetable crop, and heat stress usually causes great losses in yields and quality. Under heat stress, the leaves become etiolated due to the disruption and disassembly of chloroplasts. In an attempt to determine the heat-responsive small RNAs in chloroplast genome of Chinese cabbage, we carried out deep sequencing, using heat-treated samples, and analysed the proportion of small RNAs that were matched to chloroplast genome. RESULTS Deep sequencing provided evidence that a novel subset of small RNAs were derived from the chloroplast genome of Chinese cabbage. The chloroplast small RNAs (csRNAs) include those derived from mRNA, rRNA, tRNA and intergenic RNA. The rRNA-derived csRNAs were preferentially located at the 3'-ends of the rRNAs, while the tRNA-derived csRNAs were mainly located at 5'-termini of the tRNAs. After heat treatment, the abundance of csRNAs decreased in seedlings, except those of 24 nt in length. The novel heat-responsive csRNAs and their locations in the chloroplast were verified by Northern blotting. The regulation of some csRNAs to the putative target genes were identified by real-time PCR. Our results reveal that high temperature suppresses the production of some csRNAs, which have potential roles in transcriptional or post-transcriptional regulation. CONCLUSIONS In addition to nucleus, the chloroplast is another important organelle that generates a number of small RNAs. Many members of csRNA families are highly sensitive to heat stress. Some csRNAs respond to heat stress by silencing target genes. We suggest that proper temperature is important for production of chloroplast small RNAs, which are associated with plant resistance to abiotic stress.
Collapse
Affiliation(s)
- Lu Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
177
|
Nunes CC, Gowda M, Sailsbery J, Xue M, Chen F, Brown DE, Oh Y, Mitchell TK, Dean RA. Diverse and tissue-enriched small RNAs in the plant pathogenic fungus, Magnaporthe oryzae. BMC Genomics 2011; 12:288. [PMID: 21635781 PMCID: PMC3132168 DOI: 10.1186/1471-2164-12-288] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/02/2011] [Indexed: 01/16/2023] Open
Abstract
Background Emerging knowledge of the impact of small RNAs as important cellular regulators has prompted an explosion of small transcriptome sequencing projects. Although significant progress has been made towards small RNA discovery and biogenesis in higher eukaryotes and other model organisms, knowledge in simple eukaryotes such as filamentous fungi remains limited. Results Here, we used 454 pyrosequencing to present a detailed analysis of the small RNA transcriptome (~ 15 - 40 nucleotides in length) from mycelia and appressoria tissues of the rice blast fungal pathogen, Magnaporthe oryzae. Small RNAs mapped to numerous nuclear and mitochondrial genomic features including repetitive elements, tRNA loci, rRNAs, protein coding genes, snRNAs and intergenic regions. For most elements, small RNAs mapped primarily to the sense strand with the exception of repetitive elements to which small RNAs mapped in the sense and antisense orientation in near equal proportions. Inspection of the small RNAs revealed a preference for U and suppression of C at position 1, particularly for antisense mapping small RNAs. In the mycelia library, small RNAs of the size 18 - 23 nt were enriched for intergenic regions and repetitive elements. Small RNAs mapping to LTR retrotransposons were classified as LTR retrotransposon-siRNAs (LTR-siRNAs). Conversely, the appressoria library had a greater proportion of 28 - 35 nt small RNAs mapping to tRNA loci, and were classified as tRNA-derived RNA fragments (tRFs). LTR-siRNAs and tRFs were independently validated by 3' RACE PCR and northern blots, respectively. Conclusions Our findings suggest M. oryzae small RNAs differentially accumulate in vegetative and specialized-infection tissues and may play an active role in genome integrity and regulating growth and development.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Fungal Genomics Laboratory, Center for Integrated Fungal Research, Department of Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
RNA-dependent RNA polymerases (RdRPs) synthesize double-stranded RNAs that are processed into small RNAs and mediate gene silencing. Viral RdRPs and cellular RdRPs show little structural homology to each other. Cellular RdRPs play key roles in RNA silencing by producing complementary strands for target RNAs via Dicer-dependent and -independent mechanisms. Although the existence of a functional mammalian homolog of RdRP has long been predicted, traditional approaches to identify such enzymes were unsuccessful. Recently, human telomerase reverse transcriptase, a polymerase closely related to viral RdRPs, has been shown to function as an RdRP and contributes to RNA silencing in vivo. These findings suggest that endogenous small interfering RNAs are produced by several mechanisms in eukaryotes.
Collapse
Affiliation(s)
- Yoshiko Maida
- Division of Cancer Stem Cell, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan
| | | |
Collapse
|
179
|
Abstract
Deep sequencing technologies have become very powerful tools in the identification and quantification of small RNAs involved in gene regulation. Small interfering RNA (siRNA) and miRNA are two classes of DCL-dependent small RNAs known to affect phenotype, developmental regulation, and various traits in plants. These small RNAs function by selectively repressing gene expression mainly by guiding cleavage, resulting in degradation of target transcripts. In this chapter, we describe a method for preparation of 5(')-phosphate-dependent small RNA libraries, a hallmark of RNase III-like DCL products, for high-throughput sequencing, and recommendations for small RNA analysis. This method is useful for determining small RNA involvement in critical pathways in plants, identifying and quantifying novel small RNAs, and examining small RNA global expression patterns.
Collapse
|
180
|
Small RNA discovery and characterisation in eukaryotes using high-throughput approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:239-54. [PMID: 21915794 DOI: 10.1007/978-1-4614-0332-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA silencing is a mechanism of genetic regulation that is mediated by short noncoding RNAs, or small RNAs (sRNAs). Regulatory interactions are established based on nucleotide sequence complementarity between the sRNAs and their targets. The development of new high-throughput sequencing technologies has accelerated the discovery of sRNAs in a variety of plants and animals. The use of these and other high-throughput technologies, such as microarrays, to measure RNA and protein concentrations of gene products potentially regulated by sRNAs has also been important for their functional characterisation. mRNAs targeted by sRNAs can produce new sRNAs or the protein encoded by the target mRNA can regulate other mRNAs. In either case the targeting sRNAs are parts of complex RNA networks therefore identifying and characterising sRNAs contribute to better understanding of RNA networks. In this chapter we will review RNA silencing, the different types of sRNAs that mediate it and the computational methods that have been developed to use high-throughput technologies in the study of sRNAs and their targets.
Collapse
|
181
|
Collins LJ. The RNA infrastructure: an introduction to ncRNA networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:1-19. [PMID: 21915779 DOI: 10.1007/978-1-4614-0332-6_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RNA infrastructure connects RNA-based functions. With transcription-to-translation processing forming the core of the network, we can visualise how RNA-based regulation, cleavage and modification are the backbone of cellular function. The key to interpreting the RNA-infrastructure is in understanding how core RNAs (tRNA, mRNA and rRNA) and other ncRNAs operate in a spatial-temporal manner, moving around the nucleus, cytoplasm and organelles during processing, or in response to environmental cues. This chapter summarises the concept of the RNA-infrastructure, and highlights examples of RNA-based networking within prokaryotes and eukaryotes. It describes how transcription-to-translation processes are tightly connected, and explores some similarities and differences between prokaryotic and eukaryotic RNA networking.
Collapse
Affiliation(s)
- Lesley J Collins
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
182
|
Staab JF, White TC, Marr KA. Hairpin dsRNA does not trigger RNA interference in Candida albicans cells. Yeast 2011; 28:1-8. [PMID: 20737430 PMCID: PMC4677786 DOI: 10.1002/yea.1814] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/11/2010] [Indexed: 11/06/2022] Open
Abstract
RNA interference/silencing mechanisms triggered by double-stranded RNA (dsRNA) have been described in many eukaryotes, including fungi. These mechanisms have in common small RNA molecules (siRNAs or microRNAs) originating from dsRNAs that, together with the effector protein Argonaute, mediate silencing. The genome of the fungal pathogen Candida albicans harbours a well-conserved Argonaute and a non-canonical Dicer, essential members of silencing pathways. Prototypical siRNAs are detected as members of the C. albicans transcriptome, which is potential evidence of RNA interference/silencing pathways in this organism. Surprisingly, expression of a dsRNA a hairpin ADE2 dsRNA molecule to interfere with the endogenous ADE2 mRNA did not result in down-regulation of the message or produce adenine auxotrophic strains. Cell free assays showed that the hairpin dsRNA was a substrate for the putative C. albicans Dicer, discounting the possibility that the nature of the dsRNA trigger affects silencing functionality. Our results suggested that unknown cellular events govern the functionality of siRNAs originating from transgenes in RNA interference/silencing pathways in C. albicans.
Collapse
Affiliation(s)
- Janet F Staab
- Department of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
183
|
Abstract
Large numbers of diverse small non-coding RNAs have been discovered and characterized in eukaryotic RNA interference pathways. These small RNAs have distinctive characteristics and are associated with Argonaute family proteins to regulate gene expression and genomes at various levels. These small RNAs include the Dicer-dependent group such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), and the Dicer-independent group such as Piwi-interacting RNAs (piRNAs). This review summarizes the various classes of eukaryotic small RNAs and the general knowledge of their characteristics, biogenesis, and functions, with emphasis on some of the recently identified small RNAs.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | | |
Collapse
|
184
|
Wang X, Song X, Glass CK, Rosenfeld MG. The long arm of long noncoding RNAs: roles as sensors regulating gene transcriptional programs. Cold Spring Harb Perspect Biol 2011; 3:a003756. [PMID: 20573714 DOI: 10.1101/cshperspect.a003756] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major surprise arising from genome-wide analyses has been the observation that the majority of the genome is transcribed, generating noncoding RNAs (ncRNAs). It is still an open question whether some or all of these ncRNAs constitute functional networks regulating gene transcriptional programs. However, in light of recent discoveries and given the diversity and flexibility of long ncRNAs and their abilities to nucleate molecular complexes and to form spatially compact arrays of complexes, it becomes likely that many or most ncRNAs act as sensors and integrators of a wide variety of regulated transcriptional responses and probably epigenetic events. Because many RNA-binding proteins, on binding RNAs, show distinct allosteric conformational alterations, we suggest that a ncRNA/RNA-binding protein-based strategy, perhaps in concert with several other mechanistic strategies, serves to integrate transcriptional, as well as RNA processing, regulatory programs.
Collapse
Affiliation(s)
- Xiangting Wang
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0651, USA
| | | | | | | |
Collapse
|
185
|
|
186
|
Wang X, Hsueh YP, Li W, Floyd A, Skalsky R, Heitman J. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev 2010; 24:2566-82. [PMID: 21078820 DOI: 10.1101/gad.1970910] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cosuppression is a silencing phenomenon triggered by the introduction of homologous DNA sequences into the genomes of organisms as diverse as plants, fungi, flies, and nematodes. Here we report sex-induced silencing (SIS), which is triggered by tandem integration of a transgene array in the human fungal pathogen Cryptococcus neoformans. A SXI2a-URA5 transgene array was found to be post-transcriptionally silenced during sexual reproduction. More than half of the progeny that inherited the SXI2a-URA5 transgene became uracil-auxotrophic due to silencing of the URA5 gene. In vegetative mitotic growth, silencing of this transgene array occurred at an ∼250-fold lower frequency, indicating that silencing is induced during the sexual cycle. Central components of the RNAi pathway-including genes encoding Argonaute, Dicer, and an RNA-dependent RNA polymerase-are all required for both meiotic and mitotic transgene silencing. URA5-derived ∼22-nucleotide (nt) small RNAs accumulated in the silenced isolates, suggesting that SIS is mediated by RNAi via sequence-specific small RNAs. Through deep sequencing of the small RNA population in C. neoformans, we also identified abundant small RNAs mapping to repetitive transposable elements, and these small RNAs were absent in rdp1 mutant strains. Furthermore, a group of retrotransposons was highly expressed during mating of rdp1 mutant strains, and an increased transposition/mutation rate was detected in their progeny, indicating that the RNAi pathway squelches transposon activity during the sexual cycle. Interestingly, Ago1, Dcr1, Dcr2, and Rdp1 are translationally induced in mating cells, and Ago1, Dcr1, and Dcr2 localize to processing bodies (P bodies), whereas Rdp1 appears to be nuclear, providing mechanistic insights into the elevated silencing efficiency during sexual reproduction. We hypothesize that the SIS RNAi pathway operates to defend the genome during sexual development.
Collapse
Affiliation(s)
- Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
187
|
Janbon G, Maeng S, Yang DH, Ko YJ, Jung KW, Moyrand F, Floyd A, Heitman J, Bahn YS. Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet Biol 2010; 47:1070-80. [PMID: 21067947 DOI: 10.1016/j.fgb.2010.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 10/03/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
Abstract
The RNA interference (RNAi) mediated by homology-dependent degradation of the target mRNA with small RNA molecules plays a key role in controlling transcription and translation processes in a number of eukaryotic organisms. The RNAi machinery is also evolutionarily conserved in a wide variety of fungal species, including pathogenic fungi. To elucidate the physiological functions of the RNAi pathway in Cryptococcus neoformans that causes fungal meningitis, here we performed genetic analyses for genes encoding Argonaute (AGO1 and AGO2), RNA-dependent RNA polymerase (RDP1), and Dicers (DCR1 and DCR2) in both serotype A and D C. neoformans. The present study shows that Ago1, Rdp1, and Dcr2 are the major components of the RNAi process occurring in C. neoformans. However, the RNAi machinery is not involved in regulation of production of two virulence factors (capsule and melanin), sexual differentiation, and diverse stress response. Comparative transcriptome analysis of the serotype A and D RNAi mutants revealed that only modest changes occur in the genome-wide transcriptome profiles when the RNAi process was perturbed. Notably, the serotype D rdp1Δ mutants showed an increase in transcript abundance of active retrotransposons and transposons, such as T2 and T3, the latter of which is a novel serotype D-specific transposon of C. neoformans. In a wild type background both T2 and T3 were found to be weakly active mobile elements, although we found no evidence of Cnl1 retrotransposon mobility. In contrast, all three transposable elements exhibited enhanced mobility in the rdp1Δ mutant strain. In conclusion, the RNAi pathway plays an important role in controlling transposon activity and genome integrity of C. neoformans.
Collapse
Affiliation(s)
- Guilhem Janbon
- Unité des Aspergillus, Institut Pasteur, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Li L, Chang SS, Liu Y. RNA interference pathways in filamentous fungi. Cell Mol Life Sci 2010; 67:3849-63. [PMID: 20680389 PMCID: PMC4605205 DOI: 10.1007/s00018-010-0471-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 11/28/2022]
Abstract
RNA interference is a conserved homology-dependent post-transcriptional/transcriptional gene silencing mechanism in eukaryotes. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and meiotic silencing by unpaired DNA are two RNAi-related phenomena discovered in Neurospora, and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. A type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs were recently discovered in Neurospora. In addition, there are at least six different pathways responsible for the production of these small RNAs, establishing this fungus as an important model system to study small RNA function and biogenesis. The studies in Cryphonectria, Mucor, Aspergillus and other species indicate that RNAi is widely conserved in filamentous fungi and plays important roles in genome defense. This review summarizes our current understanding of RNAi pathways in filamentous fungi.
Collapse
Affiliation(s)
- Liande Li
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Shwu-shin Chang
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| | - Yi Liu
- Department of Physiology, ND13.214A, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9040 USA
| |
Collapse
|
189
|
Lee HC, Aalto AP, Yang Q, Chang SS, Huang G, Fisher D, Cha J, Poranen MM, Bamford DH, Liu Y. The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein A and a DNA helicase. PLoS Biol 2010; 8. [PMID: 20957187 PMCID: PMC2950127 DOI: 10.1371/journal.pbio.1000496] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/16/2010] [Indexed: 12/27/2022] Open
Abstract
The Neurospora RNA-dependent RNA polymerase QDE-1 is an RNA polymerase that can use both RNA and DNA as templates, suggesting a new mechanism for small RNA production. The production of aberrant RNA (aRNA) is the initial step in several RNAi pathways. How aRNA is produced and specifically recognized by RNA-dependent RNA polymerases (RdRPs) to generate double-stranded RNA (dsRNA) is not clear. We previously showed that in the filamentous fungus Neurospora, the RdRP QDE-1 is required for rDNA-specific aRNA production, suggesting that QDE-1 may be important in aRNA synthesis. Here we show that a recombinant QDE-1 is both an RdRP and a DNA-dependent RNA polymerase (DdRP). Its DdRP activity is much more robust than the RdRP activity and occurs on ssDNA but not dsDNA templates. We further show that Replication Protein A (RPA), a single-stranded DNA-binding complex that interacts with QDE-1, is essential for aRNA production and gene silencing. In vitro reconstitution assays demonstrate that QDE-1 can produce dsRNA from ssDNA, a process that is strongly promoted by RPA. Furthermore, the interaction between QDE-1 and RPA requires the RecQ DNA helicase QDE-3, a homolog of the human Werner/Bloom Syndrome proteins. Together, these results suggest a novel small RNA biogenesis pathway in Neurospora and a new mechanism for the production of aRNA and dsRNA in RNAi pathways. Small RNA molecules (20–30 nucleotides) play important roles in many cellular processes in eukaryotic organisms by silencing gene expression. To generate the many forms of small RNAs, DNA is first transcribed to produce single-stranded RNA (ssRNA), which then is converted to double-stranded RNA (dsRNA) by an RNA-dependent RNA polymerase (RdRP). However, it is not clear how the ssRNA templates are synthesized from DNA and specifically recognized by RdRPs amidst a sea of single-stranded, cellular RNAs. We previously showed that in the filamentous fungus Neurospora the production of one type of small RNA called qiRNA, which is specifically induced after DNA damage, requires the RdRP QDE-1. Here, we investigated the precise contributions of QDE-1 to the synthesis of ssRNA and dsRNA. We show that QDE-1 is surprisingly promiscuous in its template choice in that it is able to synthesize RNA from both ssRNA and single-stranded DNA (ssDNA). These results suggest that QDE-1 first generates ssRNA from a DNA template and then converts the ssRNA into dsRNA; this combination of activities in one protein ensures the specific action by RdRP on aberrant RNA in lieu of other single-stranded cellular RNA. In addition, we identified Replication Protein A, a ssDNA-binding protein that interacts with QDE-1, as an essential factor for small RNA production. Furthermore, we were able to reconstitute synthesis of dsRNA from ssDNA in a test tube using purified QDE-1 and RPA proteins, demonstrating the ability of this relatively simple biosynthetic system to generate the nucleic acid trigger for gene regulation. Together, these results uncover the details of a new and important small RNA production mechanism in cells.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
van Wolfswinkel JC, Ketting RF. The role of small non-coding RNAs in genome stability and chromatin organization. J Cell Sci 2010; 123:1825-39. [PMID: 20484663 DOI: 10.1242/jcs.061713] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small non-coding RNAs make up much of the RNA content of a cell and have the potential to regulate gene expression on many different levels. Initial discoveries in the 1990s and early 21st century focused on determining mechanisms of post-transcriptional regulation mediated by small-interfering RNAs (siRNAs) and microRNAs (miRNAs). More recent research, however, has identified new classes of RNAs and new regulatory mechanisms, expanding the known regulatory potential of small non-coding RNAs to encompass chromatin regulation. In this Commentary, we provide an overview of these chromatin-related mechanisms and speculate on the extent to which they are conserved among eukaryotes.
Collapse
Affiliation(s)
- Josien C van Wolfswinkel
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | |
Collapse
|
191
|
|
192
|
Abstract
In this issue of Molecular Cell, Lee et al. show that Neuropsora crassa uses several Dicer-dependent and -independent pathways to generate miRNA-like RNAs and small-interfering RNAs. Their studies expand the known small RNA biogenesis pathways and suggest the existence of others that are yet to be discovered.
Collapse
Affiliation(s)
- Hailing Jin
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
193
|
Gowda M, Nunes CC, Sailsbery J, Xue M, Chen F, Nelson CA, Brown DE, Oh Y, Meng S, Mitchell T, Hagedorn CH, Dean RA. Genome-wide characterization of methylguanosine-capped and polyadenylated small RNAs in the rice blast fungus Magnaporthe oryzae. Nucleic Acids Res 2010; 38:7558-69. [PMID: 20660015 PMCID: PMC2995040 DOI: 10.1093/nar/gkq583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Small RNAs are well described in higher eukaryotes such as mammals and plants; however, knowledge in simple eukaryotes such as filamentous fungi is limited. In this study, we discovered and characterized methylguanosine-capped and polyadenylated small RNAs (CPA-sRNAs) by using differential RNA selection, full-length cDNA cloning and 454 transcriptome sequencing of the rice blast fungus Magnaporthe oryzae. This fungus causes blast, a devastating disease on rice, the principle food staple for over half the world’s population. CPA-sRNAs mapped primarily to the transcription initiation and termination sites of protein-coding genes and were positively correlated with gene expression, particularly for highly expressed genes including those encoding ribosomal proteins. Numerous CPA-sRNAs also mapped to rRNAs, tRNAs, snRNAs, transposable elements and intergenic regions. Many other 454 sequence reads could not be mapped to the genome; however, inspection revealed evidence for non-template additions and chimeric sequences. CPA-sRNAs were independently confirmed using a high affinity variant of eIF-4E to capture 5′-methylguanosine-capped RNA followed by 3′-RACE sequencing. These results expand the repertoire of small RNAs in filamentous fungi.
Collapse
Affiliation(s)
- Malali Gowda
- Fungal Genomics Laboratory, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Aalto AP, Poranen MM, Grimes JM, Stuart DI, Bamford DH. In vitro activities of the multifunctional RNA silencing polymerase QDE-1 of Neurospora crassa. J Biol Chem 2010; 285:29367-74. [PMID: 20647305 DOI: 10.1074/jbc.m110.139121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
QDE-1 is an RNA- and DNA-dependent RNA polymerase that has functions in the RNA silencing and DNA repair pathways of the filamentous fungus Neurospora crassa. The crystal structure of the dimeric enzyme has been solved, and the fold of its catalytic core is related closely to that of eukaryotic DNA-dependent RNA polymerases. However, the specific activities of this multifunctional enzyme are still largely unknown. In this study, we characterized the in vitro activities of the N-terminally truncated QDE-1ΔN utilizing structure-based mutagenesis. Our results indicate that QDE-1 displays five distinct catalytic activities, which can be dissected by mutating critical amino acids or by altering reaction conditions. Our data also suggest that the RNA- and DNA-dependent activities have different modes for the initiation of RNA synthesis, which may reflect the mechanism that enables the polymerase to discriminate between template nucleic acids. Moreover, we show that QDE-1 is a highly potent terminal nucleotidyltransferase. Our results suggest that QDE-1 is able to regulate its activity mode depending on the template nucleic acid. This work extends our understanding of the biochemical properties of the QDE-1 enzyme and related RNA polymerases.
Collapse
Affiliation(s)
- Antti P Aalto
- Institute of Biotechnology and Department of Biosciences, Biocenter 2, P.O. Box 56, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
195
|
Talsky KB, Collins K. Initiation by a eukaryotic RNA-dependent RNA polymerase requires looping of the template end and is influenced by the template-tailing activity of an associated uridyltransferase. J Biol Chem 2010; 285:27614-23. [PMID: 20622019 DOI: 10.1074/jbc.m110.142273] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A conserved family of eukaryotic RNA-dependent RNA polymerases (RDRs) initiates or amplifies the production of small RNAs to provide sequence specificity for gene regulation by Argonaute/Piwi proteins. RDR-dependent silencing processes affect the genotype-phenotype relationship in many eukaryotes, but the principles that underlie the specificity of RDR template selection and product synthesis are largely unknown. Here, we characterize the initiation specificity of the Tetrahymena RDR, Rdr1, as a heterologously expressed single subunit and in the context of its biologically assembled multisubunit complexes (RDRCs). Truncation analysis of recombinant Rdr1 revealed domain requirements different from those of the only other similarly characterized RDR, suggesting that there are subfamilies of the RDR enzyme with distinct structural requirements for activity. We demonstrate an apparently obligate Rdr1 mechanism of initiation in which the template end is looped to provide the hydroxyl group priming the synthesis of dsRNA. RDRC subunits with poly(U) polymerase activity can act on the template end prior to looping to increase the duplex length of product, thus impacting the small RNA sequences generated by the RDRC-coupled Dicer. Overall, our findings give new perspective on mechanisms of RDR initiation and demonstrate that non-RDR subunits of an RDRC can affect the specificity of product synthesis.
Collapse
Affiliation(s)
- Kristin Benjamin Talsky
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
196
|
Abstract
The discovery of RNA interference (RNAi) is among the most significant biomedical breakthroughs in recent history. Multiple classes of small RNA, including small-interfering RNA (siRNA), micro-RNA (miRNA), and piwi-interacting RNA (piRNA), play important roles in many fundamental biological and disease processes. Collective studies in multiple organisms, including plants, Drosophila, Caenorhabditis elegans, and mammals indicate that these pathways are highly conserved throughout evolution. Thus, scientists across disciplines have found novel pathways to unravel, new insights in probing pathology, and nascent technologies to develop. The field of RNAi also provides a clear framework for understanding fundamental principles of biochemistry. The current review highlights elegant, reason-based experimentation in discovering RNA-directed biological phenomena and the importance of robust assay development in translating these observations into mechanistic understanding. This biochemical template also provides a conceptual framework for overcoming emerging challenges in the field and for understanding an expanding small RNA world.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
197
|
QIP, a protein that converts duplex siRNA into single strands, is required for meiotic silencing by unpaired DNA. Genetics 2010; 186:119-26. [PMID: 20551436 DOI: 10.1534/genetics.110.118273] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
RNA interference (RNAi) depends on the production of small RNA to regulate gene expression in eukaryotes. Two RNAi systems exist to control repetitive selfish elements in Neurospora crassa. Quelling targets transgenes during vegetative growth, whereas meiotic silencing by unpaired DNA (MSUD) silences unpaired genes during meiosis. The two mechanisms require common RNAi proteins, such as RNA-directed RNA polymerases, Dicers, and Argonaute slicers. We have previously demonstrated that, while Quelling depends on the redundant dicer activity of DCL-1 and DCL-2, only DCL-1 is required for MSUD. Here, we show that QDE-2-interacting protein (QIP), an exonuclease that is important for the production of single-stranded siRNA during Quelling, is also required for MSUD. QIP is crucial for sexual development and is shown to colocalize with other MSUD proteins in the perinuclear region.
Collapse
|
198
|
Wakabayashi M, Ishii C, Hatakeyama S, Inoue H, Tanaka S. ATM and ATR homologes of Neurospora crassa are essential for normal cell growth and maintenance of chromosome integrity. Fungal Genet Biol 2010; 47:809-17. [PMID: 20553930 DOI: 10.1016/j.fgb.2010.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 05/07/2010] [Accepted: 05/22/2010] [Indexed: 12/23/2022]
Abstract
Genome integrity is maintained by many cellular mechanisms in eukaryotes. One such mechanism functions during the cell cycle and is known as the DNA damage checkpoint. In the filamentous fungus Neurospora crassa, mus-9 and mus-21 are homologes of two key factors of the mammalian DNA damage checkpoint, ATR and ATM, respectively. We previously showed that mus-9 and mus-21 mutants are sensitive to DNA damage and that each mutant shows a characteristic growth defect: conidia from the mus-9 mutant have reduced viability and the mus-21 mutant exhibits slow hyphal growth. However, the relationship between these two genes has not been determined because strains carrying both mus-9 and mus-21 mutations could not be obtained. To facilitate analysis of a strain deficient in both mus-9 and mus-21, we introduced a specific mutation to the kinase domain of MUS-9 to generate a temperature-sensitive mus-9 allele (mus-9(ts)) which shows increased mutagen sensitivity at 37 degrees C. Then we crossed this strain with a mus-21 mutant to obtain a mus-9(ts) mus-21 double mutant. Growth of the mus-9(ts) mus-21 double mutant did not progress at the restrictive temperature (37 degrees C). Even at the permissive temperature (25 degrees C), this strain exhibited a higher mutagen sensitivity than that of the mus-9 and mus-21 single mutants, as well as slow hyphal growth and low viability of conidia. These results indicate that the mus-9(ts) mutation causes hypomorphic phenotypes in the mus-21 mutant and that these two genes regulate different pathways. Interestingly, we observed accumulation of micronuclei in the conidia of this double mutant, and such micronuclei were likely to correlate with spontaneous DSBs. Our results suggest that both mus-9 and mus-21 pathways are involved in DNA damage response, normal growth and maintenance of chromosome integrity, and that at least one of the pathways must be functional for survival.
Collapse
Affiliation(s)
- Michiyoshi Wakabayashi
- Laboratory of Genetics, Department of Regulatory Biology, Faculty of Science, Saitama University, Japan
| | | | | | | | | |
Collapse
|
199
|
Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev IV, Torres-Martínez S, Moulton V, Ruiz-Vázquez RM, Dalmay T. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res 2010; 38:5535-41. [PMID: 20427422 PMCID: PMC2938224 DOI: 10.1093/nar/gkq301] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi.
Collapse
|
200
|
Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y. Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 2010; 38:803-14. [PMID: 20417140 DOI: 10.1016/j.molcel.2010.04.005] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/10/2010] [Accepted: 04/02/2010] [Indexed: 12/30/2022]
Abstract
A variety of small RNAs, including the Dicer-dependent miRNAs and the Dicer-independent Piwi-interacting RNAs, associate with Argonaute family proteins to regulate gene expression in diverse cellular processes. These two species of small RNA have not been found in fungi. Here, by analyzing small RNAs associated with the Neurospora Argonaute protein QDE-2, we show that diverse pathways generate miRNA-like small RNAs (milRNAs) and Dicer-independent small interfering RNAs (disiRNAs) in this filamentous fungus. Surprisingly, milRNAs are produced by at least four different mechanisms that use a distinct combination of factors, including Dicers, QDE-2, the exonuclease QIP, and an RNase III domain-containing protein, MRPL3. In contrast, disiRNAs originate from loci producing overlapping sense and antisense transcripts, and do not require the known RNAi components for their production. Taken together, these results uncover several pathways for small RNA production in filamentous fungi, shedding light on the diversity and evolutionary origins of eukaryotic small RNAs.
Collapse
Affiliation(s)
- Heng-Chi Lee
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|