151
|
Kinase-independent function of RIP1, critical for mature T-cell survival and proliferation. Cell Death Dis 2016; 7:e2379. [PMID: 27685623 PMCID: PMC5059890 DOI: 10.1038/cddis.2016.307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
The death receptor, Fas, triggers apoptotic death and is essential for maintaining homeostasis in the peripheral lymphoid organs. RIP1 was originally cloned when searching for Fas-binding proteins and was later shown to associate also with the signaling complex of TNFR1. Although Fas exclusively induces apoptosis, TNFR1 primarily activates the pro-survival/pro-inflammatory NF-κB pathway. Mutations in Fas lead to lymphoproliferative (lpr) diseases, and deletion of TNFR1 results in defective innate immune responses. However, the function of RIP1 in the adult lymphoid system has not been well understood, primarily owing to perinatal lethality in mice lacking the entire RIP1 protein in germ cells. This current study investigated the requirement for RIP1 in the T lineage using viable RIP1 mutant mice containing a conditional and kinase-dead RIP1 allele. Disabling the kinase activity of RIP1 had no obvious impact on the T-cell compartment. However, T-cell-specific deletion of RIP1 led to a severe T-lymphopenic condition, owing to a dramatically reduced mature T-cell pool in the periphery. Interestingly, the immature T-cell compartment in the thymus appeared intact. Further analysis showed that mature RIP1−/− T cells were severely defective in antigen receptor-induced proliferative responses. Moreover, the RIP1−/− T cells displayed greatly increased death and contained elevated caspase activities, an indication of apoptosis. In total, these results revealed a novel, kinase-independent function of RIP1, which is essential for not only promoting TCR-induced proliferative responses but also in blocking apoptosis in mature T cells.
Collapse
|
152
|
Moriwaki K, Chan FKM. The Inflammatory Signal Adaptor RIPK3: Functions Beyond Necroptosis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:253-275. [PMID: 28069136 DOI: 10.1016/bs.ircmb.2016.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Receptor interacting protein kinase 3 (RIPK3) is an essential serine/threonine kinase for necroptosis, a type of regulated necrosis. A variety of stimuli can cause RIPK3 activation through phosphorylation. Activated RIPK3 in turn phosphorylates and activates the downstream necroptosis executioner mixed lineage kinase domain-like (MLKL). Necroptosis is a highly inflammatory type of cell death because of the release of intracellular immunogenic contents from disrupted plasma membrane. Indeed, RIPK3-deficient mice exhibited reduced inflammation in many inflammatory disease models. These results have been interpreted as evidence that necroptosis is a key driver for RIPK3-induced inflammation. Interestingly, recent studies show that RIPK3 also regulates NF-κB, inflammasome activation, and kinase-independent apoptosis. These studies also reveal that these nonnecroptotic functions contribute significantly to disease pathogenesis. In this review, we summarize our current understanding of necroptotic and nonnecroptotic functions of RIPK3 and discuss how these effects contribute to RIPK3-mediated inflammation.
Collapse
Affiliation(s)
- K Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA, United States
| | - F K-M Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
153
|
Caspase Inhibition Prevents Tumor Necrosis Factor-α-Induced Apoptosis and Promotes Necrotic Cell Death in Mouse Hepatocytes in Vivo and in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2623-36. [PMID: 27616656 DOI: 10.1016/j.ajpath.2016.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/24/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023]
Abstract
How different cell death modes and cell survival pathways cross talk remains elusive. We determined the interrelation of apoptosis, necrosis, and autophagy in tumor necrosis factor (TNF)-α/actinomycin D (ActD) and lipopolysaccharide/D-galactosamine (GalN)-induced hepatotoxicity in vitro and in vivo. We found that TNF-α/ActD-induced apoptosis was completely blocked by a general caspase inhibitor ZVAD-fmk at 24 hours but hepatocytes still died by necrosis at 48 hours. Inhibition of caspases also protected mice against lipopolysaccharide/GalN-induced apoptosis and liver injury at the early time point, but this protection was diminished after prolonged treatment by switching apoptosis to necrosis. Inhibition of receptor-interacting protein kinase (RIP)1 by necrostatin 1 partially inhibited TNF-α/ZVAD-induced necrosis in primary hepatocytes. Pharmacologic inhibition of autophagy or genetic deletion of Atg5 in hepatocytes did not protect against TNF-α/ActD/ZVAD-induced necrosis. Moreover, pharmacologic inhibition of RIP1 or genetic deletion of RIP3 failed to protect and even exacerbated liver injury after mice were treated with lipopolysaccharide/GalN and a pan-caspase inhibitor. In conclusion, our results suggest that different cell death mode and cell survival pathways are closely integrated during TNF-α-induced liver injury when both caspases and NF-κB are blocked. Moreover, results from our study also raised concerns about the safety of currently ongoing clinical trials that use caspase inhibitors.
Collapse
|
154
|
Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, Lebois M, Hakem R, Josefsson EC, O'Reilly LA, Silke J, Alexander WS, Green DR, Strasser A. The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity 2016; 45:513-526. [PMID: 27523270 DOI: 10.1016/j.immuni.2016.07.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
The kinases RIPK1 and RIPK3 and the pseudo-kinase MLKL have been identified as key regulators of the necroptotic cell death pathway, although a role for MLKL within the whole animal has not yet been established. Here, we have shown that MLKL deficiency rescued the embryonic lethality caused by loss of Caspase-8 or FADD. Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice were viable and fertile but rapidly developed severe lymphadenopathy, systemic autoimmune disease, and thrombocytopenia. These morbidities occurred more rapidly and with increased severity in Casp8(-/-)Mlkl(-/-) and Fadd(-/-)Mlkl(-/-) mice compared to Casp8(-/-)Ripk3(-/-) or Fadd(-/-)Ripk3(-/-) mice, respectively. These results demonstrate that MLKL is an essential effector of aberrant necroptosis in embryos caused by loss of Caspase-8 or FADD. Furthermore, they suggest that RIPK3 and/or MLKL may exert functions independently of necroptosis. It appears that non-necroptotic functions of RIPK3 contribute to the lymphadenopathy, autoimmunity, and excess cytokine production that occur when FADD or Caspase-8-mediated apoptosis is abrogated.
Collapse
Affiliation(s)
- Silvia Alvarez-Diaz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Maria C Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ann Lin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Marion Lebois
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Razq Hakem
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9, Canada
| | - Emma C Josefsson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3050, Australia.
| |
Collapse
|
155
|
Zhang X, Fan C, Zhang H, Zhao Q, Liu Y, Xu C, Xie Q, Wu X, Yu X, Zhang J, Zhang H. MLKL and FADD Are Critical for Suppressing Progressive Lymphoproliferative Disease and Activating the NLRP3 Inflammasome. Cell Rep 2016; 16:3247-3259. [PMID: 27498868 DOI: 10.1016/j.celrep.2016.06.103] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/01/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022] Open
Abstract
MLKL, a key component downstream of RIPK3, is suggested to be a terminal executor of necroptosis. Genetic studies have revealed that Ripk3 ablation rescues embryonic lethality in Fadd- or Caspase-8-deficient mice. Given that RIPK3 has also been implicated in non-necroptotic pathways including apoptosis and inflammatory signaling, it remains unclear whether the lethality in Fadd(-/-) mice is indeed caused by necropotosis. Here, we show that genetic deletion of Mlkl rescues the developmental defect in Fadd-deficient mice and that Fadd(-/-)Mlkl(-/-) mice are viable and fertile. Mlkl(-/-)Fadd(-/-) mice display significantly accelerated lymphoproliferative disease characterized by lymphadenopathy and splenomegaly when compared to Ripk3(-/-)Fadd(-/-) mice. Mlkl(-/-)Fadd(-/-) bone-marrow-derived macrophages and dendritic cells have impaired NLRP3 inflammasome activation associated with defects in ASC speck formation and NF-κB-dependent NLRP3 transcription. Our findings reveal that MLKL and FADD play critical roles in preventing lymphoproliferative disease and activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xixi Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Cunxian Fan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiwei Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qun Zhao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongbo Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengxian Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qun Xie
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiaoxia Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianjun Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Department of Biochemistry, Hubei University of Medicine, Shiyan 442000, China
| | - Jianke Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Haibing Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
156
|
Zhuang H, Wang X, Zha D, Gan Z, Cai F, Du P, Yang Y, Yang B, Zhang X, Yao C, Zhou Y, Jiang C, Guan S, Zhang X, Zhang J, Jiang W, Hu Q, Hua ZC. FADD is a key regulator of lipid metabolism. EMBO Mol Med 2016; 8:895-918. [PMID: 27357657 PMCID: PMC4967943 DOI: 10.15252/emmm.201505924] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
FADD, a classical apoptotic signaling adaptor, was recently reported to have non‐apoptotic functions. Here, we report the discovery that FADD regulates lipid metabolism. PPAR‐α is a dietary lipid sensor, whose activation results in hypolipidemic effects. We show that FADD interacts with RIP140, which is a corepressor for PPAR‐α, and FADD phosphorylation‐mimic mutation (FADD‐D) or FADD deficiency abolishes RIP140‐mediated transcriptional repression, leading to the activation of PPAR‐α. FADD‐D‐mutant mice exhibit significantly decreased adipose tissue mass and triglyceride accumulation. Also, they exhibit increased energy expenditure with enhanced fatty acid oxidation in adipocytes due to the activation of PPAR‐α. Similar metabolic phenotypes, such as reduced fat formation, insulin resistance, and resistance to HFD‐induced obesity, are shown in adipose‐specific FADD knockout mice. Additionally, FADD‐D mutation can reverse the severe genetic obesity phenotype of ob/ob mice, with elevated fatty acid oxidation and oxygen consumption in adipose tissue, improved insulin resistance, and decreased triglyceride storage. We conclude that FADD is a master regulator of glucose and fat metabolism with potential applications for treatment of insulin resistance and obesity.
Collapse
Affiliation(s)
- Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Xueshi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Daolong Zha
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Ziyi Gan
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Pan Du
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yunwen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Bingya Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Xiangyu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Yuqiang Zhou
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Chizhou Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Shengwen Guan
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| | - Xuerui Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Jing Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Wenhui Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Qingang Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, China Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
| |
Collapse
|
157
|
Collins CC, Bashant K, Erikson C, Thwe PM, Fortner KA, Wang H, Morita CT, Budd RC. Necroptosis of Dendritic Cells Promotes Activation of γδ T Cells. J Innate Immun 2016; 8:479-92. [PMID: 27431410 PMCID: PMC5002261 DOI: 10.1159/000446498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
γδ T cells function at the interface between innate and adaptive immunity and have well-demonstrated roles in response to infection, autoimmunity and tumors. A common characteristic of these seemingly disparate conditions may be cellular stress or death. However, the conditions under which ligands for γδ T cells are induced or exposed remain largely undefined. We observed that induction of necroptosis of murine or human dendritic cells (DC) by inhibition of caspase activity paradoxically augments their ability to activate γδ T cells. Furthermore, upregulation of the stabilizer of caspase-8 activity, c-FLIP, by IL-4, not only greatly reduced the susceptibility of DC to necroptosis, but also considerably decreased their ability to activate γδ T cells. Collectively, these findings suggest that the induction of necroptosis in DC upregulates or exposes the expression of γδ T cell ligands, and they support the view that γδ T cells function in the immune surveillance of cell stress.
Collapse
Affiliation(s)
- Cheryl C. Collins
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| | - Kathleen Bashant
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| | - Cuixia Erikson
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| | - Phyu Myat Thwe
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| | - Karen A. Fortner
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, Iowa, USA
- Department of Veterans Affairs, Iowa City Health Care System, Iowa City, Iowa, USA
| | - Craig T. Morita
- Division of Immunology, Department of Internal Medicine, Iowa, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa, USA
- Department of Veterans Affairs, Iowa City Health Care System, Iowa City, Iowa, USA
| | - Ralph C. Budd
- Vermont Center for Immunology and Infectious Diseases, Department of Medicine, The University of Vermont College of Medicine, Burlington, Vt
| |
Collapse
|
158
|
Akinrinde AS, Oyagbemi AA, Omobowale TO, Asenuga ER, Ajibade TO. Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats. J Trace Elem Med Biol 2016; 36:27-37. [PMID: 27259349 DOI: 10.1016/j.jtemb.2016.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/28/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
The protective abilities of the chloroform extract of Ocimum gratissimum (COG) and gallic acid against cobalt chloride (CoCl2) - induced cardiac and renal toxicity were evaluated. Rats were exposed to CoCl2 (350ppm) for 7 days, either alone, or in combination with COG (100 and 200mg/kg) or gallic acid (120mg/kg). CoCl2 given alone, caused significant increases (p<0.05) in oxidative stress parameters (hydrogen peroxide, H2O2 and malondialdehyde, MDA) and increased expression of the apoptotic initiator caspase 8 in the heart and kidneys. There was significant reduction (p<0.05) in reduced glutathione (GSH) in cardiac and renal tissues; reduction in superoxide dismutase (SOD) activity in the kidneys and adaptive increases in Glutathione S-transferase (GST) and catalase (CAT). CoCl2 also produced significant reduction (p<0.05) in systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood pressures. Oral COG and gallic acid treatment significantly reduced (p<0.05) the levels of H2O2 and MDA; with reduced expression of caspase 8 and restoration of GSH levels, GPx, SOD and CAT activities, howbeit, to varying degrees in the heart and kidneys. COG (200mg/kg) was most effective in restoring the blood pressures in the rats to near control levels. CoCl2-induced histopathological lesions including myocardial infarction and inflammation and renal tubular necrosis and inflammation were effectively ameliorated by the treatments administered. This study provides evidence for the protective roles of O. gratissimum and gallic acid by modulation of CoCl2-induced alterations in blood pressure, antioxidant status and pro-apoptotic caspase 8 in Wistar rats.
Collapse
Affiliation(s)
- A S Akinrinde
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | - A A Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - T O Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - E R Asenuga
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - T O Ajibade
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
159
|
Moriwaki K, Balaji S, Chan FKM. Border Security: The Role of RIPK3 in Epithelium Homeostasis. Front Cell Dev Biol 2016; 4:70. [PMID: 27446921 PMCID: PMC4923062 DOI: 10.3389/fcell.2016.00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023] Open
Abstract
Receptor interacting protein kinase 3 (RIPK3) is a crucial inducer of necroptosis. Its activity is controlled by interaction with other signal adaptors through the “RIP homotypic interaction motif” (RHIM). Recent studies revealed a critical function for RIPK3 in the maintenance of epithelial tissue integrity. In mice with genetic deficiency of the apoptosis adaptors FADD or caspase 8, RIPK3 promotes necroptotic cell death of epithelial cells, leading to excessive and lethal inflammation. In contrast, when FADD and caspase 8 functions are intact, RIPK3 serves as a protector of intestinal epithelial integrity by promoting injury-induced wound repair. In the latter case, RIPK3 promotes optimal cytokine expression by cells of hematopoietic origin. Specifically, bone marrow derived dendritic cells (BMDCs) have an obligate requirement for RIPK3 for optimal secretion of mature IL-1β and other inflammatory cytokines in response to toll-like receptor 4 (TLR4) stimulation. RIPK3 promotes cytokine expression through two complementary mechanisms: NF-κB dependent gene transcription and processing of pro-IL-1β. We propose that RIPK3 functions in different cell compartments to mediate inflammation through distinct mechanisms.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School Worcester, MA, USA
| | - Sakthi Balaji
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School Worcester, MA, USA
| | - Francis Ka-Ming Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School Worcester, MA, USA
| |
Collapse
|
160
|
Justus SJ, Ting AT. Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev 2016; 266:145-60. [PMID: 26085213 DOI: 10.1111/imr.12304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, studies have shown how instrumental programmed cell death (PCD) can be in innate and adaptive immune responses. PCD can be a means to maintain homeostasis, prevent or promote microbial pathogenesis, and drive autoimmune disease and inflammation. The molecular machinery regulating these cell death programs has been examined in detail, although there is still much to be explored. A master regulator of programmed cell death and innate immunity is receptor-interacting protein kinase 1 (RIPK1), which has been implicated in orchestrating various pathologies via the induction of apoptosis, necroptosis, and nuclear factor-κB-driven inflammation. These and other roles for RIPK1 have been reviewed elsewhere. In a reflection of the ability of tumor necrosis factor (TNF) to induce either survival or death response, this molecule in the TNF pathway can transduce either a survival or a death signal. The intrinsic killing capacity of RIPK1 is usually kept in check by the chains of ubiquitin, enabling it to serve in a prosurvival capacity. In this review, the intricate regulatory mechanisms responsible for restraining RIPK1 from killing are discussed primarily in the context of the TNF signaling pathway and how, when these mechanisms are disrupted, RIPK1 is free to unveil its program of cellular demise.
Collapse
Affiliation(s)
- Scott J Justus
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian T Ting
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
161
|
Dillon CP, Tummers B, Baran K, Green DR. Developmental checkpoints guarded by regulated necrosis. Cell Mol Life Sci 2016; 73:2125-36. [PMID: 27056574 PMCID: PMC11108279 DOI: 10.1007/s00018-016-2188-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
The process of embryonic development is highly regulated through the symbiotic control of differentiation and programmed cell death pathways, which together sculpt tissues and organs. The importance of programmed necrotic (RIPK-dependent necroptosis) cell death during development has recently been recognized as important and has largely been characterized using genetically engineered animals. Suppression of necroptosis appears to be essential for murine development and occurs at three distinct checkpoints, E10.5, E16.5, and P1. These distinct time points have helped delineate the molecular pathways and regulation of necroptosis. The embryonic lethality at E10.5 seen in knockouts of caspase-8, FADD, or FLIP (cflar), components of the extrinsic apoptosis pathway, resulted in pallid embryos that did not exhibit the expected cellular expansions. This was the first suggestion that these factors play an important role in the inhibition of necroptotic cell death. The embryonic lethality at E16.5 highlighted the importance of TNF engaging necroptosis in vivo, since elimination of TNFR1 from casp8 (-/-), fadd (-/-), or cflar (-/-), ripk3 (-/-) embryos delayed embryonic lethality from E10.5 until E16.5. The P1 checkpoint demonstrates the dual role of RIPK1 in both the induction and inhibition of necroptosis, depending on the upstream signal. This review summarizes the role of necroptosis in development and the genetic evidence that helped detail the molecular mechanisms of this novel pathway of programmed cell death.
Collapse
Affiliation(s)
- Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Katherine Baran
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
162
|
Zhang J, Yang Y, He W, Sun L. Necrosome core machinery: MLKL. Cell Mol Life Sci 2016; 73:2153-63. [PMID: 27048809 PMCID: PMC11108342 DOI: 10.1007/s00018-016-2190-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
In the study of regulated cell death, the rapidly expanding field of regulated necrosis, in particular necroptosis, has been drawing much attention. The signaling of necroptosis represents a sophisticated form of a death pathway. Anti-caspase mechanisms (e.g., using inhibitors of caspases, or genetic ablation of caspase-8) switch cell fate from apoptosis to necroptosis. The initial extracellular death signals regulate RIP1 and RIP3 kinase activation. The RIP3-associated death complex assembly is necessary and sufficient to initiate necroptosis. MLKL was initially identified as an essential mediator of RIP1/RIP3 kinase-initiated necroptosis. Recent studies on the signal transduction using chemical tools and biomarkers support the idea that MLKL is able to make more functional sense for the core machinery of the necroptosis death complex, called the necrosome, to connect to the necroptosis execution. The experimental data available now have pointed that the activated MLKL forms membrane-disrupting pores causing membrane leakage, which extends the prototypical concept of morphological and biochemical events following necroptosis happening in vivo. The key role of MLKL in necroptosis signaling thus sheds light on the logic underlying this unique "membrane-explosive" cell death pathway. In this review, we provide the general concepts and strategies that underlie signal transduction of this form of cell death, and then focus specifically on the role of MLKL in necroptosis.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Yu Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Wenyan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China
| | - Liming Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Rd, Shanghai, 200031, China.
| |
Collapse
|
163
|
Peltzer N, Darding M, Walczak H. Holding RIPK1 on the Ubiquitin Leash in TNFR1 Signaling. Trends Cell Biol 2016; 26:445-461. [DOI: 10.1016/j.tcb.2016.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
|
164
|
Moriwaki K, Chan FKM. Necroptosis-independent signaling by the RIP kinases in inflammation. Cell Mol Life Sci 2016; 73:2325-34. [PMID: 27048814 PMCID: PMC4889460 DOI: 10.1007/s00018-016-2203-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
Recent advances have identified a signaling cascade involving receptor interacting protein kinase 1 (RIPK1), RIPK3 and the pseudokinase mixed lineage kinase domain-like (MLKL) that is crucial for induction of necroptosis, a non-apoptotic form of cell death. RIPK1-RIPK3-MLKL-mediated necroptosis has been attributed to cause many inflammatory diseases through the release of cellular damage-associated molecular patterns (DAMPs). In addition to necroptosis, emerging evidence suggests that these necroptosis signal adaptors can also facilitate inflammation independent of cell death. In particular, the RIP kinases can drive NF-κB and inflammasome activation independent of cell death. In this review, we will discuss recent discoveries that led to this realization and present arguments why cell death-independent signaling by the RIP kinases may have a more important role in inflammation than necroptosis.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
165
|
Tortola L, Nitsch R, Bertrand MJM, Kogler M, Redouane Y, Kozieradzki I, Uribesalgo I, Fennell LM, Daugaard M, Klug H, Wirnsberger G, Wimmer R, Perlot T, Sarao R, Rao S, Hanada T, Takahashi N, Kernbauer E, Demiröz D, Lang M, Superti-Furga G, Decker T, Pichler A, Ikeda F, Kroemer G, Vandenabeele P, Sorensen PH, Penninger JM. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep 2016; 15:1481-1492. [PMID: 27160902 PMCID: PMC4893156 DOI: 10.1016/j.celrep.2016.04.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/11/2015] [Accepted: 04/04/2016] [Indexed: 12/19/2022] Open
Abstract
The HECT domain E3 ligase HACE1 has been identified as a tumor suppressor in multiple cancers. Here, we report that HACE1 is a central gatekeeper of TNFR1-induced cell fate. Genetic inactivation of HACE1 inhibits TNF-stimulated NF-κB activation and TNFR1-NF-κB-dependent pathogen clearance in vivo. Moreover, TNF-induced apoptosis was impaired in hace1 mutant cells and knockout mice in vivo. Mechanistically, HACE1 is essential for the ubiquitylation of the adaptor protein TRAF2 and formation of the apoptotic caspase-8 effector complex. Intriguingly, loss of HACE1 does not impair TNFR1-mediated necroptotic cell fate via RIP1 and RIP3 kinases. Loss of HACE1 predisposes animals to colonic inflammation and carcinogenesis in vivo, which is markedly alleviated by genetic inactivation of RIP3 kinase and TNFR1. Thus, HACE1 controls TNF-elicited cell fate decisions and exerts tumor suppressor and anti-inflammatory activities via a TNFR1-RIP3 kinase-necroptosis pathway. Hace1 deficiency impairs TNF-driven NF-κB activation and apoptosis Necroptosis via RIP1/RIP3/MLKL is still functional in the absence of Hace1 Hace1–/– animals show enhanced severity of colitis and colon cancer Genetic inactivation of RIP3 and TNFR1 reverts the phenotype of hace1–/– mice
Collapse
Affiliation(s)
- Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Roberto Nitsch
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria; Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Mathieu J M Bertrand
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Gent University, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Melanie Kogler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Younes Redouane
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Ivona Kozieradzki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Iris Uribesalgo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Lilian M Fennell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Helene Klug
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Gerald Wirnsberger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Reiner Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Thomas Perlot
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Renu Sarao
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Shuan Rao
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Toshikatsu Hanada
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Nozomi Takahashi
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Gent University, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Elisabeth Kernbauer
- Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9/4, 1030 Vienna, Austria
| | - Duygu Demiröz
- Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9/4, 1030 Vienna, Austria
| | - Michaela Lang
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Christian Doppler Laboratory for Molecular Cancer Chemoprevention, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Thomas Decker
- Max F. Perutz Laboratories, University of Vienna, Dr Bohrgasse 9/4, 1030 Vienna, Austria
| | - Andrea Pichler
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Fumiyo Ikeda
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Guido Kroemer
- INSERM U848, 39 rue Camille Desmoulins, 94805 Villejuif, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 39 rue Camille Desmoulins, 94805 Villejuif, France; Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, 75006 Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Université Paris Descartes/Paris 5, Sorbonne Paris Cité, 75006 Paris, France
| | - Peter Vandenabeele
- Inflammation Research Center, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Gent University, Technologiepark 927, Zwijnaarde 9052, Belgium
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Center, University of British Columbia, Vancouver, BC V5Z1L3, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.
| |
Collapse
|
166
|
Abstract
Receptor-interacting protein kinase-3 (RIP3, or RIPK3) is an essential protein in the "programmed", or "regulated" necrosis cell death pathway that is activated in response to death receptor ligands and other types of cellular stress. Programmed necrotic cell death is distinguished from its apoptotic counterpart in that it is not characterized by the activation of caspases; unlike apoptosis, programmed necrosis results in plasma membrane rupture, thus spilling the contents of the cell and triggering the activation of the immune system and inflammation. Here we discuss findings, including our own recent data, which show that RIP3 protein expression is absent in many cancer cell lines. The recent data suggests that the lack of RIP3 expression in a majority of these deficient cell lines is due to methylation-dependent silencing, which limits the responses of these cells to pro-necrotic stimuli. Importantly, RIP3 expression may be restored in many cancer cells through the use of hypomethylating agents, such as decitabine. The potential implications of loss of RIP3 expression in cancer are explored, along with possible consequences for chemotherapeutic response.
Collapse
Affiliation(s)
- Michael J Morgan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - You-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, 3Department of Biomedical Sciences, Graduate School, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
167
|
Zhang B, Liu SQ, Li C, Lykken E, Jiang S, Wong E, Gong Z, Tao Z, Zhu B, Wan Y, Li QJ. MicroRNA-23a Curbs Necrosis during Early T Cell Activation by Enforcing Intracellular Reactive Oxygen Species Equilibrium. Immunity 2016; 44:568-581. [PMID: 26921109 PMCID: PMC4794397 DOI: 10.1016/j.immuni.2016.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/18/2015] [Accepted: 01/11/2016] [Indexed: 01/01/2023]
Abstract
Upon antigen engagement, augmented cytosolic reactive oxygen species (ROS) are needed to achieve optimal T cell receptor (TCR) signaling. However, uncontrolled ROS production is a prominent cause of necrosis, which elicits hyper-inflammation and tissue damage. Hence, it is critical to program activated T cells to achieve ROS equilibrium. Here, we determined that miR-23a is indispensable for effector CD4(+) T cell expansion, particularly by providing early protection from excessive necrosis. Mechanistically, miR-23a targeted PPIF, gatekeeper of the mitochondria permeability transition pore, thereby restricting ROS flux and maintaining mitochondrial integrity. Upon acute Listeria monocytogenes infection, deleting miR-23a in T cells resulted in excessive inflammation, massive liver damage, and a marked mortality increase, which highlights the essential role of miR-23a in maintaining immune homeostasis.
Collapse
Affiliation(s)
- Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| | - Si-Qi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| | - Chaoran Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| | - Erik Lykken
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| | - Shan Jiang
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| | - Elizabeth Wong
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| | - Zhihua Gong
- Institute of Cancer; Xinqiao Hospital; 400037; China
| | - Zhongfen Tao
- Biomedical Analysis Center; The Third Military Medical University; Chongqing; 400037; China
| | - Bo Zhu
- Institute of Cancer; Xinqiao Hospital; 400037; China
| | - Ying Wan
- Biomedical Analysis Center; The Third Military Medical University; Chongqing; 400037; China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
168
|
Bayoumi AS, Sayed A, Broskova Z, Teoh JP, Wilson J, Su H, Tang YL, Kim IM. Crosstalk between Long Noncoding RNAs and MicroRNAs in Health and Disease. Int J Mol Sci 2016; 17:356. [PMID: 26978351 PMCID: PMC4813217 DOI: 10.3390/ijms17030356] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert “sponge-like” effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation.
Collapse
Affiliation(s)
- Ahmed S Bayoumi
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Amer Sayed
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - James Wilson
- Department of Internal Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Yao-Liang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
169
|
Chen D, Yu J, Zhang L. Necroptosis: an alternative cell death program defending against cancer. Biochim Biophys Acta Rev Cancer 2016; 1865:228-36. [PMID: 26968619 DOI: 10.1016/j.bbcan.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
Abstract
One of the hallmarks of cancer is resistance to programmed cell death, which maintains the survival of cells en route to oncogenic transformation and underlies therapeutic resistance. Recent studies demonstrate that programmed cell death is not confined to caspase-dependent apoptosis, but includes necroptosis, a form of necrotic death governed by Receptor-Interacting Protein 1 (RIP1), RIP3, and Mixed Lineage Kinase Domain-Like (MLKL) protein. Necroptosis serves as a critical cell-killing mechanism in response to severe stress and blocked apoptosis, and can be induced by inflammatory cytokines or chemotherapeutic drugs. Genetic or epigenetic alterations of necroptosis regulators such as RIP3 and cylindromatosis (CYLD), are frequently found in human tumors. Unlike apoptosis, necroptosis elicits a more robust immune response that may function as a defensive mechanism by eliminating tumor-causing mutations and viruses. Furthermore, several classes of anticancer agents currently under clinical development, such as SMAC and BH3 mimetics, can promote necroptosis in addition to apoptosis. A more complete understanding of the interplay among necroptosis, apoptosis, and other cell death modalities is critical for developing new therapeutic strategies to enhance killing of tumor cells.
Collapse
Affiliation(s)
- Dongshi Chen
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
170
|
Wang S, Zhang C, Hu L, Yang C. Necroptosis in acute kidney injury: a shedding light. Cell Death Dis 2016; 7:e2125. [PMID: 26938298 PMCID: PMC4823938 DOI: 10.1038/cddis.2016.37] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is a common and severe clinical condition with a heavy healthy burden around the world. In spite of supportive therapies, the mortality associated with AKI remains high. Our limited understanding of the complex cell death mechanism in the process of AKI impedes the development of desirable therapeutics. Necroptosis is a recently identified novel form of cell death contributing to numerable diseases and tissue damages. Increasing evidence has suggested that necroptosis has an important role in the pathogenesis of various types of AKI. Therefore, we present here the signaling pathways and main regulators of necroptosis that are potential candidate for therapeutic strategies. Moreover, we emphasize on the potential role and corresponding mechanisms of necroptosis in AKI based on recent advances, and also discuss the possible therapeutic regimens based on manipulating necroptosis. Taken together, the progress in this field sheds new light into the prevention and management of AKI in clinical practice.
Collapse
Affiliation(s)
- S Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - C Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - L Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - C Yang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
171
|
Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res 2016; 109:119-31. [PMID: 26921661 DOI: 10.1016/j.phrs.2016.02.020] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María J Pérez
- Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires, Argentina
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
172
|
Su Z, Yang Z, Xie L, DeWitt JP, Chen Y. Cancer therapy in the necroptosis era. Cell Death Differ 2016; 23:748-56. [PMID: 26915291 PMCID: PMC4832112 DOI: 10.1038/cdd.2016.8] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/21/2015] [Accepted: 01/03/2016] [Indexed: 12/14/2022] Open
Abstract
Necroptosis is a caspase-independent form of regulated cell death executed by the receptor-interacting protein kinase 1 (RIP1), RIP3, and mixed lineage kinase domain-like protein (MLKL). Recently, necroptosis-based cancer therapy has been proposed to be a novel strategy for antitumor treatment. However, a big controversy exists on whether this type of therapy is feasible or just a conceptual model. Proponents believe that because necroptosis and apoptosis use distinct molecular pathways, triggering necroptosis could be an alternative way to eradicate apoptosis-resistant cancer cells. This hypothesis has been preliminarily validated by recent studies. However, some skeptics doubt this strategy because of the intrinsic or acquired defects of necroptotic machinery observed in many cancer cells. Moreover, two other concerns are whether or not necroptosis inducers are selective in killing cancer cells without disturbing the normal cells and whether it will lead to inflammatory diseases. In this review, we summarize current studies surrounding this controversy on necroptosis-based antitumor research and discuss the advantages, potential issues, and countermeasures of this novel therapy.
Collapse
Affiliation(s)
- Z Su
- Department of Biochemistry and Molecular Biology, Medical School, Southeast University, Nanjing, Jiangsu 210009, China.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Z Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - L Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - J P DeWitt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Y Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
173
|
Fight or flight: regulation of emergency hematopoiesis by pyroptosis and necroptosis. Curr Opin Hematol 2016; 22:293-301. [PMID: 26049749 DOI: 10.1097/moh.0000000000000148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW A feature of the innate immune response that is conserved across kingdoms is the induction of cell death. In this review, we discuss the direct and indirect effects of increased inflammatory cell death, including pyroptosis - a caspase-1-dependent cell death - and necroptosis - a receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein-dependent, caspase-independent cell death - on emergency hematopoiesis. RECENT FINDINGS Activation of nonapoptotic cell death pathways during infection can trigger release of cytokines and/or damage-associated molecular patterns such as interleukin (IL)-1α, IL-1β, IL-18, IL-33, high-mobility group protein B1, and mitochondrial DNA to promote emergency hematopoiesis. During systemic infection, pyroptosis and necroptosis can directly kill hematopoietic stem and progenitor cells, which results in impaired hematopoiesis, cytopenia, and immunosuppression. Although originally described as discrete entities, there now appear to be more intimate connections between the nonapoptotic and death receptor signaling pathways. SUMMARY The choice to undergo pyroptotic and necroptotic cell death constitutes a rapid response system serving to eliminate infected cells, including hematopoietic stem and progenitor cells. This system has the potential to be detrimental to emergency hematopoiesis during severe infection. We discuss the potential of pharmacological intervention for the pyroptosis and necroptosis pathways that may be beneficial during periods of infection and emergency hematopoiesis.
Collapse
|
174
|
Seo J, Lee EW, Sung H, Seong D, Dondelinger Y, Shin J, Jeong M, Lee HK, Kim JH, Han SY, Lee C, Seong JK, Vandenabeele P, Song J. CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 2016; 18:291-302. [DOI: 10.1038/ncb3314] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/18/2016] [Indexed: 12/16/2022]
|
175
|
Abstract
Necroptosis is a regulated form of necrosis, with the dying cell rupturing and releasing intracellular components that can trigger an innate immune response. Toll-like receptor 3 and 4 agonists, tumor necrosis factor, certain viral infections, or the T cell receptor can trigger necroptosis if the activity of the protease caspase-8 is compromised. Necroptosis signaling is modulated by the kinase RIPK1 and requires the kinase RIPK3 and the pseudokinase MLKL. Either RIPK3 deficiency or RIPK1 inhibition confers resistance in various animal disease models, suggesting that inflammation caused by necroptosis contributes to tissue damage and that inhibitors of these kinases could have therapeutic potential. Recent studies have revealed unexpected complexity in the regulation of cell death programs by RIPK1 and RIPK3 with the possibility that necroptosis is but one mechanism by which these kinases promote inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech, Inc., South San Francisco, California 94080;
| | - Gerard Manning
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California 94080;
| |
Collapse
|
176
|
A critical role for cellular inhibitor of protein 2 (cIAP2) in colitis-associated colorectal cancer and intestinal homeostasis mediated by the inflammasome and survival pathways. Mucosal Immunol 2016; 9:146-58. [PMID: 26037070 DOI: 10.1038/mi.2015.46] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/08/2015] [Indexed: 02/04/2023]
Abstract
Cellular inhibitors of apoptosis proteins (cIAPs) are critical arbiters of cell death and key mediators of inflammation and innate immunity. cIAP2 is frequently overexpressed in colorectal cancer and in regenerating crypts of ulcerative colitis patients. However, its corresponding functions in intestinal homeostasis and underlying mechanisms in disease pathogenesis are poorly understood. We found that mice deficient in cIAP2 exhibited reduced colitis-associated colorectal cancer tumor burden but, surprisingly, enhanced susceptibility to acute and chronic colitis. The exacerbated colitis phenotype of cIAP2-deficient mice was mediated by increased cell death and impaired activation of the regenerative inflammasome-interleukin-18 (IL-18) pathway required for tissue repair following injury. Accordingly, administration of recombinant IL-18 or pharmacological inhibition of caspases or the kinase RIPK1 protected cIAP2-deficient mice from colitis and restored intestinal epithelial barrier architecture. Thus, cIAP2 orchestrates intestinal homeostasis by exerting a dual function in suppressing cell death and promoting intestinal epithelial cell proliferation and crypt regeneration.
Collapse
|
177
|
Dillon CP, Green DR. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 930:1-23. [PMID: 27558815 DOI: 10.1007/978-3-319-39406-0_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.
Collapse
Affiliation(s)
- Christopher P Dillon
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
178
|
Moriwaki K, Farias Luz N, Balaji S, De Rosa MJ, O'Donnell CL, Gough PJ, Bertin J, Welsh RM, Chan FKM. The Mitochondrial Phosphatase PGAM5 Is Dispensable for Necroptosis but Promotes Inflammasome Activation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 196:407-15. [PMID: 26582950 DOI: 10.4049/jimmunol.1501662] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
Abstract
The cytokine IL-1β is intimately linked to many pathological inflammatory conditions. Mature IL-1β secretion requires cleavage by the inflammasome. Recent evidence indicates that many cell death signal adaptors have regulatory roles in inflammasome activity. These include the apoptosis inducers FADD and caspase 8, and the necroptosis kinases receptor interacting protein kinase 1 (RIPK1) and RIPK3. PGAM5 is a mitochondrial phosphatase that has been reported to function downstream of RIPK3 to promote necroptosis and IL-1β secretion. To interrogate the biological function of PGAM5, we generated Pgam5(-/-) mice. We found that Pgam5(-/-) mice were smaller compared with wild type littermates, and male Pgam5(-/-) mice were born at sub-Mendelian ratio. Despite these growth and survival defects, Pgam5(-/-) cells responded normally to multiple inducers of apoptosis and necroptosis. Rather, we found that PGAM5 is critical for IL-1β secretion in response to NLRP3 and AIM2 inflammasome agonists. Moreover, vesicular stomatosis virus-induced IL-1β secretion was impaired in Pgam5(-/-) bone marrow-derived macrophages, but not in Ripk3(-/-) bone marrow-derived dendritic cells, indicating that PGAM5 functions independent of RIPK3 to promote inflammasome activation. Mechanistically, PGAM5 promotes ASC polymerization, maintenance of mitochondrial integrity, and optimal reactive oxygen species production in response to inflammasome signals. Hence PGAM5 is a novel regulator of inflammasome and caspase 1 activity that functions independently of RIPK3.
Collapse
Affiliation(s)
- Kenta Moriwaki
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Nivea Farias Luz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Universidade Federal da Bahia, Salvador-State of Bahia 40110-060, Brazil; and
| | - Sakthi Balaji
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Maria Jose De Rosa
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carey L O'Donnell
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422
| | - Raymond M Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
179
|
Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, Ye J, Zhang X, Chang A, Vakifahmetoglu-Norberg H, Geng J, Py B, Zhou W, Amin P, Berlink Lima J, Qi C, Yu Q, Trapp B, Yuan J. Activation of necroptosis in multiple sclerosis. Cell Rep 2015; 10:1836-49. [PMID: 25801023 DOI: 10.1016/j.celrep.2015.02.051] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 01/14/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022] Open
Abstract
Multiple sclerosis (MS), a common neurodegenerative disease of the CNS, is characterized by the loss of oligodendrocytes and demyelination. Tumor necrosis factor α (TNF-α), a proinflammatory cytokine implicated in MS, can activate necroptosis, a necrotic cell death pathway regulated by RIPK1 and RIPK3 under caspase-8-deficient conditions. Here, we demonstrate defective caspase-8 activation, as well as activation of RIPK1, RIPK3, and MLKL, the hallmark mediators of necroptosis, in the cortical lesions of human MS pathological samples. Furthermore, we show that MS pathological samples are characterized by an increased insoluble proteome in common with other neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson’s disease (PD), and Huntington's disease (HD). Finally, we show that necroptosis mediates oligodendrocyte degeneration induced by TNF-α and that inhibition of RIPK1 protects against oligodendrocyte cell death in two animal models of MS and in culture. Our findings demonstrate that necroptosis is involved in MS and suggest that targeting RIPK1 may represent a therapeutic strategy for MS.
Collapse
|
180
|
Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 2015; 127:139-48. [PMID: 26463424 DOI: 10.1182/blood-2015-06-654194] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/03/2015] [Indexed: 12/16/2022] Open
Abstract
Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress-induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis.
Collapse
|
181
|
Saitoh Y, Hamano A, Mochida K, Kakeya A, Uno M, Tsuruyama E, Ichikawa H, Tokunaga F, Utsunomiya A, Watanabe T, Yamaoka S. A20 targets caspase-8 and FADD to protect HTLV-I-infected cells. Leukemia 2015; 30:716-27. [PMID: 26437781 DOI: 10.1038/leu.2015.267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 08/31/2015] [Accepted: 09/18/2015] [Indexed: 12/15/2022]
Abstract
Adult T-cell leukemia (ATL) arises from a human T-cell leukemia virus type I (HTLV-I)-infected cell and has few therapeutic options. Here, we have uncovered a previously unrecognized role for a ubiquitin-editing enzyme A20 in the survival of HTLV-I-infected cells. Unlike in lymphomas of the B-cell lineage, A20 is abundantly expressed in primary ATL cells without notable mutations. Depletion of A20 in HTLV-I-infected cells resulted in caspase activation, cell death induction and impaired tumorigenicity in mouse xenograft models. Mechanistically, A20 stably interacts with caspase-8 and Fas-associated via death domain (FADD) in HTLV-I-infected cells. Mutational studies revealed that A20 supports the growth of HTLV-I-infected cells independent of its catalytic functions and that the zinc-finger domains are required for the interaction with and regulation of caspases. These results indicate a pivotal role for A20 in the survival of HTLV-I-infected cells and implicate A20 as a potential therapeutic target in ATL.
Collapse
Affiliation(s)
- Y Saitoh
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - A Hamano
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - K Mochida
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - A Kakeya
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Uno
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - E Tsuruyama
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - H Ichikawa
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - F Tokunaga
- Laboratory of Molecular Cell Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - A Utsunomiya
- Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan
| | - T Watanabe
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - S Yamaoka
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
182
|
Jia X, Wang D, Gao N, Cao H, Zhang H. Atrazine Triggers the Extrinsic Apoptosis Pathway in Lymphocytes of the Frog Pelophylax nigromaculata in Vivo. Chem Res Toxicol 2015; 28:2010-8. [DOI: 10.1021/acs.chemrestox.5b00238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiuying Jia
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
- Key
Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China, 310036
| | - Dandan Wang
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
| | - Nana Gao
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
| | - Hui Cao
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
| | - Hangjun Zhang
- College
of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China, 310036
- Key
Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, China, 310036
| |
Collapse
|
183
|
Geserick P, Wang J, Schilling R, Horn S, Harris PA, Bertin J, Gough PJ, Feoktistova M, Leverkus M. Absence of RIPK3 predicts necroptosis resistance in malignant melanoma. Cell Death Dis 2015; 6:e1884. [PMID: 26355347 PMCID: PMC4650439 DOI: 10.1038/cddis.2015.240] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/07/2015] [Accepted: 07/13/2015] [Indexed: 12/14/2022]
Abstract
Acquired or intrinsic resistance to apoptotic and necroptotic stimuli is considered a major hindrance of therapeutic success in malignant melanoma. Inhibitor of apoptosis proteins (IAPs) are important regulators of apoptotic and necroptotic cell death mediated by numerous cell death signalling platforms. In this report we investigated the impact of IAPs for cell death regulation in malignant melanoma. Suppression of IAPs strongly sensitized a panel of melanoma cells to death ligand-induced cell death, which, surprisingly, was largely mediated by apoptosis, as it was completely rescued by addition of caspase inhibitors. Interestingly, the absence of necroptosis signalling correlated with a lack of receptor-interacting protein kinase-3 (RIPK3) mRNA and protein expression in all cell lines, whereas primary melanocytes and cultured nevus cells strongly expressed RIPK3. Reconstitution of RIPK3, but not a RIPK3-kinase dead mutant in a set of melanoma cell lines overcame CD95L/IAP antagonist-induced necroptosis resistance independent of autocrine tumour necrosis factor secretion. Using specific inhibitors, functional studies revealed that RIPK3-mediated mixed-lineage kinase domain-like protein (MLKL) phosphorylation and necroptosis induction critically required receptor-interacting protein kinase-1 signalling. Furthermore, the inhibitor of mutant BRAF Dabrafenib, but not Vemurafenib, inhibited necroptosis in melanoma cells whenever RIPK3 is present. Our data suggest that loss of RIPK3 in melanoma and selective inhibition of the RIPK3/MLKL axis by BRAF inhibitor Dabrafenib, but not Vemurafenib, is critical to protect from necroptosis. Strategies that allow RIPK3 expression may allow unmasking the necroptotic signalling machinery in melanoma and points to reactivation of this pathway as a treatment option for metastatic melanoma.
Collapse
Affiliation(s)
- P Geserick
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - J Wang
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - R Schilling
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - S Horn
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - P A Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - M Feoktistova
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| | - M Leverkus
- Section of Molecular Dermatology, Department of Dermatology, Venerology and Allergology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.,Department for Dermatology and Allergology, University Hospital Aachen, RWTH Aachen, Aachen, Germany
| |
Collapse
|
184
|
DED or alive: assembly and regulation of the death effector domain complexes. Cell Death Dis 2015; 6:e1866. [PMID: 26313917 PMCID: PMC4558505 DOI: 10.1038/cddis.2015.213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.
Collapse
|
185
|
Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, Feng C, Teng S, Zhou LY, Gong Y, Zhou ZX, Liu J, Wang JL, Li PF. MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury Through Targeting FADD. Circ Res 2015; 117:352-363. [PMID: 26038570 DOI: 10.1161/circresaha.117.305781] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/02/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Necrosis is one of the main forms of cardiomyocyte death in heart disease. Recent studies have demonstrated that certain types of necrosis are regulated and programmed dependent on the activation of receptor-interacting serine/threonine-protein kinase (RIPK) 1 and 3 which may be negatively regulated by Fas-associated protein with death domain (FADD). In addition, microRNAs and long noncoding RNAs have been shown to play important roles in various biological processes recently. OBJECTIVE The purpose of this study was to test the hypothesis that microRNA-103/107 and H19 can participate in the regulation of RIPK1- and RIPK3-dependent necrosis in fetal cardiomyocyte-derived H9c2 cells and myocardial infarction through targeting FADD. METHODS AND RESULTS Our results show that FADD participates in H2O2-induced necrosis by influencing the formation of RIPK1 and RIPK3 complexes in H9c2 cells. We further demonstrate that miR-103/107 target FADD directly. Knockdown of miR-103/107 antagonizes necrosis in the cellular model and also myocardial infarction in a mouse ischemia/reperfusion model. The miR-103/107-FADD pathway does not participate in tumor necrosis factor-α-induced necrosis. In exploring the molecular mechanism by which miR-103/107 are regulated, we show that long noncoding RNA H19 directly binds to miR-103/107 and regulates FADD expression and necrosis. CONCLUSIONS Our results reveal a novel myocardial necrosis regulation model, which is composed of H19, miR-103/107, and FADD. Modulation of their levels may provide a new approach for preventing myocardial necrosis.
Collapse
Affiliation(s)
- Jian-Xun Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Xiao-Jie Zhang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Qian Li
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Kun Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Yin Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Jian-Qin Jiao
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Chang Feng
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Sun Teng
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Lu-Yu Zhou
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Ying Gong
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Zhi-Xia Zhou
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Jia Liu
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Jian-Ling Wang
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.)
| | - Pei-feng Li
- From the Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, China (J.-X.W., K.W., Y.W., S.T., L.-Y.Z., Y.G., Z.-X.Z., J.L., J.-L.W., P.-f.L.); and State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (X.-J.Z., Q.L., J.-Q.J., C.F.).
| |
Collapse
|
186
|
Abstract
Tumour necrosis factor (TNF) is a pro-inflammatory cytokine that has important roles in mammalian immunity and cellular homeostasis. Deregulation of TNF receptor (TNFR) signalling is associated with many inflammatory disorders, including various types of arthritis and inflammatory bowel disease, and targeting TNF has been an effective therapeutic strategy in these diseases. This Review focuses on the recent advances that have been made in understanding TNFR signalling and the consequences of its deregulation for cellular survival, apoptosis and regulated necrosis. We discuss how TNF-induced survival signals are distinguished from those that lead to cell death. Finally, we provide a brief overview of the role of TNF in inflammatory and autoimmune diseases, and we discuss up-to-date and future treatment strategies for these disorders.
Collapse
|
187
|
Kurmyshkina OV, Bogdanova AA, Volkova TO, Poltorak AN. Septic shock: innate molecular genetic mechanisms of the development of generalized inflammation. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
188
|
Chauhan L, Jenkins GD, Bhise N, Feldberg T, Mitra-Ghosh T, Fridley BL, Lamba JK. Genome-wide association analysis identified splicing single nucleotide polymorphism in CFLAR predictive of triptolide chemo-sensitivity. BMC Genomics 2015; 16:483. [PMID: 26121980 PMCID: PMC4485866 DOI: 10.1186/s12864-015-1614-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 05/05/2015] [Indexed: 11/16/2022] Open
Abstract
Background Triptolide is a therapeutic diterpenoid derived from the Chinese herb Tripterygium wilfordii Hook f. Triptolide has been shown to induce apoptosis by activation of pro-apoptotic proteins, inhibiting NFkB and c-KIT pathways, suppressing the Jak2 transcription, activating MAPK8/JNK signaling and modulating the heat shock responses. Results In the present study, we used lymphoblast cell lines (LCLs) derived from 55 unrelated Caucasian subjects to identify genetic markers predictive of cellular sensitivity to triptolide using genome wide association study. Our results identified SNPs on chromosome 2 associated with triptolide IC50 (p < 0.0001). This region included biologically interesting genes as CFLAR, PPIl3, Caspase 8/10, NFkB and STAT6. Identification of a splicing-SNP rs10190751, which regulates CFLAR alternatively spliced isoforms predictive of the triptolide cytotoxicity suggests its role in triptolides action. Our results from functional studies in Panc-1 cell lines further demonstrate potential role of CFLAR in triptolide toxicity. Analysis of gene-expression with cytotoxicity identified JAK1 expression to be a significant predictor of triptolide sensitivity. Conclusions Overall out results identified genetic factors associated with triptolide chemo-sensitivity thereby opening up opportunities to better understand its mechanism of action as well as utilize these biomarkers to predict therapeutic response in patients. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1614-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lata Chauhan
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA.
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Neha Bhise
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Tanya Feldberg
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Taraswi Mitra-Ghosh
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| | - Brooke L Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
189
|
Silke J, Rickard JA, Gerlic M. The diverse role of RIP kinases in necroptosis and inflammation. Nat Immunol 2015; 16:689-97. [DOI: 10.1038/ni.3206] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 12/14/2022]
|
190
|
|
191
|
Onizawa M, Oshima S, Schulze-Topphoff U, Oses-Prieto JA, Lu T, Tavares R, Prodhomme T, Duong B, Whang MI, Advincula R, Agelidis A, Barrera J, Wu H, Burlingame A, Malynn BA, Zamvil SS, Ma A. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol 2015; 16:618-27. [PMID: 25939025 PMCID: PMC4439357 DOI: 10.1038/ni.3172] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/08/2015] [Indexed: 12/14/2022]
Abstract
A20 is an anti-inflammatory protein linked to multiple human diseases; however, the mechanisms by which A20 prevents inflammatory disease are incompletely defined. We found that A20-deficient T cells and fibroblasts were susceptible to caspase-independent and kinase RIPK3-dependent necroptosis. Global deficiency in RIPK3 significantly restored the survival of A20-deficient mice. A20-deficient cells exhibited exaggerated formation of RIPK1-RIPK3 complexes. RIPK3 underwent physiological ubiquitination at Lys5 (K5), and this ubiquitination event supported the formation of RIPK1-RIPK3 complexes. Both the ubiquitination of RIPK3 and formation of the RIPK1-RIPK3 complex required the catalytic cysteine of A20's deubiquitinating motif. Our studies link A20 and the ubiquitination of RIPK3 to necroptotic cell death and suggest additional mechanisms by which A20 might prevent inflammatory disease.
Collapse
Affiliation(s)
- Michio Onizawa
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Shigeru Oshima
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Ulf Schulze-Topphoff
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Timothy Lu
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Rita Tavares
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Thomas Prodhomme
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Bao Duong
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Michael I. Whang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Rommel Advincula
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Alex Agelidis
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Julio Barrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard, Medical School, Boston, MA 02115
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143
| | - Barbara A. Malynn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Scott S. Zamvil
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94143
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
192
|
Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, Oberst A, Quarato G, Low J, Cripps JG, Chen T, Green DR. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ 2015; 23:76-88. [PMID: 26024392 DOI: 10.1038/cdd.2015.70] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/14/2022] Open
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) mediates necroptosis by translocating to the plasma membrane and inducing its rupture. The activation of MLKL occurs in a multimolecular complex (the 'necrosome'), which is comprised of MLKL, receptor-interacting serine/threonine kinase (RIPK)-3 (RIPK3) and, in some cases, RIPK1. Within this complex, RIPK3 phosphorylates the activation loop of MLKL, promoting conformational changes and allowing the formation of MLKL oligomers, which migrate to the plasma membrane. Previous studies suggested that RIPK3 could phosphorylate the murine MLKL activation loop at Ser345, Ser347 and Thr349. Moreover, substitution of the Ser345 for an aspartic acid creates a constitutively active MLKL, independent of RIPK3 function. Here we examine the role of each of these residues and found that the phosphorylation of Ser345 is critical for RIPK3-mediated necroptosis, Ser347 has a minor accessory role and Thr349 seems to be irrelevant. We generated a specific monoclonal antibody to detect phospho-Ser345 in murine cells. Using this antibody, a series of MLKL mutants and a novel RIPK3 inhibitor, we demonstrate that the phosphorylation of Ser345 is not required for the interaction between RIPK3 and MLKL in the necrosome, but is essential for MLKL translocation, accumulation in the plasma membrane, and consequent necroptosis.
Collapse
Affiliation(s)
- D A Rodriguez
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - R Weinlich
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - S Brown
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - C Guy
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - P Fitzgerald
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - C P Dillon
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - A Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - G Quarato
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J Low
- Department Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - J G Cripps
- Institute for Cellular Therapeutics, University of Louisville, Louisville, KY 40202, USA
| | - T Chen
- Department Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - D R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
193
|
Sakamaki K, Imai K, Tomii K, Miller DJ. Evolutionary analyses of caspase-8 and its paralogs: Deep origins of the apoptotic signaling pathways. Bioessays 2015; 37:767-76. [DOI: 10.1002/bies.201500010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kazuhiro Sakamaki
- Department of Animal Development and Physiology; Graduate School of Biostudies; Kyoto University; Kyoto Japan
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery; National Institute of Advanced Industrial Science and Technology (AIST); Tokyo Japan
| | - David J. Miller
- Department of Molecular and Cell Biology; ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Queensland Australia
| |
Collapse
|
194
|
Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y, Xu-Monette ZY, Young KH, Xiong W, Wysoczynski M, Sithu SD, Srivastava S, Bhatnagar A, Li Y. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 2015; 6:7151. [PMID: 25990308 PMCID: PMC4440243 DOI: 10.1038/ncomms8151] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/10/2015] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (miRNAs) regulate apoptosis, yet their role in regulated necrosis remains unknown. miR-21 is overexpressed in nearly all human cancer types and its role as an oncogene is suggested to largely depend on its anti-apoptotic action. Here we show that miR-21 is overexpressed in a murine model of acute pancreatitis, a pathologic condition involving RIP3-dependent regulated necrosis (necroptosis). Therefore, we investigate the role of miR-21 in acute pancreatitis injury and necroptosis. miR-21 deficiency protects against caerulein- or L-arginine-induced acute pancreatitis in mice. miR-21 inhibition using locked-nucleic-acid-modified oligonucleotide effectively reduces pancreatitis severity. miR-21 deletion is also protective in tumour necrosis factor-induced systemic inflammatory response syndrome. These data suggest that miRNAs are critical participants in necroptosis and miR-21 enhances cellular necrosis by negatively regulating tumour suppressor genes associated with the death-receptor-mediated intrinsic apoptosis pathway, and could be a therapeutic target for preventing pathologic necrosis.
Collapse
Affiliation(s)
- Xiaodong Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Institute of Pharmaceutical Research, South China Normal University, Guangzhou, 510631, China
| | - Daniel J. Conklin
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, 580 S. Preston St., Delia Baxter, Louisville, KY, 40202
| | - Fenge Li
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, 580 S. Preston St., Delia Baxter, Louisville, KY, 40202
| | - Zhongping Dai
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Xiang Hua
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, 40202
| | - Zijun Y. Xu-Monette
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ken H. Young
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Wei Xiong
- Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Marcin Wysoczynski
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, 580 S. Preston St., Delia Baxter, Louisville, KY, 40202
| | - Srinivas D. Sithu
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, 580 S. Preston St., Delia Baxter, Louisville, KY, 40202
| | - Sanjay Srivastava
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, 580 S. Preston St., Delia Baxter, Louisville, KY, 40202
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Department of Medicine, University of Louisville, 580 S. Preston St., Delia Baxter, Louisville, KY, 40202
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
195
|
Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res 2015; 25:707-25. [PMID: 25952668 DOI: 10.1038/cr.2015.56] [Citation(s) in RCA: 371] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/08/2015] [Accepted: 03/25/2015] [Indexed: 01/20/2023] Open
Abstract
Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is an essential part of the cellular machinery that executes "programmed" or "regulated" necrosis. Here we show that programmed necrosis is activated in response to many chemotherapeutic agents and contributes to chemotherapy-induced cell death. However, we show that RIP3 expression is often silenced in cancer cells due to genomic methylation near its transcriptional start site, thus RIP3-dependent activation of MLKL and downstream programmed necrosis during chemotherapeutic death is largely repressed. Nevertheless, treatment with hypomethylating agents restores RIP3 expression, and thereby promotes sensitivity to chemotherapeutics in a RIP3-dependent manner. RIP3 expression is reduced in tumors compared to normal tissue in 85% of breast cancer patients, suggesting that RIP3 deficiency is positively selected during tumor growth/development. Since hypomethylating agents are reasonably well-tolerated in patients, we propose that RIP3-deficient cancer patients may benefit from receiving hypomethylating agents to induce RIP3 expression prior to treatment with conventional chemotherapeutics.
Collapse
|
196
|
Selmi T, Alecci C, dell' Aquila M, Montorsi L, Martello A, Guizzetti F, Volpi N, Parenti S, Ferrari S, Salomoni P, Grande A, Zanocco-Marani T. ZFP36 stabilizes RIP1 via degradation of XIAP and cIAP2 thereby promoting ripoptosome assembly. BMC Cancer 2015; 15:357. [PMID: 25939870 PMCID: PMC4424499 DOI: 10.1186/s12885-015-1388-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 04/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background ZFP36 is an mRNA binding protein that exerts anti-tumor activity in glioblastoma by triggering cell death, associated to an increase in the stability of the kinase RIP1. Methods We used cell death assays, size exclusion chromatography, Co-Immunoprecipitation, shRNA lentivectors and glioma neural stem cells to determine the effects of ZFP36 on the assembly of a death complex containing RIP1 and on the induction of necroptosis. Results Here we demonstrate that ZFP36 promotes the assembly of the death complex called Ripoptosome and induces RIP1-dependent death. This involves the depletion of the ubiquitine ligases cIAP2 and XIAP and leads to the association of RIP1 to caspase-8 and FADD. Moreover, we show that ZFP36 controls RIP1 levels in glioma neural stem cell lines. Conclusions We provide a molecular mechanism for the tumor suppressor role of ZFP36, and the first evidence for Ripoptosome assembly following ZFP36 expression. These findings suggest that ZFP36 plays an important role in RIP1-dependent cell death in conditions where IAPs are depleted. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1388-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tommaso Selmi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Claudia Alecci
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Miriam dell' Aquila
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Lucia Montorsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Andrea Martello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Filippo Guizzetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Nicola Volpi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Sandra Parenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London WC1E 6BT, United Kingdom.
| | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy.
| |
Collapse
|
197
|
Prevention effects of Schisandra polysaccharide on radiation-induced immune system dysfunction. Int J Biol Macromol 2015; 76:63-9. [DOI: 10.1016/j.ijbiomac.2015.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/21/2015] [Accepted: 02/12/2015] [Indexed: 11/15/2022]
|
198
|
Schock SN, Young JA, He TH, Sun Y, Winoto A. Deletion of FADD in macrophages and granulocytes results in RIP3- and MyD88-dependent systemic inflammation. PLoS One 2015; 10:e0124391. [PMID: 25874713 PMCID: PMC4395384 DOI: 10.1371/journal.pone.0124391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/13/2015] [Indexed: 12/21/2022] Open
Abstract
Myeloid cells, which include monocytes, macrophages, and granulocytes, are important innate immune cells, but the mechanism and downstream effect of their cell death on the immune system is not completely clear. Necroptosis is an alternate form of cell death that can be triggered when death receptor-mediated apoptosis is blocked, for example, in stimulated Fas-associated Death Domain (FADD) deficient cells. We report here that mice deficient for FADD in myeloid cells (mFADD-/-) exhibit systemic inflammation with elevated inflammatory cytokines and increased levels of myeloid and B cell populations while their dendritic and T cell numbers are normal. These phenotypes were abolished when RIP3 deficiency was introduced, suggesting that systemic inflammation is caused by RIP3-dependent necroptotic and/or inflammatory activity. We further found that loss of MyD88 can rescue the systemic inflammation observed in these mice. These phenotypes are surprisingly similar to that of dendritic cell (DC)-specific FADD deficient mice with the exception that DC numbers are normal in mFADD-/- mice. Together these data support the notion that innate immune cells are constantly being stimulated through the MyD88-dependent pathway and aberrations in their cell death machinery can result in systemic effects on the immune system.
Collapse
Affiliation(s)
- Suruchi N Schock
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Jennifer A Young
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Tina H He
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Yuefang Sun
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| | - Astar Winoto
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California, Berkeley, California, United States of America
| |
Collapse
|
199
|
Vanden Berghe T, Kaiser WJ, Bertrand MJ, Vandenabeele P. Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol 2015; 2:e975093. [PMID: 27308513 PMCID: PMC4905361 DOI: 10.4161/23723556.2014.975093] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
Our current knowledge of the molecular mechanisms regulating the signaling pathways leading to cell survival, cell death, and inflammation has shed light on the tight mutual interplays between these processes. Moreover, the fact that both apoptosis and necrosis can be molecularly controlled has greatly increased our interest in the roles that these types of cell death play in the control of general processes such as development, homeostasis, and inflammation. In this review, we provide a brief update on the different cell death modalities and describe in more detail the intracellular crosstalk between survival, apoptotic, necroptotic, and inflammatory pathways that are activated downstream of death receptors. An important concept is that the different cell death processes modulate each other by mutual inhibitory mechanisms, serve as alternative back-up death routes in the case of a defect in the first-line cell death response, and are controlled by multiple feedback loops. We conclude by discussing future perspectives and challenges in the field of cell death and inflammation research.
Collapse
Affiliation(s)
- Tom Vanden Berghe
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - William J Kaiser
- Department of Microbiology and Immunology; Emory Vaccine Center; Emory University School of Medicine ; Atlanta, GA, USA
| | - Mathieu Jm Bertrand
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium
| | - Peter Vandenabeele
- Inflammation Research Center; VIB; Ghent, Belgium; Department of Biomedical Molecular Biological; Ghent University; Ghent, Belgium; Methusalem Program; Ghent University; Ghent, Belgium
| |
Collapse
|
200
|
Wang HY, Zhang B. Cobalt Chloride Induces Necroptosis in Human Colon Cancer HT-29 Cells. Asian Pac J Cancer Prev 2015; 16:2569-74. [DOI: 10.7314/apjcp.2015.16.6.2569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|