151
|
Cerritelli SM, Crouch RJ. The Balancing Act of Ribonucleotides in DNA. Trends Biochem Sci 2016; 41:434-445. [PMID: 26996833 DOI: 10.1016/j.tibs.2016.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/01/2016] [Accepted: 02/09/2016] [Indexed: 11/28/2022]
Abstract
The abundance of ribonucleotides in DNA remained undetected until recently because they are efficiently removed by the ribonucleotide excision repair (RER) pathway, a process similar to Okazaki fragment (OF) processing after incision by Ribonuclease H2 (RNase H2). All DNA polymerases incorporate ribonucleotides during DNA synthesis. How many, when, and why they are incorporated has been the focus of intense work during recent years by many labs. In this review, we discuss recent advances in ribonucleotide incorporation by eukaryotic DNA polymerases that suggest an evolutionarily conserved role for ribonucleotides in DNA. We also review the data that indicate that removal of ribonucleotides has an important role in maintaining genome stability.
Collapse
Affiliation(s)
- Susana M Cerritelli
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- Section on Formation of RNA, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
152
|
Kharerin H, Bhat PJ, Marko JF, Padinhateeri R. Role of transcription factor-mediated nucleosome disassembly in PHO5 gene expression. Sci Rep 2016; 6:20319. [PMID: 26843321 PMCID: PMC4740855 DOI: 10.1038/srep20319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Studying nucleosome dynamics in promoter regions is crucial for understanding gene regulation. Nucleosomes regulate gene expression by sterically occluding transcription factors (TFs) and other non–histone proteins accessing genomic DNA. How the binding competition between nucleosomes and TFs leads to transcriptionally compatible promoter states is an open question. Here, we present a computational study of the nucleosome dynamics and organization in the promoter region of PHO5 gene in Saccharomyces cerevisiae. Introducing a model for nucleosome kinetics that takes into account ATP-dependent remodeling activity, DNA sequence effects, and kinetics of TFs (Pho4p), we compute the probability of obtaining different “promoter states” having different nucleosome configurations. Comparing our results with experimental data, we argue that the presence of local remodeling activity (LRA) as opposed to basal remodeling activity (BRA) is crucial in determining transcriptionally active promoter states. By modulating the LRA and Pho4p binding rate, we obtain different mRNA distributions—Poisson, bimodal, and long-tail. Through this work we explain many features of the PHO5 promoter such as sequence-dependent TF accessibility and the role of correlated dynamics between nucleosomes and TFs in opening/coverage of the TATA box. We also obtain possible ranges for TF binding rates and the magnitude of LRA.
Collapse
Affiliation(s)
- Hungyo Kharerin
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Paike J Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - John F Marko
- Department of Physics, Department of Molecular Biosciences, Northwestern University, Evanston, IL
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
153
|
The role of ATP-dependent machines in regulating genome topology. Curr Opin Struct Biol 2016; 36:85-96. [PMID: 26827284 DOI: 10.1016/j.sbi.2016.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/22/2022]
Abstract
All cells must copy and express genes in accord with internal and external cues. The proper timing and response of such events relies on the active control of higher-order genomic organization. Cells use ATP-dependent molecular machines to alter the local and global topology of DNA so as to promote and counteract the persistent effects of transcription and replication. X-ray crystallography and electron microscopy, coupled with biochemical and single molecule methods are continuing to provide a wealth of mechanistic information on how DNA remodeling factors are employed to dynamically shape and organize the genome.
Collapse
|
154
|
Hoopes JI, Cortez LM, Mertz TM, Malc EP, Mieczkowski PA, Roberts SA. APOBEC3A and APOBEC3B Preferentially Deaminate the Lagging Strand Template during DNA Replication. Cell Rep 2016; 14:1273-1282. [PMID: 26832400 DOI: 10.1016/j.celrep.2016.01.021] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
APOBEC family cytidine deaminases have recently been implicated as powerful mutators of cancer genomes. How APOBECs, which are ssDNA-specific enzymes, gain access to chromosomal DNA is unclear. To ascertain the chromosomal ssDNA substrates of the APOBECs, we expressed APOBEC3A and APOBEC3B, the two most probable APOBECs mediating cancer mutagenesis, in a yeast model system. We demonstrate, using mutation reporters and whole genome sequencing, that APOBEC3A- and APOBEC3B-induced mutagenesis primarily results from the deamination of the lagging strand template during DNA replication. Moreover, our results indicate that both genetic deficiencies in replication fork-stabilizing proteins and chemical induction of replication stress greatly augment the mutagenesis of APOBEC3A and APOBEC3B. Taken together, these results strongly indicate that ssDNA formed during DNA lagging strand synthesis is a major substrate for APOBECs and may be the principal substrate in human cancers experiencing replication stress.
Collapse
Affiliation(s)
- James I Hoopes
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Luis M Cortez
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Tony M Mertz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Ewa P Malc
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
155
|
Petryk N, Kahli M, d'Aubenton-Carafa Y, Jaszczyszyn Y, Shen Y, Silvain M, Thermes C, Chen CL, Hyrien O. Replication landscape of the human genome. Nat Commun 2016; 7:10208. [PMID: 26751768 PMCID: PMC4729899 DOI: 10.1038/ncomms10208] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. The physical origin and termination sites of DNA replication in human cells have remained elusive. Here the authors use Okazaki fragment sequencing to reveal global replication patterns and show how chromatin and transcription modulate the process.
Collapse
Affiliation(s)
- Nataliya Petryk
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Malik Kahli
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| | - Yves d'Aubenton-Carafa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Yimin Shen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Maud Silvain
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Claude Thermes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Chun-Long Chen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, UMR 9198, FRC 3115, Avenue de la Terrasse, Bâtiment 24, Gif-sur-Yvette, Paris F-91198, France
| | - Olivier Hyrien
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS), and Inserm U1024, and CNRS UMR 8197, 46 rue d'Ulm, Paris F-75005, France
| |
Collapse
|
156
|
Iglesias FM, Cerdán PD. Maintaining Epigenetic Inheritance During DNA Replication in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:38. [PMID: 26870059 PMCID: PMC4735446 DOI: 10.3389/fpls.2016.00038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
Biotic and abiotic stresses alter the pattern of gene expression in plants. Depending on the frequency and duration of stress events, the effects on the transcriptional state of genes are "remembered" temporally or transmitted to daughter cells and, in some instances, even to offspring (transgenerational epigenetic inheritance). This "memory" effect, which can be found even in the absence of the original stress, has an epigenetic basis, through molecular mechanisms that take place at the chromatin and DNA level but do not imply changes in the DNA sequence. Many epigenetic mechanisms have been described and involve covalent modifications on the DNA and histones, such as DNA methylation, histone acetylation and methylation, and RNAi dependent silencing mechanisms. Some of these chromatin modifications need to be stable through cell division in order to be truly epigenetic. During DNA replication, histones are recycled during the formation of the new nucleosomes and this process is tightly regulated. Perturbations to the DNA replication process and/or the recycling of histones lead to epigenetic changes. In this mini-review, we discuss recent evidence aimed at linking DNA replication process to epigenetic inheritance in plants.
Collapse
Affiliation(s)
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Buenos Aires, Argentina
- *Correspondence: Pablo D. Cerdán,
| |
Collapse
|
157
|
Lujan SA, Williams JS, Kunkel TA. Eukaryotic genome instability in light of asymmetric DNA replication. Crit Rev Biochem Mol Biol 2015; 51:43-52. [PMID: 26822554 DOI: 10.3109/10409238.2015.1117055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eukaryotic nuclear genome is replicated asymmetrically, with the leading strand replicated continuously and the lagging strand replicated as discontinuous Okazaki fragments that are subsequently joined. Both strands are replicated with high fidelity, but the processes used to achieve high fidelity are likely to differ. Here we review recent studies of similarities and differences in the fidelity with which the three major eukaryotic replicases, DNA polymerases α, δ, and ɛ, replicate the leading and lagging strands with high nucleotide selectivity and efficient proofreading. We then relate the asymmetric fidelity at the replication fork to the efficiency of DNA mismatch repair, ribonucleotide excision repair and topoisomerase 1 activity.
Collapse
Affiliation(s)
- Scott A Lujan
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Jessica S Williams
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - Thomas A Kunkel
- a Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| |
Collapse
|
158
|
Gros J, Kumar C, Lynch G, Yadav T, Whitehouse I, Remus D. Post-licensing Specification of Eukaryotic Replication Origins by Facilitated Mcm2-7 Sliding along DNA. Mol Cell 2015; 60:797-807. [PMID: 26656162 DOI: 10.1016/j.molcel.2015.10.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/28/2015] [Accepted: 10/09/2015] [Indexed: 12/11/2022]
Abstract
Eukaryotic genomes are replicated from many origin sites that are licensed by the loading of the replicative DNA helicase, Mcm2-7. How eukaryotic origin positions are specified remains elusive. Here we show that, contrary to the bacterial paradigm, eukaryotic replication origins are not irrevocably defined by selection of the helicase loading site, but can shift in position after helicase loading. Using purified proteins we show that DNA translocases, including RNA polymerase, can push budding yeast Mcm2-7 double hexamers along DNA. Displaced Mcm2-7 double hexamers support DNA replication initiation distal to the loading site in vitro. Similarly, in yeast cells that are defective for transcription termination, collisions with RNA polymerase induce a redistribution of Mcm2-7 complexes along the chromosomes, resulting in a corresponding shift in DNA replication initiation sites. These results reveal a eukaryotic origin specification mechanism that departs from the classical replicon model, helping eukaryotic cells to negotiate transcription-replication conflict.
Collapse
Affiliation(s)
- Julien Gros
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Charanya Kumar
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Gerard Lynch
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Tejas Yadav
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA; Weill-Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
159
|
Marion de Procé S. Des fragments d’ADN synthétisés par l’ADN polymérase α modifient notre génome. Med Sci (Paris) 2015; 31:821-3. [DOI: 10.1051/medsci/20153110002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
160
|
Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2015; 5:2187-97. [PMID: 26297725 PMCID: PMC4593000 DOI: 10.1534/g3.115.021493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations affecting the three replicative polymerases, Pol α, Pol δ, and Pol ε with genome-wide collections of null and reduced function mutations. We identify large numbers of genetic interactions that inform about the roles that specific genes play to help Pol α, Pol δ, and Pol ε function. Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not represent the majority of the genetic interactions identified. Instead our data support a model for division of labor between the different DNA polymerases during DNA replication. For example, our genetic interaction data are consistent with biochemical data showing that Pol ε is more important to the Pre-Loading complex than either Pol α or Pol δ. We also observed distinct patterns of genetic interactions between leading- and lagging-strand DNA polymerases, with particular genes being important for coupling proliferating cell nuclear antigen loading/unloading (Ctf18, Elg1) with nucleosome assembly (chromatin assembly factor 1, histone regulatory HIR complex). Overall our data reveal specialized genetic networks that affect different aspects of leading- and lagging-strand DNA replication. To help others to engage with these data we have generated two novel, interactive visualization tools, DIXY and Profilyzer.
Collapse
|
161
|
Vázquez E, Antequera F. Replication dynamics in fission and budding yeasts through DNA polymerase tracking. Bioessays 2015; 37:1067-73. [PMID: 26293347 PMCID: PMC5054902 DOI: 10.1002/bies.201500072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them. Additional studies have found an overlapping distribution of DNA polymorphisms and the junctions of Okazaki fragments along mononucleosomal DNA. This sequence instability is caused by the premature release of polymerase δ and the retention of non proof‐read DNA tracts replicated by polymerase α. The possible implementation of these new experimental approaches in multicellular organisms opens the door to the analysis of replication dynamics under a broad range of genetic backgrounds and physiological or pathological conditions.
Collapse
Affiliation(s)
- Enrique Vázquez
- Instituto de Biología, Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología, Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
162
|
Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing. Proc Natl Acad Sci U S A 2015; 112:10908-13. [PMID: 26286988 DOI: 10.1073/pnas.1514809112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.
Collapse
|
163
|
Kubota T, Katou Y, Nakato R, Shirahige K, Donaldson AD. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 2015. [PMID: 26212319 PMCID: PMC4534484 DOI: 10.1016/j.celrep.2015.06.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
164
|
The role of the chromatin assembly complex (CAF-1) and its p60 subunit (CHAF1b) in homeostasis and disease. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:979-86. [PMID: 26066981 DOI: 10.1016/j.bbagrm.2015.05.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/23/2022]
Abstract
Nucleosome assembly following DNA synthesis is critical for maintaining genomic stability. The proteins directly responsible for shuttling newly synthesized histones H3 and H4 from the cytoplasm to the assembly fork during DNA replication comprise the Chromatin Assembly Factor 1 complex (CAF-1). Whereas the diverse functions of the large (CAF-1-p150, CHAF1a) and small (RbAp48, p48) subunits of the CAF-1 complex have been well-characterized in many tissues and extend beyond histone chaperone activity, the contributions of the medium subunit (CAF-1-p60, CHAF1b) are much less well understood. Although it is known that CHAF1b has multiple functional domains (7× WD repeat domain, B-like domain, and a PEST domain), how these components come together to elicit the functions of this protein are still unclear. Here, we review the biology of the CAF-1 complex, with an emphasis on CHAF1b, including its structure, regulation, and function. In addition, we discuss the possible contributions of CHAF1b and the CAF-1 complex to human diseases. Of note, CHAF1b is located within the Down syndrome critical region (DSCR) of chromosome 21. Therefore, we also address the putative contributions of its trisomy to the various manifestations of DS.
Collapse
|
165
|
Jinks-Robertson S, Klein HL. Ribonucleotides in DNA: hidden in plain sight. Nat Struct Mol Biol 2015; 22:176-8. [PMID: 25736085 DOI: 10.1038/nsmb.2981] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hannah L Klein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
166
|
Abstract
Species survival depends on the faithful replication of genetic information, which is continually monitored and maintained by DNA repair pathways that correct replication errors and the thousands of lesions that arise daily from the inherent chemical lability of DNA and the effects of genotoxic agents. Nonetheless, neutrally evolving DNA (not under purifying selection) accumulates base substitutions with time (the neutral mutation rate). Thus, repair processes are not 100% efficient. The neutral mutation rate varies both between and within chromosomes. For example it is 10-50 fold higher at CpGs than at non-CpG positions. Interestingly, the neutral mutation rate at non-CpG sites is positively correlated with CpG content. Although the basis of this correlation was not immediately apparent, some bioinformatic results were consistent with the induction of non-CpG mutations by DNA repair at flanking CpG sites. Recent studies with a model system showed that in vivo repair of preformed lesions (mismatches, abasic sites, single stranded nicks) can in fact induce mutations in flanking DNA. Mismatch repair (MMR) is an essential component for repair-induced mutations, which can occur as distant as 5 kb from the introduced lesions. Most, but not all, mutations involved the C of TpCpN (G of NpGpA) which is the target sequence of the C-preferring single-stranded DNA specific APOBEC deaminases. APOBEC-mediated mutations are not limited to our model system: Recent studies by others showed that some tumors harbor mutations with the same signature, as can intermediates in RNA-guided endonuclease-mediated genome editing. APOBEC deaminases participate in normal physiological functions such as generating mutations that inactivate viruses or endogenous retrotransposons, or that enhance immunoglobulin diversity in B cells. The recruitment of normally physiological error-prone processes during DNA repair would have important implications for disease, aging and evolution. This perspective briefly reviews both the bioinformatic and biochemical literature relevant to repair-induced mutagenesis and discusses future directions required to understand the mechanistic basis of this process.
Collapse
Affiliation(s)
- Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Building 8, 319 Yueyang Road, Shanghai 200031, China
| | - Anthony V Furano
- Section on Genomic Structure and Function, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 203, 8 Center Drive, MSC 0830, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
167
|
Georgescu RE, Schauer GD, Yao NY, Langston LD, Yurieva O, Zhang D, Finkelstein J, O'Donnell ME. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. eLife 2015; 4:e04988. [PMID: 25871847 PMCID: PMC4413876 DOI: 10.7554/elife.04988] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork.
Collapse
Affiliation(s)
- Roxana E Georgescu
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Grant D Schauer
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Nina Y Yao
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Lance D Langston
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Olga Yurieva
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Dan Zhang
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Jeff Finkelstein
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| | - Mike E O'Donnell
- DNA Replication Laboratory, Howard Hughes Medical Institute, Rockefeller University, New York, United States
| |
Collapse
|
168
|
Williams JS, Clausen AR, Lujan SA, Marjavaara L, Clark AB, Burgers PM, Chabes A, Kunkel TA. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat Struct Mol Biol 2015; 22:291-7. [PMID: 25751426 PMCID: PMC4835660 DOI: 10.1038/nsmb.2989] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/11/2015] [Indexed: 01/26/2023]
Abstract
Ribonucleotides incorporated during DNA replication are removed by RNase H2-dependent ribonucleotide excision repair (RER). In RER-defective yeast, topoisomerase 1 (Top1) incises DNA at unrepaired ribonucleotides, initiating their removal, but this is accompanied by RNA-DNA-damage phenotypes. Here we show that these phenotypes are incurred by a high level of ribonucleotides incorporated by a leading strand-replicase variant, DNA polymerase (Pol) ɛ, but not by orthologous variants of the lagging-strand replicases, Pols α or δ. Moreover, loss of both RNases H1 and H2 is lethal in combination with increased ribonucleotide incorporation by Pol ɛ but not by Pols α or δ. Several explanations for this asymmetry are considered, including the idea that Top1 incision at ribonucleotides relieves torsional stress in the nascent leading strand but not in the nascent lagging strand, in which preexisting nicks prevent the accumulation of superhelical tension.
Collapse
Affiliation(s)
- Jessica S. Williams
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Anders R. Clausen
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Scott A. Lujan
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Lisette Marjavaara
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
| | - Alan B. Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | - Peter M. Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, SE-901 87, Umeå, Sweden
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| |
Collapse
|
169
|
Kochenova OV, Daee DL, Mertz TM, Shcherbakova PV. DNA polymerase ζ-dependent lesion bypass in Saccharomyces cerevisiae is accompanied by error-prone copying of long stretches of adjacent DNA. PLoS Genet 2015; 11:e1005110. [PMID: 25826305 PMCID: PMC4380420 DOI: 10.1371/journal.pgen.1005110] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/27/2015] [Indexed: 11/24/2022] Open
Abstract
Translesion synthesis (TLS) helps cells to accomplish chromosomal replication in the presence of unrepaired DNA lesions. In eukaryotes, the bypass of most lesions involves a nucleotide insertion opposite the lesion by either a replicative or a specialized DNA polymerase, followed by extension of the resulting distorted primer terminus by DNA polymerase ζ (Polζ). The subsequent events leading to disengagement of the error-prone Polζ from the primer terminus and its replacement with an accurate replicative DNA polymerase remain largely unknown. As a first step toward understanding these events, we aimed to determine the length of DNA stretches synthesized in an error-prone manner during the Polζ-dependent lesion bypass. We developed new in vivo assays to identify the products of mutagenic TLS through a plasmid-borne tetrahydrofuran lesion and a UV-induced chromosomal lesion. We then surveyed the region downstream of the lesion site (in respect to the direction of TLS) for the presence of mutations indicative of an error-prone polymerase activity. The bypass of both lesions was associated with an approximately 300,000-fold increase in the mutation rate in the adjacent DNA segment, in comparison to the mutation rate during normal replication. The hypermutated tract extended 200 bp from the lesion in the plasmid-based assay and as far as 1 kb from the lesion in the chromosome-based assay. The mutation rate in this region was similar to the rate of errors produced by purified Polζ during copying of undamaged DNA in vitro. Further, no mutations downstream of the lesion were observed in rare TLS products recovered from Polζ-deficient cells. This led us to conclude that error-prone Polζ synthesis continues for several hundred nucleotides after the lesion bypass is completed. These results provide insight into the late steps of TLS and show that error-prone TLS tracts span a substantially larger region than previously appreciated. Genomic instability is associated with multiple genetic diseases. Endogenous and exogenous DNA-damaging factors constitute a major source of genomic instability. Mutations occur when DNA lesions are bypassed by specialized translesion synthesis (TLS) DNA polymerases that are less accurate than the normal replicative polymerases. The discovery of the remarkable infidelity of the TLS enzymes at the turn of the century immediately suggested that their contribution to replication must be tightly restricted to sites of DNA damage to avoid excessive mutagenesis. The actual extent of error-prone synthesis that accompanies TLS in vivo has never been estimated. We describe a novel genetic approach to measure the length of DNA synthesized by TLS polymerases upon their recruitment to sites of DNA damage. We show that stretches of error-prone synthesis associated with the bypass of a single damaged nucleotide span at least 200 and sometimes up to 1,000 nucleotide-long segments, resulting in more than a 300,000-fold increase in mutagenesis in the surrounding region. We speculate that processive synthesis of long DNA stretches by error-prone polymerases could contribute to clustered mutagenesis, a phenomenon that allows for rapid genome changes without significant loss of fitness and plays an important role in tumorigenesis, the immune response and adaptation.
Collapse
Affiliation(s)
- Olga V. Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Danielle L. Daee
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Tony M. Mertz
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Polina V. Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
170
|
Urban JM, Foulk MS, Casella C, Gerbi SA. The hunt for origins of DNA replication in multicellular eukaryotes. F1000PRIME REPORTS 2015; 7:30. [PMID: 25926981 PMCID: PMC4371235 DOI: 10.12703/p7-30] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed.
Collapse
Affiliation(s)
- John M. Urban
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| | - Michael S. Foulk
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Department of Biology, Mercyhurst University501 East 38th Street, Erie, PA 16546USA
| | - Cinzia Casella
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
- Institute for Molecular Medicine, University of Southern DenmarkJB Winsloews Vej 25, 5000 Odense CDenmark
| | - Susan A. Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversitySidney Frank Hall, 185 Meeting Street, Providence, RI 02912USA
| |
Collapse
|
171
|
Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS, Clausen MF, Malc EP, Mieczkowski PA, Fargo DC, Smith DJ, Kunkel TA. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat Struct Mol Biol 2015; 22:185-91. [PMID: 25622295 PMCID: PMC4351163 DOI: 10.1038/nsmb.2957] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Ribonucleotides are frequently incorporated into DNA during replication in eukaryotes. Here we map genome-wide distribution of these ribonucleotides as markers of replication enzymology in budding yeast, using a new 5' DNA end-mapping method, hydrolytic end sequencing (HydEn-seq). HydEn-seq of DNA from ribonucleotide excision repair-deficient strains reveals replicase- and strand-specific patterns of ribonucleotides in the nuclear genome. These patterns support the roles of DNA polymerases α and δ in lagging-strand replication and of DNA polymerase ɛ in leading-strand replication. They identify replication origins, termination zones and variations in ribonucleotide incorporation frequency across the genome that exceed three orders of magnitude. HydEn-seq also reveals strand-specific 5' DNA ends at mitochondrial replication origins, thus suggesting unidirectional replication of a circular genome. Given the conservation of enzymes that incorporate and process ribonucleotides in DNA, HydEn-seq can be used to track replication enzymology in other organisms.
Collapse
Affiliation(s)
- Anders R Clausen
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Scott A Lujan
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Clinton D Orebaugh
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Jessica S Williams
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| | - Maryam F Clausen
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ewa P Malc
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Piotr A Mieczkowski
- Department of Genetics, High Throughput Sequencing Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, USA
| | - Thomas A Kunkel
- Genome Integrity &Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health (NIH), Research Triangle Park, North Carolina, USA
| |
Collapse
|
172
|
Iglesias FM, Bruera NA, Dergan-Dylon S, Marino-Buslje C, Lorenzi H, Mateos JL, Turck F, Coupland G, Cerdán PD. The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering. PLoS Genet 2015; 11:e1004975. [PMID: 25693187 PMCID: PMC4334202 DOI: 10.1371/journal.pgen.1004975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes. Three DNA polymerases replicate DNA in Eukaryotes. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Not only the information encoded in the DNA, but also the inheritance of chromatin states is essential during development. Loss of function mutants in DNA polymerases lead to lethal phenotypes. Hence, hypomorphic alleles are necessary to study their roles beyond DNA replication. Here we identify a thermosensitive mutant of the Polδ in the model plant Arabidopsis thaliana, which bears an aminoacid substitution in the polymerase-domain. The mutants were essentially normal at 18°C but arrested development at 28°C. Interestingly, at 24°C we were able to study the roles of Polδ in epigenetic inheritance and plant development. We observed a tight connection between DNA replication stress and an increase the deposition of transcriptionally active chromatin marks in the SEPALLATA3 (SEP3) locus. Finally, we tested by genetic means that the ectopic expression of SEP3 was indeed the cause of early flowering and the leaf phenotypes by promoting the expression of FLOWERING LOCUS T (FT). These results link Polδ activity to the proper establishment of transcriptionally active epigenetic marks, which then impact the development of multicellular organisms.
Collapse
Affiliation(s)
| | | | | | | | - Hernán Lorenzi
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Julieta L. Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
173
|
Foulk MS, Urban JM, Casella C, Gerbi SA. Characterizing and controlling intrinsic biases of lambda exonuclease in nascent strand sequencing reveals phasing between nucleosomes and G-quadruplex motifs around a subset of human replication origins. Genome Res 2015; 25:725-35. [PMID: 25695952 PMCID: PMC4417120 DOI: 10.1101/gr.183848.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/18/2015] [Indexed: 01/02/2023]
Abstract
Nascent strand sequencing (NS-seq) is used to discover DNA replication origins genome-wide, allowing identification of features for their specification. NS-seq depends on the ability of lambda exonuclease (λ-exo) to efficiently digest parental DNA while leaving RNA-primer protected nascent strands intact. We used genomics and biochemical approaches to determine if λ-exo digests all parental DNA sequences equally. We report that λ-exo does not efficiently digest G-quadruplex (G4) structures in a plasmid. Moreover, λ-exo digestion of nonreplicating genomic DNA (LexoG0) enriches GC-rich DNA and G4 motifs genome-wide. We used LexoG0 data to control for nascent strand–independent λ-exo biases in NS-seq and validated this approach at the rDNA locus. The λ-exo–controlled NS-seq peaks are not GC-rich, and only 35.5% overlap with 6.8% of all G4s, suggesting that G4s are not general determinants for origin specification but may play a role for a subset. Interestingly, we observed a periodic spacing of G4 motifs and nucleosomes around the peak summits, suggesting that G4s may position nucleosomes at this subset of origins. Finally, we demonstrate that use of Na+ instead of K+ in the λ-exo digestion buffer reduced the effect of G4s on λ-exo digestion and discuss ways to increase both the sensitivity and specificity of NS-seq.
Collapse
Affiliation(s)
- Michael S Foulk
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - John M Urban
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Cinzia Casella
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| | - Susan A Gerbi
- Brown University Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|
174
|
Georgescu R, Langston L, O'Donnell M. A proposal: Evolution of PCNA's role as a marker of newly replicated DNA. DNA Repair (Amst) 2015; 29:4-15. [PMID: 25704660 DOI: 10.1016/j.dnarep.2015.01.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 11/26/2022]
Abstract
Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps. Among these processes are mismatch repair and nucleosome assembly. Interestingly, there exist polymerases that are highly processive and do not require clamps. Hence, DNA polymerase processivity does not intrinsically require that sliding clamps evolved for this purpose. We propose that polymerases evolved to require clamps as a way of ensuring that clamps are deposited on newly replicated DNA. These clamps are then used on the newly replicated daughter strands, for processes important to genomic integrity, such as mismatch repair and the assembly of nucleosomes to maintain epigenetic states of replicating cells during development.
Collapse
Affiliation(s)
- Roxana Georgescu
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States
| | - Lance Langston
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States
| | - Mike O'Donnell
- Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States.
| |
Collapse
|
175
|
Lagging-strand replication shapes the mutational landscape of the genome. Nature 2015; 518:502-506. [PMID: 25624100 PMCID: PMC4374164 DOI: 10.1038/nature14183] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/05/2015] [Indexed: 12/21/2022]
Abstract
The origin of mutations is central to understanding evolution and of key relevance to health. Variation occurs non-randomly across the genome, and mechanisms for this remain to be defined. Here, we report that the 5′-ends of Okazaki fragments have significantly elevated levels of nucleotide substitution, indicating a replicative origin for such mutations. With a novel method, emRiboSeq, we map the genome-wide contribution of polymerases, and show that despite Okazaki fragment processing, DNA synthesised by error-prone Pol-α is retained in vivo, comprising ~1.5% of the mature genome. We propose that DNA-binding proteins that rapidly re-associate post-replication act as partial barriers to Pol-δ mediated displacement of Pol-α synthesised DNA, resulting in incorporation of such Pol-α tracts and elevated mutation rates at specific sites. We observe a mutational cost to chromatin and regulatory protein binding, resulting in mutation hotspots at regulatory elements, with signatures of this process detectable in both yeast and humans.
Collapse
|
176
|
Hyrien O. Peaks cloaked in the mist: the landscape of mammalian replication origins. J Cell Biol 2015; 208:147-60. [PMID: 25601401 PMCID: PMC4298691 DOI: 10.1083/jcb.201407004] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/16/2014] [Indexed: 12/23/2022] Open
Abstract
Replication of mammalian genomes starts at sites termed replication origins, which historically have been difficult to locate as a result of large genome sizes, limited power of genetic identification schemes, and rareness and fragility of initiation intermediates. However, origins are now mapped by the thousands using microarrays and sequencing techniques. Independent studies show modest concordance, suggesting that mammalian origins can form at any DNA sequence but are suppressed by read-through transcription or that they can overlap the 5' end or even the entire gene. These results require a critical reevaluation of whether origins form at specific DNA elements and/or epigenetic signals or require no such determinants.
Collapse
Affiliation(s)
- Olivier Hyrien
- Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 and Institut National de la Santé et de la Recherche Médicale U1024, 75005 Paris, France
| |
Collapse
|
177
|
Abstract
We have previously demonstrated that lagging-strand synthesis in budding yeast is coupled with chromatin assembly on newly synthesized DNA. Using a strain of S. cerevisiae in which DNA ligase I can be conditionally depleted, we can enrich and purify Okazaki fragments. We delineate a method to extract, end label, and visualize Okazaki fragments using denaturing agarose gel electrophoresis. Furthermore, we describe an ion-exchange chromatographic method for purification of fragments and preparation of strand-specific sequencing libraries. Deep sequencing of Okazaki fragments generates a comprehensive, genomic map of DNA synthesis, starting from a single asynchronous culture. Altogether this approach represents a tractable system to investigate key aspects of DNA replication and chromatin assembly.
Collapse
Affiliation(s)
- Duncan J. Smith
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Tejas Yadav
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
178
|
Osberg B, Nuebler J, Korber P, Gerland U. Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays. Nucleic Acids Res 2014; 42:13633-45. [PMID: 25428353 PMCID: PMC4267636 DOI: 10.1093/nar/gku1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 11/13/2022] Open
Abstract
The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the 'softness' of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to 'hard' particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.
Collapse
Affiliation(s)
- Brendan Osberg
- Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Johannes Nuebler
- Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| | - Philipp Korber
- Adolf-Butenandt-Institut, University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | - Ulrich Gerland
- Theory of Complex Biosystems, Physik-Department, Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany
| |
Collapse
|
179
|
Shah KA, McGinty RJ, Egorova VI, Mirkin SM. Coupling transcriptional state to large-scale repeat expansions in yeast. Cell Rep 2014; 9:1594-1602. [PMID: 25464841 DOI: 10.1016/j.celrep.2014.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/07/2014] [Accepted: 10/19/2014] [Indexed: 11/15/2022] Open
Abstract
Expansions of simple DNA repeats cause numerous hereditary disorders in humans. Replication, repair, and transcription are implicated in the expansion process, but their relative contributions are yet to be distinguished. To separate the roles of replication and transcription in the expansion of Friedreich's ataxia (GAA)n repeats, we designed two yeast genetic systems that utilize a galactose-inducible GAL1 promoter but contain these repeats in either the transcribed or nontranscribed region of a selectable cassette. We found that large-scale repeat expansions can occur in the lack of transcription. Induction of transcription strongly elevated the rate of expansions in both systems, indicating that active transcriptional state rather than transcription through the repeat per se affects this process. Furthermore, replication defects increased the rate of repeat expansions irrespective of transcriptional state. We present a model in which transcriptional state, linked to the nucleosomal density of a region, acts as a modulator of large-scale repeat expansions.
Collapse
Affiliation(s)
- Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ryan J McGinty
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Vera I Egorova
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
180
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
181
|
Schiavone D, Guilbaud G, Murat P, Papadopoulou C, Sarkies P, Prioleau MN, Balasubramanian S, Sale JE. Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells. EMBO J 2014; 33:2507-20. [PMID: 25190518 PMCID: PMC4282387 DOI: 10.15252/embj.201488398] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/23/2014] [Accepted: 08/13/2014] [Indexed: 02/06/2023] Open
Abstract
REV1-deficient chicken DT40 cells are compromised in replicating G quadruplex (G4)-forming DNA. This results in localised, stochastic loss of parental chromatin marks and changes in gene expression. We previously proposed that this epigenetic instability arises from G4-induced replication fork stalls disrupting the accurate propagation of chromatin structure through replication. Here, we test this model by showing that a single G4 motif is responsible for the epigenetic instability of the BU-1 locus in REV1-deficient cells, despite its location 3.5 kb from the transcription start site (TSS). The effect of the G4 is dependent on it residing on the leading strand template, but is independent of its in vitro thermal stability. Moving the motif to more than 4 kb from the TSS stabilises expression of the gene. However, loss of histone modifications (H3K4me3 and H3K9/14ac) around the transcription start site correlates with the position of the G4 motif, expression being lost only when the promoter is affected. This supports the idea that processive replication is required to maintain the histone modification pattern and full transcription of this model locus.
Collapse
Affiliation(s)
- Davide Schiavone
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Pierre Murat
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Peter Sarkies
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK The Gurdon Institute, Cambridge, UK
| | | | | | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
182
|
Prado F, Clemente-Ruiz M. Nucleosome assembly and genome integrity: The fork is the link. BIOARCHITECTURE 2014; 2:6-10. [PMID: 22754621 PMCID: PMC3383716 DOI: 10.4161/bioa.19737] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maintaining the stability of the replication forks is one of the main tasks of the DNA damage response. Specifically, checkpoint mechanisms detect stressed forks and prevent their collapse. In the published report reviewed here we have shown that defective chromatin assembly in cells lacking either H3K56 acetylation or the chromatin assembly factors CAF1 and Rtt106 affects the integrity of advancing replication forks, despite the presence of functional checkpoints. This loss of replication intermediates is exacerbated in the absence of Rad52, suggesting that collapsed forks are rescued by homologous recombination and providing an explanation for the accumulation of recombinogenic DNA damage displayed by these mutants. These phenotypes mimic those obtained by a partial reduction in the pool of available histones and are consistent with a model in which defective histone deposition uncouples DNA synthesis and nucleosome assembly, thus making the fork more susceptible to collapse. Here, we review these findings and discuss the possibility that defects in the lagging strand represent a major source of fork instability in chromatin assembly mutants.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER); Consejo Superior de Investigaciones Científicas (CSIC); Seville, Spain
| | | |
Collapse
|
183
|
Campos EI, Stafford JM, Reinberg D. Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 2014; 24:664-74. [PMID: 25242115 DOI: 10.1016/j.tcb.2014.08.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
Multiple circuitries ensure that cells respond correctly to the environmental cues within defined cellular programs. There is increasing evidence suggesting that cellular memory for these adaptive processes can be passed on through cell divisions and generations. However, the mechanisms by which this epigenetic information is transferred remain elusive, largely because it requires that such memory survive through gross chromatin remodeling events during DNA replication, mitosis, meiosis, and developmental reprogramming. Elucidating the processes by which epigenetic information survives and is transmitted is a central challenge in biology. In this review, we consider recent advances in understanding mechanisms of epigenetic inheritance with a focus on histone segregation at the replication fork, and how an epigenetic memory may get passed through the paternal lineage.
Collapse
Affiliation(s)
- Eric I Campos
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - James M Stafford
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
184
|
Besnard E, Desprat R, Ryan M, Kahli M, Aladjem MI, Lemaitre JM. Best practices for mapping replication origins in eukaryotic chromosomes. ACTA ACUST UNITED AC 2014; 64:22.18.1-13. [PMID: 25181303 DOI: 10.1002/0471143030.cb2218s64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale.
Collapse
Affiliation(s)
- Emilie Besnard
- Laboratory of Genome Plasticity and Aging, Institute of Functional Genomics, CNRS UMR5203, INSERM U661, UMI, Montpellier, France
| | | | | | | | | | | |
Collapse
|
185
|
Murakami H, Keeney S. Temporospatial coordination of meiotic DNA replication and recombination via DDK recruitment to replisomes. Cell 2014; 158:861-873. [PMID: 25126790 PMCID: PMC4141489 DOI: 10.1016/j.cell.2014.06.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 05/06/2014] [Accepted: 06/11/2014] [Indexed: 12/15/2022]
Abstract
It has been long appreciated that, during meiosis, DNA replication is coordinated with the subsequent formation of the double-strand breaks (DSBs) that initiate recombination, but a mechanistic understanding of this process was elusive. We now show that, in yeast, the replisome-associated components Tof1 and Csm3 physically associate with the Dbf4-dependent Cdc7 kinase (DDK) and recruit it to the replisome, where it phosphorylates the DSB-promoting factor Mer2 in the wake of the replication fork, synchronizing replication with an early prerequisite for DSB formation. Recruiting regulatory kinases to replisomes may be a general mechanism to ensure spatial and temporal coordination of replication with other chromosomal processes.
Collapse
Affiliation(s)
- Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
186
|
Abstract
Two sibling DNA polymerases synthesize most of the eukaryotic nuclear genome. A new study provides insights into the distinct protein interactions that deliver these replicases for asymmetric leading- and lagging-strand replication and reveals possible cross-talk between DNA replication and other cellular processes.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Peter M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
187
|
Zhang Y, Baranovskiy AG, Tahirov TH, Pavlov YI. The C-terminal domain of the DNA polymerase catalytic subunit regulates the primase and polymerase activities of the human DNA polymerase α-primase complex. J Biol Chem 2014; 289:22021-34. [PMID: 24962573 DOI: 10.1074/jbc.m114.570333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The initiation of DNA synthesis during replication of the human genome is accomplished primarily by the DNA polymerase α-primase complex, which makes the RNA-DNA primers accessible to processive DNA pols. The structural information needed to understand the mechanism of regulation of this complex biochemical reaction is incomplete. The presence of two enzymes in one complex poses the question of how these two enzymes cooperate during priming of DNA synthesis. Yeast two-hybrid and direct pulldown assays revealed that the N-terminal domain of the large subunit of primase (p58N) directly interacts with the C-terminal domain of the catalytic subunit of polα (p180C). We found that a complex of the C-terminal domain of the catalytic subunit of polα with the second subunit (p180C-p70) stimulated primase activity, whereas the whole catalytically active heterodimer of polα (p180ΔN-p70) inhibited RNA synthesis by primase. Conversely, the polα catalytic domain without the C-terminal part (p180ΔN-core) possessed a much higher propensity to extend the RNA primer than the two-subunit polα (p180ΔN-p70), suggesting that p180C and/or p70 are involved in the negative regulation of DNA pol activity. We conclude that the interaction between p180C, p70, and p58 regulates the proper primase and polymerase function. The composition of the template DNA is another important factor determining the activity of the complex. We have found that polα activity strongly depends on the sequence of the template and that homopyrimidine runs create a strong barrier for DNA synthesis by polα.
Collapse
Affiliation(s)
- Yinbo Zhang
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and
| | | | - Tahir H Tahirov
- From the Eppley Institute for Research in Cancer and Allied Diseases,
| | - Youri I Pavlov
- From the Eppley Institute for Research in Cancer and Allied Diseases, Department of Biochemistry and Molecular Biology, and Department of Pathology and Microbiology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska 68198-6805
| |
Collapse
|
188
|
Asymmetric distribution of histones during Drosophila male germline stem cell asymmetric divisions. Chromosome Res 2014; 21:255-69. [PMID: 23681658 DOI: 10.1007/s10577-013-9356-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
It has long been known that epigenetic changes are inheritable. However, except for DNA methylation, little is known about the molecular mechanisms of epigenetic inheritance. Many types of stem cells undergo asymmetric cell divisions to generate self-renewed stem cells and daughter cells committed for differentiation. Still, whether and how stem cells retain their epigenetic memory remain questions to be elucidated. During the asymmetric division of Drosophila male germline stem cell (GSC), our recent studies revealed that the preexisting histone 3 (H3) are selectively segregated to the GSC, whereas newly synthesized H3 deposited during DNA replication are enriched in the differentiating daughter cell. We propose a two-step model to explain this asymmetric histone distribution. First, prior to mitosis, preexisting histones and newly synthesized histones are differentially distributed at two sets of sister chromatids. Next, during mitosis, the set of sister chromatids that mainly consist of preexisting histones are segregated to GSCs, while the other set of sister chromatids enriched with newly synthesized histones are partitioned to the daughter cell committed for differentiation. In this review, we apply current knowledge about epigenetic inheritance and asymmetric cell division to inform our discussion of potential molecular mechanisms and the cellular basis underlying this asymmetric histone distribution pattern. We will also discuss whether this phenomenon contributes to the maintenance of stem cell identity and resetting chromatin structure in the other daughter cell for differentiation.
Collapse
|
189
|
Koole W, van Schendel R, Karambelas AE, van Heteren JT, Okihara KL, Tijsterman M. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat Commun 2014; 5:3216. [PMID: 24496117 DOI: 10.1038/ncomms4216] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/07/2014] [Indexed: 12/23/2022] Open
Abstract
Genomes contain many sequences that are intrinsically difficult to replicate. Tracts of tandem guanines, for instance, have the potential to adopt stable G-quadruplex structures, which are prone to cause genome alterations. Here we describe G4 DNA-induced mutagenesis in Caenorhabditis elegans and identify a non-canonical DNA break repair mechanism that generates deletions characterized by an extremely narrow size distribution, minimal homology of exactly one nucleotide at the junctions, and by the occasional presence of templated insertions. This typical mutation profile is fully dependent on the A-family polymerase Theta, the absence of which leads to profound loss of sequences surrounding G4 motifs. Theta-mediated end-joining prevails over non-homologous end joining and homologous recombination and prevents genomic havoc at replication fork barriers at the expense of small deletions. G4 DNA-induced deletions also manifest in the genomes of wild isolates of C. elegans, indicating a protective role for this pathway during evolution.
Collapse
Affiliation(s)
- Wouter Koole
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robin van Schendel
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Andrea E Karambelas
- Hubrecht Institute-KNAW-Utrecht University Medical Center, Uppsalalaan 8, 3584 CT, The Netherlands
| | - Jane T van Heteren
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Kristy L Okihara
- Hubrecht Institute-KNAW-Utrecht University Medical Center, Uppsalalaan 8, 3584 CT, The Netherlands
| | - Marcel Tijsterman
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
190
|
Duderstadt KE, Reyes-Lamothe R, van Oijen AM, Sherratt DJ. Replication-fork dynamics. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a010157. [PMID: 23881939 DOI: 10.1101/cshperspect.a010157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | | | | | | |
Collapse
|
191
|
Mejlvang J, Feng Y, Alabert C, Neelsen KJ, Jasencakova Z, Zhao X, Lees M, Sandelin A, Pasero P, Lopes M, Groth A. New histone supply regulates replication fork speed and PCNA unloading. ACTA ACUST UNITED AC 2013; 204:29-43. [PMID: 24379417 PMCID: PMC3882791 DOI: 10.1083/jcb.201305017] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coupling of replication fork speed and PCNA unloading to nucleosome assembly may maintain chromatin integrity during transient histone shortage. Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibition of canonical histone biosynthesis impaired replication fork progression and reduced nucleosome occupancy on newly synthesized DNA. Replication forks initially remained stable without activation of conventional checkpoints, although prolonged histone deficiency generated DNA damage. PCNA accumulated on newly synthesized DNA in cells lacking new histones, possibly to maintain opportunity for CAF-1 recruitment and nucleosome assembly. Consistent with this, in vitro and in vivo analysis showed that PCNA unloading is delayed in the absence of nucleosome assembly. We propose that coupling of fork speed and PCNA unloading to nucleosome assembly provides a simple mechanism to adjust DNA replication and maintain chromatin integrity during transient histone shortage.
Collapse
Affiliation(s)
- Jakob Mejlvang
- Biotech Research and Innovation Centre, 2 Centre for Epigenetics, and 3 The Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Hawkins M, Retkute R, Müller CA, Saner N, Tanaka TU, de Moura APS, Nieduszynski CA. High-resolution replication profiles define the stochastic nature of genome replication initiation and termination. Cell Rep 2013; 5:1132-41. [PMID: 24210825 PMCID: PMC3898788 DOI: 10.1016/j.celrep.2013.10.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/18/2013] [Accepted: 10/07/2013] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic genome replication is stochastic, and each cell uses a different cohort of replication origins. We demonstrate that interpreting high-resolution Saccharomyces cerevisiae genome replication data with a mathematical model allows quantification of the stochastic nature of genome replication, including the efficiency of each origin and the distribution of termination events. Single-cell measurements support the inferred values for stochastic origin activation time. A strain, in which three origins were inactivated, confirmed that the distribution of termination events is primarily dictated by the stochastic activation time of origins. Cell-to-cell variability in origin activity ensures that termination events are widely distributed across virtually the whole genome. We propose that the heterogeneity in origin usage contributes to genome stability by limiting potentially deleterious events from accumulating at particular loci. Deep sequencing reveals a high-resolution view of genome replication dynamics Genome-wide modeling and single-cell imaging reveal stochastic origin activity Origin activity determines the location of replication termination events Termination events are widely distributed across the whole genome
Collapse
Affiliation(s)
- Michelle Hawkins
- Centre for Genetics and Genomics, School of Life Sciences, Queen's Medical Centre, The University of Nottingham, Nottingham NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
193
|
Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 2013; 425:4696-705. [PMID: 24076190 DOI: 10.1016/j.jmb.2013.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
Abstract
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier cedex 5, France; Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
194
|
Kadyrova LY, Rodriges Blanko E, Kadyrov FA. Human CAF-1-dependent nucleosome assembly in a defined system. Cell Cycle 2013; 12:3286-97. [PMID: 24036545 PMCID: PMC3885639 DOI: 10.4161/cc.26310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Replication-coupled nucleosome assembly is a critical step in packaging newly synthesized DNA into chromatin. Previous studies have defined the importance of the histone chaperones CAF-1 and ASF1A, the replicative clamp PCNA, and the clamp loader RFC for the assembly of nucleosomes during DNA replication. Despite significant progress in the field, replication-coupled nucleosome assembly is not well understood. One of the complications in elucidating the mechanisms of replication-coupled nucleosome assembly is the lack of a defined system that faithfully recapitulates this important biological process in vitro. We describe here a defined system that assembles nucleosomal arrays in a manner dependent on the presence of CAF-1, ASF1A-H3-H4, H2A-H2B, PCNA, RFC, NAP1L1, ATP, and strand breaks. The loss of CAF-1 p48 subunit causes a strong defect in packaging DNA into nucleosomes by this system. We also show that the defined system forms nucleosomes on nascent DNA synthesized by the replicative polymerase δ. Thus, the developed system reproduces several key features of replication-coupled nucleosome assembly.
Collapse
Affiliation(s)
- Lyudmila Y Kadyrova
- Department of Biochemistry and Molecular Biology; Southern Illinois University School of Medicine; Carbondale, IL USA
| | | | | |
Collapse
|
195
|
Lombraña R, Almeida R, Revuelta I, Madeira S, Herranz G, Saiz N, Bastolla U, Gómez M. High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins. EMBO J 2013; 32:2631-44. [PMID: 23995398 DOI: 10.1038/emboj.2013.195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022] Open
Abstract
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we performed a high-resolution analysis of nucleosome architecture and initiation sites along several origins of different genomic location and firing efficiencies. We found that mammalian origins are highly variable in nucleosome conformation and initiation patterns. Strikingly, initiation sites at efficient CpG island-associated origins always occur at positions of high-nucleosome occupancy. Origin recognition complex (ORC) binding sites, however, occur at adjacent but distinct positions marked by labile nucleosomes. We also found that initiation profiles mirror nucleosome architecture, both at endogenous origins and at a transgene in a heterologous system. Our studies provide a unique insight into the relationship between chromatin structure and initiation sites in the mammalian genome that has direct implications for how the replication programme can be accommodated to diverse epigenetic scenarios.
Collapse
Affiliation(s)
- Rodrigo Lombraña
- 1Functional Organization of the Genome Group, Centro de Biología Molecular 'Severo Ochoa', Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Budd ME, Campbell JL. Dna2 is involved in CA strand resection and nascent lagging strand completion at native yeast telomeres. J Biol Chem 2013; 288:29414-29. [PMID: 23963457 DOI: 10.1074/jbc.m113.472456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Post-replicational telomere end processing involves both extension by telomerase and resection to produce 3'-GT-overhangs that extend beyond the complementary 5'-CA-rich strand. Resection must be carefully controlled to maintain telomere length. At short de novo telomeres generated artificially by HO endonuclease in the G2 phase, we show that dna2-defective strains are impaired in both telomere elongation and sequential 5'-CA resection. At native telomeres in dna2 mutants, GT-overhangs do clearly elongate during late S phase but are shorter than in wild type, suggesting a role for Dna2 in 5'-CA resection but also indicating significant redundancy with other nucleases. Surprisingly, elimination of Mre11 nuclease or Exo1, which are complementary to Dna2 in resection of internal double strand breaks, does not lead to further shortening of GT-overhangs in dna2 mutants. A second step in end processing involves filling in of the CA-strand to maintain appropriate telomere length. We show that Dna2 is required for normal telomeric CA-strand fill-in. Yeast dna2 mutants, like mutants in DNA ligase 1 (cdc9), accumulate low molecular weight, nascent lagging strand DNA replication intermediates at telomeres. Based on this and other results, we propose that FEN1 is not sufficient and that either Dna2 or Exo1 is required to supplement FEN1 in maturing lagging strands at telomeres. Telomeres may be among the subset of genomic locations where Dna2 helicase/nuclease is essential for the two-nuclease pathway of primer processing on lagging strands.
Collapse
Affiliation(s)
- Martin E Budd
- From Braun Laboratories, California Institute of Technology, Pasadena, California 91125
| | | |
Collapse
|
197
|
Abstract
The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.
Collapse
Affiliation(s)
- David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
198
|
Abstract
Genomes are transmitted faithfully from dividing cells to their offspring. Changes that occur during DNA repair, chromosome duplication, and transmission or via recombination provide a natural source of genetic variation. They occur at low frequency because of the intrinsic variable nature of genomes, which we refer to as genome instability. However, genome instability can be enhanced by exposure to external genotoxic agents or as the result of cellular pathologies. We review the causes of genome instability as well as how it results in hyper-recombination, genome rearrangements, and chromosome fragmentation and loss, which are mainly mediated by double-strand breaks or single-strand gaps. Such events are primarily associated with defects in DNA replication and the DNA damage response, and show high incidence at repetitive DNA, non-B DNA structures, DNA-protein barriers, and highly transcribed regions. Identifying the causes of genome instability is crucial to understanding genome dynamics during cell proliferation and its role in cancer, aging, and a number of rare genetic diseases.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla, 41092 Seville, Spain;
| | | |
Collapse
|
199
|
Sun F, Huang L. Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 2013; 41:8182-95. [PMID: 23821667 PMCID: PMC3783171 DOI: 10.1093/nar/gkt588] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strand displacement by a DNA polymerase serves a key role in Okazaki fragment maturation, which involves displacement of the RNA primer of the preexisting Okazaki fragment into a flap structure, and subsequent flap removal and fragment ligation. We investigated the role of Sulfolobus chromatin proteins Sso7d and Cren7 in strand displacement by DNA polymerase B1 (PolB1) from the hyperthermophilic archaeon Sulfolobus solfataricus. PolB1 showed a robust strand displacement activity and was capable of synthesizing thousands of nucleotides on a DNA-primed 72-nt single-stranded circular DNA template. This activity was inhibited by both Sso7d and Cren7, which limited the flap length to 3–4 nt at saturating concentrations. However, neither protein inhibited RNA displacement on an RNA-primed single-stranded DNA minicircle by PolB1. Strand displacement remained sensitive to modulation by the chromatin proteins when PolB1 was in association with proliferating cell nuclear antigen. Inhibition of DNA instead of RNA strand displacement by the chromatin proteins is consistent with the finding that double-stranded DNA was more efficiently bound and stabilized than an RNA:DNA duplex by these proteins. Our results suggest that Sulfolobus chromatin proteins modulate strand displacement by PolB1, permitting efficient removal of the RNA primer while inhibiting excessive displacement of the newly synthesized DNA strand during Okazaki fragment maturation.
Collapse
Affiliation(s)
- Fei Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
200
|
Yanga W, Lib X. Next-generation sequencing of Okazaki fragments extracted from Saccharomyces cerevisiae. FEBS Lett 2013; 587:2441-7. [PMID: 23792162 DOI: 10.1016/j.febslet.2013.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022]
Abstract
Genome-wide Okazaki fragment distribution can differentiate the discontinuous from the semi-discontinuous DNA replication model. Here, we investigated the genome-wide Okazaki fragment distribution in Saccharomyces cerevisiae S288C. We improved the method based upon lambda exonuclease digestion to purify Okazaki fragments from S288C yeast cells, followed by Illumina sequencing. The distribution of Okazaki fragments around confirmed replication origins, including two highly efficient replication origins, supported the discontinuous DNA replication model. In S. cerevisiae mitochondria, Okazaki fragments were overrepresented in the transcribed regions, indicating the interplay between transcription and DNA replication.
Collapse
Affiliation(s)
- Wenchao Yanga
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | | |
Collapse
|