151
|
Abstract
Coupling of motor proteins within arrays drives muscle contraction, flagellar beating, chromosome segregation, and other biological processes. Current models of motor coupling invoke either direct mechanical linkage or protein crowding, which rely on short-range motor-motor interactions. In contrast, coupling mechanisms that act at longer length scales remain largely unexplored. Here we report that microtubules can physically couple motor movement in the absence of detectable short-range interactions. The human kinesin-4 Kif4A changes the run length and velocity of other motors on the same microtubule in the dilute binding limit, when approximately 10-nm-sized motors are much farther apart than the motor size. This effect does not depend on specific motor-motor interactions because similar changes in Kif4A motility are induced by kinesin-1 motors. A micrometer-scale attractive interaction potential between motors is sufficient to recreate the experimental results in a biophysical model. Unexpectedly, our theory suggests that long-range microtubule-mediated coupling affects not only binding kinetics but also motor mechanochemistry. Therefore, the model predicts that motors can sense and respond to motors bound several micrometers away on a microtubule. Our results are consistent with a paradigm in which long-range motor interactions along the microtubule enable additional forms of collective motor behavior, possibly due to changes in the microtubule lattice.
Collapse
|
152
|
Persky E, Bjørlig AV, Feldman I, Almoalem A, Altman E, Berg E, Kimchi I, Ruhman J, Kanigel A, Kalisky B. Magnetic memory and spontaneous vortices in a van der Waals superconductor. Nature 2022; 607:692-696. [PMID: 35896649 DOI: 10.1038/s41586-022-04855-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Doped Mott insulators exhibit some of the most intriguing quantum phases of matter, including quantum spin liquids, unconventional superconductors and non-Fermi liquid metals1-3. Such phases often arise when itinerant electrons are close to a Mott insulating state, and thus experience strong spatial correlations. Proximity between different layers of van der Waals heterostructures naturally realizes a platform for experimentally studying the relationship between localized, correlated electrons and itinerant electrons. Here we explore this relationship by studying the magnetic landscape of tantalum disulfide 4Hb-TaS2, which realizes an alternating stacking of a candidate spin liquid and a superconductor4. We report on a spontaneous vortex phase whose vortex density can be trained in the normal state. We show that time-reversal symmetry is broken in the normal state, indicating the presence of a magnetic phase independent of the superconductor. Notably, this phase does not generate ferromagnetic signals that are detectable using conventional techniques. We use scanning superconducting quantum interference device microscopy to show that it is incompatible with ferromagnetic ordering. The discovery of this unusual magnetic phase illustrates how combining superconductivity with a strongly correlated system can lead to unexpected physics.
Collapse
Affiliation(s)
- Eylon Persky
- Department of Physics, Bar Ilan University, Ramat Gan, Israel. .,Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| | - Anders V Bjørlig
- Department of Physics, Bar Ilan University, Ramat Gan, Israel.,Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Irena Feldman
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avior Almoalem
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ehud Altman
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Erez Berg
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Itamar Kimchi
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Ruhman
- Department of Physics, Bar Ilan University, Ramat Gan, Israel
| | - Amit Kanigel
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel
| | - Beena Kalisky
- Department of Physics, Bar Ilan University, Ramat Gan, Israel. .,Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
153
|
Harrison N, Chan MK. Magic Gap Ratio for Optimally Robust Fermionic Condensation and Its Implications for High-T_{c} Superconductivity. PHYSICAL REVIEW LETTERS 2022; 129:017001. [PMID: 35841553 DOI: 10.1103/physrevlett.129.017001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Bardeen-Schrieffer-Cooper (BCS) and Bose-Einstein condensation (BEC) occur at opposite limits of a continuum of pairing interaction strength between fermions. A crossover between these limits is readily observed in a cold atomic Fermi gas. Whether it occurs in other systems such as the high temperature superconducting cuprates has remained an open question. We uncover here unambiguous evidence for a BCS-BEC crossover in the cuprates by identifying a universal magic gap ratio 2Δ/k_{B}T_{c}≈6.5 (where Δ is the pairing gap and T_{c} is the transition temperature) at which paired fermion condensates become optimally robust. At this gap ratio, corresponding to the unitary point in a cold atomic Fermi gas, the measured condensate fraction N_{0} and the height of the jump δγ(T_{c}) in the coefficient γ of the fermionic specific heat at T_{c} are strongly peaked. In the cuprates, δγ(T_{c}) is peaked at this gap ratio when Δ corresponds to the antinodal spectroscopic gap, thus reinforcing its interpretation as the pairing gap. We find the peak in δγ(T_{c}) also to coincide with a normal state maximum in γ, which is indicative of a pairing fluctuation pseudogap above T_{c}.
Collapse
Affiliation(s)
- N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M K Chan
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
154
|
Xie T, Liu Z, Gu Y, Gong D, Mao H, Liu J, Hu C, Ma X, Yao Y, Zhao L, Zhou X, Schneeloch J, Gu G, Danilkin S, Yang YF, Luo H, Li S. Tracking the nematicity in cuprate superconductors: a resistivity study under uniaxial pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:334001. [PMID: 35671749 DOI: 10.1088/1361-648x/ac768c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Overshadowing the superconducting dome in hole-doped cuprates, the pseudogap state is still one of the mysteries that no consensus can be achieved. It has been suggested that the rotational symmetry is broken in this state and may result in a nematic phase transition, whose temperature seems to coincide with the onset temperature of the pseudogap stateT∗around optimal doping level, raising the question whether the pseudogap results from the establishment of the nematic order. Here we report results of resistivity measurements under uniaxial pressure on several hole-doped cuprates, where the normalized slope of the elastoresistivityζcan be obtained as illustrated in iron-based superconductors. The temperature dependence ofζalong particular lattice axis exhibits kink feature atTkand shows Curie-Weiss-like behavior above it, which may suggest a spontaneous nematic transition. WhileTkseems to be the same asT∗around the optimal doping and in the overdoped region, they become very different in underdoped La2-xSrxCuO4. Our results suggest that the nematic order, if indeed existing, is an electronic phase within the pseudogap state.
Collapse
Affiliation(s)
- Tao Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Zhaoyu Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yanhong Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Dongliang Gong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Huican Mao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jing Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Cheng Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiaoyan Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yuan Yao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Lin Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - John Schneeloch
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Genda Gu
- Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Sergey Danilkin
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Yi-Feng Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Huiqian Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Shiliang Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
155
|
John Mukkattukavil D, Hellsvik J, Ghosh A, Chatzigeorgiou E, Nocerino E, Wang Q, von Arx K, Huang SW, Ekholm V, Hossain Z, Thamizhavel A, Chang J, Månsson M, Nordström L, Såthe C, Agåker M, Rubensson JE, Sassa Y. Resonant inelastic soft x-ray scattering on LaPt 2Si 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:324003. [PMID: 35640576 DOI: 10.1088/1361-648x/ac7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
X-ray absorption and resonant inelastic x-ray scattering spectra of LaPt2Si2single crystal at the Si 2pand La 4dedges are presented. The data are interpreted in terms of density functional theory, showing that the Si spectra can be described in terms of Sisanddlocal partial density of states (LPDOS), and the La spectra are due to quasi-atomic local 4fexcitations. Calculations show that Ptd-LPDOS dominates the occupied states, and a sharp localized Lafstate is found in the unoccupied states, in line with the observations.
Collapse
Affiliation(s)
| | - Johan Hellsvik
- PDC Center for High Performance Computing, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Anirudha Ghosh
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | | | - Elisabetta Nocerino
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Qisi Wang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Karin von Arx
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Department of Physics, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Victor Ekholm
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Zakir Hossain
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | - Johan Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Lars Nordström
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Conny Såthe
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Marcus Agåker
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Yasmine Sassa
- Department of Physics, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
156
|
Venderley J, Mallayya K, Matty M, Krogstad M, Ruff J, Pleiss G, Kishore V, Mandrus D, Phelan D, Poudel L, Wilson AG, Weinberger K, Upreti P, Norman M, Rosenkranz S, Osborn R, Kim EA. Harnessing interpretable and unsupervised machine learning to address big data from modern X-ray diffraction. Proc Natl Acad Sci U S A 2022; 119:e2109665119. [PMID: 35679347 PMCID: PMC9214512 DOI: 10.1073/pnas.2109665119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern X-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big datasets when a comprehensive analysis is beyond human reach. We report the development of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature clustering (X-TEC), that can automatically extract charge density wave order parameters and detect intraunit cell ordering and its fluctuations from a series of high-volume X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC with diffraction data on a quasi-skutterudite family of materials, (CaxSr[Formula: see text])3Rh4Sn13, where a quantum critical point is observed as a function of Ca concentration. We apply X-TEC to XRD data on the pyrochlore metal, Cd2Re2O7, to investigate its two much-debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic-scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC-revealed selection rules that the Cd and Re displacements are approximately equal in amplitude but out of phase. This discovery reveals a previously unknown involvement of [Formula: see text] Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on the fly.
Collapse
Affiliation(s)
| | | | - Michael Matty
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Matthew Krogstad
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Jacob Ruff
- Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853
| | - Geoff Pleiss
- Department of Computer Science, Cornell University, Ithaca, NY 14853
| | - Varsha Kishore
- Department of Computer Science, Cornell University, Ithaca, NY 14853
| | - David Mandrus
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996
| | - Daniel Phelan
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Lekhanath Poudel
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742
- Center for Neutron Research, National Institute of Standard and Technology, Gaithersburg, MD 20899
| | - Andrew Gordon Wilson
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
| | - Kilian Weinberger
- Department of Computer Science, Cornell University, Ithaca, NY 14853
| | - Puspa Upreti
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
- Department of Physics, Northern Illinois University, DeKalb, IL 60115
| | - Michael Norman
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Stephan Rosenkranz
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Raymond Osborn
- Materials Science Division, Argonne National Laboratory, Lemont, IL 60439
| | - Eun-Ah Kim
- Department of Physics, Cornell University, Ithaca, NY 14853
| |
Collapse
|
157
|
Wang L, He G, Yang Z, Garcia-Fernandez M, Nag A, Zhou K, Minola M, Tacon ML, Keimer B, Peng Y, Li Y. Paramagnons and high-temperature superconductivity in a model family of cuprates. Nat Commun 2022; 13:3163. [PMID: 35672416 PMCID: PMC9174205 DOI: 10.1038/s41467-022-30918-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Cuprate superconductors have the highest critical temperatures (Tc) at ambient pressure, yet a consensus on the superconducting mechanism remains to be established. Finding an empirical parameter that limits the highest reachable Tc can provide crucial insight into this outstanding problem. Here, in the first two Ruddlesden-Popper members of the model Hg-family of cuprates, which are chemically nearly identical and have the highest Tc among all cuprate families, we use inelastic photon scattering to reveal that the energy of magnetic fluctuations may play such a role. In particular, we observe the single-paramagnon spectra to be nearly identical between the two compounds, apart from an energy scale difference of ~30% which matches their difference in Tc. The empirical correlation between paramagnon energy and maximal Tc is further found to extend to other cuprate families with relatively high Tc’s, hinting at a fundamental connection between them. Finding a parameter that limits the critical temperature of cuprate superconductors can provide crucial insight on the superconducting mechanism. Here, the authors use inelastic photon scattering on two Ruddlesden-Popper members of the model Hg-family of cuprates to reveal that the energy of magnetic fluctuations may play such a role, and suggest that the Cooper pairing is mediated by paramagnons.
Collapse
|
158
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
159
|
Nomura Y, Sakai S, Arita R. Fermi Surface Expansion above Critical Temperature in a Hund Ferromagnet. PHYSICAL REVIEW LETTERS 2022; 128:206401. [PMID: 35657875 DOI: 10.1103/physrevlett.128.206401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Using a cluster extension of the dynamical mean-field theory, we show that strongly correlated metals subject to Hund's physics exhibit significant electronic structure modulations above magnetic transition temperatures. In particular, in a ferromagnet having a large local moment due to Hund's coupling (Hund's ferromagnet), the Fermi surface expands even above the Curie temperature (T_{C}) as if a spin polarization occurred. Behind this phenomenon, effective "Hund's physics" works in momentum space, originating from ferromagnetic fluctuations in the strong-coupling regime. The resulting significantly momentum-dependent (spatially nonlocal) electron correlations induce an electronic structure reconstruction involving a Fermi surface volume change and a redistribution of the momentum-space occupation. Our finding will give a deeper insight into the physics of Hund's ferromagnets above T_{C}.
Collapse
Affiliation(s)
- Yusuke Nomura
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shiro Sakai
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
160
|
Jiang W, Liu Y, Klein A, Wang Y, Sun K, Chubukov AV, Meng ZY. Monte Carlo study of the pseudogap and superconductivity emerging from quantum magnetic fluctuations. Nat Commun 2022; 13:2655. [PMID: 35551454 PMCID: PMC9098861 DOI: 10.1038/s41467-022-30302-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/16/2022] [Indexed: 12/03/2022] Open
Abstract
The origin of the pseudogap behavior, found in many high-Tc superconductors, remains one of the greatest puzzles in condensed matter physics. One possible mechanism is fermionic incoherence, which near a quantum critical point allows pair formation but suppresses superconductivity. Employing quantum Monte Carlo simulations of a model of itinerant fermions coupled to ferromagnetic spin fluctuations, represented by a quantum rotor, we report numerical evidence of pseudogap behavior, emerging from pairing fluctuations in a quantum-critical non-Fermi liquid. Specifically, we observe enhanced pairing fluctuations and a partial gap opening in the fermionic spectrum. However, the system remains non-superconducting until reaching a much lower temperature. In the pseudogap regime the system displays a “gap-filling" rather than “gap-closing" behavior, similar to the one observed in cuprate superconductors. Our results present direct evidence of the pseudogap state, driven by superconducting fluctuations. The origin of pseudogap in high-Tc superconductors remains a big puzzle. Here, the authors report numerical evidence of pseudogap behavior employing Quantum Monte Carlo algorithm emerging from pairing fluctuations in a quantum-critical non-Fermi liquid, similar to the pseudogap phase observed in cuprate superconductors.
Collapse
Affiliation(s)
- Weilun Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuzhi Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Avraham Klein
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Yuxuan Wang
- Department of Physics, University of Florida, Gainesville, FL, 32601, USA
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrey V Chubukov
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zi Yang Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
161
|
Mukherjee A, Lal S. Superconductivity from repulsion in the doped 2D electronic Hubbard model: an entanglement perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:275601. [PMID: 35413696 DOI: 10.1088/1361-648x/ac66b3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
We employ the momentum space entanglement renormalization group (MERG) scheme developed in references (Mukherjeeet al2021J. High Energy Phys.JHEP04(2021)148; Patra and Lal 2021Phys. Rev.B104144514) for the study of various insulating, superconducting and normal phases of the doped and the undoped 2D Hubbard model on a square lattice found recently by us (Mukherjee and Lal 2020New J. Phys.22063007; Mukherjee and Lal 2020New J. Phys.22063008). At each MERG step, disentanglement of particular degrees of freedom, transforms the tensor network representation of the many-particle states. The MERG reveals distinct holographic entanglement features for the normal metallic, topologically ordered insulating quantum liquid and Neél antiferromagnetic symmetry-broken ground states of the 2D Hubbard model at half-filling, clarifying the essence of the entanglement phase transitions that separates the three phases. An MERG analysis of the quantum critical point of the hole-doped 2D Hubbard model reveals the evolution of the many-particle entanglement of the quantum liquid ground state with hole-doping, as well as how the collapse of Mottness is concomitant with the emergence of d-wave superconductivity.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, W.B. - 741246, India
| | - Siddhartha Lal
- Department of Physical Sciences, Indian Institute of Science Education and Research - Kolkata, W.B. - 741246, India
| |
Collapse
|
162
|
Maryati Y, Winarsih S, Syakuur MA, Manawan M, Saragi T. Structural Properties and Hopping Conduction in the Normal State of Electron-Doped Superconductor Cuprate Eu 2-x Ce x CuO 4+α-δ. ACS OMEGA 2022; 7:12601-12609. [PMID: 35474784 PMCID: PMC9026046 DOI: 10.1021/acsomega.1c06161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Electron-doped superconducting cuprate of Eu2-x Ce x CuO4+α-δ has been studied in the whole doping regime from x = 0.10-0.20 with reducing oxygen content to investigate the relation between the crystal structure and the hopping conduction in the normal state. Parameter of the crystal structure has been extracted from the X-ray diffraction (XRD) measurement while hopping conduction parameters have been obtained from resistivity measurements. The Eu-O bond length decreases with the increasing doping concentration, indicating the successful doping by the partial replacing of Eu3+ with Ce4+. The resistivity increases with decreasing temperature in all measured samples. This is an indication of bad metal-like behavior in the whole regime in the normal state of electron-doped superconducting cuprate of Eu2-x Ce x CuO4+α-δ. The temperature dependence of resistivity was analyzed by the Arrhenius law and the variable range hopping model. It is found that the hopping conduction mechanism more likely follows the variable range hopping rather than the Arrhenius law, indicating that the hopping mechanism occurs in three dimensions. The Cu-O bond length probably plays an important role in decreasing the activation energy. The decreasing value of the activation energy correlates with the increase in the localization radius.
Collapse
Affiliation(s)
- Yati Maryati
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Sumedang 45363, West Java, Indonesia
| | - Suci Winarsih
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Sumedang 45363, West Java, Indonesia
| | - Muhammad Abdan Syakuur
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Sumedang 45363, West Java, Indonesia
| | - Maykel Manawan
- Faculty
of Defense Technology, Indonesia Defense
University, Bogor 16810, West Java, Indonesia
| | - Togar Saragi
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang Km. 21, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
163
|
Wang D, Xu JQ, Zhang HJ, Wang QH. Anisotropic Scattering Caused by Apical Oxygen Vacancies in Thin Films of Overdoped High-Temperature Cuprate Superconductors. PHYSICAL REVIEW LETTERS 2022; 128:137001. [PMID: 35426715 DOI: 10.1103/physrevlett.128.137001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/24/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
There is a hot debate on the anomalous behavior of superfluid density ρ_{s} in overdoped La_{2-x}Sr_{x}CuO_{4} films in recent years. The linear drop of ρ_{s} at low temperatures implies the superconductors are clean, but the linear scaling between ρ_{s} (in the zero temperature limit) and the transition temperature T_{c} is a hallmark of the dirty limit in the Bardeen-Cooper-Schrieffer (BCS) framework [I. Bozovic et al., Nature (London) 536, 309 (2016)NATUAS0028-083610.1038/nature19061]. This dichotomy motivated exotic theories beyond the standard BCS theory. We show, however, that such a dichotomy can be reconciled naturally by the role of increasing anisotropic scattering caused by the apical oxygen vacancies. Furthermore, the anisotropic scattering also explains the "missing" Drude weight upon doping in the optical conductivity, as reported in the THz experiment [F. Mahmood et al., Phys. Rev. Lett. 122, 027003 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.027003]. Therefore, the overdoped cuprates can actually be described consistently by the d-wave BCS theory with the unique anisotropic scattering.
Collapse
Affiliation(s)
- Da Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun-Qi Xu
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hai-Jun Zhang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
164
|
Nomura Y, Arita R. Superconductivity in infinite-layer nickelates. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:052501. [PMID: 35240593 DOI: 10.1088/1361-6633/ac5a60] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The recent discovery of the superconductivity in the doped infinite layer nickelatesRNiO2(R= La, Pr, Nd) is of great interest since the nickelates are isostructural to doped (Ca, Sr)CuO2having superconducting transition temperature (Tc) of about 110 K. Verifying the commonalities and differences between these oxides will certainly give a new insight into the mechanism of highTcsuperconductivity in correlated electron systems. In this paper, we review experimental and theoretical works on this new superconductor and discuss the future perspectives for the 'nickel age' of superconductivity.
Collapse
Affiliation(s)
- Yusuke Nomura
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ryotaro Arita
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
165
|
Comparing Thickness and Doping-Induced Effects on the Normal States of Infinite-Layer Electron-Doped Cuprates: Is There Anything to Learn? NANOMATERIALS 2022; 12:nano12071092. [PMID: 35407212 PMCID: PMC9044742 DOI: 10.3390/nano12071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
We grew Sr1-xLaxCuO2 thin films and SrCuO2/Sr0.9La0.1CuO2/SrCuO2 trilayers by reflection high-energy diffraction-calibrated layer-by-layer molecular beam epitaxy, to study their electrical transport properties as a function of the doping and thickness of the central Sr0.9La0.1CuO2 layer. For the trilayer samples, as already observed in underdoped SLCO films, the electrical resistivity versus temperature curves as a function of the central layer thickness show, for thicknesses thinner than 20 unit cells, sudden upturns in the low temperature range with the possibility for identifying, in the normal state, the T* and a T** temperatures, respectively, separating high-temperature linear behavior and low-temperature quadratic dependence. By plotting the T* and T** values as a function of TConset for both the thin films and the trilayers, the data fall on the same curves. This result suggests that, for the investigated trilayers, the superconducting critical temperature is the important parameter able to describe the normal state properties and that, in the limit of very thin central layers, such properties are mainly influenced by the modification of the energy band structure and not by interface-related disorder.
Collapse
|
166
|
Zeng L, Hu X, Wang N, Sun J, Yang P, Boubeche M, Luo S, He Y, Cheng J, Yao DX, Luo H. Interplay between Charge-Density-Wave, Superconductivity, and Ferromagnetism in CuIr 2-xCr xTe 4 Chalcogenides. J Phys Chem Lett 2022; 13:2442-2451. [PMID: 35263107 DOI: 10.1021/acs.jpclett.2c00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the crystal structure, charge-density-wave (CDW), superconductivity (SC), and ferromagnetism (FM) in CuIr2-xCrxTe4 (0 ≤ x ≤ 2) chalcogenides. Powder x-ray diffraction (PXRD) results reveal that the CuIr2-xCrxTe4 series are distinguished between two structural types and three different regions: (i) layered trigonal structure region, (ii) mixed phase regions, and (iii) spinel structure region. Besides, Cr substitution for Ir site results in rich physical properties including the collapse of CDW, the formation of dome-shaped like SC, and the emergence of magnetism. Cr doping slightly elevates the superconducting critical temperature (Tsc) to its highest Tsc = 2.9 K around x = 0.06. As x increases from 0.3 to 0.4, the ferromagnetic Curie temperature (Tc) increases from 175 to 260 K. However, the Tc remains unchanged in the spinel range of 1.9 ≤ x ≤ 2. This finding provides a comprehensive material platform for investigating the interplay between CDW, SC, and FM multipartite quantum states.
Collapse
Affiliation(s)
- Lingyong Zeng
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Lab of Polymer Composite & Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
| | - Xunwu Hu
- School of Physics, Center for Neutron Science and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Ningning Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jianping Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Pengtao Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mebrouka Boubeche
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Lab of Polymer Composite & Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yiyi He
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Lab of Polymer Composite & Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
| | - Jinguang Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dao-Xin Yao
- School of Physics, Center for Neutron Science and Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Huixia Luo
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Key Lab of Polymer Composite & Functional Materials, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
| |
Collapse
|
167
|
Abstract
Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat.
Collapse
|
168
|
Abstract
The elusive strange metal phase (ground state) was observed in a variety of quantum materials, notably in f-electron–based rare-earth intermetallic compounds. Its emergence has remained unclear. Here, we propose a generic mechanism for this phenomenon driven by the interplay of the gapless fermionic short-ranged antiferromagnetic spin correlation and critical bosonic charge fluctuations near a Kondo breakdown quantum phase transition. It is manifested as a fluctuating Kondo-scattering–stabilized critical (gapless) fermionic spin liquid. It shows ω/T scaling in dynamical electron scattering rate, a signature of quantum criticality. Our results on quasilinear-in-temperature scattering rate and logarithmic-in-temperature divergence in specific heat coefficient as temperature vanishes were recently seen in CePd1−xNixAl. A major mystery in strongly interacting quantum systems is the microscopic origin of the “strange metal” phenomenology, with unconventional metallic behavior that defies Landau’s Fermi liquid framework for ordinary metals. This state is found across a wide range of quantum materials, notably in rare-earth intermetallic compounds at finite temperatures (T) near a magnetic quantum phase transition, and shows a quasilinear-in-temperature resistivity and a logarithmic-in-temperature specific heat coefficient. Recently, an even more enigmatic behavior pointing toward a stable strange metal ground state was observed in CePd1−xNixAl, a geometrically frustrated Kondo lattice compound. Here, we propose a mechanism for such phenomena driven by the interplay of the gapless fermionic short-ranged antiferromagnetic spin correlations (spinons) and critical bosonic charge (holons) fluctuations near a Kondo breakdown quantum phase transition. Within a dynamical large-N approach to the Kondo–Heisenberg lattice model, the strange metal phase is realized in transport and thermodynamical quantities. It is manifested as a fluctuating Kondo-scattering–stabilized critical (gapless) fermionic spin-liquid metal. It shows ω/T scaling in dynamical electron scattering rate, a signature of quantum criticality. Our results offer a qualitative understanding of the CePd1−xNixAl compound and suggest a possibility of realizing the quantum critical strange metal phase in correlated electron systems in general.
Collapse
|
169
|
Combinatorial synthesis of heteroepitaxial, multi-cation, thin-films via pulsed laser deposition coupled with in-situ, chemical and structural characterization. Sci Rep 2022; 12:3219. [PMID: 35256630 PMCID: PMC8901668 DOI: 10.1038/s41598-022-06955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCombinatorial synthesis via a continuous composition spread is an excellent route to develop thin-film libraries as it is both time- and cost-efficient. Creating libraries of functional, multicomponent, complex oxide films requires excellent control over the synthesis parameters combined with high-throughput analytical feedback. A reliable, high-throughput, in-situ characterization analysis method is required to meet the crucial need to rapidly screen materials libraries. Here, we report on the combination of two in-situ techniques—(a) Reflection high-energy electron diffraction (RHEED) for heteroepitaxial characterization and a newly developed compositional analysis technique, low-angle x-ray spectroscopy (LAXS), to map the chemical composition profile of combinatorial heteroepitaxial complex oxide films deposited using a continuous composition spread method via pulsed laser deposition. This is accomplished using a unique state-of-the-art combinatorial growth system with a fully synchronized four-axis mechanical substrate stage without shadow masks, alternating acquisition of chemical compositional data using LAXS at various different positions on the $$\sim$$
∼
41 mm $$\times$$
×
41 mm range and sequential deposition of multilayers of SrTiO$$_3$$
3
and $$\hbox {SrTi}_{0.8}\hbox {Ru}_{0.2}\hbox {O}_3$$
SrTi
0.8
Ru
0.2
O
3
on a 2-inch (50.8 mm) $$\hbox {LaAlO}_3$$
LaAlO
3
wafer in a single growth run. Rutherford backscattering spectrometry (RBS) is used to calibrate and validate the compositions determined by LAXS. This study shows the feasibility of combinatorial synthesis of heteroepitaxial, functional complex oxide films at wafer-scale via two essential in-situ characterization tools—RHEED for structural analysis or heteroepitaxy and LAXS for compositional characterization. This is a powerful technique for development of new films with optimized heteroepitaxy and composition.
Collapse
|
170
|
Liu ZH, Vojta M, Assaad FF, Janssen L. Metallic and Deconfined Quantum Criticality in Dirac Systems. PHYSICAL REVIEW LETTERS 2022; 128:087201. [PMID: 35275685 DOI: 10.1103/physrevlett.128.087201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a bilayer honeycomb lattice at half filling, featuring an explicit global SO(3)×U(1) symmetry. Using large-scale auxiliary-field quantum Monte Carlo (QMC) simulations, we locate two zero-temperature phase transitions as function of increasing interaction strength. First, we observe a continuous transition from the weakly interacting semimetal to a different semimetallic phase in which the SO(3) symmetry is spontaneously broken and where two out of three Dirac cones acquire a mass gap. The associated quantum critical point can be understood in terms of a Gross-Neveu-SO(3) theory. Second, we subsequently observe a transition toward an insulating phase in which the SO(3) symmetry is restored and the U(1) symmetry is spontaneously broken. While strongly first order at the mean-field level, the QMC data are consistent with a direct and continuous transition. It is thus a candidate for a new type of deconfined quantum critical point that features gapless fermionic degrees of freedom.
Collapse
Affiliation(s)
- Zi Hong Liu
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Vojta
- Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Fakher F Assaad
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | - Lukas Janssen
- Institut für Theoretische Physik and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
171
|
Ye HZ, Berkelbach TC. Correlation-Consistent Gaussian Basis Sets for Solids Made Simple. J Chem Theory Comput 2022; 18:1595-1606. [PMID: 35192359 DOI: 10.1021/acs.jctc.1c01245] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapidly growing interest in simulating condensed-phase materials using quantum chemistry methods calls for a library of high-quality Gaussian basis sets suitable for periodic calculations. Unfortunately, most standard Gaussian basis sets commonly used in molecular simulation show significant linear dependencies when used in close-packed solids, leading to severe numerical issues that hamper the convergence to the complete basis set (CBS) limit, especially in correlated calculations. In this work, we revisit Dunning's strategy for construction of correlation-consistent basis sets and examine the relationship between accuracy and numerical stability in periodic settings. We find that limiting the number of primitive functions avoids the appearance of problematic small exponents while still providing smooth convergence to the CBS limit. As an example, we generate double-, triple-, and quadruple-ζ correlation-consistent Gaussian basis sets for periodic calculations with Goedecker-Teter-Hutter (GTH) pseudopotentials. Our basis sets cover the main-group elements from the first three rows of the periodic table. Especially for atoms on the left side of the periodic table, our basis sets are less diffuse than those used in molecular calculations. We verify the fast and reliable convergence to the CBS limit in both Hartree-Fock and post-Hartree-Fock (MP2) calculations, using a diverse test set of 19 semiconductors and insulators.
Collapse
Affiliation(s)
- Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
172
|
Scaling of the strange-metal scattering in unconventional superconductors. Nature 2022; 602:431-436. [PMID: 35173341 DOI: 10.1038/s41586-021-04305-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/29/2021] [Indexed: 11/08/2022]
Abstract
Marked evolution of properties with minute changes in the doping level is a hallmark of the complex chemistry that governs copper oxide superconductivity as manifested in the celebrated superconducting domes and quantum criticality taking place at precise compositions1-4. The strange-metal state, in which the resistivity varies linearly with temperature, has emerged as a central feature in the normal state of copper oxide superconductors5-9. The ubiquity of this behaviour signals an intimate link between the scattering mechanism and superconductivity10-12. However, a clear quantitative picture of the correlation has been lacking. Here we report the observation of precise quantitative scaling laws among the superconducting transition temperature (Tc), the linear-in-T scattering coefficient (A1) and the doping level (x) in electron-doped copper oxide La2-xCexCuO4 (LCCO). High-resolution characterization of epitaxial composition-spread films, which encompass the entire overdoped range of LCCO, has enabled us to systematically map its structural and transport properties with unprecedented accuracy and with increments of Δx = 0.0015. We have uncovered the relations Tc ~ (xc - x)0.5 ~ (A1□)0.5, where xc is the critical doping in which superconductivity disappears and A1□ is the coefficient of the linear resistivity per CuO2 plane. The striking similarity of the Tc versus A1□ relation among copper oxides, iron-based and organic superconductors may be an indication of a common mechanism of the strange-metal behaviour and unconventional superconductivity in these systems.
Collapse
|
173
|
Jang H, Song S, Kihara T, Liu Y, Lee SJ, Park SY, Kim M, Kim HD, Coslovich G, Nakata S, Kubota Y, Inoue I, Tamasaku K, Yabashi M, Lee H, Song C, Nojiri H, Keimer B, Kao CC, Lee JS. Characterization of photoinduced normal state through charge density wave in superconducting YBa 2Cu 3O 6.67. SCIENCE ADVANCES 2022; 8:eabk0832. [PMID: 35138893 PMCID: PMC8827649 DOI: 10.1126/sciadv.abk0832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The normal state of high-Tc cuprates has been considered one of the essential topics in high-temperature superconductivity research. However, compared to the high magnetic field study of it, understanding a photoinduced normal state remains elusive. Here, we explore a photoinduced normal state of YBa2Cu3O6.67 through a charge density wave (CDW) with time-resolved resonant soft x-ray scattering, as well as a high magnetic field x-ray scattering. In the nonequilibrium state where people predict a quenched superconducting state based on the previous optical spectroscopies, we experimentally observed a similar analogy to the competition between superconductivity and CDW shown in the equilibrium state. We further observe that the broken pairing states in the superconducting CuO2 plane via the optical pump lead to nucleation of three-dimensional CDW precursor correlation. Ultimately, these findings provide a critical clue that the characteristics of the photoinduced normal state show a solid resemblance to those under magnetic fields in equilibrium conditions.
Collapse
Affiliation(s)
- Hoyoung Jang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Takumi Kihara
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sang-Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sang-Youn Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeong-Do Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Giacomo Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Suguru Nakata
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Yuya Kubota
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | | | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | - Heemin Lee
- Departments of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Changyong Song
- Photon Science Center, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Departments of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Chi-Chang Kao
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jun-Sik Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
174
|
Pan GA, Ferenc Segedin D, LaBollita H, Song Q, Nica EM, Goodge BH, Pierce AT, Doyle S, Novakov S, Córdova Carrizales D, N'Diaye AT, Shafer P, Paik H, Heron JT, Mason JA, Yacoby A, Kourkoutis LF, Erten O, Brooks CM, Botana AS, Mundy JA. Superconductivity in a quintuple-layer square-planar nickelate. NATURE MATERIALS 2022; 21:160-164. [PMID: 34811494 DOI: 10.1038/s41563-021-01142-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Since the discovery of high-temperature superconductivity in copper oxide materials1, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials2. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound Nd0.8Sr0.2NiO2 (ref. 3). Undoped NdNiO2 belongs to a series of layered square-planar nickelates with chemical formula Ndn+1NinO2n+2 and is known as the 'infinite-layer' (n = ∞) nickelate. Here we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd6Ni5O12, in which optimal cuprate-like electron filling (d8.8) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd6Ni5O12 interpolates between cuprate-like and infinite-layer nickelate-like behaviour. In engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.
Collapse
Affiliation(s)
- Grace A Pan
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | | | - Qi Song
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Emilian M Nica
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | - Berit H Goodge
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Andrew T Pierce
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Spencer Doyle
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Steve Novakov
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | | | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hanjong Paik
- Platform for the Accelerated Realization, Analysis, and Discovery of Interface Materials (PARADIM), Cornell University, Ithaca, NY, USA
| | - John T Heron
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Amir Yacoby
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Lena F Kourkoutis
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA
| | - Onur Erten
- Department of Physics, Arizona State University, Tempe, AZ, USA
| | | | - Antia S Botana
- Department of Physics, Arizona State University, Tempe, AZ, USA.
| | - Julia A Mundy
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
175
|
Tam CC, Zhu M, Ayres J, Kummer K, Yakhou-Harris F, Cooper JR, Carrington A, Hayden SM. Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl 2Ba 2CuO 6+δ. Nat Commun 2022; 13:570. [PMID: 35091572 PMCID: PMC8799688 DOI: 10.1038/s41467-022-28124-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 12/03/2022] Open
Abstract
Hall effect and quantum oscillation measurements on high temperature cuprate superconductors show that underdoped compositions have small Fermi surface pockets whereas when heavily overdoped, a single much larger pocket is found. The origin of this change in electronic structure has been unclear, but may be related to the high temperature superconductivity. Here we show that the clean overdoped single-layer cuprate Tl2Ba2CuO6+δ (Tl2201) displays CDW order with a remarkably long correlation length ξ ≈ 200 Å which disappears above a hole doping of pCDW ≈ 0.265. We show that the evolution of the electronic properties of Tl2201 as the doping is lowered may be explained by a Fermi surface reconstruction which accompanies the emergence of the CDW below pCDW. Our results demonstrate importance of CDW correlations in understanding the electronic properties of overdoped cuprates. The origin of the Fermi surface reconstruction that occurs in cuprate superconductors as hole doping increases remains unclear. Here, the authors observe long range charge density wave (CDW) order in the overdoped single-layer cuprate Tl2Ba2CuO6+δ, which then disappears above a hole concentration 0.265, suggesting a correlation between Fermi surface reconstruction and the emergence of the CDW.
Collapse
Affiliation(s)
- C C Tam
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom.,Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - M Zhu
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| | - J Ayres
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom
| | - K Kummer
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - F Yakhou-Harris
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble Cedex 9, France
| | - J R Cooper
- Department of Physics, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, United Kingdom
| | - A Carrington
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom.
| | - S M Hayden
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, United Kingdom.
| |
Collapse
|
176
|
Chen SD, Hashimoto M, He Y, Song D, He JF, Li YF, Ishida S, Eisaki H, Zaanen J, Devereaux TP, Lee DH, Lu DH, Shen ZX. Unconventional spectral signature of T c in a pure d-wave superconductor. Nature 2022; 601:562-567. [PMID: 35082417 DOI: 10.1038/s41586-021-04251-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/13/2021] [Indexed: 11/09/2022]
Abstract
In conventional superconductors, the phase transition into a zero-resistance and perfectly diamagnetic state is accompanied by a jump in the specific heat and the opening of a spectral gap1. In the high-transition-temperature (high-Tc) cuprates, although the transport, magnetic and thermodynamic signatures of Tc have been known since the 1980s2, the spectroscopic singularity associated with the transition remains unknown. Here we resolve this long-standing puzzle with a high-precision angle-resolved photoemission spectroscopy (ARPES) study on overdoped (Bi,Pb)2Sr2CaCu2O8+δ (Bi2212). We first probe the momentum-resolved electronic specific heat via spectroscopy and reproduce the specific heat peak at Tc, completing the missing link for a holistic description of superconductivity. Then, by studying the full momentum, energy and temperature evolution of the spectra, we reveal that this thermodynamic anomaly arises from the singular growth of in-gap spectral intensity across Tc. Furthermore, we observe that the temperature evolution of in-gap intensity is highly anisotropic in the momentum space, and the gap itself obeys both the d-wave functional form and particle-hole symmetry. These findings support the scenario that the superconducting transition is driven by phase fluctuations. They also serve as an anchor point for understanding the Fermi arc and pseudogap phenomena in underdoped cuprates.
Collapse
Affiliation(s)
- Su-Di Chen
- Department of Applied Physics, Stanford University, Stanford, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA, USA.,Kavli Energy NanoScience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Makoto Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Yu He
- Department of Applied Physics, Stanford University, Stanford, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA, USA.,Department of Applied Physics, Yale University, New Haven, CT, USA
| | - Dongjoon Song
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Center for Correlated Electron Systems, Institute for Basic Science, Seoul, Republic of Korea
| | - Jun-Feng He
- Department of Applied Physics, Stanford University, Stanford, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA, USA.,Department of Physics, University of Science and Technology of China, Hefei, China
| | - Ying-Fei Li
- Department of Applied Physics, Stanford University, Stanford, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA, USA
| | - Shigeyuki Ishida
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jan Zaanen
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, The Netherlands
| | - Thomas P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Dung-Hai Lee
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dong-Hui Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Zhi-Xun Shen
- Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Department of Physics, Stanford University, Stanford, CA, USA. .,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA, USA.
| |
Collapse
|
177
|
Abstract
The "sign problem" (SP) is a fundamental limitation to simulations of strongly correlated matter. It is often argued that the SP is not intrinsic to the physics of particular Hamiltonians because its behavior can be influenced by the choice of algorithm. By contrast, we show that the SP in determinant quantum Monte Carlo (QMC) is quantitatively linked to quantum critical behavior. We demonstrate this through simulations of several models with critical properties that are relatively well understood. We propose a reinterpretation of the low average sign for the Hubbard model on the square lattice away from half filling in terms of the onset of pseudogap behavior and exotic superconductivity. Our study charts a path for exploiting the average sign in QMC simulations to understand quantum critical behavior.
Collapse
Affiliation(s)
- R Mondaini
- Beijing Computational Science Research Center, Beijing 100193, China
| | - S Tarat
- Beijing Computational Science Research Center, Beijing 100193, China
| | - R T Scalettar
- Department of Physics, University of California, Davis, CA 95616, USA
| |
Collapse
|
178
|
Weber MC, Guennou M, Evans DM, Toulouse C, Simonov A, Kholina Y, Ma X, Ren W, Cao S, Carpenter MA, Dkhil B, Fiebig M, Kreisel J. Emerging spin-phonon coupling through cross-talk of two magnetic sublattices. Nat Commun 2022; 13:443. [PMID: 35064133 PMCID: PMC8783005 DOI: 10.1038/s41467-021-27267-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Many material properties such as superconductivity, magnetoresistance or magnetoelectricity emerge from the non-linear interactions of spins and lattice/phonons. Hence, an in-depth understanding of spin-phonon coupling is at the heart of these properties. While most examples deal with one magnetic lattice only, the simultaneous presence of multiple magnetic orderings yield potentially unknown properties. We demonstrate a strong spin-phonon coupling in SmFeO3 that emerges from the interaction of both, iron and samarium spins. We probe this coupling as a remarkably large shift of phonon frequencies and the appearance of new phonons. The spin-phonon coupling is absent for the magnetic ordering of iron alone but emerges with the additional ordering of the samarium spins. Intriguingly, this ordering is not spontaneous but induced by the iron magnetism. Our findings show an emergent phenomenon from the non-linear interaction by multiple orders, which do not need to occur spontaneously. This allows for a conceptually different approach in the search for yet unknown properties.
Collapse
Affiliation(s)
- Mads C Weber
- Department of Materials, ETH Zurich, 8093, Zurich, Switzerland.
- Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg.
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg.
- Institut des Molécules et Matériaux du Mans, UMR 6283 CNRS, Le Mans Université, 72085, Le Mans, France.
| | - Mael Guennou
- Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
| | - Donald M Evans
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Constance Toulouse
- Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
| | - Arkadiy Simonov
- Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Xiaoxuan Ma
- Department of Physics, Materials Genome Institute and International Center for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China
| | - Wei Ren
- Department of Physics, Materials Genome Institute and International Center for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China
| | - Shixun Cao
- Department of Physics, Materials Genome Institute and International Center for Quantum and Molecular Structures, Shanghai University, Shanghai, 200444, China.
| | - Michael A Carpenter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Brahim Dkhil
- Laboratoire Structures, Propriétés et Modélisation des Solides, Centrale Supélec, CNRS-UMR8580, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Manfred Fiebig
- Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
| | - Jens Kreisel
- Department of Physics and Materials Science, University of Luxembourg, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology, 41 Rue du Brill, L-4422, Belvaux, Luxembourg
| |
Collapse
|
179
|
Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 2022; 601:35-44. [PMID: 34987212 DOI: 10.1038/s41586-021-04073-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
Superconductivity is a remarkably widespread phenomenon that is observed in most metals cooled to very low temperatures. The ubiquity of such conventional superconductors, and the wide range of associated critical temperatures, is readily understood in terms of the well-known Bardeen-Cooper-Schrieffer theory. Occasionally, however, unconventional superconductors are found, such as the iron-based materials, which extend and defy this understanding in unexpected ways. In the case of the iron-based superconductors, this includes the different ways in which the presence of multiple atomic orbitals can manifest in unconventional superconductivity, giving rise to a rich landscape of gap structures that share the same dominant pairing mechanism. In addition, these materials have also led to insights into the unusual metallic state governed by the Hund's interaction, the control and mechanisms of electronic nematicity, the impact of magnetic fluctuations and quantum criticality, and the importance of topology in correlated states. Over the fourteen years since their discovery, iron-based superconductors have proven to be a testing ground for the development of novel experimental tools and theoretical approaches, both of which have extensively influenced the wider field of quantum materials.
Collapse
|
180
|
Stripe order enhanced superconductivity in the Hubbard model. Proc Natl Acad Sci U S A 2022; 119:2109406119. [PMID: 34930822 PMCID: PMC8740580 DOI: 10.1073/pnas.2109406119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
The Hubbard model plays a central role in the theory of highly correlated systems. Its simplicity allows conceptual issues—which are generally complicated in the context of experiments on interesting materials—to be sharply posed and definitively answered. Recently, a variety of numerical studies have led to the conclusion that the “pure” Hubbard model on the square lattice at intermediate coupling, U, is not superconducting in the range of electron densities in which many previous approximate treatments had inferred high-temperature superconductivity. Here, using controlled density matrix renormalization group methods, we show that superconductivity is spectacularly enhanced if the hopping matrix elements are periodically modulated in a stripe-like pattern, with important (if suggestive) implications concerning the mechanism of unconventional superconductivity. Unidirectional (“stripe”) charge density wave order has now been established as a ubiquitous feature in the phase diagram of the cuprate high-temperature superconductors, where it generally competes with superconductivity. Nonetheless, on theoretical grounds it has been conjectured that stripe order (or other forms of “optimal” inhomogeneity) may play an essential positive role in the mechanism of high-temperature superconductivity. Here, we report density matrix renormalization group studies of the Hubbard model on long four- and six-leg cylinders, where the hopping matrix elements transverse to the long direction are periodically modulated—mimicking the effect of putative period 2 stripe order. We find that even modest amplitude modulations can enhance the long-distance superconducting correlations by many orders of magnitude and drive the system into a phase with a substantial spin gap and superconducting quasi–long-range order with a Luttinger exponent, Ksc∼1.
Collapse
|
181
|
Abstract
Superconductivity has been discovered recently in infinite-layer nickel-based 112 thin films R1−xAxNiO2 (R = La, Nd, Pr and A = Sr, Ca). They are isostructural to the infinite-layer cuprate (Ca,Sr)CuO2 and are supposed to have a formal Ni 3d9 valence, thus providing a new platform to study the unconventional pairing mechanism of high-temperature superconductors. This important discovery immediately triggers a huge amount of innovative scientific curiosity in the field. In this paper, we try to give an overview of the recent research progress on the newly found superconducting nickelate systems, both from experimental and theoretical aspects. We mainly focus on the electronic structures, magnetic excitations, phase diagrams and superconducting gaps, and finally make some open discussions for possible pairing symmetries in Ni-based 112 systems. The infinite-layer nickel-based 112 thin films R1−xAxNiO2 can host superconductivity up to 15 K R1−xAxNiO2 is a multiband system, in which the short-range antiferromagnetic fluctuations can be detected R1−xAxNiO2 has an unconventional superconducting pairing sate with a robust d-wave gap and a full gap without unified understanding The nickelate system provides a new platform for researching unconventional superconductivity
Collapse
|
182
|
Li L, Lee CH. Non-Hermitian Pseudo-Gaps. Sci Bull (Beijing) 2022; 67:685-690. [DOI: 10.1016/j.scib.2022.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
|
183
|
Puviani M, Manske D. Quench-drive spectroscopy of cuprates. Faraday Discuss 2022; 237:125-147. [DOI: 10.1039/d2fd00010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cuprates are d-wave superconductors which exhibit a rich phase diagram: they are characterized by superconducting fluctuations even above the critical temperature, and thermal disorder can reduce or suppress the phase...
Collapse
|
184
|
A strange metal emerges from a failed superconductor. Nature 2022; 601:198-199. [PMID: 35022596 DOI: 10.1038/d41586-021-03831-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
185
|
Signatures of a strange metal in a bosonic system. Nature 2022; 601:205-210. [PMID: 35022592 DOI: 10.1038/s41586-021-04239-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022]
Abstract
Fermi liquid theory forms the basis for our understanding of the majority of metals: their resistivity arises from the scattering of well defined quasiparticles at a rate where, in the low-temperature limit, the inverse of the characteristic time scale is proportional to the square of the temperature. However, various quantum materials1-15-notably high-temperature superconductors1-10-exhibit strange-metallic behaviour with a linear scattering rate in temperature, deviating from this central paradigm. Here we show the unexpected signatures of strange metallicity in a bosonic system for which the quasiparticle concept does not apply. Our nanopatterned YBa2Cu3O7-δ (YBCO) film arrays reveal linear-in-temperature and linear-in-magnetic field resistance over extended temperature and magnetic field ranges. Notably, below the onset temperature at which Cooper pairs form, the low-field magnetoresistance oscillates with a period dictated by the superconducting flux quantum, h/2e (e, electron charge; h, Planck's constant). Simultaneously, the Hall coefficient drops and vanishes within the measurement resolution with decreasing temperature, indicating that Cooper pairs instead of single electrons dominate the transport process. Moreover, the characteristic time scale τ in this bosonic system follows a scale-invariant relation without an intrinsic energy scale: ħ/τ ≈ a(kBT + γμBB), where ħ is the reduced Planck's constant, a is of order unity7,8,11,12, kB is Boltzmann's constant, T is temperature, μB is the Bohr magneton and γ ≈ 2. By extending the reach of strange-metal phenomenology to a bosonic system, our results suggest that there is a fundamental principle governing their transport that transcends particle statistics.
Collapse
|
186
|
Ye X, Wang X, Liu Z, Zhou B, Zhou L, Deng H, Long Y. Emergent physical properties of perovskite-type oxides prepared under high pressure. Dalton Trans 2021; 51:1745-1753. [PMID: 34935820 DOI: 10.1039/d1dt03551g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The perovskite ABO3 family demonstrates a wide variety of structural evolutions and physical properties and is arguably the most important family of complex oxides. Chemical substitutions of the A- and/or B-site and modulation of oxygen content can effectively regulate their electronic behaviors and multifunctional performances. In general, the BO6 octahedron represents the main unit controlling the electronic and magnetic properties while the A-site ion is often not involved. However, a series of unconventional perovskite materials have been recently synthesized under high pressure, such as the s-d level controlled Pb-based perovskite family and quadruple perovskite oxides containing transition metal ions at the A-site. In these compounds, the intersite A-B correlations play an important role in electronic behaviors and further induce many emergent physical properties.
Collapse
Affiliation(s)
- Xubin Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Wang
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Straße 40, 01187 Dresden, Germany
| | - Zhehong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongshan Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Youwen Long
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
187
|
Direct visualization of a static incommensurate antiferromagnetic order in Fe-doped Bi 2Sr 2CaCu 2O 8+δ. Proc Natl Acad Sci U S A 2021; 118:2115317118. [PMID: 34916295 DOI: 10.1073/pnas.2115317118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.
Collapse
|
188
|
Observation of Cu Spin Fluctuations in High- Tc Cuprate Superconductor Nanoparticles Investigated by Muon Spin Relaxation. NANOMATERIALS 2021; 11:nano11123450. [PMID: 34947799 PMCID: PMC8706420 DOI: 10.3390/nano11123450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The nano-size effects of high-Tc cuprate superconductor La2-xSrxCuO4 with x = 0.20 are investigated using X-ray diffractometry, Transmission electron microscopy, and muon-spin relaxation (μSR). It is investigated whether an increase in the bond distance of Cu and O atoms in the conducting layer compared to those of the bulk state might affect its physical and magnetic properties. The μSR measurements revealed the slowing down of Cu spin fluctuations in La2-xSrxCuO4 nanoparticles, indicating the development of a magnetic correlation at low temperatures. The magnetic correlation strengthens as the particle size reduces. This significantly differs from those observed in the bulk form, which show a superconducting state below Tc. It is indicated that reducing the particle size of La2-xSrxCuO4 down to nanometer size causes the appearance of magnetism. The magnetism enhances with decreasing particle size.
Collapse
|
189
|
Fan JQ, Yu XQ, Cheng FJ, Wang H, Wang R, Ma X, Hu XP, Zhang D, Ma XC, Xue QK, Song CL. Direct observation of nodeless superconductivity and phonon modes in electron-doped copper oxide Sr1-xNdxCuO2. Natl Sci Rev 2021; 9:nwab225. [PMID: 35530436 PMCID: PMC9070465 DOI: 10.1093/nsr/nwab225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/14/2022] Open
Abstract
The microscopic understanding of high-temperature superconductivity in cuprates has been hindered by the apparent complexity of crystal structures in these materials. We used scanning tunneling microscopy and spectroscopy to study the electron-doped copper oxide compound Sr1−xNdxCuO2, which has only bare cations separating the CuO2 planes and thus the simplest infinite-layer structure of all cuprate superconductors. Tunneling conductance spectra of the major CuO2 planes in the superconducting state revealed direct evidence for a nodeless pairing gap, regardless of variation of its magnitude with the local doping of trivalent neodymium. Furthermore, three distinct bosonic modes are observed as multiple peak-dip-hump features outside the superconducting gaps and their respective energies depend little on the spatially varying gaps. As well as the bosonic modes, with energies identical to those of the external, bending and stretching phonons of copper oxides, our findings reveal the origin of the bosonic modes in lattice vibrations rather than spin excitations.
Collapse
Affiliation(s)
- Jia-Qi Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Xue-Qing Yu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Fang-Jun Cheng
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Heng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Ruifeng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Xiaobing Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Xiao-Peng Hu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
| | - Ding Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama351-0198, Japan
| | - Xu-Cun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
- Southern University of Science and Technology, Shenzhen518055, China
| | - Can-Li Song
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing100084, China
- Frontier Science Center for Quantum Information, Beijing100084, China
| |
Collapse
|
190
|
Cai X, Li ZX, Yao H. Antiferromagnetism Induced by Bond Su-Schrieffer-Heeger Electron-Phonon Coupling: A Quantum Monte Carlo Study. PHYSICAL REVIEW LETTERS 2021; 127:247203. [PMID: 34951814 DOI: 10.1103/physrevlett.127.247203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/22/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Antiferromagnetism (AFM) such as Néel ordering is often closely related to Coulomb interactions such as Hubbard repulsion in two-dimensional (2D) systems. Whether Néel AFM ordering in two dimensions can be dominantly induced by electron-phonon couplings (EPC) has not been completely understood. Here, by employing numerically exact sign-problem-free quantum Monte Carlo (QMC) simulations, we show that bond Su-Schrieffer-Heeger (SSH) phonons with frequency ω and EPC constant λ can induce AFM ordering for a wide range of phonon frequency ω>ω_{c}. For ω<ω_{c}, a valence-bond-solid (VBS) order appears and there is a direct quantum phase transition between VBS and AFM phases at ω_{c}. The phonon mechanism of the AFM ordering is related to the fact that SSH phonons directly couple to electron hopping whose second-order process can induce an effective AFM spin exchange. Our results shall shed new light on understanding AFM ordering in correlated quantum materials.
Collapse
Affiliation(s)
- Xun Cai
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Zi-Xiang Li
- Beijing National Laboratory for Condensed Matter Physics & Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hong Yao
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
191
|
Non-Fermi liquid behavior below the Néel temperature in the frustrated heavy fermion magnet UAu 2. Proc Natl Acad Sci U S A 2021; 118:2102687118. [PMID: 34873053 DOI: 10.1073/pnas.2102687118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
The term Fermi liquid is almost synonymous with the metallic state. The association is known to break down at quantum critical points (QCPs), but these require precise values of tuning parameters, such as pressure and applied magnetic field, to exactly suppress a continuous phase transition temperature to the absolute zero. Three-dimensional non-Fermi liquid states, apart from superconductivity, that are unshackled from a QCP are much rarer and are not currently well understood. Here, we report that the triangular lattice system uranium diauride (UAu2) forms such a state with a non-Fermi liquid low-temperature heat capacity [Formula: see text] and electrical resistivity [Formula: see text] far below its Néel temperature. The magnetic order itself has a novel structure and is accompanied by weak charge modulation that is not simply due to magnetostriction. The charge modulation continues to grow in amplitude with decreasing temperature, suggesting that charge degrees of freedom play an important role in the non-Fermi liquid behavior. In contrast with QCPs, the heat capacity and resistivity we find are unusually resilient in magnetic field. Our results suggest that a combination of magnetic frustration and Kondo physics may result in the emergence of this novel state.
Collapse
|
192
|
Song Y, Ying T, Chen X, Han X, Wu X, Schnyder AP, Huang Y, Guo JG, Chen X. Competition of Superconductivity and Charge Density Wave in Selective Oxidized CsV_{3}Sb_{5} Thin Flakes. PHYSICAL REVIEW LETTERS 2021; 127:237001. [PMID: 34936789 DOI: 10.1103/physrevlett.127.237001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 05/16/2023]
Abstract
The recently discovered layered kagome metals AV_{3}Sb_{5} (A=K, Rb, and Cs) with vanadium kagome networks provide a novel platform to explore correlated quantum states intertwined with topological band structures. Here we report the prominent effect of hole doping on both superconductivity and charge density wave (CDW) order, achieved by selective oxidation of exfoliated thin flakes. A superconducting dome is revealed as a function of the effective doping content. The superconducting transition temperature (T_{c}) and upper critical field in thin flakes are significantly enhanced compared with the bulk, which are accompanied by the suppression of CDW. Our detailed analyses establish the pivotal role of van Hove singularities in promoting correlated quantum orders in these kagome metals. Our experiments not only demonstrate the intriguing nature of superconducting and CDW orders, but also provide a novel route to tune the carrier concentration through both selective oxidation and electric gating. This establishes CsV_{3}Sb_{5} as a tunable 2D platform for the further exploration of topology and correlation among 3d electrons in kagome lattices.
Collapse
Affiliation(s)
- Yanpeng Song
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianping Ying
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Materials Research Centre for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Xu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianxin Wu
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Andreas P Schnyder
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Yuan Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Gang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiaolong Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
193
|
Raychaudhuri P, Dutta S. Phase fluctuations in conventional superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:083001. [PMID: 34731851 DOI: 10.1088/1361-648x/ac360b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Within the Bardeen-Cooper-Schrieffer (BCS) theory, superconductivity is entirely governed by the pairing energy scale, which gives rise to the superconducting energy gap, Δ. However, another important energy scale, the superfluid phase stiffness,J, which determines the resilience of the superconductor to phase-fluctuations is normally ignored. The spectacular success of BCS theory owes to the fact that in conventional superconductorsJis normally several orders of magnitude larger than Δ and thus an irrelevant energy scale. However, in certain situations such as in the presence of low carrier density, strong disorder, at low-dimensions or in granular superconductors,Jcan drastically come down and even become smaller than Δ. In such situations, the temperature and magnetic field evolution of superconducting properties is governed by phase fluctuations, which gives rise to novel electronic states where signatures of electronic pairing continue to exist even when the zero resistance state is destroyed. In this article, we will review the recent experimental developments on the study of phase fluctuations in conventional superconductors.
Collapse
Affiliation(s)
- Pratap Raychaudhuri
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Surajit Dutta
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
194
|
Jo MK, Heo H, Lee JH, Choi S, Kim A, Jeong HB, Jeong HY, Yuk JM, Eom D, Jahng J, Lee ES, Jung IY, Cho SR, Kim J, Cho S, Kang K, Song S. Enhancement of Photoresponse on Narrow-Bandgap Mott Insulator α-RuCl 3 via Intercalation. ACS NANO 2021; 15:18113-18124. [PMID: 34734700 DOI: 10.1021/acsnano.1c06752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Charge doping to Mott insulators is critical to realize high-temperature superconductivity, quantum spin liquid state, and Majorana fermion, which would contribute to quantum computation. Mott insulators also have a great potential for optoelectronic applications; however, they showed insufficient photoresponse in previous reports. To enhance the photoresponse of Mott insulators, charge doping is a promising strategy since it leads to effective modification of electronic structure near the Fermi level. Intercalation, which is the ion insertion into the van der Waals gap of layered materials, is an effective charge-doping method without defect generation. Herein, we showed significant enhancement of optoelectronic properties of a layered Mott insulator, α-RuCl3, through electron doping by organic cation intercalation. The electron-doping results in substantial electronic structure change, leading to the bandgap shrinkage from 1.2 eV to 0.7 eV. Due to localized excessive electrons in RuCl3, distinct density of states is generated in the valence band, leading to the optical absorption change rather than metallic transition even in substantial doping concentration. The stable near-infrared photodetector using electronic modulated RuCl3 showed 50 times higher photoresponsivity and 3 times faster response time compared to those of pristine RuCl3, which contributes to overcoming the disadvantage of a Mott insulator as a promising optoelectronic device and expanding the material libraries.
Collapse
Affiliation(s)
- Min-Kyung Jo
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hoseok Heo
- Inorganic Material Lab., Samsung Advanced Institute of Technology (SAIT), Suwon 16678, Korea
| | - Jung-Hoon Lee
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Seungwook Choi
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Ansoon Kim
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Han Beom Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF) and Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jong Min Yuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Daejin Eom
- Atom-scale Measurement Team, Advanced Instrumentation Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Junghoon Jahng
- Hyperspectral Nano-imaging Lab, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Eun Seong Lee
- Hyperspectral Nano-imaging Lab, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - In-Young Jung
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Seong Rae Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeongtae Kim
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Seorin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seungwoo Song
- Operando Methodology and Measurement Team, Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| |
Collapse
|
195
|
Band-selective gap opening by a C 4-symmetric order in a proximity-coupled heterostructure Sr 2VO 3FeAs. Proc Natl Acad Sci U S A 2021; 118:2105190118. [PMID: 34789576 PMCID: PMC8617490 DOI: 10.1073/pnas.2105190118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Complex electronic phases in strongly correlated electron systems are manifested by broken symmetries in the low-energy electronic states. Some mysterious phases, however, exhibit intriguing energy gap opening without an apparent signature of symmetry breaking (e.g., high-TC cuprates and heavy fermion superconductors). Here, we report an unconventional gap opening in a heterostructured, iron-based superconductor Sr2VO3FeAs across a phase transition at T 0 ∼150 K. Using angle-resolved photoemission spectroscopy, we identify that a fully isotropic gap opens selectively on one of the Fermi surfaces with finite warping along the interlayer direction. This band selectivity is incompatible with conventional gap opening mechanisms associated with symmetry breaking. These findings, together with the unusual field-dependent magnetoresistance, suggest that the Kondo-type proximity coupling of itinerant Fe electrons to localized V spin plays a role in stabilizing the exotic phase, which may serve as a distinct precursor state for unconventional superconductivity.
Collapse
|
196
|
Xie J, Liu X, Zhang W, Wong SM, Zhou X, Zhao Y, Wang S, Lai KT, Goh SK. Fragile Pressure-Induced Magnetism in FeSe Superconductors with a Thickness Reduction. NANO LETTERS 2021; 21:9310-9317. [PMID: 34714653 DOI: 10.1021/acs.nanolett.1c03508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emergence of high transition temperature (Tc) superconductivity in bulk FeSe under pressure is associated with the tuning of nematicity and magnetism. However, sorting out the relative contributions from magnetic and nematic fluctuations to the enhancement of Tc remains challenging. Here, we design and conduct a series of high-pressure experiments on FeSe thin flakes. We find that as the thickness decreases the nematic phase boundary on temperature-pressure phase diagrams remains robust while the magnetic order is significantly weakened. A local maximum of Tc is observed outside the nematic phase region, not far from the extrapolated nematic end point in all samples. However, the maximum Tc value is reduced associated with the weakening of magnetism. No high-Tc phase is observed in the thinnest sample. Our results strongly suggest that nematic fluctuations alone can only have a limited effect while magnetic fluctuations are pivotal on the enhancement of Tc in FeSe.
Collapse
Affiliation(s)
- Jianyu Xie
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinyou Liu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sum Ming Wong
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuefeng Zhou
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yusheng Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shanmin Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kwing To Lai
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Swee K Goh
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
197
|
Wang Y, Chen Z, Shi T, Moritz B, Shen ZX, Devereaux TP. Phonon-Mediated Long-Range Attractive Interaction in One-Dimensional Cuprates. PHYSICAL REVIEW LETTERS 2021; 127:197003. [PMID: 34797146 DOI: 10.1103/physrevlett.127.197003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Establishing a minimal microscopic model for cuprates is a key step towards the elucidation of a high-T_{c} mechanism. By a quantitative comparison with a recent in situ angle-resolved photoemission spectroscopy measurement in doped 1D cuprate chains, our simulation identifies a crucial contribution from long-range electron-phonon coupling beyond standard Hubbard models. Using reasonable ranges of coupling strengths and phonon energies, we obtain a strong attractive interaction between neighboring electrons, whose strength is comparable to experimental observations. Nonlocal couplings play a significant role in the mediation of neighboring interactions. Considering the structural and chemical similarity between 1D and 2D cuprate materials, this minimal model with long-range electron-phonon coupling will provide important new insights on cuprate high-T_{c} superconductivity and related quantum phases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29631, USA
| | - Zhuoyu Chen
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Tao Shi
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Brian Moritz
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Thomas P Devereaux
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
198
|
Bastiaans KM, Chatzopoulos D, Ge JF, Cho D, Tromp WO, van Ruitenbeek JM, Fischer MH, de Visser PJ, Thoen DJ, Driessen EFC, Klapwijk TM, Allan MP. Direct evidence for Cooper pairing without a spectral gap in a disordered superconductor above Tc. Science 2021; 374:608-611. [PMID: 34709897 DOI: 10.1126/science.abe3987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Koen M Bastiaans
- Leiden Institute of Physics, Leiden University, 2333 CA Leiden, Netherlands
| | | | - Jian-Feng Ge
- Leiden Institute of Physics, Leiden University, 2333 CA Leiden, Netherlands
| | - Doohee Cho
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Willem O Tromp
- Leiden Institute of Physics, Leiden University, 2333 CA Leiden, Netherlands
| | | | - Mark H Fischer
- Department of Physics, University of Zurich, 8057 Zurich, Switzerland
| | - Pieter J de Visser
- SRON Netherlands Institute for Space Research, 2333 CA Leiden Netherlands
| | - David J Thoen
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands.,Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2628 CD Delft, Netherlands
| | - Eduard F C Driessen
- Institut de Radioastronomie Millimétrique (IRAM), Grenoble, 38400 Saint-Martin-d'Hères, France
| | - Teunis M Klapwijk
- Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands.,Institute of Topological Materials, Julius-Maximilian-Universität Würzburg, 97070 Würzburg, Germany
| | - Milan P Allan
- Leiden Institute of Physics, Leiden University, 2333 CA Leiden, Netherlands
| |
Collapse
|
199
|
Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A, Wang Y, Grusdt F, Demler E, Salomon G, Gross C, Bloch I. Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid. Science 2021; 374:82-86. [PMID: 34591626 DOI: 10.1126/science.abe7165] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joannis Koepsell
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Dominik Bourgund
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Pimonpan Sompet
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Sarah Hirthe
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany
| | - Annabelle Bohrdt
- Munich Center for Quantum Science and Technology, 80799 München, Germany.,Department of Physics and Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Yao Wang
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics and Astronomy, Clemson University, Clemson, SC 29631, USA
| | - Fabian Grusdt
- Munich Center for Quantum Science and Technology, 80799 München, Germany.,Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
| | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Guillaume Salomon
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany.,Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany.,Physikalisches Institut, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology, 80799 München, Germany.,Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
| |
Collapse
|
200
|
Fumega AO, Wong D, Schulz C, Rodríguez F, Blanco-Canosa S. Spectroscopy of the frustrated quantum antiferromagnet Cs 2CuCl 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:495603. [PMID: 34517361 DOI: 10.1088/1361-648x/ac2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
We investigate the electronic structure of Cs2CuCl4, a material discussed in the framework of a frustrated quantum antiferromagnet, by means of resonant inelastic x-ray scattering (RIXS) and density functional theory (DFT). From the non-dispersive highly localizedddexcitations, we resolve the crystal field splitting of the Cu2+ions in a strongly distorted tetrahedral coordination. This allows us to model the RIXS spectrum within the crystal field theory (CFT), assign theddorbital excitations and retrieve experimentally the values of the crystal field splitting parametersDq,DsandDτ. The electronic structure obtainedab-initioagrees with the RIXS spectrum and modelled by CFT, highlighting the potential of combined spectroscopic, cluster and DFT calculations to determine the electronic ground state of complex materials.
Collapse
Affiliation(s)
- Adolfo O Fumega
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
- Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, E-15782 Campus Sur s/n, Santiago de Compostela, Spain
| | - D Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - C Schulz
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - F Rodríguez
- MALTA TEAM, DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain
| | - S Blanco-Canosa
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|