151
|
Optofluidic real-time cell sorter for longitudinal CTC studies in mouse models of cancer. Proc Natl Acad Sci U S A 2019; 116:2232-2236. [PMID: 30674677 PMCID: PMC6369805 DOI: 10.1073/pnas.1814102116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) play a fundamental role in cancer progression. However, in mice, limited blood volume and the rarity of CTCs in the bloodstream preclude longitudinal, in-depth studies of these cells using existing liquid biopsy techniques. Here, we present an optofluidic system that continuously collects fluorescently labeled CTCs from a genetically engineered mouse model (GEMM) for several hours per day over multiple days or weeks. The system is based on a microfluidic cell sorting chip connected serially to an unanesthetized mouse via an implanted arteriovenous shunt. Pneumatically controlled microfluidic valves capture CTCs as they flow through the device, and CTC-depleted blood is returned back to the mouse via the shunt. To demonstrate the utility of our system, we profile CTCs isolated longitudinally from animals over 4 days of treatment with the BET inhibitor JQ1 using single-cell RNA sequencing (scRNA-Seq) and show that our approach eliminates potential biases driven by intermouse heterogeneity that can occur when CTCs are collected across different mice. The CTC isolation and sorting technology presented here provides a research tool to help reveal details of how CTCs evolve over time, allowing studies to credential changes in CTCs as biomarkers of drug response and facilitating future studies to understand the role of CTCs in metastasis.
Collapse
|
152
|
Abstract
The application of next-generation sequencing in cancer genomics allowed for a better understanding of the genetics and pathogenesis of cancer. Single-cell genomics is a relatively new field that has enhanced our current knowledge of the genetic diversity of cells involved in the complex biological systems of cancer. Single-cell genomics is a rapidly developing field, and current technologies can assay a single cell's gene expression, DNA variation, epigenetic state, and nuclear structure. Statistical and computational methods are central to single-cell genomics and allows for extraction of meaningful information. The translational application of single-cell sequencing in precision cancer therapy has the potential to improve cancer diagnostics, prognostics, targeted therapy, early detection, and noninvasive monitoring. Furthermore, single-cell genomics will transform cancer research as even initial experiments have revolutionized our current understanding of gene regulation and disease.
Collapse
Affiliation(s)
| | - Pawan Noel
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Wei Lin
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel D Von Hoff
- Mayo Clinic, Scottsdale, AZ, USA
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
153
|
Singh SR, Aggarwal P, Hou SX. Cancer Stem Cells and Stem Cell Tumors in Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:175-190. [DOI: 10.1007/978-3-030-23629-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
154
|
Lee JR, Ooi CC, Wang SX. In Vitro Cancer Diagnostics. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
155
|
Pantel K, Hille C, Scher HI. Circulating Tumor Cells in Prostate Cancer: From Discovery to Clinical Utility. Clin Chem 2019; 65:87-99. [DOI: 10.1373/clinchem.2018.287102] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Prostate cancer represents the most common non–skin cancer type in men. Unmet needs include understanding prognosis to determine when intervention is needed and what type, prediction to guide the choice of a systemic therapy, and response indicators to determine whether a treatment is working. Over the past decade, the “liquid biopsy,” characterized by the analysis of tumor cells and tumor cell products such as cell-free nucleic acids (DNA, microRNA) or extracellular vesicles circulating in the blood of cancer patients, has received considerable attention.
CONTENT
Among those biomarkers, circulating tumor cells (CTCs) have been most intensively analyzed in prostate cancer. Here we discuss recent studies on the enumeration and characterization of CTCs in peripheral blood and how this information can be used to develop biomarkers for each of these clinical contexts. We focus on clinical applications in men with metastatic castration-resistant prostate cancer, in whom CTCs are more often detected and at higher numbers, and clinical validation for different contexts of use is most mature.
SUMMARY
The overall goal of CTC-based liquid biopsy testing is to better inform medical decision-making so that patient outcomes are improved.
Collapse
Affiliation(s)
- Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hille
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell College of Medicine, New York, NY
| |
Collapse
|
156
|
Abstract
Circulating tumor cells (CTCs) are rare tumor cells found in the blood of patients with cancer that can be reliably detected by CTC technologies to provide prognostic, predictive, and diagnostic information. CTC sampling reflects intratumoral and intertumoral heterogeneity better than targeted biopsy. CTC samples are minimally invasive and amenable to repeated sampling, allowing real-time evaluation of tumor in response to therapy-related pressures and possibly early detection. Cytology is the most natural arena for integration of CTC testing. CTC technology may also be deployed to enhance and facilitate the practice of cytology and surgical pathology.
Collapse
Affiliation(s)
- Alarice C Lowe
- Cytology, Brigham and Women's Hospital, 75 Francis Street, MRB 308, Boston, MA 02115, USA.
| |
Collapse
|
157
|
Abstract
Cellular heterogeneity within and across tumors has been a major obstacle in understanding and treating cancer, and the complex heterogeneity is masked if bulk tumor tissues are used for analysis. The advent of rapidly developing single-cell sequencing technologies, which include methods related to single-cell genome, epigenome, transcriptome, and multi-omics sequencing, have been applied to cancer research and led to exciting new findings in the fields of cancer evolution, metastasis, resistance to therapy, and tumor microenvironment. In this review, we discuss recent advances and limitations of these new technologies and their potential applications in cancer studies.
Collapse
Affiliation(s)
- Xianwen Ren
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Boxi Kang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
158
|
Sai B, Xiang J. Disseminated tumour cells in bone marrow are the source of cancer relapse after therapy. J Cell Mol Med 2018; 22:5776-5786. [PMID: 30255991 PMCID: PMC6237612 DOI: 10.1111/jcmm.13867] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/11/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that cancer cells spread much earlier than was previously believed. Recent technological advances have greatly improved the detection methods of circulating tumour cells (CTCs), suggesting that the dissemination of cancer cells into the circulation occurs randomly. Most CTCs die in circulation as a result of shear stress and/or anoikis. However, the persistence of disseminated tumour cells (DTCs) in the bone marrow is the result of interaction of DTCs with bone marrow microenvironment. DTCs in the bone marrow undergo successive clonal expansions and a parallel progression that leads to new variants. Compared to the CTCs, DTCs in the bone marrow have a unique signature, which displayed dormant, mesenchymal phenotype and osteoblast-like or osteoclast-like phenotype. The persistence of DTCs in the bone marrow is always related to minimal residual diseases (MRDs). This review outlines the difference between CTCs and DTCs in the bone marrow and describes how this difference affects the clinical values of CTCs and DTCs, such as metastasis and recurrence. We suggest that DTCs remaining in the bone marrow after therapy can be used as a superior marker in comparison with CTCs to define patients with an unfavourable prognosis and may therefore be a potential prognostic factor and therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Buqing Sai
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
| | - Juanjuan Xiang
- Hunan Cancer HospitalThe Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunanChina
- Cancer Research InstituteSchool of Basic Medical ScienceCentral South UniversityChangshaHunanChina
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Nonresolving Inflammation and CancerChangshaHunanChina
| |
Collapse
|
159
|
Complexity of genome sequencing and reporting: Next generation sequencing (NGS) technologies and implementation of precision medicine in real life. Crit Rev Oncol Hematol 2018; 133:171-182. [PMID: 30661654 DOI: 10.1016/j.critrevonc.2018.11.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
The finalization of the Human Genome Project in 2003 paved the way for a deeper understanding of cancer, favouring a faster progression towards "personalized" medicine. Research in oncology has progressively focused on the sequencing of cancer genomes, to better understand the genetic basis of tumorigenesis and identify actionable alterations to guide cancer therapy. Thanks to the development of next-generation-sequencing (NGS) techniques, sequencing of tumoral DNA is today technically easier, faster and cheaper. Commercially available NGS panels enable the detection of single or global genomic alterations, namely gene mutation and mutagenic burden, both on germline and somatic DNA, potentially predicting the response or resistance to cancer treatments. Profiling of tumor DNA is nowadays a standard in cancer research and treatment. In this review we discuss the history, techniques and applications of NGS in cancer care, under a "personalized tailored therapy" perspective.
Collapse
|
160
|
Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol 2018; 20:1349-1360. [PMID: 30482943 DOI: 10.1038/s41556-018-0236-7] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
Abstract
Tumours comprise a heterogeneous collection of cells with distinct genetic and phenotypic properties that can differentially promote progression, metastasis and drug resistance. Emerging single-cell technologies provide a new opportunity to profile individual cells within tumours and investigate what roles they play in these processes. This Review discusses key technological considerations for single-cell studies in cancer, new findings using single-cell technologies and critical open questions for future applications.
Collapse
|
161
|
Mayrhofer M, De Laere B, Whitington T, Van Oyen P, Ghysel C, Ampe J, Ost P, Demey W, Hoekx L, Schrijvers D, Brouwers B, Lybaert W, Everaert E, De Maeseneer D, Strijbos M, Bols A, Fransis K, Oeyen S, van Dam PJ, Van den Eynden G, Rutten A, Aly M, Nordström T, Van Laere S, Rantalainen M, Rajan P, Egevad L, Ullén A, Yachnin J, Dirix L, Grönberg H, Lindberg J. Cell-free DNA profiling of metastatic prostate cancer reveals microsatellite instability, structural rearrangements and clonal hematopoiesis. Genome Med 2018; 10:85. [PMID: 30458854 PMCID: PMC6247769 DOI: 10.1186/s13073-018-0595-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There are multiple existing and emerging therapeutic avenues for metastatic prostate cancer, with a common denominator, which is the need for predictive biomarkers. Circulating tumor DNA (ctDNA) has the potential to cost-efficiently accelerate precision medicine trials to improve clinical efficacy and diminish costs and toxicity. However, comprehensive ctDNA profiling in metastatic prostate cancer to date has been limited. METHODS A combination of targeted and low-pass whole genome sequencing was performed on plasma cell-free DNA and matched white blood cell germline DNA in 364 blood samples from 217 metastatic prostate cancer patients. RESULTS ctDNA was detected in 85.9% of baseline samples, correlated to line of therapy and was mirrored by circulating tumor cell enumeration of synchronous blood samples. Comprehensive profiling of the androgen receptor (AR) revealed a continuous increase in the fraction of patients with intra-AR structural variation, from 15.4% during first-line metastatic castration-resistant prostate cancer therapy to 45.2% in fourth line, indicating a continuous evolution of AR during the course of the disease. Patients displayed frequent alterations in DNA repair deficiency genes (18.0%). Additionally, the microsatellite instability phenotype was identified in 3.81% of eligible samples (≥ 0.1 ctDNA fraction). Sequencing of non-repetitive intronic and exonic regions of PTEN, RB1, and TP53 detected biallelic inactivation in 47.5%, 20.3%, and 44.1% of samples with ≥ 0.2 ctDNA fraction, respectively. Only one patient carried a clonal high-impact variant without a detectable second hit. Intronic high-impact structural variation was twice as common as exonic mutations in PTEN and RB1. Finally, 14.6% of patients presented false positive variants due to clonal hematopoiesis, commonly ignored in commercially available assays. CONCLUSIONS ctDNA profiles appear to mirror the genomic landscape of metastatic prostate cancer tissue and may cost-efficiently provide somatic information in clinical trials designed to identify predictive biomarkers. However, intronic sequencing of the interrogated tumor suppressors challenges the ubiquitous focus on coding regions and is vital, together with profiling of synchronous white blood cells, to minimize erroneous assignments which in turn may confound results and impede true associations in clinical trials.
Collapse
Affiliation(s)
- Markus Mayrhofer
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Tom Whitington
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Jozef Ampe
- Department of Urology, AZ Sint-Jan, Brugge, Belgium
| | - Piet Ost
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Wim Demey
- Department of Oncology, AZ KLINA, Brasschaat, Belgium
| | - Lucien Hoekx
- Department of Urology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Willem Lybaert
- Department of Oncology, AZ Nikolaas, Sint-Niklaas, Belgium
| | - Els Everaert
- Department of Oncology, AZ Nikolaas, Sint-Niklaas, Belgium
| | | | | | - Alain Bols
- Department of Oncology, AZ Sint-Jan, Brugge, Belgium
| | - Karen Fransis
- Department of Urology, Antwerp University Hospital, Antwerp, Belgium
| | - Steffi Oeyen
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan van Dam
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | | | - Annemie Rutten
- Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Nordström
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Steven Van Laere
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Mattias Rantalainen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Prabhakar Rajan
- Centre for Molecular Oncology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London, UK
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Anders Ullén
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Jeffrey Yachnin
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Luc Dirix
- Centre for Oncological Research, University of Antwerp, Antwerp, Belgium
- Department of Oncology, GZA Hospitals Sint-Augustinus, Antwerp, Belgium
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Lindberg
- Department of Medical Epidemiology and Biostatistics, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
162
|
Vetter M, Landin J, Szczerba BM, Castro-Giner F, Gkountela S, Donato C, Krol I, Scherrer R, Balmelli C, Malinovska A, Zippelius A, Kurzeder C, Heinzelmann-Schwarz V, Weber WP, Rochlitz C, Aceto N. Denosumab treatment is associated with the absence of circulating tumor cells in patients with breast cancer. Breast Cancer Res 2018; 20:141. [PMID: 30458879 PMCID: PMC6247738 DOI: 10.1186/s13058-018-1067-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The presence of circulating tumor cells (CTCs) in patients with breast cancer correlates to a bad prognosis. Yet, CTCs are detectable in only a minority of patients with progressive breast cancer, and factors that influence the abundance of CTCs remain elusive. Methods We conducted CTC isolation and enumeration in a selected group of 73 consecutive patients characterized by progressive invasive breast cancer, high tumor load and treatment discontinuation at the time of CTC isolation. CTCs were quantified with the Parsortix microfluidic device. Clinicopathological variables, blood counts at the time of CTC isolation and detailed treatment history prior to blood sampling were evaluated for each patient. Results Among 73 patients, we detected at least one CTC per 7.5 ml of blood in 34 (46%). Of these, 22 (65%) had single CTCs only, whereas 12 (35%) featured both single CTCs and CTC clusters. Treatment with the monoclonal antibody denosumab correlated with the absence of CTCs, both when considering all patients and when considering only those with bone metastasis. We also found that low red blood cell count was associated with the presence of CTCs, whereas high CA 15-3 tumor marker, high mean corpuscular volume, high white blood cell count and high mean platelet volume associated specifically with CTC clusters. Conclusions In addition to blood count correlatives to single and clustered CTCs, we found that denosumab treatment associates with most patients lacking CTCs from their peripheral circulation. Prospective studies will be needed to validate the involvement of denosumab in the prevention of CTC generation. Electronic supplementary material The online version of this article (10.1186/s13058-018-1067-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcus Vetter
- Gynecologic Cancer Center, University Hospital Basel, 4056, Basel, Switzerland.,Department of Medical Oncology, University Hospital Basel, 4056, Basel, Switzerland
| | - Julia Landin
- Department of Medical Oncology, University Hospital Basel, 4056, Basel, Switzerland
| | - Barbara Maria Szczerba
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.,SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Sofia Gkountela
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Cinzia Donato
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Ilona Krol
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Ramona Scherrer
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland
| | - Catharina Balmelli
- Department of Medical Oncology, University Hospital Basel, 4056, Basel, Switzerland
| | - Alexandra Malinovska
- Department of Medical Oncology, University Hospital Basel, 4056, Basel, Switzerland
| | - Alfred Zippelius
- Department of Medical Oncology, University Hospital Basel, 4056, Basel, Switzerland
| | - Christian Kurzeder
- Gynecologic Cancer Center, University Hospital Basel, 4056, Basel, Switzerland.,Breast Center, University Hospital Basel, 4056, Basel, Switzerland
| | | | | | - Christoph Rochlitz
- Department of Medical Oncology, University Hospital Basel, 4056, Basel, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, Mattenstrasse 28, CH-4058, Basel, Switzerland.
| |
Collapse
|
163
|
Agnoletto C, Minotti L, Brulle-Soumare L, Pasquali L, Galasso M, Corrà F, Baldassari F, Judde JG, Cairo S, Volinia S. Heterogeneous expression of EPCAM in human circulating tumour cells from patient-derived xenografts. Biomark Res 2018; 6:31. [PMID: 30450210 PMCID: PMC6208170 DOI: 10.1186/s40364-018-0145-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background We aim to characterize the heterogeneous circulating tumour cells (CTCs) in peripheral blood, independently of physical or immunological purification, by using patient-derived xenografts (PDXs) models. CTC studies from blood generally rely on enrichment or purification. Conversely, we devised a method for the inclusive study of human cells from blood of PDX models, without pre-selection or enrichment. Methods A qRT-PCR assay was developed to detect human and cancer-related transcripts from CTCs in PDXs. We quantified the EPCAM and keratins CTC markers, in a PDX cohort of breast cancer. The murine beta actin gene was used for normalization. Spearman's rho coefficients were calculated for correlation. Results We demonstrated, for the first time, that we can quantify the content of CTCs and the expression of human CTC markers in PDX blood using human-specific qRT-PCR. Our method holds strong potential for the study of CTC heterogeneity and for the identification of novel CTC markers. Conclusions The identification and the relative quantification of the diverse spectrum of CTCs in patients, irrespective of EPCAM or other currently used markers, will have a great impact on personalized medicine: unrestricted CTCs characterization will allow the early detection of metastases in cancer patients and the assessment of personalized therapies.
Collapse
Affiliation(s)
- Chiara Agnoletto
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Linda Minotti
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | | | - Lorenzo Pasquali
- 3Dermatology and Venereology Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Marco Galasso
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Fabio Corrà
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Baldassari
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Stefano Volinia
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
164
|
He W, Hou M, Zhang H, Zeng C, He S, Chen X, Xu M, Sun C, Jiang W, Wang H, Shen H, Zhang Y, Liu J, Sun S, Jiang N, Cui Y, Sun Y, Chen Y, Cao J, Wang C, Li M, Zhang Y, Wang L, Wang J, Lin M, Ke Z. Clinical significance of circulating tumor cells in predicting disease progression and chemotherapy resistance in patients with gestational choriocarcinoma. Int J Cancer 2018; 144:1421-1431. [PMID: 30070688 PMCID: PMC6587450 DOI: 10.1002/ijc.31742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/28/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
Gestational choriocarcinoma (GC) is a highly aggressive tumor. In our study, we systematically investigated EpCAM/CD147 expression characteristics in patients with GC and assessed the role of circulating tumor cells (CTCs) in predicting chemotherapy response and disease progression. GC tissues were positive for either epithelial cellular adhesion molecule (EpCAM) or CD147, and all samples exhibited strong human chorionic gonadotropin (HCG) expression. Among all the recruited patients (n = 115), 103 had at least 1 CTC in a 7.5‐mL peripheral blood sample, and the percentage of patients with ≥4 CTCs in a particular FIGO stage group increased with a higher FIGO stage (p < 0.001). Furthermore, the pretreatment CTC count was related to tumor size (r = 0.225, p = 0.015) and the number of metastases (r = 0.603, p < 0.001). A progression analysis showed that among the 115 included patients who qualified for further examination, 52 of the 64 patients defined as progressive had ≥4 pretreatment CTCs, while only 7 of the 51 non‐progressive patients had ≥4 pretreatment CTCs (p < 0.001). In multivariate analysis, CTCs (≥4) remained the strongest predictor of PFS when other prognostic markers, FIGO score and FIGO stage were included. Moreover, based on the chemotherapy response, patients with ≥4 CTCs were more likely to be resistant to chemotherapy than those with <4 CTCs (P < 0.001). These findings demonstrates the feasibility of CTC detection in cases of GC by adopting EpCAM/CD147 antibodies together as capturing antibodies. The CTC count is a promising indicator in the evaluation of biological activities and the chemotherapy response in GC patients. What's new? Gestational choriocarcinoma tumor cells tend to spread to distant organs by hematogenous dissemination. This study shows that circulating tumor cells (CTCs) in patients with gestational choriocarcinomas can be readily captured by targeting the highly expressed membrane antigens EpCAM and CD147. Elevated CTC levels, defined as 4 or more CTCs per 7.5 ml of peripheral blood, were found to predict chemotherapy resistance and to more effectively predict disease progression where compared with traditional β‐human chorionic gonadotropin. The findings suggest that CTC enumeration could be used to stratify gestational choriocarcinoma patients for personalized clinical intervention.
Collapse
Affiliation(s)
- Weiling He
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Minzhi Hou
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Hui Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Chao Zeng
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China.,Department of Pathology, Guangdong Medical College, Dongguan, Guangdong, People's Republic of China
| | - Shanyang He
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xinlin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Manman Xu
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Cong Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wenting Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Han Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Hongwei Shen
- Department of Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yang Zhang
- Biomedical Engineering, The University of Texas at El Paso, El Paso, TX
| | - Jing Liu
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, Guangdong, People's Republic of China
| | - Shijun Sun
- Molecular Diagnosis Center, The Affiliated Zhongshan Hospital, Sun Yat-Sen University, Zhongshan, Guangdong, People's Republic of China
| | - Neng Jiang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yongmei Cui
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yu Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yangshan Chen
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jessica Cao
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | - Mengzhen Li
- MyGene Diagnostics, Guangzhou International Biotech Island, Guangdong, People's Republic of China
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Liantang Wang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jianhong Wang
- Pricision Medicine Center, Shenzhen People's Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Millicent Lin
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
165
|
Di Nunno V, Gatto L, Santoni M, Cimadamore A, Lopez-Beltran A, Cheng L, Scarpelli M, Montironi R, Massari F. Recent Advances in Liquid Biopsy in Patients With Castration Resistant Prostate Cancer. Front Oncol 2018; 8:397. [PMID: 30319966 PMCID: PMC6165898 DOI: 10.3389/fonc.2018.00397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Management of localized and advanced prostate cancer benefits from several therapeutic options with a surprising improvement in terms of clinical outcome. The selection of patients more likely to benefit from a specific approach still remains a key issue as well as the early identification of patients with aggressive disease which could benefit from a more aggressive treatment strategy. The lack of reliable bio-marker in castration resistant setting able to monitor response to treatment and early inform about tumor progression is an emerging issue. Accordingly, circulating DNA and circulating tumor cells appears a promising and attractive approach despite to date practical applications of these techniques are few and not validated. The aim of this review of the literature is to explore current knowledge on liquid biopsy in prostate cancer focusing on possible future applications.
Collapse
Affiliation(s)
| | - Lidia Gatto
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Alessia Cimadamore
- Section of Pathological Anatomy, School of Medicine, United Hospital, Polytechnic University of the Marche Region, Ancona, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Marina Scarpelli
- Section of Pathological Anatomy, School of Medicine, United Hospital, Polytechnic University of the Marche Region, Ancona, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, School of Medicine, United Hospital, Polytechnic University of the Marche Region, Ancona, Italy
| | | |
Collapse
|
166
|
Choi SY, Ryu J, You D, Hong JH, Ahn H, Kim CS. Simple risk assessment in prostate cancer patients treated with primary androgen deprivation therapy: The Korean Cancer Study of the Prostate risk classification. Int J Urol 2018; 26:62-68. [DOI: 10.1111/iju.13800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/09/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Se Young Choi
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Jeman Ryu
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Dalsan You
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Jun Hyuk Hong
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Hanjong Ahn
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| | - Choung-Soo Kim
- Department of Urology; Asan Medical Center; University of Ulsan College of Medicine; Seoul Korea
| |
Collapse
|
167
|
Zeng Z, Miao N, Sun T. Revealing cellular and molecular complexity of the central nervous system using single cell sequencing. Stem Cell Res Ther 2018; 9:234. [PMID: 30213269 PMCID: PMC6137869 DOI: 10.1186/s13287-018-0985-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian central nervous system (CNS) is one of the most complex systems, with thousands of cell types and subtypes with distinct and unique morphology and gene expression profiles. Based on classic histological methods and conventional cellular and molecular approaches, single cell sequencing is becoming a powerful tool to uncover the complexity of the CNS. In this review, we summarize the principle of single cell sequencing and highlight its use for studying the development of neural stem cells, neural progenitors, and distinct neurons. By revealing transcriptomes in each individual cell using single cell sequencing, we are now able to dissect the cellular heterogeneity of a hundred billion cells in the CNS and comprehensively investigate mechanisms of brain development and function at the cellular and molecular levels.
Collapse
Affiliation(s)
- Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Nan Miao
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, 361021, China. .,Department of Cell and Developmental Biology, Cornell University Weill Medical College, 1300 York Avenue, Box 60, New York, NY, 10065, USA.
| |
Collapse
|
168
|
Nelep C, Eberhardt J. Automated rare single cell picking with the ALS cellcelector™. Cytometry A 2018; 93:1267-1270. [PMID: 30184320 PMCID: PMC6586056 DOI: 10.1002/cyto.a.23568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/19/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Molecular analysis of rare single cells like circulating tumor cells (CTCs) from whole blood patient samples bears multiple challenges. One of those challenges is the efficient and ideally loss-free isolation of CTCs over contaminating white and red blood cells. While there is a multitude of commercial and non-commercial systems available for the enrichment of CTCs their cell output does not deliver the purity most molecular analysis methods require. Here we describe the ALS CellCelector™ which can solve this challenge allowing the retrieval of 100% pure single CTCs from blood processed by different upstream enrichment techniques. It is a multifunctional, extremely flexible system for automated screening of cell culture plates, Petri dishes, and microscope slides. Fixed or live single cells or multicellular clusters detected during screening can be picked out of those plates automatically. The complete scan and picking process is fully documented hence allowing highest standardization and reproducibility of all processes. Use of CellCelector allowed the isolation of pure single tumor cells or clusters from liquid biopsies of breast, prostate, ovarian, colorectal, lung, and brain cancers for their subsequent molecular analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
|
169
|
Abstract
Despite the high long-term survival in localized prostate cancer, metastatic prostate cancer remains largely incurable even after intensive multimodal therapy. The lethality of advanced disease is driven by the lack of therapeutic regimens capable of generating durable responses in the setting of extreme tumor heterogeneity on the genetic and cell biological levels. Here, we review available prostate cancer model systems, the prostate cancer genome atlas, cellular and functional heterogeneity in the tumor microenvironment, tumor-intrinsic and tumor-extrinsic mechanisms underlying therapeutic resistance, and technological advances focused on disease detection and management. These advances, along with an improved understanding of the adaptive responses to conventional cancer therapies, anti-androgen therapy, and immunotherapy, are catalyzing development of more effective therapeutic strategies for advanced disease. In particular, knowledge of the heterotypic interactions between and coevolution of cancer and host cells in the tumor microenvironment has illuminated novel therapeutic combinations with a strong potential for more durable therapeutic responses and eventual cures for advanced disease. Improved disease management will also benefit from artificial intelligence-based expert decision support systems for proper standard of care, prognostic determinant biomarkers to minimize overtreatment of localized disease, and new standards of care accelerated by next-generation adaptive clinical trials.
Collapse
Affiliation(s)
- Guocan Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Di Zhao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
170
|
Qi LN, Xiang BD, Wu FX, Ye JZ, Zhong JH, Wang YY, Chen YY, Chen ZS, Ma L, Chen J, Gong WF, Han ZG, Lu Y, Shang JJ, Li LQ. Circulating Tumor Cells Undergoing EMT Provide a Metric for Diagnosis and Prognosis of Patients with Hepatocellular Carcinoma. Cancer Res 2018; 78:4731-4744. [PMID: 29915159 DOI: 10.1158/0008-5472.can-17-2459] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/21/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
To clarify the significance of circulating tumor cells (CTC) undergoing epithelial-mesenchymal transition (EMT) in patients with hepatocellular carcinoma (HCC), we used an advanced CanPatrol CTC-enrichment technique and in situ hybridization to enrich and classify CTC from blood samples. One hundred and one of 112 (90.18%) patients with HCC were CTC positive, even with early-stage disease. CTCs were also detected in 2 of 12 patients with hepatitis B virus (HBV), both of whom had small HCC tumors detected within 5 months. CTC count ≥16 and mesenchymal-CTC (M-CTC) percentage ≥2% prior to resection were significantly associated with early recurrence, multi-intrahepatic recurrence, and lung metastasis. Postoperative CTC monitoring in 10 patients found that most had an increased CTC count and M-CTC percentage before clinically detectable recurrence nodules appeared. Analysis of HCC with high CTC count and high M-CTC percentage identified 67 differentially expressed cancer-related genes involved in cancer-related biological pathways (e.g., cell adhesion and migration, tumor angiogenesis, and apoptosis). One of the identified genes, BCAT1, was significantly upregulated, and knockdown in Hepg2, Hep3B, and Huh7 cells reduced cell proliferation, migration, and invasion while promoting apoptosis. A concomitant increase in epithelial marker expression (EpCAM and E-cadherin) and reduced mesenchymal marker expression (vimentin and Twist) suggest that BCAT1 may trigger the EMT process. Overall, CTCs were highly correlated with HCC characteristics, representing a novel marker for early diagnosis and a prognostic factor for early recurrence. BCAT1 overexpression may induce CTC release by triggering EMT and may be an important biomarker of HCC metastasis.Significance: In liver cancer, CTC examination may represent an important "liquid biopsy" tool to detect both early disease and recurrent or metastatic disease, providing cues for early intervention or adjuvant therapy. Cancer Res; 78(16); 4731-44. ©2018 AACR.
Collapse
Affiliation(s)
- Lu-Nan Qi
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology research center, Nanning, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi Province, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology research center, Nanning, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi Province, China
| | - Fei-Xiang Wu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology research center, Nanning, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi Province, China
| | - Jia-Zhou Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yan-Yan Wang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Yuan-Yuan Chen
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Zu-Shun Chen
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Wen-Feng Gong
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Ze-Guang Han
- China National Human Genome Center at Shanghai, Shanghai, Shanghai City, China
| | - Yan Lu
- SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, Guangzhou, Guangdong Province, China
| | - Jin-Jie Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Province, China.
- Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology research center, Nanning, Guangxi Province, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi Province, China
| |
Collapse
|
171
|
Wu M, Huang PH, Zhang R, Mao Z, Chen C, Kemeny G, Li P, Lee AV, Gyanchandani R, Armstrong AJ, Dao M, Suresh S, Huang TJ. Circulating Tumor Cell Phenotyping via High-Throughput Acoustic Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801131. [PMID: 29968402 PMCID: PMC6105522 DOI: 10.1002/smll.201801131] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Indexed: 05/03/2023]
Abstract
The study of circulating tumor cells (CTCs) offers pathways to develop new diagnostic and prognostic biomarkers that benefit cancer treatments. In order to fully exploit and interpret the information provided by CTCs, the development of a platform is reported that integrates acoustics and microfluidics to isolate rare CTCs from peripheral blood in high throughput while preserving their structural, biological, and functional integrity. Cancer cells are first isolated from leukocytes with a throughput of 7.5 mL h-1 , achieving a recovery rate of at least 86% while maintaining the cells' ability to proliferate. High-throughput acoustic separation enables statistical analysis of isolated CTCs from prostate cancer patients to be performed to determine their size distribution and phenotypic heterogeneity for a range of biomarkers, including the visualization of CTCs with a loss of expression for the prostate specific membrane antigen. The method also enables the isolation of even rarer, but clinically important, CTC clusters.
Collapse
Affiliation(s)
- Mengxi Wu
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Rui Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhangming Mao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Gabor Kemeny
- Duke Cancer Institute and Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Peng Li
- Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Adrian V. Lee
- Department of Pharmacology & Chemical Biology, Magee-Women’s Research Institute, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rekha Gyanchandani
- Department of Pharmacology & Chemical Biology, Magee-Women’s Research Institute, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J. Armstrong
- Duke Cancer Institute and Departments of Medicine, Surgery, and Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
| | - Subra Suresh
- Nanyang Technological University, 50 Nanyang Avenue, Main Campus, Singapore 639798, Singapore
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA,
| |
Collapse
|
172
|
Negishi R, Takai K, Tanaka T, Matsunaga T, Yoshino T. High-Throughput Manipulation of Circulating Tumor Cells Using a Multiple Single-Cell Encapsulation System with a Digital Micromirror Device. Anal Chem 2018; 90:9734-9741. [DOI: 10.1021/acs.analchem.8b00896] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ryo Negishi
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Takai
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
173
|
Su Z, Zhao J, Ke S, Zhang J, Liu X, Wang Y, Sun Q, Pan Q. Clinical significance of circulating tumor cells via combined whole exome sequencing in early stage cancer screening: A case report. Exp Ther Med 2018; 16:2527-2533. [PMID: 30186486 PMCID: PMC6122440 DOI: 10.3892/etm.2018.6507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
A newly-developed platform, integrating subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH), was applied to analyze the clinical significance of circulating tumor cells (CTCs) for early screening of cancer in healthy people. The present case report describes one healthy individual who accepted a CTC peripheral blood test, and 8 CTCs/7.5 ml blood were detected. However, various conventional cancer biomarkers were all negative, including cervical cytological inspection, alpha-fetoprotein, cancer antigen (CA)-125, CA19-9, carcinoembryonic antigen (CEA), CA15-3 and human papilloma virus. To explore the origin of the CTCs, whole exome sequencing was used to analyze the CTC variation spectrum. A total of 42 mutations were associated with cancer according to analysis in COSMIC (http://cancer.sanger.ac.uk/cosmic). The results revealed a high risk of tumor in the colorectum, stomach and breast (13, 12 and 6 variations matched, respectively). In this individual, an intestinal polyp was discovered and removed by colonoscopy. The intestinal polyp was identified to be a hyperplastic polyp by pathological diagnosis. No lesions were discovered in the stomach and breast. No CTCs were detected in this patient's blood at 1 and 6 months after removal of the lesions. This case indicates that CTC detection by SE-iFISH has potential in early stage cancer screening, and the mutation spectrum of CTC assists the tracking of its sources.
Collapse
Affiliation(s)
- Zijian Su
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jiangman Zhao
- Biotecan Medical Diagnostics Co., Ltd., Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Shaoying Ke
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jian Zhang
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiaoyu Liu
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yu Wang
- Biotecan Medical Diagnostics Co., Ltd., Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Qihong Sun
- Biotecan Medical Diagnostics Co., Ltd., Zhangjiang Center for Translational Medicine, Shanghai 200120, P.R. China
| | - Qunxiong Pan
- Department of Surgical Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
174
|
Denis JA, Guillerm E, Coulet F, Larsen AK, Lacorte JM. The Role of BEAMing and Digital PCR for Multiplexed Analysis in Molecular Oncology in the Era of Next-Generation Sequencing. Mol Diagn Ther 2018; 21:587-600. [PMID: 28667577 DOI: 10.1007/s40291-017-0287-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BEAMing polymerase chain reaction (PCR) and digital PCR (dPCR) are used for robust and accurate quantification of nucleic acids. These methods are particularly well suited for the identification of very small fractions (<1%) of variant copies such as the presence of mutant genes in a predominantly wild-type background. BEAMing and dPCR are increasingly used in diverse fields including bacteriology, virology, non-invasive prenatal testing, and oncology, in particular for the molecular analysis of liquid biopsies. In this review, we present the principles of BEAMing and dPCR as well as the trends of future technical development, focusing on the possibility of developing multiplexed mutation analysis. Finally, we will discuss why such techniques will remain useful despite the ever-decreasing costs and increased automatization of next-generation sequencing (NGS), using molecular characterization of cancer cells as an example.
Collapse
Affiliation(s)
- Jérôme Alexandre Denis
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France. .,Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM, UMRS 938, 75571, Paris Cedex 12, France. .,Department of Endocrine and Oncological Biochemistry, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris, France.
| | - Erell Guillerm
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMRS 938 Centre de Recherche Saint-Antoine, "Instability of Microsatellites and Cancers", Team approved by the National League Against Cancer, 75571, Paris Cedex 12, France.,Departement of Genetics, Unit of Molecular Oncogenetics and Angiogenetics, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris Cedex, France
| | - Florence Coulet
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMRS 938 Centre de Recherche Saint-Antoine, "Instability of Microsatellites and Cancers", Team approved by the National League Against Cancer, 75571, Paris Cedex 12, France.,Departement of Genetics, Unit of Molecular Oncogenetics and Angiogenetics, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris Cedex, France
| | - Annette K Larsen
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM, UMRS 938, 75571, Paris Cedex 12, France
| | - Jean-Marc Lacorte
- UPMC Univ Paris 06, Sorbonne Universités, Paris, France.,INSERM, UMR_S 1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, 75013, Paris, France.,Department of Endocrine and Oncological Biochemistry, AP-HP, University Hospitals of Pitié-Salpétrière - Charles Foix, 75651, Paris, France
| |
Collapse
|
175
|
Park ES, Yan JP, Ang RA, Lee JH, Deng X, Duffy SP, Beja K, Annala M, Black PC, Chi KN, Wyatt AW, Ma H. Isolation and genome sequencing of individual circulating tumor cells using hydrogel encapsulation and laser capture microdissection. LAB ON A CHIP 2018; 18:1736-1749. [PMID: 29762619 DOI: 10.1039/c8lc00184g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Circulating tumor cells (CTCs) are malignant cells released into the bloodstream with the potential to form metastases in secondary sites. These cells, acquired non-invasively, represent a sample of highly relevant tumor tissue that is an alternative to difficult and low-yield tumor biopsies. In recent years, there has been growing interest in genomic profiling of CTCs to enable longitudinal monitoring of the tumor's adaptive response to therapy. However, due to their extreme rarity, genotyping CTCs has proved challenging. Relevant mutations can be masked by leukocyte contamination in isolates. Heterogeneity between subpopulations of tumor cells poses an additional obstacle. Recent advances in single-cell sequencing can overcome these limitations but isolation of single CTCs is prone to cell loss and is prohibitively difficult and time consuming. To address these limitations, we developed a single cell sample preparation and genome sequencing pipeline that combines biophysical enrichment and single cell isolation using laser capture microdissection (LCM). A key component of this process is the encapsulation of enriched CTC sample in a hydrogel matrix, which enhances the efficiency of single-cell isolation by LCM, and is compatible with downstream sequencing. We validated this process by sequencing of single CTCs and cell free DNA (cfDNA) from a single patient with castration resistant prostate cancer. Identical mutations were observed in prostate cancer driver genes (TP53, PTEN, FOXA1) in both single CTCs and cfDNA. However, two independently isolated CTCs also had identical missense mutations in the genes for ATR serine/threonine kinase, KMT2C histone methyltransferase, and FANCC DNA damage repair gene. These mutations may be missed by bulk sequencing libraries, whereas single cell sequencing could potentially enable the characterization of key CTC subpopulations that arise during metastasis.
Collapse
Affiliation(s)
- Emily S Park
- Department of Mechanical Engineering, University of British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Analyzing Circulating Tumor Cells One at a Time. Trends Cell Biol 2018; 28:764-775. [PMID: 29891227 DOI: 10.1016/j.tcb.2018.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
Abstract
Whole-genome sequencing has made a significant impact on cancer research, but traditional bulk methods fail to detect information from rare cells. Recently developed single-cell sequencing methods have provided new insights and unprecedented details about cancer progression and diversity. These advancements also enable the investigation of rare cells, such as circulating tumor cells (CTCs) derived from cancer patients. In this review, we outline various single-cell sequencing techniques that can elucidate the molecular properties of CTCs. In addition, we explain the drawbacks that need to be overcome for each method.
Collapse
|
177
|
Yadav DK, Bai X, Yadav RK, Singh A, Li G, Ma T, Chen W, Liang T. Liquid biopsy in pancreatic cancer: the beginning of a new era. Oncotarget 2018; 9:26900-26933. [PMID: 29928492 PMCID: PMC6003564 DOI: 10.18632/oncotarget.24809] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/25/2018] [Indexed: 12/21/2022] Open
Abstract
With dismal survival rate pancreatic cancer remains one of the most aggressive and devastating malignancy. Predominantly, due to the absence of a dependable methodology for early identification and limited therapeutic options for advanced disease. However, it takes over 17 years to develop pancreatic cancer from initiation of mutation to metastatic cancer; therefore, if diagnosed early; it may increase overall survival dramatically, thus, providing a window of opportunity for early detection. Recently, genomic expression analysis defined 4 subtypes of pancreatic cancer based on mutated genes. Hence, we need simple and standard, minimally invasive test that can monitor those altered genes or their associated pathways in time for the success of precision medicine, and liquid biopsy seems to be one answer to all these questions. Again, liquid biopsy has an ability to pair with genomic tests. Additionally, liquid biopsy based development of circulating tumor cells derived xenografts, 3D organoids system, real-time monitoring of genetic mutations by circulating tumor DNA and exosome as the targeted drug delivery vehicle holds lots of potential for the treatment and cure of pancreatic cancer. At present, diagnosis of pancreatic cancer is frantically done on the premise of CA19-9 and radiological features only, which doesn't give a picture of genetic mutations and epigenetic alteration involved. In this manner, the current diagnostic paradigm for pancreatic cancer diagnosis experiences low diagnostic accuracy. This review article discusses the current state of liquid biopsy in pancreatic cancer as diagnostic and therapeutic tools and future perspectives of research in the light of circulating tumor cells, circulating tumor DNA and exosomes.
Collapse
Affiliation(s)
- Dipesh Kumar Yadav
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rajesh Kumar Yadav
- Department of Pharmacology, Gandaki Medical College, Tribhuwan University, Institute of Medicine, Pokhara 33700, Nepal
| | - Alina Singh
- Department of Surgery, Bir Hospital, National Academy of Medical Science, Kanti Path, Kathmandu 44600, Nepal
| | - Guogang Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tao Ma
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
178
|
Chen A, Fu G, Xu Z, Sun Y, Chen X, Cheng KS, Neoh KH, Tang Z, Chen S, Liu M, Huang T, Dai Y, Wang Q, Jin J, Jin B, Han RPS. Detection of Urothelial Bladder Carcinoma via Microfluidic Immunoassay and Single-Cell DNA Copy-Number Alteration Analysis of Captured Urinary-Exfoliated Tumor Cells. Cancer Res 2018; 78:4073-4085. [PMID: 29789419 DOI: 10.1158/0008-5472.can-17-2615] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/17/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Anqi Chen
- MSE Department, College of Engineering, Peking University, Beijing, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yukun Sun
- MSE Department, College of Engineering, Peking University, Beijing, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kok Suen Cheng
- MSE Department, College of Engineering, Peking University, Beijing, China
| | - Kuang Hong Neoh
- MSE Department, College of Engineering, Peking University, Beijing, China
| | - Zhewen Tang
- MSE Department, College of Engineering, Peking University, Beijing, China
| | | | - Ming Liu
- HaploX Biotechnology, Shenzhen, China
| | | | - Yun Dai
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qibo Wang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ray P S Han
- MSE Department, College of Engineering, Peking University, Beijing, China.
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
179
|
Castro-Giner F, Gkountela S, Donato C, Alborelli I, Quagliata L, Ng CKY, Piscuoglio S, Aceto N. Cancer Diagnosis Using a Liquid Biopsy: Challenges and Expectations. Diagnostics (Basel) 2018; 8:diagnostics8020031. [PMID: 29747380 PMCID: PMC6023445 DOI: 10.3390/diagnostics8020031] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023] Open
Abstract
The field of cancer diagnostics has recently been impacted by new and exciting developments in the area of liquid biopsy. A liquid biopsy is a minimally invasive alternative to surgical biopsies of solid tissues, typically achieved through the withdrawal of a blood sample or other body fluids, allowing the interrogation of tumor-derived material including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) fragments that are present at a given time point. In this short review, we discuss a few studies that summarize the state-of-the-art in the liquid biopsy field from a diagnostic perspective, and speculate on current challenges and expectations of implementing liquid biopsy testing for cancer diagnosis and monitoring in the clinical setting.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Cancer Metastasis Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4058 Basel, Switzerland.
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Sofia Gkountela
- Cancer Metastasis Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4058 Basel, Switzerland.
| | - Cinzia Donato
- Cancer Metastasis Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4058 Basel, Switzerland.
| | - Ilaria Alborelli
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland.
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland.
| | - Charlotte K Y Ng
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland.
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland.
| | | | - Nicola Aceto
- Cancer Metastasis Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4058 Basel, Switzerland.
| |
Collapse
|
180
|
Kim C, Gao R, Sei E, Brandt R, Hartman J, Hatschek T, Crosetto N, Foukakis T, Navin NE. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell 2018; 173:879-893.e13. [PMID: 29681456 PMCID: PMC6132060 DOI: 10.1016/j.cell.2018.03.041] [Citation(s) in RCA: 713] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/31/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype that frequently develops resistance to chemotherapy. An unresolved question is whether resistance is caused by the selection of rare pre-existing clones or alternatively through the acquisition of new genomic aberrations. To investigate this question, we applied single-cell DNA and RNA sequencing in addition to bulk exome sequencing to profile longitudinal samples from 20 TNBC patients during neoadjuvant chemotherapy (NAC). Deep-exome sequencing identified 10 patients in which NAC led to clonal extinction and 10 patients in which clones persisted after treatment. In 8 patients, we performed a more detailed study using single-cell DNA sequencing to analyze 900 cells and single-cell RNA sequencing to analyze 6,862 cells. Our data showed that resistant genotypes were pre-existing and adaptively selected by NAC, while transcriptional profiles were acquired by reprogramming in response to chemotherapy in TNBC patients.
Collapse
Affiliation(s)
- Charissa Kim
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ruli Gao
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emi Sei
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rachel Brandt
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| | - Thomas Hatschek
- Department of Oncology-Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| | - Nicola Crosetto
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden.
| | - Nicholas E Navin
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biological Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
181
|
Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, Rhoades J, Liu CJ, Huynh D, Reed SC, Gydush G, Salem KZ, Rotem D, Freymond C, Yosef A, Perilla-Glen A, Garderet L, Van Allen EM, Kumar S, Love JC, Getz G, Adalsteinsson VA, Ghobrial IM. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun 2018; 9:1691. [PMID: 29703982 PMCID: PMC5923255 DOI: 10.1038/s41467-018-04001-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/27/2018] [Indexed: 12/29/2022] Open
Abstract
Liquid biopsies including circulating tumor cells (CTCs) and cell-free DNA (cfDNA) have enabled minimally invasive characterization of many cancers, but are rarely analyzed together. Understanding the detectability and genomic concordance of CTCs and cfDNA may inform their use in guiding cancer precision medicine. Here, we report the detectability of cfDNA and CTCs in blood samples from 107 and 56 patients with multiple myeloma (MM), respectively. Using ultra-low pass whole-genome sequencing, we find both tumor fractions correlate with disease progression. Applying whole-exome sequencing (WES) to cfDNA, CTCs, and matched tumor biopsies, we find concordance in clonal somatic mutations (~99%) and copy number alterations (~81%) between liquid and tumor biopsies. Importantly, analyzing CTCs and cfDNA together enables cross-validation of mutations, uncovers mutations exclusive to either CTCs or cfDNA, and allows blood-based tumor profiling in a greater fraction of patients. Our study demonstrates the utility of analyzing both CTCs and cfDNA in MM. Circulating tumor cells (CTCs) and cell-free DNA (cfDNA) enables characterization of a patient’s cancer. Here, the authors analyse CTCs, cfDNA, and tumor biopsies from multiple myeloma patients to show these approaches are complementary for mutation detection, together enabling a greater fraction of patient tumors to be profiled.
Collapse
Affiliation(s)
- S Manier
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Hematology Department, CHU, Univ. Lille, 59000, Lille, France.,INSERM UMR-S1172, 59000, Lille, France
| | - J Park
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - M Capelletti
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - M Bustoros
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - S S Freeman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - G Ha
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - J Rhoades
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - C J Liu
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - D Huynh
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - S C Reed
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - G Gydush
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - K Z Salem
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - D Rotem
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - C Freymond
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - A Yosef
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - A Perilla-Glen
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - L Garderet
- Department of Hematology, St-Antoine University Hospital, Paris, 75000, France
| | - E M Van Allen
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - S Kumar
- Department of Hematology, Mayo Clinic, Rochester, MN, 55902, USA
| | - J C Love
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - G Getz
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - V A Adalsteinsson
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - I M Ghobrial
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA. .,Brigham and Women's Hospital, Boston, MA, 02115, USA. .,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
182
|
Aggeli D, Karas VO, Sinnott-Armstrong NA, Varghese V, Shafer RW, Greenleaf WJ, Sherlock G. Diff-seq: A high throughput sequencing-based mismatch detection assay for DNA variant enrichment and discovery. Nucleic Acids Res 2018; 46:e42. [PMID: 29361139 PMCID: PMC5909455 DOI: 10.1093/nar/gky022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Accepted: 01/16/2018] [Indexed: 01/15/2023] Open
Abstract
Much of the within species genetic variation is in the form of single nucleotide polymorphisms (SNPs), typically detected by whole genome sequencing (WGS) or microarray-based technologies. However, WGS produces mostly uninformative reads that perfectly match the reference, while microarrays require genome-specific reagents. We have developed Diff-seq, a sequencing-based mismatch detection assay for SNP discovery without the requirement for specialized nucleic-acid reagents. Diff-seq leverages the Surveyor endonuclease to cleave mismatched DNA molecules that are generated after cross-annealing of a complex pool of DNA fragments. Sequencing libraries enriched for Surveyor-cleaved molecules result in increased coverage at the variant sites. Diff-seq detected all mismatches present in an initial test substrate, with specific enrichment dependent on the identity and context of the variation. Application to viral sequences resulted in increased observation of variant alleles in a biologically relevant context. Diff-Seq has the potential to increase the sensitivity and efficiency of high-throughput sequencing in the detection of variation.
Collapse
Affiliation(s)
- Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vlad O Karas
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Vici Varghese
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert W Shafer
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
183
|
Aaltonen KE, Novosadová V, Bendahl PO, Graffman C, Larsson AM, Rydén L. Molecular characterization of circulating tumor cells from patients with metastatic breast cancer reflects evolutionary changes in gene expression under the pressure of systemic therapy. Oncotarget 2018; 8:45544-45565. [PMID: 28489591 PMCID: PMC5542207 DOI: 10.18632/oncotarget.17271] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/30/2017] [Indexed: 12/27/2022] Open
Abstract
Resistance to systemic therapy is a major problem in metastatic breast cancer (MBC) that can be explained by initial tumor heterogeneity as well as by evolutionary changes during therapy and tumor progression. Circulating tumor cells (CTCs) detected in a liquid biopsy can be sampled and characterized repeatedly during therapy in order to monitor treatment response and disease progression. Our aim was to investigate how CTC derived gene expression of treatment predictive markers (ESR1/HER2) and other cancer associated markers changed in patient blood samples during six months of first-line systemic treatment for MBC. CTCs from 36 patients were enriched using CellSearch (Janssen Diagnostics) and AdnaTest (QIAGEN) before gene expression analysis was performed with a customized gene panel (TATAA Biocenter). Our results show that antibodies against HER2 and EGFR were valuable to isolate CTCs unidentified by CellSearch and possibly lacking EpCAM expression. Evaluation of patients with clinically different breast cancer subgroups demonstrated that gene expression of treatment predictive markers changed over time. This change was especially prominent for HER2 expression. In conclusion, we found that changed gene expression during first-line systemic therapy for MBC could be a possible explanation for treatment resistance. Characterization of CTCs at several time-points during therapy could be informative for treatment selection.
Collapse
Affiliation(s)
- Kristina E Aaltonen
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Vendula Novosadová
- Institute of Biotechnology, BIOCEV Centre, Czech Academy of Sciences, Vestec u Prahy, Czech Republic
| | - Pär-Ola Bendahl
- Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Cecilia Graffman
- Skåne Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Anna-Maria Larsson
- Skåne Department of Oncology, Skåne University Hospital, Lund, Sweden.,Department of Translational Cancer Research, Lund University, Lund, Sweden
| | - Lisa Rydén
- Department of Clinical Sciences Lund, Division of Surgery, Lund University, Lund, Sweden.,Department of Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
184
|
Abstract
PURPOSE OF REVIEW In this review, we seek to summarize the literature concerning the use of single-cell RNA-sequencing for CNS gliomas. RECENT FINDINGS Single-cell analysis has revealed complex tumor heterogeneity, subpopulations of proliferating stem-like cells and expanded our view of tumor microenvironment influence in the disease process. Although bulk RNA-sequencing has guided our initial understanding of glioma genetics, this method does not accurately define the heterogeneous subpopulations found within these tumors. Single-cell techniques have appealing applications in cancer research, as diverse cell types and the tumor microenvironment have important implications in therapy. High cost and difficult protocols prevent widespread use of single-cell RNA-sequencing; however, continued innovation will improve accessibility and expand our of knowledge gliomas.
Collapse
|
185
|
Abstract
PURPOSE OF REVIEW Metastatic prostate cancer is a lethal and highly heterogeneous malignancy, associated with a broad spectrum of potentially actionable molecular alterations. In the past decade, disease profiling has expanded to include not only traditional tumor tissue, but also liquid biopsies of cells and genetic material circulating in the blood. These liquid biopsies offer a minimally invasive, repeatable source of tumor material for longitudinal disease profiling but also raise new technical and biological challenges. Here we will summarize recent advances in liquid biopsy strategies and the role they have played in biomarker development and disease management. RECENT FINDINGS Technologies for analysis of circulating tumor cells (CTCs) continue to evolve rapidly, and the latest high content scanning platforms have underscored the phenotypic heterogeneity of CTC populations. Among liquid biopsies, CTC enumeration remains the most extensively validated prognostic marker to date, but other clinically relevant phenotypes like androgen receptor (AR) localization or presence of AR-V7 splice variant are important new predictors of therapy response. Serial genomic profiling of CTCs or circulating tumor DNA (ctDNA) is helping to define primary and acquired resistance mechanisms and helping to guide patient selection for targeted therapies such as poly(adenosine diphosphate [ADP] ribose) polymerase (PARP) inhibition. The era of liquid biopsy-based biomarkers has arrived, driven by powerful new enrichment and analysis techniques. As new blood-based markers are identified, their biological significance as disease drivers must be elucidated to advance new therapeutic strategies, and their clinical impact must be translated through assay standardization, followed by analytical and clinical validation. These efforts, already ongoing on multiple fronts, constitute the critical steps toward more effective precision management of advanced prostate cancer.
Collapse
Affiliation(s)
- Gareth J Morrison
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
186
|
Bhagwat N, Dulmage K, Pletcher CH, Wang L, DeMuth W, Sen M, Balli D, Yee SS, Sa S, Tong F, Yu L, Moore JS, Stanger BZ, Dixon EP, Carpenter EL. An integrated flow cytometry-based platform for isolation and molecular characterization of circulating tumor single cells and clusters. Sci Rep 2018; 8:5035. [PMID: 29568081 PMCID: PMC5864750 DOI: 10.1038/s41598-018-23217-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Comprehensive molecular analysis of rare circulating tumor cells (CTCs) and cell clusters is often hampered by low throughput and purity, as well as cell loss. To address this, we developed a fully integrated platform for flow cytometry-based isolation of CTCs and clusters from blood that can be combined with whole transcriptome analysis or targeted RNA transcript quantification. Downstream molecular signature can be linked to cell phenotype through index sorting. This newly developed platform utilizes in-line magnetic particle-based leukocyte depletion, and acoustic cell focusing and washing to achieve >98% reduction of blood cells and non-cellular debris, along with >1.5 log-fold enrichment of spiked tumor cells. We could also detect 1 spiked-in tumor cell in 1 million WBCs in 4/7 replicates. Importantly, the use of a large 200μm nozzle and low sheath pressure (3.5 psi) minimized shear forces, thereby maintaining cell viability and integrity while allowing for simultaneous recovery of single cells and clusters from blood. As proof of principle, we isolated and transcriptionally characterized 63 single CTCs from a genetically engineered pancreatic cancer mouse model (n = 12 mice) and, using index sorting, were able to identify distinct epithelial and mesenchymal sub-populations based on linked single cell protein and gene expression.
Collapse
Affiliation(s)
- Neha Bhagwat
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keely Dulmage
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Charles H Pletcher
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Wang
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - William DeMuth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Moen Sen
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Balli
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie S Yee
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silin Sa
- BD Biosciences, San Jose, CA, USA
| | - Frances Tong
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | | | - Jonni S Moore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z Stanger
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric P Dixon
- BD Technologies and Innovation, Research Triangle Park, NC, USA
| | - Erica L Carpenter
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
187
|
Wang Y, Guo L, Feng L, Zhang W, Xiao T, Di X, Chen G, Zhang K. Single nucleotide variant profiles of viable single circulating tumour cells reveal CTC behaviours in breast cancer. Oncol Rep 2018; 39:2147-2159. [PMID: 29565466 PMCID: PMC5928770 DOI: 10.3892/or.2018.6325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/16/2018] [Indexed: 12/21/2022] Open
Abstract
Circulating tumour cell (CTC) behaviours are distinct from those of bulk tissues. Thus, treatments to eliminate CTCs differ from the regimens followed to reduce the primary tumour and its metastases. Accordingly, comprehensively deciphering the single nucleotide variant (SNV) profiles in CTCs, which partially determine CTC behaviours, is a priority. Using viable CTCs isolated with the oHSV1-hTERT-GFP virus coupled with fluorescence-activated cell sorting (FACS), the whole genome was amplified using the multiple annealing and looping-based amplification cycle (MALBAC) method. CTC behaviours were evaluated using the SNVs found to be recurrently mutated in different cells (termed CTC-shared SNVs). Analysis of the sequencing data of 11 CTCs from 8 patients demonstrated that SNVs accumulated sporadically among CTCs and their matched primary tumours (22 co-occurring mutated genes were identified in the exomes of CTCs and their matched primary tissues and metastases), and 394 SNVs were shared by at least two CTCs. Mutated APC and LRP1B genes co-occurred in CTC-shared and bulk-tissue SNVs. Additionally, the breast-originating identity of the CTC-shared SNVs was verified, and they demonstrated the following CTC behaviours: i) intravasation competency; ii) increased migration or motility; iii) enhanced cell-cell interactions; iv) variation in energy metabolism; v) an activated platelet or coagulation system; and vi) dysfunctional mitosis. These results demonstrated that it is feasible to capture and amplify the genomes of single CTCs using the described pipeline. CTC-shared SNVs are a potential signature for identifying the origin of the primary tumour in a liquid biopsy. Furthermore, CTCs demonstrated some behaviours that are unique from those of bulk tissues. Therefore, therapies to eradicate these precursors of metastasis may differ from the existing traditional regimens.
Collapse
Affiliation(s)
- Yipeng Wang
- Department of Breast Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liping Guo
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wen Zhang
- Department of Immunology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guoji Chen
- Department of Breast Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
188
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
189
|
Marples B, Welford SM. Radiation Biology and Circulating Tumor Cells. Int J Radiat Oncol Biol Phys 2018; 100:813-815. [PMID: 29485052 DOI: 10.1016/j.ijrobp.2017.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023]
|
190
|
|
191
|
Yoon Y, Lee J, Yoo KC, Sul O, Lee SJ, Lee SB. Deterministic Capture of Individual Circulating Tumor Cells Using a Flow-Restricted Microfluidic Trap Array. MICROMACHINES 2018; 9:mi9030106. [PMID: 30424040 PMCID: PMC6187321 DOI: 10.3390/mi9030106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 01/04/2023]
Abstract
Circulating tumor cells (CTCs) are regarded as a strong biomarker which includes clinically valuable information. However, CTCs are very rare and require precise separation and detection for effective clinical applications. Furthermore, downstream analysis has become necessary to identify the distinct sub-population of CTCs that causes metastasis. Here, we report a flow-restricted microfluidic trap array capable of deterministic single-cell capture of CTCs. The extent of flow restriction, correlating with the device geometry, was then optimized using a highly invasive breast cancer cell line (LM2 MDA-MB-231) to achieve 97% capture efficiency with a single-cell capture rate of 99%. Single-cell capture of CTCs from mice with full-blown metastasis was also demonstrated. The single-CTC capturing ability of the flow-restricted trap array not only showed cell enumerating ability but also high prospects for application in future automated downstream analysis.
Collapse
Affiliation(s)
- Yousang Yoon
- Department of Electronic Engineering, Hanyang Universtiy College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Jusin Lee
- Department of Electronic Engineering, Hanyang Universtiy College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Ki-Chun Yoo
- Department of Life Science and Research Institute for Natural Sciences, Hanyang Universtiy College of Natural Sciences, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Onejae Sul
- Institute of Nano Science and Technology, Hanyang Universtiy, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Su-Jae Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang Universtiy College of Natural Sciences, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| | - Seung-Beck Lee
- Department of Electronic Engineering, Hanyang Universtiy College of Engineering, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
- Institute of Nano Science and Technology, Hanyang Universtiy, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea.
| |
Collapse
|
192
|
Waldschmidt JM, Anand P, Knoechel B, Lohr JG. Comprehensive characterization of circulating and bone marrow-derived multiple myeloma cells at minimal residual disease. Semin Hematol 2018; 55:33-37. [PMID: 29759150 DOI: 10.1053/j.seminhematol.2018.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
The presence or absence of minimal residual disease (MRD) in patients with multiple myeloma (MM) has emerged as a useful marker to determine the depth of remission. MRD negativity as an endpoint has been shown to be associated with improved progression-free survival in many studies. MRD detection is therefore part of numerous clinical trial protocols for MM. At the present time, two methodologies are most widely accepted for MRD detection: (1) multicolor flow cytometry and (2) next-generation sequencing-based clonotype detection. While both of those methodologies enable accurate quantification of MRD in the bone marrow (BM), with sensitivity as low as 10-5 to 10-6, there are several limitations to these methods. First, these approaches reveal the presence or absence of MRD but provide limited molecular information about MM. More comprehensive characterization of MM cells at the MRD stage may identify molecular mechanisms of drug resistance. Second, MRD detection in the BM is typically performed at one time point only, but more frequent detection may define the duration of the MRD status and thus refine its prognostic value. Third, less-invasive approaches that avoid the discomfort and risk associated with BM biopsy would be highly desirable, especially in elderly or frail patients. "Liquid biopsy" for the detection and characterization of circulating MM cells may address these issues. Although MRD detection in the peripheral blood at the same sensitivity as in the BM may be challenging, the identification of patients who do not achieve MRD negativity might reduce the need for BM biopsies. Here, we give an overview of approaches that have been described to detect and characterize MM cells when they occur at very low frequencies in the peripheral blood or in the BM, emphasizing recently described next-generation sequencing approaches for more comprehensive characterization of circulating MM cells.
Collapse
Affiliation(s)
- Johannes M Waldschmidt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Praveen Anand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jens G Lohr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA.
| |
Collapse
|
193
|
Ma S, de la Fuente Revenga M, Sun Z, Sun C, Murphy TW, Xie H, González-Maeso J, Lu C. Cell-type-specific brain methylomes profiled via ultralow-input microfluidics. Nat Biomed Eng 2018; 2:183-194. [PMID: 29963329 PMCID: PMC6023403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Methylomic analyses typically require substantial amounts of DNA, thus hindering studies involving scarce samples. Here, we show that microfluidic diffusion-based reduced representative bisulfite sequencing (MID-RRBS) permits high-quality methylomic profiling with nanogram-to-single-cell quantities of starting DNA. We used the microfluidic device, which allows for efficient bisulfite conversion with high DNA recovery, to analyse genome-wide DNA methylation in cell nuclei isolated from mouse brains and sorted into NeuN+ (primarily neuronal) and NeuN- (primarily glial) fractions, and to establish cell-type-specific methylomes. Genome-wide methylation and methylation in low-CpG-density promoter regions showed distinct patterns for NeuN+ and NeuN- fractions from the mouse cerebellum. The identification of substantial variations in the methylomic landscapes of the NeuN+ fraction of the frontal cortex of mice chronically treated with an atypical antipsychotic drug suggests that this technology can be broadly used for cell-type-specific drug profiling and for the study of drug-methylome interactions.
Collapse
Affiliation(s)
- Sai Ma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Zhixiong Sun
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Chen Sun
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Travis W. Murphy
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hehuang Xie
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA,Biocomplexity Institute of Virginia Tech, Blacksburg, VA 24061, USA,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Javier González-Maeso
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA,Corresponding author (C.L.):
| |
Collapse
|
194
|
Moon HS, Je K, Min JW, Park D, Han KY, Shin SH, Park WY, Yoo CE, Kim SH. Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing. LAB ON A CHIP 2018; 18:775-784. [PMID: 29423464 DOI: 10.1039/c7lc01284e] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Single-cell RNA-seq reveals the cellular heterogeneity inherent in the population of cells, which is very important in many clinical and research applications. Recent advances in droplet microfluidics have achieved the automatic isolation, lysis, and labeling of single cells in droplet compartments without complex instrumentation. However, barcoding errors occurring in the cell encapsulation process because of the multiple-beads-in-droplet and insufficient throughput because of the low concentration of beads for avoiding multiple-beads-in-a-droplet remain important challenges for precise and efficient expression profiling of single cells. In this study, we developed a new droplet-based microfluidic platform that significantly improved the throughput while reducing barcoding errors through deterministic encapsulation of inertially ordered beads. Highly concentrated beads containing oligonucleotide barcodes were spontaneously ordered in a spiral channel by an inertial effect, which were in turn encapsulated in droplets one-by-one, while cells were simultaneously encapsulated in the droplets. The deterministic encapsulation of beads resulted in a high fraction of single-bead-in-a-droplet and rare multiple-beads-in-a-droplet although the bead concentration increased to 1000 μl-1, which diminished barcoding errors and enabled accurate high-throughput barcoding. We successfully validated our device with single-cell RNA-seq. In addition, we found that multiple-beads-in-a-droplet, generated using a normal Drop-Seq device with a high concentration of beads, underestimated transcript numbers and overestimated cell numbers. This accurate high-throughput platform can expand the capability and practicality of Drop-Seq in single-cell analysis.
Collapse
Affiliation(s)
- Hui-Sung Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Size-based separation methods of circulating tumor cells. Adv Drug Deliv Rev 2018; 125:3-20. [PMID: 29326054 DOI: 10.1016/j.addr.2018.01.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/19/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells (CTCs) originate from the primary tumor mass and enter into the peripheral bloodstream. Compared to other "liquid biopsy" portfolios such as exosome, circulating tumor DNA/RNA (ctDNA/RNA), CTCs have incomparable advantages in analyses of transcriptomics, proteomics, and signal colocalization. Hence, CTCs hold the key to understanding the biology of metastasis and play a vital role in cancer diagnosis, treatment monitoring, and prognosis. Size-based enrichment features are prominent in CTC isolation. It is a label-free, simple and fast method. Enriched CTCs remain unmodified and viable for a wide range of subsequent analyses. In this review, we comprehensively summarize the differences of size and deformability between CTCs and blood cells, which would facilitate the development of technologies of size-based CTC isolation. Then we review representative size-/deformability-based technologies available for CTC isolation and highlight the recent achievements in molecular analysis of isolated CTCs. To wrap up, we discuss the substantial challenges facing the field, and elaborate on prospects.
Collapse
|
196
|
Jan YJ, Chen JF, Zhu Y, Lu YT, Chen SH, Chung H, Smalley M, Huang YW, Dong J, Chen LC, Yu HH, Tomlinson JS, Hou S, Agopian VG, Posadas EM, Tseng HR. NanoVelcro rare-cell assays for detection and characterization of circulating tumor cells. Adv Drug Deliv Rev 2018; 125:78-93. [PMID: 29551650 PMCID: PMC5993593 DOI: 10.1016/j.addr.2018.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells. In order to address this challenge, our research team at UCLA pioneered a unique concept of "NanoVelcro" cell-affinity substrates, in which CTC capture agent-coated nanostructured substrates were utilized to immobilize CTCs with remarkable efficiency. Four generations of NanoVelcro CTC assays have been developed over the past decade for a variety of clinical utilities. The 1st-gen NanoVelcro Chips, composed of a silicon nanowire substrate (SiNS) and an overlaid microfluidic chaotic mixer, were created for CTC enumeration. The 2nd-gen NanoVelcro Chips (i.e., NanoVelcro-LMD), based on polymer nanosubstrates, were developed for single-CTC isolation in conjunction with the use of the laser microdissection (LMD) technique. By grafting thermoresponsive polymer brushes onto SiNS, the 3rd-gen Thermoresponsive NanoVelcro Chips have demonstrated the capture and release of CTCs at 37 and 4 °C respectively, thereby allowing for rapid CTC purification while maintaining cell viability and molecular integrity. Fabricated with boronic acid-grafted conducting polymer-based nanomaterial on chip surface, the 4th-gen NanoVelcro Chips (Sweet chip) were able to purify CTCs with well-preserved RNA transcripts, which could be used for downstream analysis of several cancer specific RNA biomarkers. In this review article, we will summarize the development of the four generations of NanoVelcro CTC assays, and the clinical applications of each generation of devices.
Collapse
Affiliation(s)
- Yu Jen Jan
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie-Fu Chen
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi-Tsung Lu
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Szu Hao Chen
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Howard Chung
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Smalley
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Yen-Wen Huang
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA; CytoLumina Technologies Corp., Los Angeles, CA, USA
| | - Jiantong Dong
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA
| | - Li-Ching Chen
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | - Hsiao-Hua Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - James S Tomlinson
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Center for Pancreatic Disease, University of California, Los Angeles, Los Angeles, CA, USA; Department of Surgery, Greater Los Angeles Veteran's Affairs Administration, Los Angeles, CA, USA
| | - Shuang Hou
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vatche G Agopian
- Department of Surgery, University of California, Los Angeles, Los Angeles, CA, USA; Liver Transplantation and Hepatobiliary Surgery, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edwin M Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
197
|
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G. Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer 2018; 1869:117-127. [PMID: 29360544 PMCID: PMC6054479 DOI: 10.1016/j.bbcan.2017.12.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Traditional 2D cell cultures do not accurately recapitulate tumor heterogeneity, and insufficient human cell lines are available. Patient-derived xenograft (PDX) models more closely mimic clinical tumor heterogeneity, but are not useful for high-throughput drug screening. Recently, patient-derived organoid cultures have emerged as a novel technique to fill this critical need. Organoids maintain tumor tissue heterogeneity and drug-resistance responses, and thus are useful for high-throughput drug screening. Among various biological tissues used to produce organoid cultures, circulating tumor cells (CTCs) are promising, due to relative ease of ascertainment. CTC-derived organoids could help to acquire relevant genetic and epigenetic information about tumors in real time, and screen and test promising drugs. This could reduce the need for tissue biopsies, which are painful and may be difficult depending on the tumor location. In this review, we have focused on advances in CTC isolation and organoid culture methods, and their potential applications in disease modeling and precision medicine.
Collapse
Affiliation(s)
- Prakash P Praharaj
- Wake Forest Baptist Medical Center, Department of Cancer Biology, Winston-Salem, NC, United States; Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Rhonda L Bitting
- Hematology and Oncology Department, United States; Wake Forest Baptist Comprehensive Cancer Center, United States
| | - Gagan Deep
- Wake Forest Baptist Medical Center, Department of Cancer Biology, Winston-Salem, NC, United States; Wake Forest Baptist Comprehensive Cancer Center, United States; Department of Urology, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States.
| |
Collapse
|
198
|
Alamri AM, Liu X, Blancato JK, Haddad BR, Wang W, Zhong X, Choudhary S, Krawczyk E, Kallakury BV, Davidson BJ, Furth PA. Expanding primary cells from mucoepidermoid and other salivary gland neoplasms for genetic and chemosensitivity testing. Dis Model Mech 2018; 11:dmm031716. [PMID: 29419396 PMCID: PMC5818080 DOI: 10.1242/dmm.031716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Restricted availability of cell and animal models is a rate-limiting step for investigation of salivary gland neoplasm pathophysiology and therapeutic response. Conditionally reprogrammed cell (CRC) technology enables establishment of primary epithelial cell cultures from patient material. This study tested a translational workflow for acquisition, expansion and testing of CRC-derived primary cultures of salivary gland neoplasms from patients presenting to an academic surgical practice. Results showed that cultured cells were sufficient for epithelial cell-specific transcriptome characterization to detect candidate therapeutic pathways and fusion genes, and for screening for cancer risk-associated single nucleotide polymorphisms (SNPs) and driver gene mutations through exome sequencing. Focused study of primary cultures of a low-grade mucoepidermoid carcinoma demonstrated amphiregulin-mechanistic target of rapamycin-protein kinase B (AKT; AKT1) pathway activation, identified through bioinformatics and subsequently confirmed as present in primary tissue and preserved through different secondary 2D and 3D culture media and xenografts. Candidate therapeutic testing showed that the allosteric AKT inhibitor MK2206 reproducibly inhibited cell survival across different culture formats. By contrast, the cells appeared resistant to the adenosine triphosphate competitive AKT inhibitor GSK690693. Procedures employed here illustrate an approach for reproducibly obtaining material for pathophysiological studies of salivary gland neoplasms, and other less common epithelial cancer types, that can be executed without compromising pathological examination of patient specimens. The approach permits combined genetic and cell-based physiological and therapeutic investigations in addition to more traditional pathologic studies, and can be used to build sustainable bio-banks for future inquiries.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ahmad M Alamri
- Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61413, Saudi Arabia
| | - Xuefeng Liu
- Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Jan K Blancato
- Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bassem R Haddad
- Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Weisheng Wang
- Oncology, Georgetown University, Washington, DC 20057, USA
| | - Xiaogang Zhong
- Biostatistics, Bioinformatics and Biomathematics, Georgetown University, Washington, DC 20057, USA
| | | | - Ewa Krawczyk
- Pathology, Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, USA
| | - Bhaskar V Kallakury
- Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Bruce J Davidson
- Otolaryngology - Head and Neck Surgery, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Priscilla A Furth
- Oncology and Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
199
|
Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, Casasent T, Meric-Bernstam F, Edgerton ME, Navin NE. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell 2018; 172:205-217.e12. [PMID: 29307488 PMCID: PMC5766405 DOI: 10.1016/j.cell.2017.12.007] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/15/2017] [Accepted: 12/01/2017] [Indexed: 11/17/2022]
Abstract
Ductal carcinoma in situ (DCIS) is an early-stage breast cancer that infrequently progresses to invasive ductal carcinoma (IDC). Genomic evolution has been difficult to delineate during invasion due to intratumor heterogeneity and the low number of tumor cells in the ducts. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS) to measure genomic copy number profiles of single tumor cells while preserving their spatial context in tissue sections. We applied TSCS to 1,293 single cells from 10 synchronous patients with both DCIS and IDC regions in addition to exome sequencing. Our data reveal a direct genomic lineage between in situ and invasive tumor subpopulations and further show that most mutations and copy number aberrations evolved within the ducts prior to invasion. These results support a multiclonal invasion model, in which one or more clones escape the ducts and migrate into the adjacent tissues to establish the invasive carcinomas.
Collapse
Affiliation(s)
- Anna K Casasent
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aislyn Schalck
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruli Gao
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emi Sei
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Annalyssa Long
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Pangburn
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tod Casasent
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mary E Edgerton
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Nicholas E Navin
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
200
|
Zainfeld D, Goldkorn A. Liquid Biopsy in Prostate Cancer: Circulating Tumor Cells and Beyond. Cancer Treat Res 2018; 175:87-104. [PMID: 30168118 DOI: 10.1007/978-3-319-93339-9_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prostate cancer is a common malignancy impacting countless men without curative options in the advanced state. Numerous therapies have been introduced in recent years improving survival and symptom control, yet optimal methods for predicting or monitoring response have not been developed. In the era of precision medicine, characterization of individual cancers is necessary to inform treatment decisions. Liquid biopsies, through evaluation of various blood-based analytes, provide a method of patient evaluation with potential applications in virtually all disease states. In this review, we will describe current approaches with a particular focus on demonstrated clinical utility in the evaluation and management of prostate cancer.
Collapse
Affiliation(s)
- Daniel Zainfeld
- USC Keck/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Amir Goldkorn
- USC Keck/Norris Comprehensive Cancer Center, Los Angeles, CA, USA.
| |
Collapse
|