151
|
Daly MJ, Chan H, Muhanna N, Akens MK, Wilson BC, Irish JC, Jaffray DA. Intraoperative cone-beam CT spatial priors for diffuse optical fluorescence tomography. ACTA ACUST UNITED AC 2019; 64:215007. [DOI: 10.1088/1361-6560/ab4917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
152
|
Thompson JM, Miller LS. Preclinical Optical Imaging to Study Pathogenesis, Novel Therapeutics and Diagnostics Against Orthopaedic Infection. J Orthop Res 2019; 37:2269-2277. [PMID: 31342546 DOI: 10.1002/jor.24428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 02/04/2023]
Abstract
Preclinical in vivo optical imaging includes bioluminescence imaging (BLI) and fluorescence imaging (FLI), which provide noninvasive and longitudinal monitoring of biological processes in an in vivo context. In vivo BLI involves the detection of photons of light from bioluminescent bacteria engineered to naturally emit light in preclinical animal models of infection. Meanwhile, in vivo FLI involves the detection of photons of a longer emission wavelength of light after exposure of a fluorophore to a shorter excitation wavelength of light. In vivo FLI has been used in preclinical animal models to detect fluorescent-labeled host proteins or cells (often in engineered fluorescent reporter mice) to understand host-related processes, or to detect injectable near-infrared fluorescent probes as a novel approach for diagnosing infection. This review describes the use of in vivo optical imaging in preclinical models of orthopaedic implant-associated infection (OIAI), including (i) pathogenesis of the infectious course, (ii) monitoring efficacy of antimicrobial prophylaxis and therapy and (iii) evaluating novel near-infrared fluorescent probes for diagnosing infection. Finally, we describe optoacoustic imaging and fluorescence image-guided surgery, which are recent technologies that have the potential to translate to diagnosing and treating OIAI in humans. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2269-2277, 2019.
Collapse
Affiliation(s)
- John M Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
| | - Lloyd S Miller
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21231
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, 21218
| |
Collapse
|
153
|
Ovsepian SV, Olefir I, Ntziachristos V. Advances in Optoacoustic Neurotomography of Animal Models. Trends Biotechnol 2019; 37:1315-1326. [PMID: 31662189 DOI: 10.1016/j.tibtech.2019.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/02/2023]
Abstract
Unlike traditional optical methods, optoacoustic imaging is less sensitive to scattering of ballistic photons, so it is capable of high-resolution interrogation at a greater depth. By integrating video-rate visualization with multiplexing and sensing a range of endogenous and exogenous chromophores, optoacoustic imaging has matured into a versatile noninvasive investigation modality with rapidly expanding use in biomedical research. We review the principal features of the technology and discuss recent advances it has enabled in structural, functional, and molecular neuroimaging in small-animal models. In extending the boundaries of noninvasive observation beyond the reach of customary photonic methods, the latest developments in optoacoustics have substantially advanced neuroimaging inquiry, with promising implications for basic and translational studies.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Third Faculty of Medicine, Charles University, 116 36 Prague, Czech Republic.
| | - Ivan Olefir
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany; School of Bioengineering, Technical University of Munich, 81675 Munich, Germany.
| |
Collapse
|
154
|
Target-Specific Fluorescence-Mediated Tomography for Non-Invasive and Dynamic Assessment of Early Neutrophil Infiltration in Murine Experimental Colitis. Cells 2019; 8:cells8111328. [PMID: 31661876 PMCID: PMC6912230 DOI: 10.3390/cells8111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
The role of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) is still only incompletely understood. Here, we evaluated target-specific fluorescence-mediated tomography (FMT) for visualization of neutrophil infiltration in murine experimental DSS-induced colitis. Colitis was assessed using clinical, endoscopic, and histopathological parameters. Intestinal neutrophil infiltration was determined at day 0, 4, and 10 by targeted FMT after injection of a neutrophil-specific fluorescence-labelled monoclonal antibody (Gr-1). Complementary, immunofluorescence tissue sections with Gr-1 and ELISA-based assessment of tissue myeloperoxidase (MPO) served as the gold standard for the quantification of neutrophil infiltration. Colitic animals showed decreasing body weight, presence of fecal occult blood, and endoscopic signs of inflammation. FMT revealed a significantly increased level of fluorescence only four days after colitis induction as compared to pre-experimental conditions (pmol tracer 73.2 ± 18.1 versus 738.6 ± 80.7; p < 0.05), while neither body weight nor endoscopic assessment showed significant changes at this early time. Confirmatory, post-mortem immunofluorescence studies and measurements of tissue MPO confirmed the presence of increased neutrophil infiltration in colitic mice compared to controls. Concluding, Gr-1 targeted FMT can detect early colonic infiltration of neutrophils in experimental colitis even before clinical symptoms or endoscopic alterations occur. Therefore, FMT might be an important tool for repetitive and non-invasive monitoring of inflammatory cell infiltrate in intestinal inflammation.
Collapse
|
155
|
Li Y, Hu X, Yi W, Li D, Guo Y, Qi B, Yu A. NIR-II Fluorescence Imaging of Skin Avulsion and Necrosis. Front Chem 2019; 7:696. [PMID: 31696110 PMCID: PMC6817597 DOI: 10.3389/fchem.2019.00696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Skin avulsion is commonly seen in individuals exposed to heavy shearing forces. Subcutaneous tissue detachment and bone fractures usually accompany skin avulsion. Thus, the estimation of the extent of damaged tissue is very important. Currently, the viability of skin and subcutaneous tissue is determined by clinical observations, and these observations always underestimate the true extent of the avulsed skin. Herein, we synthesized an innovative probe, CH1055-GRRRDEVDK (CH1055-GK), which can specifically bind to caspase-3 so as to image skin avulsion and define necrotic regions. Our uptake and binding affinity tests in apoptotic cells and evaluation of the probe ex vivo and in vivo showed that the probe has a strong ability to bind caspase-3 in skin avulsion models and that it vividly detected the necrotic area in avulsed skins. Furthermore, the increased fluorescence intensity of the probe in the avulsed skin showed a larger affected area than that determined by clinical observations in live mice. Consequently, our results indicated that observation of the caspase-3-targeted probe CH1055-GK via NIR-II imaging allowed the clear detection of skin avulsion in subjects, indicating its potential as an imaging tool for the early diagnosis of skin avulsion and the determination of necrotic margins.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wanrong Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Daifeng Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yaqi Guo
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Baiwen Qi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
156
|
Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. NATURE MATERIALS 2019; 18:1133-1143. [PMID: 31133729 DOI: 10.1038/s41563-019-0378-4] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 05/16/2023]
Abstract
Drug-induced acute kidney injury (AKI) with a high morbidity and mortality is poorly diagnosed in hospitals and deficiently evaluated in drug discovery. Here, we report the development of molecular renal probes (MRPs) with high renal clearance efficiency for in vivo optical imaging of drug-induced AKI. MRPs specifically activate their near-infrared fluorescence or chemiluminescence signals towards the prodromal biomarkers of AKI including the superoxide anion, N-acetyl-β-D-glucosaminidase and caspase-3, enabling an example of longitudinal imaging of multiple molecular events in the kidneys of living mice. Importantly, they in situ report the sequential occurrence of oxidative stress, lysosomal damage and cellular apoptosis, which precedes clinical manifestation of AKI (decreased glomerular filtration). Such an active imaging mechanism allows MRPs to non-invasively detect the onset of cisplatin-induced AKI at least 36 h earlier than the existing imaging methods. MRPs can also act as exogenous tracers for optical urinalysis that outperforms typical clinical/preclinical assays, demonstrating their clinical promise for early diagnosis of AKI.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
157
|
Qin T, Zheng Z, Zhang R, Wang C, Yu W. $ \newcommand{\e}{{\rm e}} {{\ell }_{0}}$ gradient minimization for limited-view photoacoustic tomography. ACTA ACUST UNITED AC 2019; 64:195004. [DOI: 10.1088/1361-6560/ab3704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
158
|
Etrych T, Janoušková O, Chytil P. Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment. Pharmaceutics 2019; 11:E471. [PMID: 31547308 PMCID: PMC6781319 DOI: 10.3390/pharmaceutics11090471] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/04/2023] Open
Abstract
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Collapse
Affiliation(s)
- Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic.
| | - Olga Janoušková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
159
|
Recent advances on the biosensing and bioimaging based on polymer dots as advanced nanomaterial: Analytical approaches. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
160
|
Young-Schultz T, Brown S, Lilge L, Betz V. FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated Monte Carlo simulator for light propagation in turbid media. BIOMEDICAL OPTICS EXPRESS 2019; 10:4711-4726. [PMID: 31565520 PMCID: PMC6757465 DOI: 10.1364/boe.10.004711] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 05/07/2023]
Abstract
Optimizing light delivery for photodynamic therapy, quantifying tissue optical properties or reconstructing 3D distributions of sources in bioluminescence imaging and absorbers in diffuse optical imaging all involve solving an inverse problem. This can require thousands of forward light propagation simulations to determine the parameters to optimize treatment, image tissue or quantify tissue optical properties, which is time-consuming and computationally expensive. Addressing this problem requires a light propagation simulator that produces results quickly given modelling parameters. In previous work, we developed FullMonteSW: currently the fastest, tetrahedral-mesh, Monte Carlo light propagation simulator written in software. Additional software optimizations showed diminishing performance improvements, so we investigated hardware acceleration methods. This work focuses on FullMonteCUDA: a GPU-accelerated version of FullMonteSW which targets NVIDIA GPUs. FullMonteCUDA has been validated across several benchmark models and, through various GPU-specific optimizations, achieves a 288-936x speedup over the single-threaded, non-vectorized version of FullMonteSW and a 4-13x speedup over the highly optimized, hand-vectorized and multi-threaded version. The increase in performance allows inverse problems to be solved more efficiently and effectively.
Collapse
Affiliation(s)
- Tanner Young-Schultz
- University of Toronto, Department of Electrical & Computer Engineering, Toronto, ON, Canada
| | - Stephen Brown
- University of Toronto, Department of Electrical & Computer Engineering, Toronto, ON, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Centre, Toronto, ON, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, ON, Canada
| | - Vaughn Betz
- University of Toronto, Department of Electrical & Computer Engineering, Toronto, ON, Canada
| |
Collapse
|
161
|
Jiang S, Liu J, An Y, Gao Y, Meng H, Wang K, Tian J. Fluorescence Molecular Tomography Based on Group Sparsity Priori for Morphological Reconstruction of Glioma. IEEE Trans Biomed Eng 2019; 67:1429-1437. [PMID: 31449004 DOI: 10.1109/tbme.2019.2937354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Fluorescence molecular tomography (FMT) is an important tool for life science, which can noninvasive real-time three-dimensional (3-D) visualization for fluorescence source location. FMT is widely used in tumor research due to its high-sensitive and low cost. However, the reconstruction of FMT is difficult. Although the reconstruction methods of FMT have developed rapidly in recent years, the morphological reconstruction of FMT is still a challenge problem. Thus, the purpose of this study is to realize the morphological reconstruction performance of FMT in glioma research. METHODS In this study, group sparsity was used as a new priori information for FMT. Besides sparsity, group sparsity also takes the group structure of the fluorescent sources, which can maintain the morphological information of the sources. Fused LASSO method (FLM) was proved it can efficiently model the group sparsity prior. Thus, we utilize FLM to reconstruct the morphological information of glioma. Furthermore, to reduce the influence of the high scattering of skull, we modified the FLM for improving the accuracy of morphological reconstruction. RESULTS Glioma numerical simulation model and in vivo glioma model were established to evaluate the performance of morphological reconstruction of the proposed method. The results demonstrated that the proposed method was efficient to reconstruct the morphological information of glioma. CONCLUSION Group sparsity priori can effectively improve the morphological accuracy of FMT reconstruction. SIGNIFICANCE Group sparsity can maintain the morphological information of fluorescent sources effectively, which has great application potential in FMT. The group sparsity based methods can realize the morphological reconstruction, which is of great practical significance in tumor research.
Collapse
|
162
|
Choi SSS, Mandelis A. Review of the state of the art in cardiovascular endoscopy imaging of atherosclerosis using photoacoustic techniques with pulsed and continuous-wave optical excitations. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-15. [PMID: 31414585 PMCID: PMC6983488 DOI: 10.1117/1.jbo.24.8.080902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/22/2019] [Indexed: 05/15/2023]
Abstract
Intravascular photoacoustics (IV-PA) is an emerging atherosclerosis imaging modality that provides chemical-specific optical information of arterial walls with acoustic depth penetration and resolution. As lipid composition of atherosclerotic plaques is considered to be one of the primary indicators for plaque vulnerability, many IV-PA applications are calibrated so as to target plaque necrotic cores. Based on the mode of optical excitation and the corresponding signal processing technique, IV-PA is categorized into two different modalities. The pulse-based IV-PA has been the universal IV-PA imaging mode with its high peak power and straightforward time-domain signal processing technique. As an alternative, the low power continuous-wave (CW)-based IV-PA has been under intense development as a radar-like frequency-domain signal processing modality. The two state-of-the-art types of IV-PA are reviewed in terms of their physics and imaging capabilities, with major emphasis on frequency-swept CW-based IV-PA that has been recently introduced in the field.
Collapse
Affiliation(s)
- Sung Soo Sean Choi
- University of Toronto, Center for Advanced Diffusion-Wave and Photoacoustic Technologies, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| | - Andreas Mandelis
- University of Toronto, Center for Advanced Diffusion-Wave and Photoacoustic Technologies, Department of Mechanical and Industrial Engineering, Toronto, Ontario, Canada
| |
Collapse
|
163
|
Shan D, Ma C, Yang J. Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev 2019; 148:219-238. [PMID: 31228483 PMCID: PMC6888967 DOI: 10.1016/j.addr.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of patients are being diagnosed with neurological diseases, but are rarely cured because of the lack of curative therapeutic approaches. This situation creates an urgent clinical need to develop effective diagnosis and treatment strategies for repair and regeneration of injured or diseased neural tissues. In this regard, biodegradable functional biomaterials provide promising solutions to meet this demand owing to their unique responsiveness to external stimulation fields, which enable neuro-imaging, neuro-sensing, specific targeting, hyperthermia treatment, controlled drug delivery, and nerve regeneration. This review discusses recent progress in the research and development of biodegradable functional biomaterials including electroactive biomaterials, magnetic materials and photoactive biomaterials for the management of neurological disorders with emphasis on their applications in bioimaging (photoacoustic imaging, MRI and fluorescence imaging), biosensing (electrochemical sensing, magnetic sensing and opical sensing), and therapy strategies (drug delivery, hyperthermia treatment, and tissue engineering). It is expected that this review will provide an insightful discussion on the roles of biodegradable functional biomaterials in the diagnosis and treatment of neurological diseases, and lead to innovations for the design and development of the next generation biodegradable functional biomaterials.
Collapse
Affiliation(s)
- Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
164
|
Brown E, Brunker J, Bohndiek SE. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis Model Mech 2019; 12:12/7/dmm039636. [PMID: 31337635 PMCID: PMC6679374 DOI: 10.1242/dmm.039636] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal. Summary: This Review details the potential of photoacoustic imaging to visualise features of the tumour microenvironment such as blood vessels, hypoxia, fibrosis and immune infiltrate to provide unprecedented insight into tumour biology.
Collapse
Affiliation(s)
- Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joanna Brunker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK .,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
165
|
Sivasubramanian M, Chuang YC, Chen NT, Lo LW. Seeing Better and Going Deeper in Cancer Nanotheranostics. Int J Mol Sci 2019; 20:E3490. [PMID: 31315232 PMCID: PMC6678689 DOI: 10.3390/ijms20143490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
Biomedical imaging modalities in clinical practice have revolutionized oncology for several decades. State-of-the-art biomedical techniques allow visualizing both normal physiological and pathological architectures of the human body. The use of nanoparticles (NP) as contrast agents enabled visualization of refined contrast images with superior resolution, which assists clinicians in more accurate diagnoses and in planning appropriate therapy. These desirable features are due to the ability of NPs to carry high payloads (contrast agents or drugs), increased in vivo half-life, and disease-specific accumulation. We review the various NP-based interventions for treatments of deep-seated tumors, involving "seeing better" to precisely visualize early diagnosis and "going deeper" to activate selective therapeutics in situ.
Collapse
Affiliation(s)
- Maharajan Sivasubramanian
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Yao Chen Chuang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan
| | - Nai-Tzu Chen
- Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan.
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Leu-Wei Lo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 350, Taiwan.
| |
Collapse
|
166
|
Daly MJ, Wilson BC, Irish JC, Jaffray DA. Navigated non-contact fluorescence tomography. ACTA ACUST UNITED AC 2019; 64:135021. [DOI: 10.1088/1361-6560/ab1f33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
167
|
Dong P, Wang X, Zheng J, Zhang X, Li Y, Wu H, Li L. Recent Advances in Targeting Nuclear Molecular Imaging Driven by Tetrazine Bioorthogonal Chemistry. Curr Med Chem 2019; 27:3924-3943. [PMID: 31267851 DOI: 10.2174/1386207322666190702105829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023]
Abstract
Molecular imaging techniques apply sophisticated technologies to monitor, directly or indirectly, the spatiotemporal distribution of molecular or cellular processes for biomedical, diagnostic, or therapeutic purposes. For example, Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) imaging, the most representative modalities of molecular imaging, enable earlier and more accurate diagnosis of cancer and cardiovascular diseases. New possibilities for noninvasive molecular imaging in vivo have emerged with advances in bioorthogonal chemistry. For example, tetrazine-related Inverse Electron Demand Diels-Alder (IEDDA) reactions can rapidly generate short-lived radioisotope probes in vivo that provide strong contrast for SPECT and PET. Here, we review pretargeting strategies for molecular imaging and novel radiotracers synthesized via tetrazine bioorthogonal chemistry. We systematically describe advances in direct radiolabeling and pretargeting approaches in SPECT and PET using metal and nonmetal radioisotopes based on tetrazine bioorthogonal reactions, and we discuss prospects for the future of such contrast agents.
Collapse
Affiliation(s)
- Ping Dong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueyi Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junwei Zheng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoyang Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Radiology, West China Hospital and West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Li
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
168
|
Liang B, Liu W, Zhan Q, Li M, Zhuang M, Liu QH, Yao J. Impacts of the murine skull on high-frequency transcranial photoacoustic brain imaging. JOURNAL OF BIOPHOTONICS 2019; 12:e201800466. [PMID: 30843372 PMCID: PMC11126155 DOI: 10.1002/jbio.201800466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
Non-invasive photoacoustic tomography (PAT) of mouse brains with intact skulls has been a challenge due to the skull's strong acoustic attenuation, aberration, and reverberation, especially in the high-frequency range (>15 MHz). In this paper, we systematically investigated the impacts of the murine skull on the photoacoustic wave propagation and on the PAT image reconstruction. We studied the photoacoustic acoustic wave aberration due to the acoustic impedance mismatch at the skull boundaries and the mode conversion between the longitudinal wave and shear wave. The wave's reverberation within the skull was investigated for both longitudinal and shear modes. In the inverse process, we reconstructed the transcranial photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM) images of a point target enclosed by the mouse skull, showing the skull's different impacts on both modalities. Finally, we experimentally validated the simulations by imaging an in vitro mouse skull phantom using representative transcranial PAM and PACT systems. The experimental results agreed well with the simulations and confirmed the accuracy of our forward and inverse models. We expect that our results will provide better understanding of the impacts of the murine skull on transcranial photoacoustic brain imaging and pave the ways for future technical improvements.
Collapse
Affiliation(s)
- Bingyang Liang
- Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen, P. R. China
| | - Wei Liu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Qiwei Zhan
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Mucong Li
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Mingwei Zhuang
- Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen, P. R. China
| | - Qing H. Liu
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| |
Collapse
|
169
|
Zhu H, Xie C, Chen P, Pu K. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Curr Med Chem 2019; 26:1389-1405. [PMID: 28933283 DOI: 10.2174/0929867324666170921103152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as one of the avant-garde strategies for cancer treatment. Photoacoustic (PA) imaging is a new hybrid imaging modality that shows great promise for real-time in vivo monitoring of biological processes with deep tissue penetration and high spatial resolution. To enhance therapeutic efficacy, reduce side effects and minimize the probability of over-medication, it is necessary to use imaging and diagnostic methods to identify the ideal therapeutic window and track the therapeutic outcome. With this regard, nanotheranostics with the ability to conduct PA imaging and PTT/PDT are emerging. This review summarizes the recent progress of organic nanomaterials including nearinfrared (NIR) dyes and semiconducting polymer nanoparticles (SPNs) in PA imaging guided cancer phototherapy, and also addresses their present challenges and potential in clinical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| |
Collapse
|
170
|
Kimm MA, Gross C, Déan-Ben XL, Ron A, Rummeny EJ, Lin HCA, Höltke C, Razansky D, Wildgruber M. Optoacoustic properties of Doxorubicin - A pilot study. PLoS One 2019; 14:e0217576. [PMID: 31150471 PMCID: PMC6544257 DOI: 10.1371/journal.pone.0217576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022] Open
Abstract
Doxorubicin (DOX) is a widely used chemotherapeutic anticancer drug. Its intrinsic fluorescence properties enable investigation of tumor response, drug distribution and metabolism. First phantom studies in vitro showed optoacoustic property of DOX. We therefore aimed to further investigate the optoacoustic properties of DOX in biological tissue in order to explore its potential as theranostic agent. We analysed doxorubicin hydrochloride (Dox·HCl) and liposomal encapsulated doxorubicin hydrochloride (Dox·Lipo), two common drugs for anti-cancer treatment in clinical medicine. Optoacoustic measurements revealed a strong signal of both doxorubicin substrates at 488 nm excitation wavelength. Post mortem analysis of intra-tumoral injections of DOX revealed a detectable optoacoustic signal even at three days after the injection. We thereby demonstrate the general feasibility of doxorubicin detection in biological tissue by means of optoacoustic tomography, which could be applied for high resolution imaging at mesoscopic depths dictated by effective penetration of visible light into the biological tissues.
Collapse
Affiliation(s)
- Melanie A. Kimm
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Claudia Gross
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Xose Luis Déan-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Avihai Ron
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München and Center for Translational Cancer Research, TranslaTUM, Munich, Germany
| | - Ernst J. Rummeny
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Hsiao-Chun Amy Lin
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München and Center for Translational Cancer Research, TranslaTUM, Munich, Germany
| | - Carsten Höltke
- Translational Research Imaging Center, Department of Clinical Radiology, Universitätsklinikum Münster, Münster, Germany
| | - Daniel Razansky
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München and Center for Translational Cancer Research, TranslaTUM, Munich, Germany
| | - Moritz Wildgruber
- Translational Research Imaging Center, Department of Clinical Radiology, Universitätsklinikum Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
171
|
Lo PA, Chiang HK. Three-Dimensional Fluorescence Diffuse Optical Tomography Using the Adaptive Spatial Prior Approach. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
172
|
Liu X, Tang X, Shu Y, Zhao L, Liu Y, Zhou T. Single-view cone-beam x-ray luminescence optical tomography based on Group_YALL1 method. Phys Med Biol 2019; 64:105004. [PMID: 30970336 DOI: 10.1088/1361-6560/ab1819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-view cone beam x-ray luminescence optical tomography (CB-XLOT) has the merit of short data acquisition time, which is important for resolving fast biological processes in vivo. However, challenges remain in the reconstruction of single-view CB-XLOT. In our previous work, by using the sparsity-based reconstruction method, we have demonstrated the feasibility of single-view CB-XLOT. But, when the imaging conditions become complicated (e.g. multiple adjacent nanophosphors (NPs) contained in imaged object), it is difficult to resolve each NP by the previous method. To solve the problem, we hereby present a sparsity reconstruction method based on group information, termed Group_YALL1. The imaging performance of single-view CB-XLOT can be further improved by utilizing the group sparsity characteristic of NPs as a priori knowledge of reconstruction constraint. To assess the capability of the method, we used a customized CB-XLOT/XCT system to perform the numerical simulation and physical phantom experiments. The experimental results demonstrate that compared with the former sparse reconstruction method (e.g. YALL1), the proposed Group_YALL1 method can accurately resolve the NPs embedded in the object, even if they are close to each other. The acquired location error is less than 1 mm. Hence, this method has the potential to greatly reduce the data acquisition time while preserving a high imaging quality.
Collapse
Affiliation(s)
- Xin Liu
- Author to whom correspondence may be addressed
| | | | | | | | | | | |
Collapse
|
173
|
A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat Commun 2019; 10:2064. [PMID: 31048701 PMCID: PMC6497674 DOI: 10.1038/s41467-019-10119-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/18/2019] [Indexed: 01/14/2023] Open
Abstract
Afterglow imaging with long-lasting luminescence after cessation of light excitation provides opportunities for ultrasensitive molecular imaging; however, the lack of biologically compatible afterglow agents has impeded exploitation in clinical settings. This study presents a generic approach to transforming ordinary optical agents (including fluorescent polymers, dyes, and inorganic semiconductors) into afterglow luminescent nanoparticles (ALNPs). This approach integrates a cascade photoreaction into a single-particle entity, enabling ALNPs to chemically store photoenergy and spontaneously decay it in an energy-relay process. Not only can the afterglow profiles of ALNPs be finetuned to afford emission from visible to near-infrared (NIR) region, but also their intensities can be predicted by a mathematical model. The representative NIR ALNPs permit rapid detection of tumors in living mice with a signal-to-background ratio that is more than three orders of magnitude higher than that of NIR fluorescence. The biodegradability of the ALNPs further heightens their potential for ultrasensitive in vivo imaging. Afterglow luminescence is used to reduce background noise and increase sensitivity; however, biocompatible afterglow materials are limited. Here, the authors report on an approach to turn standard optical agents into afterglow nanoparticles and demonstrate the application in tumour imagining in vivo.
Collapse
|
174
|
Guan S, Khan AA, Sikdar S, Chitnis PV. Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal. IEEE J Biomed Health Inform 2019; 24:568-576. [PMID: 31021809 DOI: 10.1109/jbhi.2019.2912935] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoacoustic imaging is an emerging imaging modality that is based upon the photoacoustic effect. In photoacoustic tomography (PAT), the induced acoustic pressure waves are measured by an array of detectors and used to reconstruct an image of the initial pressure distribution. A common challenge faced in PAT is that the measured acoustic waves can only be sparsely sampled. Reconstructing sparsely sampled data using standard methods results in severe artifacts that obscure information within the image. We propose a modified convolutional neural network (CNN) architecture termed fully dense UNet (FD-UNet) for removing artifacts from two-dimensional PAT images reconstructed from sparse data and compare the proposed CNN with the standard UNet in terms of reconstructed image quality.
Collapse
|
175
|
Pandey PK, Gottam O, Naik N, Pradhan A. Comparative study of one-step and two-step quantitative fluorescence photoacoustic tomography. APPLIED OPTICS 2019; 58:3116-3127. [PMID: 31044798 DOI: 10.1364/ao.58.003116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Fluorescence optical tomography (FOT) is a well-known imaging technique, where fluorescent biological markers are injected to tag targeted tissues (tumors, proteins), and the absorption coefficient of fluorophore is reconstructed to provide contrast-enhanced images. Conventional FOT is known to have lack of stability to noise and shallow imaging depth due to strong optical scattering in biological tissue. Photoacoustic tomography (PAT) has been previously proposed to combine with FOT to resolve this issue. We propose a fully nonlinear one-step reconstruction in a diffuse-approximation modeled fluorescence photoacoustic tomographic (FPAT) setting, where the absorption coefficient of exogenous fluorophore is recovered directly from the photoacoustic data. Computational validations in two dimensions in single- and dual-grid reconstruction settings using full as well as partial data have been provided in support of the proposed algorithm. One-step schemes are particularly useful with respect to dual representations of field (optical and pressure) variables and optical parameters, especially in limited-data settings, which effectively help in constraining the optimization search space. We have compared the results of one- and two-step FPAT schemes and concluded that the one-step reconstructions are superior as compared with the corresponding two-step reconstructions. To the best of our knowledge, these are the first comparisons of one-step and two-step reconstructions in FPAT.
Collapse
|
176
|
Abstract
Fuelled by innovation, optical microscopy plays a critical role in the life sciences and medicine, from basic discovery to clinical diagnostics. However, optical microscopy is limited by typical penetration depths of a few hundred micrometres for in vivo interrogations in the visible spectrum. Optoacoustic microscopy complements optical microscopy by imaging the absorption of light, but it is similarly limited by penetration depth. In this Review, we summarize progress in the development and applicability of optoacoustic mesoscopy (OPAM); that is, optoacoustic imaging with acoustic resolution and wide-bandwidth ultrasound detection. OPAM extends the capabilities of optical imaging beyond the depths accessible to optical and optoacoustic microscopy, and thus enables new applications. We explain the operational principles of OPAM, its placement as a bridge between optoacoustic microscopy and optoacoustic macroscopy, and its performance in the label-free visualization of tissue pathophysiology, such as inflammation, oxygenation, vascularization and angiogenesis. We also review emerging applications of OPAM in clinical and biological imaging.
Collapse
|
177
|
Vigne J, Thackeray J, Essers J, Makowski M, Varasteh Z, Curaj A, Karlas A, Canet-Soulas E, Mulder W, Kiessling F, Schäfers M, Botnar R, Wildgruber M, Hyafil F. Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Mol Imaging Biol 2019; 20:869-887. [PMID: 30250990 DOI: 10.1007/s11307-018-1264-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerotic plaques can remain quiescent for years, but become life threatening upon rupture or disruption, initiating clot formation in the vessel lumen and causing acute myocardial infarction and ischemic stroke. Whether and how a plaque ruptures is determined by its macroscopic structure and microscopic composition. Rupture-prone plaques usually consist of a thin fibrous cap with few smooth muscle cells, a large lipid core, a dense infiltrate of inflammatory cells, and neovessels. Such lesions, termed high-risk plaques, can remain asymptomatic until the thrombotic event. Various imaging technologies currently allow visualization of morphological and biological characteristics of high-risk atherosclerotic plaques. Conventional protocols are often complex and lack specificity for high-risk plaque. Conversely, new imaging approaches are emerging which may overcome these limitations. Validation of these novel imaging techniques in preclinical models of atherosclerosis is essential for effective translational to clinical practice. Imaging the vessel wall, as well as its biological milieu in small animal models, is challenging because the vessel wall is a small structure that undergoes continuous movements imposed by the cardiac cycle as it is adjacent to circulating blood. The focus of this paper is to provide a state-of-the-art review on techniques currently available for preclinical imaging of atherosclerosis in small animal models and to discuss the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIRE, University Diderot, Paris, France
| | - James Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jeroen Essers
- Departments of Vascular Surgery, Molecular Genetics, Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Marcus Makowski
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Zoreh Varasteh
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), Institute for Experimental Molecular Imaging (ExMI), University Hospital Aachen, RWTH, Aachen, Germany
| | - Angelos Karlas
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Emmanuel Canet-Soulas
- Laboratoire CarMeN, INSERM U-1060, Lyon/Hospices Civils Lyon, IHU OPERA Cardioprotection, Université de Lyon, Bron, France
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, USA
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), University Hospital Aachen, RWTH, Aachen, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Moritz Wildgruber
- Translational Research Imaging Center, Institut für Klinische Radiologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabien Hyafil
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIRE, University Diderot, Paris, France. .,Département de Médecine Nucléaire, Centre Hospitalier Universitaire Bichat, 46 rue Henri Huchard, 75018, Paris, France.
| | | |
Collapse
|
178
|
Roll W, Markwardt NA, Masthoff M, Helfen A, Claussen J, Eisenblätter M, Hasenbach A, Hermann S, Karlas A, Wildgruber M, Ntziachristos V, Schäfers M. Multispectral Optoacoustic Tomography of Benign and Malignant Thyroid Disorders: A Pilot Study. J Nucl Med 2019; 60:1461-1466. [PMID: 30850507 DOI: 10.2967/jnumed.118.222174] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/26/2019] [Indexed: 12/27/2022] Open
Abstract
This study aimed at evaluating hybrid multispectral optoacoustic tomography/ultrasound for imaging of thyroid disorders, including Graves' disease and thyroid nodules. Methods: The functional biomarkers and tissue parameters deoxygenated hemoglobin, oxygenated hemoglobin, total hemoglobin, saturation of hemoglobin, fat content, and water content were analyzed in thyroid lobes affected by Graves' disease (n = 6), thyroid lobes with healthy tissue (n = 8), benign thyroid nodules (n = 13), and malignant thyroid nodules (n = 3). Results: In Graves' disease, significantly higher deoxygenated hemoglobin (3.18 ± 0.52 vs. 2.13 ± 0.62; P = 0.0055) and total hemoglobin (8.34 ± 0.88 vs. 6.59 ± 1.16; P = 0.0084) and significantly lower fat content (0.64 ± 0.37 vs. 1.69 ± 1.25; P = 0.0293) were found than in healthy controls. Malignant thyroid nodules showed significantly lower saturation of hemoglobin (55.4% ± 2.6% vs. 60.8% ± 7.2%; P = 0.0393) and lower fat content (0.62 ± 0.19 vs. 1.46 ± 0.87; P = 0.1295) than benign nodules. Conclusion: This pilot study showed the applicability and the potential of hybrid multispectral optoacoustic tomography/ultrasound to semiquantitatively provide tissue characterization and functional parameters in thyroid disorders for improved noninvasive diagnostics of thyroid diseases.
Collapse
Affiliation(s)
- Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Niklas A Markwardt
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, München, Germany.,Chair of Biological Imaging and TranslaTUM, Technische Universität München, München, Germany
| | - Max Masthoff
- Institute of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Anne Helfen
- Institute of Clinical Radiology, University Hospital Münster, Münster, Germany
| | | | - Michel Eisenblätter
- Institute of Clinical Radiology, University Hospital Münster, Münster, Germany.,Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Alexa Hasenbach
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; and
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany; and
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, München, Germany.,Chair of Biological Imaging and TranslaTUM, Technische Universität München, München, Germany
| | - Moritz Wildgruber
- Institute of Clinical Radiology, University Hospital Münster, Münster, Germany.,Cells in Motion (CiM) Cluster of Excellence, University of Münster, Münster, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, München, Germany.,Chair of Biological Imaging and TranslaTUM, Technische Universität München, München, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany; and.,Cells in Motion (CiM) Cluster of Excellence, University of Münster, Münster, Germany
| |
Collapse
|
179
|
Li D, Wang S, Lei Z, Sun C, El-Toni AM, Alhoshan MS, Fan Y, Zhang F. Peroxynitrite Activatable NIR-II Fluorescent Molecular Probe for Drug-Induced Hepatotoxicity Monitoring. Anal Chem 2019; 91:4771-4779. [DOI: 10.1021/acs.analchem.9b00317] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dandan Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, P. R. China
| | - Shangfeng Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, P. R. China
| | - Zuhai Lei
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, P. R. China
| | - Caixia Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, P. R. China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
180
|
Yin L, Sun H, Zhang H, He L, Qiu L, Lin J, Xia H, Zhang Y, Ji S, Shi H, Gao M. Quantitatively Visualizing Tumor-Related Protease Activity in Vivo Using a Ratiometric Photoacoustic Probe. J Am Chem Soc 2019; 141:3265-3273. [PMID: 30689382 DOI: 10.1021/jacs.8b13628] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The abnormal expression of tumor-related proteases plays a critical role in cancer invasion, progression, and metastasis. Therefore, it is considerably meaningful to non-invasively assess the proteases' activity in vivo for both tumor diagnosis and therapeutic evaluation. Herein, we report an activatable probe constructed with a near-infrared dye (Cy5.5) and a quencher (QSY21) covalently linked through a peptide substrate of matrix metalloproteinases-2 (MMP-2) that was chosen as a model for tumor-associated proteases. Upon cleavage with activated MMP-2, this probe emitted an MMP-2-concentration-dependent fluorescence. Quite unexpectedly, owing to the variation in the aggregation state of both the dye and its quencher as a consequence of the cleavage, the responsive probe presented a dramatic MMP-2-concentration-dependent absorption at around 680 nm, while that at around 730 nm was MMP-2 concentration independent. These features allowed detection of MMP-2 activity via both fluorescence and photoacoustic (PA) imaging in vitro, respectively. Moreover, taking the PA signal at 730 nm as an internal reference, the PA signal at 680 nm allowed quantitative detection of MMP-2 expression in breast cancer in vivo. We thus envision that our current approach would offer a useful tool for studying the malignant impacts of versatile tumor-associated proteases in vivo.
Collapse
Affiliation(s)
- Ling Yin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , P. R. China.,Department of Chemistry and Chemical Engineering , Jining University , Qufu 273155 , P. R. China
| | - Hao Sun
- Department of Nuclear Medicine , The First Affiliated Hospital of Soochow University , Suzhou 215006 , P. R. China
| | - Hao Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China
| | - Lei He
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China
| | - Ling Qiu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , Wuxi 214063 , P. R. China
| | - Jianguo Lin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine , Jiangsu Institute of Nuclear Medicine , Wuxi 214063 , P. R. China
| | - Huawei Xia
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China
| | - Yuqi Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China
| | - Shunjun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , P. R. China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , P. R. China.,Institute of Chemistry , Chinese Academy of Sciences , BeiYiJie 2, Zhong Guan Cun , Beijing 100190 , P. R. China
| |
Collapse
|
181
|
Tian X, Hussain S, de Pace C, Ruiz-Pérez L, Battaglia G. Zn II Complexes for Bioimaging and Correlated Applications. Chem Asian J 2019; 14:509-526. [PMID: 30716209 DOI: 10.1002/asia.201801437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Indexed: 11/09/2022]
Abstract
Zinc is a biocompatible element that exists as the second most abundant transition metal ion and an indispensable trace element in the human body. Compared to traditional metal-organic complexes systems, d10 metal ZnII complexes not only exhibit a large Stokes shift and good photon stability but also possess strong emission and low cytotoxicity with a relatively small molecular weight. The use of ZnII complexes has emerged in the last decade as a versatile and convenient tool for numerous biological applications, including bioimaging, molecular and protein recognition, as well as photodynamic therapy. Herein, we review recent developments involving ZnII metal complexes applied as specific subcellular compartment imaging probes and their correlated utilizations.
Collapse
Affiliation(s)
- Xiaohe Tian
- School of life science, Anhui University, Hefei, 230039, P.R. China
| | - Sajid Hussain
- School of life science, Anhui University, Hefei, 230039, P.R. China.,School of Applied Sciences and Humanities (NUSASH), National University of Technology, Sector I-12, Islamabad, Pakistan
| | - Cesare de Pace
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Lorena Ruiz-Pérez
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Giuseppe Battaglia
- School of life science, Anhui University, Hefei, 230039, P.R. China.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| |
Collapse
|
182
|
Dual-Modal In Vivo Fluorescence/Photoacoustic Microscopy Imaging of Inflammation Induced by GFP-Expressing Bacteria. SENSORS 2019; 19:s19020238. [PMID: 30634579 PMCID: PMC6359259 DOI: 10.3390/s19020238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 01/05/2023]
Abstract
In this study, dual-modal fluorescence and photoacoustic microscopy was performed for noninvasive and functional in vivo imaging of inflammation induced by green fluorescent protein (GFP) transfected bacteria in mice ear. Our imaging results demonstrated that the multimodal imaging technique is able to monitor the tissue immunovascular responses to infections with molecular specificity. Our study also indicated that the combination of photoacoustic and fluorescence microscopy imaging can simultaneously track the biochemical changes including the bacterial distribution and morphological change of blood vessels in the biological tissues with high resolution and enhanced sensitivity. Consequently, the developed method paves a new avenue for improving the understanding of the pathology mechanism of inflammation.
Collapse
|
183
|
Helfen A, Masthoff M, Claussen J, Gerwing M, Heindel W, Ntziachristos V, Eisenblätter M, Köhler M, Wildgruber M. Multispectral Optoacoustic Tomography: Intra- and Interobserver Variability Using a Clinical Hybrid Approach. J Clin Med 2019; 8:jcm8010063. [PMID: 30634409 PMCID: PMC6352009 DOI: 10.3390/jcm8010063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/30/2018] [Accepted: 01/03/2019] [Indexed: 01/08/2023] Open
Abstract
Multispectral optoacoustic tomography (MSOT) represents a new imaging approach revealing functional tissue information without extrinsic contrast agents. Using a clinical combined ultrasound (US)/MSOT device, we investigated the interindividual robustness and impact of intra- and interobserver variability of MSOT values in soft tissue (muscle and subcutaneous fat) of healthy volunteers. Semiquantitative MSOT values for deoxygenated (Hb), oxygenated (HbO2) and total hemoglobin (HbT), as well as oxygen saturation (sO2), were calculated for both forearms in transversal and longitudinal probe orientation (n = 3, 8 measurements per subject). For intraobserver reproducibility, the same examiner investigated three subjects twice. Mean values of left vs. right forearm and transversal vs. longitudinal probe orientation were compared using an unpaired Student’s t test. Bland Altmann plots with 95% limits of agreement for absolute averages and differences were calculated. Intraclass correlation coefficients (ICC 2,k) were computed for three different examiners. We obtained reproducible and consistent MSOT values with small-to-moderate deviation for muscle and subcutaneous fat tissue. Probe orientation and body side had no impact on calculated MSOT values (p > 0.05 each). Intraobserver reproducibility revealed equable mean values with small-to-moderate deviation. For muscular tissue, good ICC was obtained for sO2. Measurements of subcutaneous tissue revealed good-to-excellent ICCs for all calculated values. Thus, in this preliminary study on healthy individuals, clinical MSOT provided consistent and reproducible functional soft tissue characterization, independent on the investigating personnel.
Collapse
Affiliation(s)
- Anne Helfen
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
| | - Max Masthoff
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
| | | | - Mirjam Gerwing
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
| | - Walter Heindel
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University of Munich, 81675 Munich, Germany.
- Center for Translational Cancer Research 'TranslaTUM', Technical University of Munich, 81675 Munich, Germany.
| | - Michel Eisenblätter
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London SE1 7EH, UK.
| | - Michael Köhler
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
| | - Moritz Wildgruber
- Institute of Clinical Radiology, Medical Faculty, University of Muenster, and University Hospital Muenster, 48149 Muenster, Germany.
- DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Muenster, 48149 Muenster, Germany.
| |
Collapse
|
184
|
Image-Guided Drug Delivery. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
185
|
Zhou K, Ding Y, Vuletic I, Tian Y, Li J, Liu J, Huang Y, Sun H, Li C, Ren Q, Lu Y. In vivo long-term investigation of tumor bearing mKate2 by an in-house fluorescence molecular imaging system. Biomed Eng Online 2018; 17:187. [PMID: 30594200 PMCID: PMC6310933 DOI: 10.1186/s12938-018-0615-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Optical imaging is one of the most common, low-cost imaging tools used for investigating the tumor biological behavior in vivo. This study explores the feasibility and sensitivity of a near infrared fluorescent protein mKate2 for a long-term non-invasive tumor imaging in BALB/c nude mice, by using a low-power optical imaging system. Methods In this study, breast cancer cell line MDA-MB-435s expressing mKate2 and MDA-MB-231 expressing a dual reporter gene firefly luciferase (fLuc)-GFP were used as cell models. Tumor cells were implanted in different animal body compartments including subcutaneous, abdominal and deep tissue area and closely monitored in real-time. A simple and low-power optical imaging system was set up to image both fluorescence and bioluminescence in live animals. Results The presence of malignant tissue was further confirmed by histopathological assay. Considering its lower exposure time and no need of substrate injection, mKate2 is considered a superior choice for subcutaneous imaging compared with fLuc. On the contrary, fLuc has shown to be a better option when monitoring the tumor in a diffusive area such as abdominal cavity. Furthermore, both reporter genes have shown good stability and sensitivity for deep tissue imaging, i.e. tumor within the liver. In addition, fLuc has shown to be an excellent method for detecting tumor cells in the lung. Conclusions The combination of mKate2 and fLuc offers a superior choice for long-term non-invasive real-time investigation of tumor biological behavior in vivo.
Collapse
Affiliation(s)
- Kedi Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yichen Ding
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Ivan Vuletic
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yonglu Tian
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Jun Li
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Jinghao Liu
- Laboratory Animal Centre, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yixing Huang
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Hongfang Sun
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| | - Changhui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Qiushi Ren
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China
| | - Yanye Lu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Beijing, 100871, China.
| |
Collapse
|
186
|
Jorge AF, Eritja R. Overview of DNA Self-Assembling: Progresses in Biomedical Applications. Pharmaceutics 2018; 10:E268. [PMID: 30544945 PMCID: PMC6320858 DOI: 10.3390/pharmaceutics10040268] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Molecular self-assembling is ubiquitous in nature providing structural and functional machinery for the cells. In recent decades, material science has been inspired by the nature's assembly principles to create artificially higher-order structures customized with therapeutic and targeting molecules, organic and inorganic fluorescent probes that have opened new perspectives for biomedical applications. Among these novel man-made materials, DNA nanostructures hold great promise for the modular assembly of biocompatible molecules at the nanoscale of multiple shapes and sizes, designed via molecular programming languages. Herein, we summarize the recent advances made in the designing of DNA nanostructures with special emphasis on their application in biomedical research as imaging and diagnostic platforms, drug, gene, and protein vehicles, as well as theranostic agents that are meant to operate in-cell and in-vivo.
Collapse
Affiliation(s)
- Andreia F Jorge
- Coimbra Chemistry Centre (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| |
Collapse
|
187
|
Miao Q, Pu K. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801778. [PMID: 30058244 DOI: 10.1002/adma.201801778] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/17/2018] [Indexed: 05/05/2023]
Abstract
Optical imaging has played a pivotal role in biology and medicine, but it faces challenges of relatively low tissue penetration and poor signal-to-background ratio due to light scattering and tissue autofluorescence. To overcome these issues, second near-infrared fluorescence, self-luminescence, and photoacoustic imaging have recently emerged, which utilize an optical region with reduced light-tissue interactions, eliminate real-time light excitation, and detect acoustic signals with negligible attenuation, respectively. Because there are only a few endogenous molecules absorbing or emitting above the visible region, development of contrast agents is essential for those deep-tissue optical imaging modalities. Organic semiconducting agents with π-conjugated frameworks can be synthesized to meet different optical imaging requirements due to their easy chemical modification and legible structure-property relation. Herein, the deep-tissue optical imaging applications of organic semiconducting agents including small-molecule agents and nanoparticle derivatives are summarized. In particular, the molecular engineering and nanoformulation approaches to further improve the tissue penetration and detection sensitivity of these optical imaging modalities are highlighted. Finally, current challenges and potential opportunities in this emerging subfield of biomedical imaging are discussed.
Collapse
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
188
|
Fu Q, Wang R, Liang F, Guan W. Aza-tricycles containing a perfluoroalkyl group: synthesis, structure and fluorescence. Org Biomol Chem 2018; 16:8950-8954. [PMID: 30452055 DOI: 10.1039/c8ob02749h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Perfluoroalkyl-containing aza-tricycles have been prepared in one synthetic operation via an ambient light-promoted three-component reaction of β-oxo esters, perfluoroalkyl iodide and DBU. Intramolecular C-FO and double C-HF weak interactions and intermolecular C-HO and C-Hπ hydrogen bondings were observed partly due to the incorporation of the perfluoroalkyl group. The perfluoroalkylated non-planar aza-tricycles exhibit interesting room-temperature AIE fluorescence and acid-induced fluorescence enhancement characters.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | | | | | | |
Collapse
|
189
|
Tu Z, Wang B, Duan T, Gao F. Pattern-learning-based Noise Elimination Algorithm in Photoacoustic Sensing and Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:4808-4811. [PMID: 30441422 DOI: 10.1109/embc.2018.8513176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the fastest-growing imaging modalities in recent years, photoacoustic (PA) imaging has attracted tremendous research interest for various applications including anatomical, functional and molecular imaging. However, the PA signal's amplitude is usually quite weak and can be easily distorted by instrumental noise and interference, which can severely degrade the image quality. To improve the PA signal's signal-to-noise ratio efficiently, this paper introduces a pattern-learning based PA (PLPA) detection method to eliminate the periodically interference noise for PA sensing and imaging. Both simulation and experimental results are demonstrated to prove the validity of the proposed algorithm.
Collapse
|
190
|
Duan T, Lan H, Zhong H, Zhou M, Zhang R, Gao F. Hybrid multi-wavelength nonlinear photoacoustic sensing and imaging. OPTICS LETTERS 2018; 43:5611-5614. [PMID: 30439907 DOI: 10.1364/ol.43.005611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Multi-wavelength photoacoustic (PA) imaging has been studied extensively to explore the spectroscopic absorption contrast of biological tissues. To generate strong PA signals, a high-power wavelength tunable pulsed laser source has to be employed, which is bulky and quite expensive. In this Letter, we propose a hybrid multi-wavelength PA imaging (hPAI) method based on the combination of a single-wavelength pulsed laser source and multi-wavelength continuous-wave (CW) laser sources. By carefully controlling the laser illumination sequence (pulse-CW-pulse) and extracting the PA signal difference before and after the heating of CW lasers, the optical absorption property of multi-wavelength light illumination could be obtained. Compared with conventional PA imaging, the proposed hPAI shows a much lower system cost due to the usage of single-wavelength pulsed lasers and multiple inexpensive CW lasers. As the preliminary results show in this Letter, hPAI imaging has the potential to provide another pathway for high spectroscopic optical absorption contrast in PA imaging.
Collapse
|
191
|
Tsai WK, Chan YH. Semiconducting polymer dots as near-infrared fluorescent probes for bioimaging and sensing. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wei-Kai Tsai
- Department of Chemistry; National Sun Yat-sen University; Kaohsiung Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry; National Chiao Tung University; Hsinchu Taiwan
| |
Collapse
|
192
|
Masthoff M, Helfen A, Claussen J, Roll W, Karlas A, Becker H, Gabriëls G, Riess J, Heindel W, Schäfers M, Ntziachristos V, Eisenblätter M, Gerth U, Wildgruber M. Multispectral optoacoustic tomography of systemic sclerosis. JOURNAL OF BIOPHOTONICS 2018; 11:e201800155. [PMID: 29974645 DOI: 10.1002/jbio.201800155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 05/18/2023]
Abstract
The study aimed to evaluate the clinical feasibility of hybrid ultrasound/multispectral optoacoustic tomography (MSOT) for assessing microvascular dysfunction in systemic sclerosis (SSc). A handheld US/MSOT imaging system was applied for imaging patients diagnosed with SSc (n = 7) and healthy volunteers (n = 8). Semiquantitative MSOT values for deoxygenated (HbR), oxygenated (HbO2 ) and total haemoglobin (HbT) were analysed for subcutaneous finger tissue of both hands (8 fingers per subject, 120 fingers in total) and used to assess disease activity (progressive vs stable). Grouped data were compared by one-way nested analysis of variance, Tukey post-hoc test as well as student's t test were used for statistical analysis.Subcutaneous finger tissue of patients with SSc provided significantly lower MSOT values for HbO2 (26.16 ± 0.71 vs 38.2 ± 1.54, P = .023) and HbT (55.92 ± 1.62 vs 72.46 ± 1.90, P = .018) compared to healthy volunteers. Patients with progressive SSc had significantly lower MSOT values compared to patients with stable disease and healthy volunteers.This pilot study shows the feasibility of MSOT imaging to resolve microvascular dysfunction in SSc as a marker of disease activity. By providing biological tissue properties not revealed by other imaging modalities, MSOT might help to grade SSc non-invasively and monitor early therapy response.
Collapse
Affiliation(s)
- Max Masthoff
- Department of Clinical Radiology, University Hospital Muenster, Münster, Germany
| | - Anne Helfen
- Department of Clinical Radiology, University Hospital Muenster, Münster, Germany
| | | | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Muenster, Münster, Germany
| | - Angelos Karlas
- Institute for Biological and Medical Imaging, Technical University Munich/Helmholtz Zentrum Munich, Munich, Germany
| | - Heidemarie Becker
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital Muenster, Münster, Germany
| | - Gert Gabriëls
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital Muenster, Münster, Germany
| | - Jan Riess
- Department of Clinical Radiology, University Hospital Muenster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University Hospital Muenster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Muenster, Münster, Germany
- European Institute for Molecular Imaging, University Hospital Muenster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Muenster, Münster, Germany
| | - Vasilis Ntziachristos
- Institute for Biological and Medical Imaging, Technical University Munich/Helmholtz Zentrum Munich, Munich, Germany
| | - Michel Eisenblätter
- Department of Clinical Radiology, University Hospital Muenster, Münster, Germany
- Division of Imaging Sciences & Biomedical Engineering, King's College London, London, UK
| | - Ulrich Gerth
- Division of General Internal Medicine, Nephrology and Rheumatology, Department of Medicine D, University Hospital Muenster, Münster, Germany
| | - Moritz Wildgruber
- Department of Clinical Radiology, University Hospital Muenster, Münster, Germany
- DFG EXC 1003 Cluster of Excellence 'Cells in Motion', University of Muenster, Münster, Germany
| |
Collapse
|
193
|
Kulkarni K, Hung J, Fulcher AJ, Chan AH, Hong A, Forsythe JS, Aguilar MI, Wise SG, Del Borgo MP. β3-Tripeptides Coassemble into Fluorescent Hydrogels for Serial Monitoring in Vivo. ACS Biomater Sci Eng 2018; 4:3843-3847. [DOI: 10.1021/acsbiomaterials.8b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Juichien Hung
- Heart Research Institute, Newtown, New South Wales 2042, Australia
| | | | - Alex H.P. Chan
- Heart Research Institute, Newtown, New South Wales 2042, Australia
| | | | | | | | - Steven G. Wise
- Heart Research Institute, Newtown, New South Wales 2042, Australia
- Sydney Medical School, Sydney University, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
194
|
Zhou J, Leaño JL, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JCG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/16/2018] [Indexed: 05/22/2023]
Abstract
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.
Collapse
Affiliation(s)
- Jiajia Zhou
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Julius L Leaño
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and NTU, Taipei, 106, Taiwan
- Philippine Textile Research Institute, Department of Science and Technology, Taguig City, 1631, Philippines
| | - Zhenyu Liu
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| | - Dayong Jin
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jean-Claude G Bünzli
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
| |
Collapse
|
195
|
Baek KI, Ding Y, Chang CC, Chang M, Sevag Packard RR, Hsu JJ, Fei P, Hsiai TK. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:105-115. [PMID: 29752956 PMCID: PMC6226366 DOI: 10.1016/j.pbiomolbio.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Ding
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Megan Chang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| |
Collapse
|
196
|
Jiang S, Liu J, Zhang G, An Y, Meng H, Gao Y, Wang K, Tian J. Reconstruction of Fluorescence Molecular Tomography via a Fused LASSO Method Based on Group Sparsity Prior. IEEE Trans Biomed Eng 2018; 66:1361-1371. [PMID: 30281432 DOI: 10.1109/tbme.2018.2872913] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The aim of this paper is to improve the reconstruction accuracy in both position and source region of fluorescence molecular tomography (FMT). METHODS The reconstruction of the FMT is challenging due to its serious ill-posedness and ill-condition. Currently, to obtain the fluorescent sources accurately, more a priori information of the fluorescent sources is utilized and more efficient and practical methods are proposed. In this paper, we took the group sparsity of the fluorescent sources as a new type of priori information in the FMT, and proposed the fused LASSO method (FLM) for FMT. The FLM based on group sparsity prior not only takes advantage of the sparsity of the fluorescent sources, but also utilizes the structure of the sources, thus making the reconstruction results more accuracy and morphologically similar to the sources. To further improve the reconstruction efficiency, we adopt Nesterov's method to solve the FLM. RESULTS Both heterogeneous numerical simulation experiments and in vivo mouse experiments were carried out to verify the property of the FLM. The results have verified the superiority of the FLM over conventional methods in tumor detection and tumor morphological reconstruction. Furthermore, the in vivo experiments had demonstrated that the FLM has great potential in preclinical application of the FMT. SIGNIFICANCE The reconstruction method based on group sparsity prior has a great potential in the FMT study, it can further improve the reconstruction quality, which has practical significance in preclinical research.
Collapse
|
197
|
Lan B, Liu W, Wang YC, Shi J, Li Y, Xu S, Sheng H, Zhou Q, Zou J, Hoffmann U, Yang W, Yao J. High-speed widefield photoacoustic microscopy of small-animal hemodynamics. BIOMEDICAL OPTICS EXPRESS 2018; 9:4689-4701. [PMID: 30319896 PMCID: PMC6179413 DOI: 10.1364/boe.9.004689] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 05/18/2023]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) has become a popular tool in small-animal hemodynamic studies. However, previous OR-PAM techniques variously lacked a high imaging speed and/or a large field of view, impeding the study of highly dynamic physiologic and pathophysiologic processes over a large region of interest. Here we report a high-speed OR-PAM system with an ultra-wide field of view, enabled by an innovative water-immersible hexagon-mirror scanner. By driving the hexagon-mirror scanner with a high-precision DC motor, the new OR-PAM has achieved a cross-sectional frame rate of 900 Hz over a 12-mm scanning range, which is 3900 times faster than our previous motor-scanner-based system and 10 times faster than the MEMS-scanner-based system. Using this hexagon-scanner-based OR-PAM system, we have imaged epinephrine-induced vasoconstriction in the whole mouse ear and vascular reperfusion after ischemic stroke in the mouse cortex in vivo, with a high spatial resolution and high volumetric imaging speed. We expect that the hexagon-scanner-based OR-PAM system will become a powerful tool for small animal imaging where the hemodynamic responses over a large field of view are of interest.
Collapse
Affiliation(s)
- Bangxin Lan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Wei Liu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ya-chao Wang
- Center for Perioperative Organ Protection (CPOP), Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Junhui Shi
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yang Li
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Song Xu
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Tx 77843, USA
| | - Huaxin Sheng
- Center for Perioperative Organ Protection (CPOP), Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jun Zou
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Tx 77843, USA
| | - Ulrike Hoffmann
- Center for Perioperative Organ Protection (CPOP), Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Wei Yang
- Center for Perioperative Organ Protection (CPOP), Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
198
|
Zhang W, Qian S, Yang G, Zhu L, Zhou B, Qu X, Yan Z, Liu R, Wang J. Establishment and characterization of McA-RH7777 cells using virus-mediated stable overexpression of enhanced green fluorescent protein. Exp Ther Med 2018; 16:3149-3154. [PMID: 30250518 DOI: 10.3892/etm.2018.6580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis, rapid progression. The aim of the current study was to establish a stable lentiviral expression vector for enhanced green fluorescent protein (EGFP) and to evaluate biological characteristics on HCC growth and migration following transfection of HCC cells with EGFP. McA-RH7777 cells were transfected with EGFP overexpression lentiviral vector. Cell activity and mobility were monitored with a Cell-IQ Analyzer. Transwell assays were performed to detect invasiveness and flow cytometry was performed for cell cycle analysis. A subcutaneous tumor rat model was established to analyze the stability of fluorescent protein expression. The result suggested no significant differences between wild-type and EGFP-overexpressing McA-RH7777 cells with regards to cell proliferation, activity, mobility, invasiveness and cell cycle. Green fluorescence was detected over 108 days of culturing. The subcutaneous tumor rat model demonstrated that EGFP expression had no influence on tumor growth and long-term expression was stable. The stable EGFP expression of the HCC transplanted tumor rat model may share biological characteristics with human liver cancer. The model established in the current study may be suitable for various applications, including research focusing on liver cancer metastasis and recurrence, interventional therapy, imaging diagnosis and drug screenings.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Sheng Qian
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Guowei Yang
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Liang Zhu
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Bo Zhou
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xudong Qu
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Zhiping Yan
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Rong Liu
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Jianhua Wang
- Department of Intervention Radiology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
199
|
Liu Y, Ding L, Wang D, Lin M, Sun H, Zhang H, Sun H, Yang B. Hollow Pd Nanospheres Conjugated with Ce6 To Simultaneously Realize Photodynamic and Photothermal Therapy. ACS APPLIED BIO MATERIALS 2018; 1:1102-1108. [DOI: 10.1021/acsabm.8b00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yu Liu
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Lei Ding
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Dandan Wang
- Department of Pathology, School of Stomatology, Jilin University, Changchun 130021, People’s Republic of China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Haizhu Sun
- College of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University, Changchun 130024, People’s Republic of China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| | - Hongchen Sun
- School and Hospital of Stomatology, China Medical University, Shenyang 110001, People’s Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
| |
Collapse
|
200
|
Phototoxicity of flavoprotein miniSOG induced by bioluminescence resonance energy transfer in genetically encoded system NanoLuc-miniSOG is comparable with its LED-excited phototoxicity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 188:107-115. [PMID: 30253374 DOI: 10.1016/j.jphotobiol.2018.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/15/2018] [Accepted: 09/08/2018] [Indexed: 12/24/2022]
Abstract
Photodynamic therapy (PDT) is a clinical, minimally invasive method for destroying cancer cells in the presence of a photosensitizer, oxygen, and a light source. The main obstacle for the PDT treatment of deep tumors is a strong reduction of the excitation light intensity as a result of its refraction, reflection, and absorption by biological tissues. Internal light sources based on bioluminescence resonance energy transfer can be a solution of this problem. Here we show that luciferase NanoLuc being expressed as a fusion protein with phototoxic flavoprotein miniSOG in cancer cells in the presence of furimazine (highly specific NanoLuc substrate) induces a photodynamic effect of miniSOG comparable with its LED-excited (Light Emitting Diode) phototoxicity. Luminescence systems based on furimazine and hybrid protein NanoLuc-miniSOG targeted to mitochondria or cellular membranes possess the similar energy transfer efficiencies and similar BRET-induced cytotoxic effects on cancer cells, though the mechanisms of BRET-induced cell death are different. As the main components of the proposed system for BRET-mediated PDT are genetically encoded (luciferase and phototoxic protein), this system can potentially be delivered to any site in the organism and thus may be considered as a promising approach for simultaneous delivery of light source and photosensitizer in deep-lying tumors and metastasis anywhere in the body.
Collapse
|