151
|
Cheng Q, Wei T, Jia Y, Farbiak L, Zhou K, Zhang S, Wei Y, Zhu H, Siegwart DJ. Dendrimer-Based Lipid Nanoparticles Deliver Therapeutic FAH mRNA to Normalize Liver Function and Extend Survival in a Mouse Model of Hepatorenal Tyrosinemia Type I. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1805308. [PMID: 30368954 DOI: 10.1002/adma.201805308] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Indexed: 06/08/2023]
Abstract
mRNA-mediated protein replacement represents a promising concept for the treatment of liver disorders. Children born with fumarylacetoacetate hydrolase (FAH) mutations suffer from Hepatorenal Tyrosinemia Type 1 (HT-1) resulting in renal dysfunction, liver failure, neurological impairments, and cancer. Protein replacement therapy using FAH mRNA offers tremendous potential to cure HT-1, but is currently hindered by the development of effective mRNA carriers that can function in diseased livers. Structure-guided, rational optimization of 5A2-SC8 mRNA-loaded dendrimer lipid nanoparticles (mDLNPs) increases delivery potency of FAH mRNA, resulting in functional FAH protein and sustained normalization of body weight and liver function in FAH-/- knockout mice. Optimization using luciferase mRNA produces DLNP carriers that are efficacious at mRNA doses as low as 0.05 mg kg-1 in vivo. mDLNPs transfect > 44% of all hepatocytes in the liver, yield high FAH protein levels (0.5 mg kg-1 mRNA), and are well tolerated in a knockout mouse model with compromised liver function. Genetically engineered FAH-/- mice treated with FAH mRNA mDLNPs have statistically equivalent levels of TBIL, ALT, and AST compared to wild type C57BL/6 mice and maintain normal weight throughout the month-long course of treatment. This study provides a framework for the rational optimization of LNPs to improve delivery of mRNA broadly and introduces a specific and viable DLNP carrier with translational potential to treat genetic diseases of the liver.
Collapse
Affiliation(s)
- Qiang Cheng
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tuo Wei
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuemeng Jia
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lukas Farbiak
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kejin Zhou
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuyuan Zhang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yonglong Wei
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel J Siegwart
- Simmons Comprehensive Cancer Center, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
152
|
Sago CD, Kalathoor S, Fitzgerald JP, Lando GN, Djeddar N, Bryksin AV, Dahlman JE. Barcoding chemical modifications into nucleic acids improves drug stability in vivo. J Mater Chem B 2018; 6:7197-7203. [PMID: 30555697 PMCID: PMC6238725 DOI: 10.1039/c8tb01642a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
The efficacy of nucleic acid therapies can be limited by unwanted degradation. Chemical modifications are known to improve nucleic acid stability, but the (i) types, (ii) positions, and (iii) numbers of modifications all matter, making chemically optimizing nucleic acids a combinatorial problem. As a result, in vivo studies of nucleic acid stability are time consuming and expensive. We reasoned that DNA barcodes could simultaneously study how chemical modification patterns affect nucleic acid stability, saving time and resources. We confirmed that rationally designed DNA barcodes can elucidate the role of specific chemical modifications in serum, in vitro and in vivo; we also identified a modification pattern that enhanced stability. This approach to screening chemical modifications in vivo can efficiently optimize nucleic acid structure, which will improve biomaterial-based nucleic acid drugs.
Collapse
Affiliation(s)
- Cory D Sago
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Sujay Kalathoor
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , GA 30332 , USA
| | - Jordan P Fitzgerald
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Gwyneth N Lando
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Naima Djeddar
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , GA 30332 , USA
| | - Anton V Bryksin
- Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , GA 30332 , USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| |
Collapse
|
153
|
Tsumaru S, Masumoto H, Minakata K, Izuhara M, Yamazaki K, Ikeda T, Ono K, Sakata R, Minatoya K. Therapeutic angiogenesis by local sustained release of microRNA-126 using poly lactic-co-glycolic acid nanoparticles in murine hindlimb ischemia. J Vasc Surg 2018; 68:1209-1215. [DOI: 10.1016/j.jvs.2017.08.097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
|
154
|
Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine (Lond) 2018; 13:2579-2596. [DOI: 10.2217/nnm-2018-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the efficacy of lactoferrin nanoparticles (LfNPs) in delivering siRNA across the blood–brain barrier to treat glioblastoma multiforme (GBM) and with an additional objective of potentiation of conventional temozolomide (TMZ) chemotherapy. Methods: Aurora kinase B (AKB) siRNA-loaded nanoparticles (AKB–LfNPs) were prepared with milk protein, lactoferrin, by water in oil emulsion method. AKB–LfNPs were tested in cell lines and in GBM orthotopic mouse model with and without TMZ treatment. Results: AKB silencing, cytotoxicity and cell cycle arrest by these LfNPs were shown to be effective on GL261 cells. Tumor growth was significantly lower in AKB–LfNPs alone and in combination with TMZ treated mice and increased the survival by 2.5-times. Conclusion: Treatment of AKB–LfNPs to GBM mice improves life expectancy and has potential to combine with conventional chemotherapy.
Collapse
Affiliation(s)
- Sonali Kumari
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Dwaipayan Bhattacharya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| | - Nandini Rangaraj
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Sumana Chakarvarty
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Nalam M Rao
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| |
Collapse
|
155
|
Inhibition of miR-449a Promotes Cartilage Regeneration and Prevents Progression of Osteoarthritis in In Vivo Rat Models. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:322-333. [PMID: 30326428 PMCID: PMC6197768 DOI: 10.1016/j.omtn.2018.09.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/20/2022]
Abstract
Traumatic and degenerative lesions of articular cartilage usually progress to osteoarthritis (OA), a leading cause of disability in humans. MicroRNAs (miRNAs) can regulate the differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) and play important roles in the expression of genes related to OA. However, their functional roles in OA remain poorly understood. Here, we have examined miR-449a, which targets sirtuin 1 (SIRT1) and lymphoid enhancer-binding factor-1 (LEF-1), and observed its effects on damaged cartilage. The levels of chondrogenic markers and miR-449a target genes increased during chondrogenesis in anti-miR-449a-transfected hBMSCs. A locked nucleic acid (LNA)-anti-miR-449a increased cartilage regeneration and expression of type II collagen and aggrecan on the regenerated cartilage surface in acute defect and OA models. Furthermore, intra-articular injection of LNA-anti-miR-449a prevented disease progression in the OA model. Our study indicates that miR-449a may be a novel potential therapeutic target for age-related joint diseases like OA.
Collapse
|
156
|
Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: issues and future directions. Expert Opin Drug Deliv 2018; 15:1053-1065. [PMID: 30198792 DOI: 10.1080/17425247.2018.1520836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ikramy A. Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
157
|
Banda NK, Desai D, Scheinman RI, Pihl R, Sekine H, Fujita T, Sharma V, Hansen AG, Garred P, Thiel S, Borodovsky A, Holers VM. Targeting of Liver Mannan-Binding Lectin-Associated Serine Protease-3 with RNA Interference Ameliorates Disease in a Mouse Model of Rheumatoid Arthritis. Immunohorizons 2018; 2:274-295. [PMID: 30417171 PMCID: PMC6220895 DOI: 10.4049/immunohorizons.1800053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mannan-binding lectin–associated serine protease 3 (MASP-3) regulates the alternative pathway of complement and is predominantly synthesized in the liver. The role of liver-derived MASP-3 in the pathogenesis of rheumatoid arthritis (RA) is unknown. We hypothesized that liver-derived MASP-3 is essential for the development of joint damage and that targeted inhibition of MASP-3 in the liver can attenuate arthritis. We used MASP-3–specific small interfering RNAs (siRNAs) conjugated to N-acetylgalactosamine (GalNAc) to specifically target the liver via asialoglycoprotein receptors. Active GalNAc–MASP3–siRNA conjugates were identified, and in vivo silencing of liver MASP-3 mRNA was demonstrated in healthy mice. The s.c. treatment with GalNAc–MASP-3–siRNAs specifically decreased the expression of MASP-3 in the liver and the level of MASP-3 protein in circulation of mice without affecting the levels of the other spliced products. In mice with collagen Ab–induced arthritis, s.c. administration of GalNAc–MASP-3–siRNA decreased the clinical disease activity score to 50% of controls, with decrease in histopathology scores and MASP-3 deposition. To confirm the ability to perform MASP-3 gene silencing in human cells, we generated a lentivirus expressing a short hairpin RNA specific for human MASP-3 mRNA. This procedure not only eliminated the short-term (at day 15) expression of MASP-3 in HepG2 and T98G cell lines but also diminished the long-term (at day 60) synthesis of MASP-3 protein in T98G cells. Our study demonstrates that isoform-specific silencing of MASP-3 in vivo modifies disease activity in a mouse model of RA and suggests that liver-directed MASP3 silencing may be a therapeutic approach in human RA.
Collapse
Affiliation(s)
- Nirmal K Banda
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Dhruv Desai
- Alnylam Pharmaceuticals Inc., Boston, MA 02142
| | - Robert I Scheinman
- Skaggs School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Rasmus Pihl
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Teizo Fujita
- Department of Immunology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Vibha Sharma
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Annette G Hansen
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, University Hospital of Copenhagen, 2200 Copenhagen, Denmark
| | - Steffen Thiel
- Department of Biomedicine, University of Aarhus, DK-8000 Aarhus, Denmark
| | | | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
158
|
Levanova A, Poranen MM. RNA Interference as a Prospective Tool for the Control of Human Viral Infections. Front Microbiol 2018; 9:2151. [PMID: 30254624 PMCID: PMC6141738 DOI: 10.3389/fmicb.2018.02151] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022] Open
Abstract
RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived from viral genome or its replicative intermediates, is a natural antiviral defense in plants, fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection in mammals. The current review critically evaluates the production of antiviral siRNAs, delivery techniques to the infection sites, as well as provides an overview of antiviral siRNAs in clinical trials.
Collapse
Affiliation(s)
- Alesia Levanova
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
159
|
Molecular therapy using siRNA: Recent trends and advances of multi target inhibition of cancer growth. Int J Biol Macromol 2018; 116:880-892. [DOI: 10.1016/j.ijbiomac.2018.05.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/07/2023]
|
160
|
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018; 29:3072-3083. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
161
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
162
|
Haraszti RA, Miller R, Didiot MC, Biscans A, Alterman JF, Hassler MR, Roux L, Echeverria D, Sapp E, DiFiglia M, Aronin N, Khvorova A. Optimized Cholesterol-siRNA Chemistry Improves Productive Loading onto Extracellular Vesicles. Mol Ther 2018; 26:1973-1982. [PMID: 29937418 DOI: 10.1016/j.ymthe.2018.05.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 05/27/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles are promising delivery vesicles for therapeutic RNAs. Small interfering RNA (siRNA) conjugation to cholesterol enables efficient and reproducible loading of extracellular vesicles with the therapeutic cargo. siRNAs are typically chemically modified to fit an application. However, siRNA chemical modification pattern has not been specifically optimized for extracellular vesicle-mediated delivery. Here we used cholesterol-conjugated, hydrophobically modified asymmetric siRNAs (hsiRNAs) to evaluate the effect of backbone, 5'-phosphate, and linker chemical modifications on productive hsiRNA loading onto extracellular vesicles. hsiRNAs with a combination of 5'-(E)-vinylphosphonate and alternating 2'-fluoro and 2'-O-methyl backbone modifications outperformed previously used partially modified siRNAs in extracellular vesicle-mediated Huntingtin silencing in neurons. Between two commercially available linkers (triethyl glycol [TEG] and 2-aminobutyl-1-3-propanediol [C7]) widely used to attach cholesterol to siRNAs, TEG is preferred compared to C7 for productive exosomal loading. Destabilization of the linker completely abolished silencing activity of loaded extracellular vesicles. The loading of cholesterol-conjugated siRNAs was saturated at ∼3,000 siRNA copies per extracellular vesicle. Overloading impaired the silencing activity of extracellular vesicles. The data reported here provide an optimization scheme for the successful use of hydrophobic modification as a strategy for productive loading of RNA cargo onto extracellular vesicles.
Collapse
Affiliation(s)
- Reka Agnes Haraszti
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rachael Miller
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Marie-Cecile Didiot
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Loic Roux
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ellen Sapp
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Marian DiFiglia
- Mass General Institute for Neurodegenerative Disease, Boston, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
163
|
Preparation of siRNA encapsulated nanoliposomes suitable for siRNA delivery by simply discontinuous mixing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1318-1325. [DOI: 10.1016/j.bbamem.2018.02.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 02/06/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023]
|
164
|
Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E, LaBranche CC, Montefiori DC, Lobby JL, Saunders KO, Liao HX, Korber BT, Sutherland LL, Scearce RM, Hraber PT, Tombácz I, Muramatsu H, Ni H, Balikov DA, Li C, Mui BL, Tam YK, Krammer F, Karikó K, Polacino P, Eisenlohr LC, Madden TD, Hope MJ, Lewis MG, Lee KK, Hu SL, Hensley SE, Cancro MP, Haynes BF, Weissman D. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 2018; 215:1571-1588. [PMID: 29739835 PMCID: PMC5987916 DOI: 10.1084/jem.20171450] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/25/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022] Open
Abstract
T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Letitia Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Hans P Verkerke
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elinor Willis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Jenna L Lobby
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | | | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | | | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Houping Ni
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Balikov
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA
| | - Laurence C Eisenlohr
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA.,Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
165
|
Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705328. [PMID: 29736981 PMCID: PMC6261797 DOI: 10.1002/adma.201705328] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/12/2018] [Indexed: 04/14/2023]
Abstract
Advances in biomaterials for drug delivery are enabling significant progress in biology and medicine. Multidisciplinary collaborations between physical scientists, engineers, biologists, and clinicians generate innovative strategies and materials to treat a range of diseases. Specifically, recent advances include major breakthroughs in materials for cancer immunotherapy, autoimmune diseases, and genome editing. Here, strategies for the design and implementation of biomaterials for drug delivery are reviewed. A brief history of the biomaterials field is first established, and then commentary on RNA delivery, responsive materials development, and immunomodulation are provided. Current challenges associated with these areas as well as opportunities to address long-standing problems in biology and medicine are discussed throughout.
Collapse
Affiliation(s)
- Owen S Fenton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Katy N Olafson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Padmini S Pillai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, School of Engineering and Applied Science, Philadelphia, PA, 19104, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
166
|
Ganbold T, Baigude H. Design of Mannose-Functionalized Curdlan Nanoparticles for Macrophage-Targeted siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14463-14474. [PMID: 29648784 DOI: 10.1021/acsami.8b02073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
6-Amino-6-deoxy-curdlan is a promising nucleic acid carrier that efficiently delivers plasmid DNA as well as short interfering RNA (siRNA) to various cell lines. The highly reactive C6-NH2 groups of 6-amino-6-deoxy-curdlan prompt conjugation of various side groups including tissue-targeting ligands to enhance cell-type-specific nucleic acid delivery to specific cell lines. Herein, to test the primary-cell-targeting efficiency of the curdlan derivative, we chemically conjugated a macrophage-targeting ligand, mannose, to 6-amino-6-deoxy-curdlan. The resulting curdlan derivative (denoted CMI) readily complexed with siRNA and formed nanoparticles with a diameter of 50-80 nm. The CMI nanoparticles successfully delivered a dye-labeled siRNA to mouse peritoneal macrophages. The delivery efficiency was blocked by mannan, a natural ligand for a macrophage surface mannose receptor (CD206), but not by zymosan, a ligand for the dectin-1 receptor, which is also present on the surface of macrophages. Moreover, CMI nanoparticles were internalized by macrophages only at 37 °C, suggesting that the cellular uptake of CMI nanoparticles was energy-dependent. Furthermore, CMI nanoparticle efficiently delivered siRNA against tumor necrosis factor α (TNFα) to lipopolysaccharide-stimulated primary mouse peritoneal macrophages. In vivo experiments demonstrated that CMI nanoparticles successfully delivered siTNFα to mouse peritoneal macrophages, liver, and lung and induced significant knockdown of the TNFα expression at both messenger RNA and protein levels. Therefore, our design of CMI may be a promising siRNA carrier for targeting CD206-expressing primary cells such as macrophage and dendritic cells.
Collapse
Affiliation(s)
- Tsogzolmaa Ganbold
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry , Inner Mongolia University , 235 West College Road , Hohhot , Inner Mongolia 010020 , P. R. China
| | - Huricha Baigude
- School of Chemistry & Chemical Engineering, Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry , Inner Mongolia University , 235 West College Road , Hohhot , Inner Mongolia 010020 , P. R. China
| |
Collapse
|
167
|
Lieberman J. Tapping the RNA world for therapeutics. Nat Struct Mol Biol 2018; 25:357-364. [PMID: 29662218 DOI: 10.1038/s41594-018-0054-4] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023]
Abstract
A recent revolution in RNA biology has led to the identification of new RNA classes with unanticipated functions, new types of RNA modifications, an unexpected multiplicity of alternative transcripts and widespread transcription of extragenic regions. This development in basic RNA biology has spawned a corresponding revolution in RNA-based strategies to generate new types of therapeutics. Here, I review RNA-based drug design and discuss barriers to broader applications and possible ways to overcome them. Because they target nucleic acids rather than proteins, RNA-based drugs promise to greatly extend the domain of 'druggable' targets beyond what can be achieved with small molecules and biologics.
Collapse
Affiliation(s)
- Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
168
|
Qureshi A, Tantray VG, Kirmani AR, Ahangar AG. A review on current status of antiviral siRNA. Rev Med Virol 2018; 28:e1976. [PMID: 29656441 PMCID: PMC7169094 DOI: 10.1002/rmv.1976] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/18/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023]
Abstract
Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics worldwide. Along with their resistant strains, new pathogenic viruses continue to be discovered so creating an ongoing need for new antiviral treatments. RNA interference is a cellular gene‐silencing phenomenon in which sequence‐specific degradation of target mRNA is achieved by means of complementary short interfering RNA (siRNA) molecules. Short interfering RNA technology affords a potential tractable strategy to combat viral pathogenesis because siRNAs are specific, easy to design, and can be directed against multiple strains of a virus by targeting their conserved gene regions. In this review, we briefly summarize the current status of siRNA therapy for representative examples from different virus families. In addition, other aspects like their design, delivery, medical significance, bioinformatics resources, and limitations are also discussed.
Collapse
Affiliation(s)
- Abid Qureshi
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Vaqar Gani Tantray
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Altaf Rehman Kirmani
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| | - Abdul Ghani Ahangar
- Biomedical Informatics Center, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, India
| |
Collapse
|
169
|
Complexation of Chol-DsiRNA in place of Chol-siRNA greatly increases the duration of mRNA suppression by polyplexes of PLL(30)-PEG(5K) in primary murine syngeneic breast tumors after i.v. administration. Int J Pharm 2018; 543:130-138. [PMID: 29601972 DOI: 10.1016/j.ijpharm.2018.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/25/2018] [Accepted: 03/24/2018] [Indexed: 01/22/2023]
Abstract
RNA interference has tremendous potential for cancer therapy but is limited by the insufficient potency of RNAi molecules after i.v. administration. We previously found that complexation with PLL(30)-PEG(5K) greatly increases the potency of 3'-cholesterol-modified siRNA [Chol-siRNA] in primary murine syngeneic 4T1 breast tumors after i.v. administration but mRNA suppression decreases 24 h after the final dose. We hypothesized that complexation of cholesterol-modified Dicer-substrate siRNA (Chol-DsiRNA) in place of Chol-siRNA can increase the potency and duration of suppression by polyplexes of PLL(30)-PEG(5K) in solid tumors. We found that replacing Chol-siRNA with Chol-DsiRNA increased polyplex loading and nuclease protection, suppressed stably expressed luciferase to the same extent in primary murine 4T1-Luc breast tumors under the current dosage regimen, but maintained suppression ~72 h after the final dose. The kinetics of suppression in 4T1-Luc over 72 h, however, were similar between DsiLuc and siLuc after electroporation and between polyplexes of Chol-DsiLuc and Chol-siLuc after transfection, suggesting that Chol-DsiRNA polyplexes increase the duration of mRNA suppression through differences in polyplex activities in vivo. Thus, replacing Chol-siRNA with Chol-DsiRNA may significantly increase the duration of mRNA suppression by polyplexes of PLL(30)-PEG(5K) and possibly other PEGylated polycationic polymers in primary tumors and metastases after i.v. administration.
Collapse
|
170
|
Gandioso A, Massaguer A, Villegas N, Salvans C, Sánchez D, Brun-Heath I, Marchán V, Orozco M, Terrazas M. Efficient siRNA-peptide conjugation for specific targeted delivery into tumor cells. Chem Commun (Camb) 2018; 53:2870-2873. [PMID: 28218319 DOI: 10.1039/c6cc10287e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Despite the broad applicability of the Huisgen cycloaddition reaction, the click functionalization of RNAs with peptides still remains a challenge. Here we describe a straightforward method for the click functionalization of siRNAs with peptides of different sizes and complexities. Among them, a promising peptide carrier for the selective siRNA delivery into HER2+ breast cancer cell lines has been reported.
Collapse
Affiliation(s)
- Albert Gandioso
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Anna Massaguer
- Department of Biology, University of Girona, Campus Montilivi, 17071 Girona, Spain
| | - Núria Villegas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain. and The Join IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Spain
| | - Cándida Salvans
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Dani Sánchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Vicente Marchán
- Department of Inorganic and Organic Chemistry, Section of Organic Chemistry, IBUB, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain. and The Join IRB-BSC Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Spain and Department of Biochemistry and Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Montserrat Terrazas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Joint IRB-BSC Program in Computational Biology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
171
|
Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol 2018. [PMID: 29521426 DOI: 10.1002/jcp.26514] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally by interfering with the translation of one or more target mRNAs. The unique miRNA sequences are involved in many physiological and pathological processes. Dysregulation of miRNAs contributes to the pathogenesis of all types of cancer. Notably, the diminished expression of tumor suppressor miRNAs, such as members of the Let-7 and miR-34 family, promotes tumor progression, invasion and metastasis. The past lustrum in particular, has witnessed substantial improvement of miRNA replacement therapy. This approach aims to restore tumor suppressor miRNA function in tumor cells using synthetic miRNA mimics or miRNA expression plasmids. Here, we provide a comprehensive review of recent advances in miRNA replacement therapy for treatment of cancer and its advantages over conventional gene therapy. We discuss a wide variety of delivery methods and vectors, as well as obstacles that remain to be overcome. Lastly, we review efforts to reverse epigenetic alterations, which affect miRNA expression in cancer cells, and the promising observation that restoring miRNA function re-sensitizes resistant tumor cells to chemotherapeutic drugs. The fact that various miRNA replacement therapies are currently in clinical trial demonstrates the great potential of this approach to treat cancer.
Collapse
Affiliation(s)
- Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahyar Aghapour
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
172
|
Arun G, Diermeier SD, Spector DL. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol Med 2018; 24:257-277. [PMID: 29449148 PMCID: PMC5840027 DOI: 10.1016/j.molmed.2018.01.001] [Citation(s) in RCA: 457] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023]
Abstract
Long non-coding RNAs (lncRNAs) represent a significant population of the human transcriptome. Many lncRNAs exhibit cell- and/or tissue/tumor-specific expression, making them excellent candidates for therapeutic applications. In this review we discuss examples of lncRNAs that demonstrate the diversity of their function in various cancer types. We also discuss recent advances in nucleic acid drug development with a focus on oligonucleotide-based therapies as a novel approach to inhibit tumor progression. The increased success rates of nucleic acid therapeutics provide an outstanding opportunity to explore lncRNAs as viable therapeutic targets to combat various aspects of cancer progression.
Collapse
Affiliation(s)
- Gayatri Arun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; These authors contributed equally
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
173
|
Zhang L, Chen C, Fan X, Tang X. Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification. Chembiochem 2018; 19:1259-1263. [PMID: 29488297 DOI: 10.1002/cbic.201700623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/21/2022]
Abstract
Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future.
Collapse
Affiliation(s)
- Liangliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinli Fan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P.R. China
| |
Collapse
|
174
|
Nordestgaard BG, Nicholls SJ, Langsted A, Ray KK, Tybjærg-Hansen A. Advances in lipid-lowering therapy through gene-silencing technologies. Nat Rev Cardiol 2018; 15:261-272. [PMID: 29417937 DOI: 10.1038/nrcardio.2018.3] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New treatment opportunities are emerging in the field of lipid-lowering therapy through gene-silencing approaches. Both antisense oligonucleotide inhibition and small interfering RNA technology aim to degrade gene mRNA transcripts to reduce protein production and plasma lipoprotein levels. Elevated levels of LDL, remnant lipoproteins, and lipoprotein(a) all cause cardiovascular disease, whereas elevated levels of triglyceride-rich lipoproteins in some patients can cause acute pancreatitis. The levels of each of these lipoproteins can be reduced using gene-silencing therapies by targeting proteins that have an important role in lipoprotein production or removal (for example, the protein products of ANGPTL3, APOB, APOC3, LPA, and PCSK9). Using this technology, plasma levels of these lipoproteins can be reduced by 50-90% with 2-12 injections per year; such dramatic reductions are likely to reduce the incidence of cardiovascular disease or acute pancreatitis in at-risk patients. The reported adverse effects of these new therapies include injection-site reactions, flu-like symptoms, and low blood platelet counts. However, newer-generation drugs are more efficiently delivered to liver cells, requiring lower drug doses, which leads to fewer adverse effects. Although these findings are promising, robust evidence of cardiovascular disease reduction and long-term safety is needed before these gene-silencing technologies can have widespread implementation. Before the availability of such evidence, these drugs might have roles in patients with unmet medical needs through orphan indications.
Collapse
Affiliation(s)
- Børge G Nordestgaard
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, North Terrace, Adelaide 5000, South Australia, Australia
| | - Anne Langsted
- Department of Clinical Biochemistry and The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College, Reynolds Building, St Dunstan's Road, London W6 8RP, UK
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsveg 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
175
|
Sun M, Wang K, Oupický D. Advances in Stimulus-Responsive Polymeric Materials for Systemic Delivery of Nucleic Acids. Adv Healthc Mater 2018; 7:10.1002/adhm.201701070. [PMID: 29227047 PMCID: PMC5821579 DOI: 10.1002/adhm.201701070] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/13/2017] [Indexed: 01/02/2023]
Abstract
Polymeric materials that respond to a variety of endogenous and external stimuli are actively developed to overcome the main barriers to successful systemic delivery of therapeutic nucleic acids. Here, an overview of viable stimuli that are proved to improve systemic delivery of nucleic acids is provided. The main focus is placed on nucleic acid delivery systems (NADS) based on polymers that respond to pathological or physiological changes in pH, redox state, enzyme levels, hypoxia, and reactive oxygen species levels. Additional discussion is focused on NADS suitable for applications that use external stimuli, such as light, ultrasound, and local hyperthermia.
Collapse
Affiliation(s)
- Minjie Sun
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Kaikai Wang
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - David Oupický
- State Key Laboratory of Natural Medicines, Key Laboratory on Protein Chemistry and Structural Biology, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, P.R. China
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
176
|
Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev 2018; 38:829-869. [PMID: 29315675 DOI: 10.1002/med.21479] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022]
Abstract
Gene-based therapy is one of essential therapeutic strategies for precision medicine through targeting specific genes in specific cells of target tissues. However, there still exist many problems that need to be solved, such as safety, stability, selectivity, delivery, as well as immunity. Currently, the key challenges of gene-based therapy for clinical potential applications are the safe and effective nucleic acid drugs as well as their safe and efficient gene delivery systems. In this review, we first focus on current nucleic acid drugs and their formulation in clinical trials and on the market, including antisense oligonucleotide, siRNA, aptamer, and plasmid nucleic acid drugs. Subsequently, we summarize different chemical modifications of nucleic acid drugs as well as their delivery systems for gene-based therapeutics in vivo based on nucleic acid chemistry and nanotechnology methods.
Collapse
Affiliation(s)
- Changmai Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
177
|
Abstract
Persistent hepatitis B virus (HBV) infection of hepatocytes is associated with a covalently closed circular DNA (cccDNA) episome. Although serologic hepatitis B surface antigen tests are negative, the presence of cccDNA is obviously increased in HBeAg-positive patients compared with that in HBeAg-negative patients, inactive carriers and patients. Moreover, trace cccDNA levels can also be found in the liver cells of patients with resolved hepatitis B infections. Therefore, clearance of cccDNA in hepatocytes could be an effective cure for HBV. In this review, we summarize the strategies that have been employed to eliminate cccDNA in recent years and discuss the future development of treatments for chronic hepatitis B.
Collapse
|
178
|
Wei W, Wang SF, Yu B, Ni M. Inhibition of HBV replication by delivering the dual-gene expression vector pHsa-miR16-siRNA in HepG2.2.15 cells. Curr Med Sci 2017; 37:828-832. [PMID: 29270739 DOI: 10.1007/s11596-017-1810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/13/2017] [Indexed: 10/18/2022]
Abstract
This study aimed to construct the dual-gene expression vector pHsa-miR16-siRNA which can express human miR-16 and HBV X siRNA, and examine its regulatory effect on HBV gene expression in the HepG2.2.15 cell line. The expression vectors siR-1583 and pHsa-miR16-siRNA were designed and constructed. HepG2.2.15 cells were transfected with the empty vector, siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively. ELISA was performed to measure the expression of HBsAg and HBeAg in the culture supernatant 48 and72 h post transfection. Fluorescence quantitative PCR was used to measure the HBV mRNA degradation efficiency and HBV DNA copy number. The results showed that the expression of HBV genes was significantly inhibited in HepG2.2.15 cells transfected with siR-1583, pmiR-16 and pHsa-miR16-siRNA, respectively, when compared with that in cells transfected with the empty vectors, with the inhibitory effect of pHsa-miR16-siRNA being the most significant. ELISA showed that the inhibitory rates of HBsAg and HBeAg in pHsa-miR16-siRNA transfected cells were correspondingly 87.3% and 85.0% at 48 h, and 88.6% and 86.5% at 72 h post transfection (P<0.01 vs. control group). RT-PCR showed that the level of HBV mRNA decreased by 80.2% (t=-99.22, P<0.01), the genomic HBV DNA by 92.8% (t=-73.06, P<0.01), and the supernatant of HBV DNA copy number by 89.8% (t=-47.13, P<0.01) in pHsa-miR16-siRNA transfected group. It was suggested that the dual-gene expression vector pHsa-miR16-siRNA can inhibit the replication of HBV more efficiently than a single-gene expression vector.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Su-Fei Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Ni
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
179
|
Aigner A, Kögel D. Nanoparticle/siRNA-based therapy strategies in glioma: which nanoparticles, which siRNAs? Nanomedicine (Lond) 2017; 13:89-103. [PMID: 29199893 DOI: 10.2217/nnm-2017-0230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanomedicines allow for the delivery of small interfering RNAs (siRNAs) that are otherwise barely suitable as therapeutics for inducing RNA interference (RNAi). In preclinical studies on siRNA-based glioma treatment in vivo, various groups of nanoparticle systems, routes of administration and target genes have been explored. Targeted delivery by functionalization of nanoparticles with a ligand for crossing the blood-brain barrier and/or for enhanced target cell transfection has been described as well. Focusing on nanoparticle developments in the last approximately 10 years, this review article gives a comprehensive overview of nanoparticle systems for siRNA delivery into glioma and of preclinical in vivo studies. Furthermore, it discusses various target genes and highlights promising strategies with regard to target gene selection and combination therapies.
Collapse
Affiliation(s)
- Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology & Toxicology, Clinical Pharmacology, University of Leipzig, Germany
| | - Donat Kögel
- Experimental Neurosurgery, Neuroscience Center, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
180
|
Resende R, Torres H, Yuahasi K, Majumder P, Ulrich H. Delivery Systems for in Vivo use of Nucleic Acid Drugs. Drug Target Insights 2017. [DOI: 10.1177/117739280700200021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R.R. Resende
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | - H.A.M. Torres
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
| | - K.K. Yuahasi
- Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil. Present address
| | - P Majumder
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| | - H Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil
| |
Collapse
|
181
|
Tiash S, Kamaruzman NIB, Chowdhury EH. Carbonate apatite nanoparticles carry siRNA(s) targeting growth factor receptor genes egfr1 and erbb2 to regress mouse breast tumor. Drug Deliv 2017; 24:1721-1730. [PMID: 29119846 PMCID: PMC8240997 DOI: 10.1080/10717544.2017.1396385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 01/26/2023] Open
Abstract
Cancer cells lose their control on cell cycle by numerous genetic and epigenetic alterations. In a tumor, these cells highly express growth factor receptors (GFRs), eliciting growth, and cell division. Among the GFRs, epidermal growth factor receptor-1 (EGFR1) (Her1/ERBB1) and epidermal growth factor receptor-2 (EGFR2) (Her2/ERBB2) from epidermal growth factor (EGF) family and insulin-like growth factor-1 receptor (IGF1R) are highly expressed on breast cancer cells, thus contributing to the aggressive growth and invasiveness, have been focused in this study. Moreover, overexpression of these receptors is related to suppression of cell death and conferring resistance against the classical drugs used to treat cancer nowadays. Therefore, silencing of these GFRs-encoding genes by using selective small interfering RNAs (siRNAs) could be a powerful approach to treat breast cancer. The inorganic pH sensitive carbonate apatite nanoparticles (NPs) were used as a nano-carrier to deliver siRNA(s) against single or multiple GFR genes in breast cancer cells as well as in a mouse model of breast carcinoma. Silencing of egfr1 and erbb2 simultaneously led to a reduction in cell viability with an increase in cell death signal in the cancer cells and regression of tumor growth in vivo.
Collapse
Affiliation(s)
- Snigdha Tiash
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Nur Izyani Binti Kamaruzman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
182
|
Mishra DK, Balekar N, Mishra PK. Nanoengineered strategies for siRNA delivery: from target assessment to cancer therapeutic efficacy. Drug Deliv Transl Res 2017; 7:346-358. [PMID: 28050890 DOI: 10.1007/s13346-016-0352-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The promise of RNA interference (RNAi) technology in cancer therapeutics aims to deliver small interfering RNA (siRNA) for silencing of gene expression in cell type-specific pathway. However, the challenge for the delivery of stable siRNA is hindered by an immune-hostile tumor microenvironment and physiological barriers of the circulatory system. Therefore, the development and validation of safe, stable, and efficient nanoengineered delivery systems are highly essential for effective delivery of siRNA into cancer cells. This review focuses on gene-silencing mechanisms, challenges to siRNA delivery, design and delivery of nanocarrier systems, ongoing clinical trials, and translational prospects for siRNA-mediated cancer therapeutics.
Collapse
Affiliation(s)
| | - Neelam Balekar
- IPS Academy, College of Pharmacy, A. B. Road, Indore, MP, 452 012, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, National Institute for Research in Environmental Health, Indian Council of Medical Research (ICMR), Bhopal, India
| |
Collapse
|
183
|
Godinho BMDC, Gilbert JW, Haraszti RA, Coles AH, Biscans A, Roux L, Nikan M, Echeverria D, Hassler M, Khvorova A. Pharmacokinetic Profiling of Conjugated Therapeutic Oligonucleotides: A High-Throughput Method Based Upon Serial Blood Microsampling Coupled to Peptide Nucleic Acid Hybridization Assay. Nucleic Acid Ther 2017; 27:323-334. [PMID: 29022758 DOI: 10.1089/nat.2017.0690] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Therapeutic oligonucleotides, such as small interfering RNAs (siRNAs), hold great promise for the treatment of incurable genetically defined disorders by targeting cognate toxic gene products for degradation. To achieve meaningful tissue distribution and efficacy in vivo, siRNAs must be conjugated or formulated. Clear understanding of the pharmacokinetic (PK)/pharmacodynamic behavior of these compounds is necessary to optimize and characterize the performance of therapeutic oligonucleotides in vivo. In this study, we describe a simple and reproducible methodology for the evaluation of in vivo blood/plasma PK profiles and tissue distribution of oligonucleotides. The method is based on serial blood microsampling from the saphenous vein, coupled to peptide nucleic acid hybridization assay for quantification of guide strands. Performed with minimal number of animals, this method allowed unequivocal detection and sensitive quantification without the need for amplification, or further modification of the oligonucleotides. Using this methodology, we compared plasma clearances and tissue distribution profiles of two different hydrophobically modified siRNAs (hsiRNAs). Notably, cholesterol-hsiRNA presented slow plasma clearances and mainly accumulated in the liver, whereas, phosphocholine-docosahexaenoic acid-hsiRNA was rapidly cleared from the plasma and preferably accumulated in the kidney. These data suggest that the PK/biodistribution profiles of modified hsiRNAs are determined by the chemical nature of the conjugate. Importantly, the method described in this study constitutes a simple platform to conduct pilot assessments of the basic clearance and tissue distribution profiles, which can be broadly applied for evaluation of new chemical variants of siRNAs and micro-RNAs.
Collapse
Affiliation(s)
- Bruno M D C Godinho
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - James W Gilbert
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Reka A Haraszti
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Andrew H Coles
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Annabelle Biscans
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Loic Roux
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Mehran Nikan
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Dimas Echeverria
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Matthew Hassler
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anastasia Khvorova
- 1 RNA Therapeutics Institute, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Department of Molecular Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
184
|
Thomas MA, Tran V, Ryu V, Xue B, Bartness TJ. AgRP knockdown blocks long-term appetitive, but not consummatory, feeding behaviors in Siberian hamsters. Physiol Behav 2017; 190:61-70. [PMID: 29031552 DOI: 10.1016/j.physbeh.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/24/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022]
Abstract
Arcuate hypothalamus-derived agouti-related protein (AgRP) and neuropeptide Y (NPY) are critical for maintaining energy homeostasis. Fasting markedly upregulates AgRP/NPY expression and circulating ghrelin, and exogenous ghrelin treatment robustly increases acute food foraging and food intake, and chronic food hoarding behaviors in Siberian hamsters. We previously demonstrated that 3rd ventricular AgRP injection robustly stimulates acute and chronic food hoarding, largely independent of food foraging and intake. By contrast, 3rd ventricular NPY injection increases food foraging, food intake, and food hoarding, but this effect is transient and gone by 24h post-injection. Because of this discrepancy in AgRP/NPY-induced ingestive behaviors, we tested whether selective knockdown of AgRP blocks fasting and ghrelin-induced increases in food hoarding. AgRP gene knockdown by a novel DICER small interfering RNA (AgRP-DsiRNA) blocked food-deprivation induced increases in AgRP expression, but had no effect on NPY expression. AgRP-DsiRNA attenuated acute (1day), and significantly decreased chronic (4-6days), food deprivation-induced increases in food hoarding. In addition, AgRP-DsiRNA treatment blocked exogenous ghrelin-induced increases in food hoarding through day 3, but had no effect on basal food foraging, food intake, or food hoarding prior to ghrelin treatment. Lastly, chronic AgRP knockdown had no effect on body mass, fat mass, or lean mass in either food deprived or ad libitum fed hamsters. These data collectively suggest that the prolonged increase in food hoarding behavior following energetic challenges, and food deprivation especially, is primarily regulated by downstream AgRP signaling.
Collapse
Affiliation(s)
- M Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Vy Tran
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Vitaly Ryu
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| | - Timothy J Bartness
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA; Center for Obesity Reversal, Georgia State University, Atlanta, GA 30302, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| |
Collapse
|
185
|
Malek-Adamian E, Guenther DC, Matsuda S, Martínez-Montero S, Zlatev I, Harp J, Burai Patrascu M, Foster DJ, Fakhoury J, Perkins L, Moitessier N, Manoharan RM, Taneja N, Bisbe A, Charisse K, Maier M, Rajeev KG, Egli M, Manoharan M, Damha MJ. 4'-C-Methoxy-2'-deoxy-2'-fluoro Modified Ribonucleotides Improve Metabolic Stability and Elicit Efficient RNAi-Mediated Gene Silencing. J Am Chem Soc 2017; 139:14542-14555. [PMID: 28937776 DOI: 10.1021/jacs.7b07582] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'β) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and β epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the β-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.
Collapse
Affiliation(s)
- Elise Malek-Adamian
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Dale C Guenther
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Shigeo Matsuda
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Saúl Martínez-Montero
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Ivan Zlatev
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Joel Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Mihai Burai Patrascu
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Donald J Foster
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Johans Fakhoury
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lydia Perkins
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Rajar M Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Anna Bisbe
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Klaus Charisse
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Martin Maier
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University , Nashville, Tennessee 37232, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals , 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Masad J Damha
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
186
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
187
|
Novel therapies and potential therapeutic targets in the management of chronic hepatitis B. Eur J Gastroenterol Hepatol 2017; 29:987-993. [PMID: 28538269 DOI: 10.1097/meg.0000000000000911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic hepatitis B is a persistent and progressive inflammatory liver disease caused by infection with the hepatitis B virus (HBV). More than 240 million individuals are infected with HBV worldwide and hepatitis B accounts for an estimated 650 000 deaths annually. Approximately up to 30% of chronically infected patients will develop complications of HBV infection including, but not limited to, liver cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Currently approved therapies have improved clinical outcomes, but have a considerable side-effect profile, elevated cost, and a finite course of treatment. This has led to a growing interest in research for new therapies. As the mechanisms for HBV replication are becoming better understood, new potential targets have been discovered, leading to the development of new therapies. In this article, we describe the promising therapies that are under evaluation, showing their mechanisms of action, effects, and stage of development.
Collapse
|
188
|
Abstract
RNA is emerging as a potential therapeutic modality for the treatment of incurable diseases. Despite intense research, the advent to clinical utility remains compromised by numerous biological barriers, hence, there is a need for sophisticated delivery vehicles. In this aspect, lipid nanoparticles (LNPs) are the most advanced platform among nonviral vectors for gene delivery. In this review, we critically review the literature and the reasons for ineffective delivery beyond the liver. We discuss the toxicity issues associated with permanently charged cationic lipids and then turn our attention to next-generation ionizable cationic lipids. These lipids exhibit reduced toxicity and immunogenicity and undergo ionization under the acidic environment of the endosome to release the encapsulated payload to their site of action in the cytosol. Finally, we summarize recent achievements in therapeutic nucleic acid delivery and report on the current status of clinical trials using LNP and the obstacles to clinical translation.
Collapse
Affiliation(s)
- Stephanie Rietwyk
- Laboratory of Precision NanoMedicine, Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ∥Cancer Biology Research Center, Tel Aviv University , Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Department of Cell Research & Immunology, George S. Wise Faculty of Life Sciences, ‡Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, §Center for Nanoscience and Nanotechnology, and ∥Cancer Biology Research Center, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
189
|
Du L, Zhou J, Meng L, Wang X, Wang C, Huang Y, Zheng S, Deng L, Cao H, Liang Z, Dong A, Cheng Q. The pH-Triggered Triblock Nanocarrier Enabled Highly Efficient siRNA Delivery for Cancer Therapy. Am J Cancer Res 2017; 7:3432-3445. [PMID: 28912886 PMCID: PMC5596434 DOI: 10.7150/thno.20297] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/15/2017] [Indexed: 01/04/2023] Open
Abstract
Small interfering RNA (siRNA) therapies have been hampered by lack of delivery systems in the past decades. Nowadays, a few promising vehicles for siRNA delivery have been developed and it is gradually revealed that enhancing siRNA release from endosomes into cytosol is a very important factor for successful delivery. Here, we designed a novel pH-sensitive nanomicelle, PEG-PTTMA-P(GMA-S-DMA) (PTMS), for siRNA delivery. Owing to rapid hydrolysis in acidic environment, PTMS NPs underwent hydrophobic-to-hydrophilic transition in endosomes that enabled combination of proton sponge effect and raised osmotic pressure in endosomes, resulting in vigorous release of siRNAs from endosomes into cytosol. In vitro results demonstrated that PTMS/siRNA complexes exhibited excellent gene silencing effects in several cell lines. Their gene silencing efficiency could reach ~91%, ~87% and ~90% at the N/P ratio of 50/1 in MDA-MB-231, A549 and Hela cells respectively, which were better than that obtained with Lipofectamine 2000. The highly efficient gene silencing was then proven from enhanced siRNA endosomal release, which is mainly attributed to pH-triggered degradation of polymer and acid-accelerated siRNA release. In vivo experiments indicated that NPs/siRNA formulation rapidly accumulated in tumor sites after i.v. injection. Tumor growth was effectively inhibited and ~45% gene knockdown efficacy was determined at the siRRM2 dose of 1mg/kg. Meanwhile, no significant toxicity was observed during the whole treatment. We also found that PTMS/siRNA formulations could lead to significant gene silencing effects in liver (~63%) and skin (~80%) when injected by i.v. and s.c., respectively. This research work gives a rational strategy to optimize siRNA delivery systems for tumor treatments.
Collapse
|
190
|
Thanki K, Zeng X, Justesen S, Tejlmann S, Falkenberg E, Van Driessche E, Mørck Nielsen H, Franzyk H, Foged C. Engineering of small interfering RNA-loaded lipidoid-poly(DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Eur J Pharm Biopharm 2017; 120:22-33. [PMID: 28756280 DOI: 10.1016/j.ejpb.2017.07.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 01/29/2023]
Abstract
Safety and efficacy of therapeutics based on RNA interference, e.g., small interfering RNA (siRNA), are dependent on the optimal engineering of the delivery technology, which is used for intracellular delivery of siRNA to the cytosol of target cells. We investigated the hypothesis that commonly used and poorly tolerated cationic lipids might be replaced with more efficacious and safe lipidoids as the lipid component of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) for achieving more efficient gene silencing at lower and safer doses. However, formulation design of such a complex formulation is highly challenging due to a strong interplay between several contributing factors. Hence, critical formulation variables, i.e. the lipidoid content and siRNA:lipidoid ratio, were initially identified, followed by a systematic quality-by-design approach to define the optimal operating space (OOS), eventually resulting in the identification of a robust, highly efficacious and safe formulation. A 17-run design of experiment with an I-optimal approach was performed to systematically assess the effect of selected variables on critical quality attributes (CQAs), i.e. physicochemical properties (hydrodynamic size, zeta potential, siRNA encapsulation/loading) and the biological performance (in vitro gene silencing and cell viability). Model fitting of the obtained data to construct predictive models revealed non-linear relationships for all CQAs, which can be readily overlooked in one-factor-at-a-time optimization approaches. The response surface methodology further enabled the identification of an OOS that met the desired quality target product profile. The optimized lipidoid-modified LPNs revealed more than 50-fold higher in vitro gene silencing at well-tolerated doses and approx. a twofold increase in siRNA loading as compared to reference LPNs modified with the commonly used cationic lipid dioleyltrimethylammonium propane (DOTAP). Thus, lipidoid-modified LPNs show highly promising prospects for efficient and safe intracellular delivery of siRNA.
Collapse
Affiliation(s)
- Kaushik Thanki
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Xianghui Zeng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Sarah Justesen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Sarah Tejlmann
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Emily Falkenberg
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Elize Van Driessche
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Pharmaceutics, Laboratory of General Biochemistry and Physical Pharmacy, Ghent University Campus Heymans, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Hanne Mørck Nielsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100 Copenhagen Ø, Denmark
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
191
|
The state of gene therapy research in Africa, its significance and implications for the future. Gene Ther 2017; 24:581-589. [PMID: 28692018 PMCID: PMC7094717 DOI: 10.1038/gt.2017.57] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Gene therapy has made impressive recent progress and has potential for treating a wide range of diseases, many of which are important to Africa. However, as a result of lack of direct public funding and skilled personnel, direct research on gene therapy in Africa is currently limited and resources to support the endeavor are modest. A strength of the technology is that it is based on principles of rational design, and the tools of gene therapy are now highly versatile. For example gene silencing and gene editing may be used to disable viral genes for therapeutic purposes. Gene therapy may thus lead to cure from infections with HIV-1, hepatitis B virus and Ebola virus, which are of significant public health importance in Africa. Although enthusiasm for gene therapy is justified, significant challenges to implementing the technology remain. These include ensuring efficient delivery of therapeutic nucleic acids to target cells, limiting unintended effects, cost and complexity of treatment regimens. In addition, implementation of effective legislation that will govern gene therapy research will be a challenge. Nevertheless, it is an exciting prospect that gene therapy should soon reach the mainstream of medical management. Participation of African researchers in the exciting developments is currently limited, but their involvement is important to address health problems, develop capacity and enhance economic progress of the continent.
Collapse
|
192
|
Chan SY, Snow JW. Formidable challenges to the notion of biologically important roles for dietary small RNAs in ingesting mammals. GENES AND NUTRITION 2017; 12:13. [PMID: 29308096 PMCID: PMC5753850 DOI: 10.1186/s12263-017-0561-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
The notion of uptake of active diet-derived small RNAs (sRNAs) in recipient organisms could have significant implications for our understanding of oral therapeutics and nutrition, for the safe use of RNA interference (RNAi) in agricultural biotechnology, and for ecological relationships. Yet, the transfer and subsequent regulation of gene activity by diet-derived sRNAs in ingesting mammals are still heavily debated. Here, we synthesize current information based on multiple independent studies of mammals, invertebrates, and plants. Rigorous assessment of these data emphasize that uptake of active dietary sRNAs is neither a robust nor a prevalent mechanism to maintain steady-state levels in higher organisms. While disagreement still continues regarding whether such transfer may occur in specialized contexts, concerns about technical difficulties and a lack of consensus on appropriate methods have led to questions regarding the reproducibility and biologic significance of some seemingly positive results. For any continuing investigations, concerted efforts should be made to establish a strong mechanistic basis for potential effects of dietary sRNAs and to agree on methodological guidelines for realizing such proof. Such processes would ensure proper interpretation of studies aiming to prove dietary sRNA activity in mammals and inform potential for application in therapeutics and agriculture.
Collapse
Affiliation(s)
- Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, BST 1704.2, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027 USA
| |
Collapse
|
193
|
Systemic delivery of siRNA by aminated poly( α )glutamate for the treatment of solid tumors. J Control Release 2017; 257:132-143. [DOI: 10.1016/j.jconrel.2016.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022]
|
194
|
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 2017; 9:60. [PMID: 28655327 PMCID: PMC5485616 DOI: 10.1186/s13073-017-0450-0] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.
Collapse
Affiliation(s)
- James C Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
195
|
Kundu AK, Iyer SV, Chandra S, Adhikari AS, Iwakuma T, Mandal TK. Novel siRNA formulation to effectively knockdown mutant p53 in osteosarcoma. PLoS One 2017. [PMID: 28636657 PMCID: PMC5479560 DOI: 10.1371/journal.pone.0179168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives The tumor suppressor p53 plays a crucial role in the development of osteosarcoma. The primary objective of this study is to develop and optimize lipid based nanoparticle formulations that can carry siRNA and effectively silence mutant p53 in 318–1, a murine osteosarcoma cell line. Methods The nanoparticles were composed of a mixture of two lipids (cholesterol and DOTAP) and either PLGA or PLGA-PEG and prepared by using an EmulsiFlex-B3 high pressure homogenizer. A series of studies that include using different nanoparticles, different amount of siRNAs, cell numbers, incubation time, transfection media volume, and storage temperature was performed to optimize the gene silencing efficiency. Key findings Replacement of lipids by PLGA or PLGA-PEG decreased the particle size and overall cytotoxicity. Among all lipid-polymer nanoformulations, nanoparticles with 10% PLGA showed highest mutant p53 knockdown efficiency while maintaining higher cell viability when a nanoparticle to siRNA ratio equal to 6.8:0.66 and 75 nM siRNA was used. With long term storage the mutant p53 knockdown efficiency decreased to a greater extent. Conclusions This study warrants a future evaluation of this formulation for gene silencing efficiency of mutant p53 in tissue culture and animal models for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Anup K. Kundu
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana, United States of America
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Swathi V. Iyer
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Sruti Chandra
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Amit S. Adhikari
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tomoo Iwakuma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Tarun K. Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana, United States of America
| |
Collapse
|
196
|
Enhanced antiviral and antifibrotic effects of short hairpin RNAs targeting HBV and TGF-β in HBV-persistent mice. Sci Rep 2017. [PMID: 28634402 PMCID: PMC5478661 DOI: 10.1038/s41598-017-04170-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hepatitis B virus (HBV) causes acute and chronic liver infection, which may lead to liver cirrhosis and hepatocellular carcinoma. Current treatments including interferons and nucleotide analogs, have limited therapeutic effects, underscoring the need to identify effective therapeutic options to inhibit HBV replication and prevent complications. Previous animal models mimicking chronic HBV infection do not faithfully reflect disease progression in humans. Here, we used our established HBV-persistent mouse line with liver fibrosis to evaluate the efficacy of novel therapies. The combination of two short hairpin RNAs (dual-shRNA) against different coding regions of HBV delivered by a self-complementary AAV vector showed better antiviral effects than single shRNA both in vitro and in HBV-persistent mice. The dual-shRNA also exhibited stronger antifibrotic activity in vivo. Vector carrying shRNA against TGF-β, though did not inhibit HBV replication alone, enhanced the antiviral and antifibrotic activities of single and dual HBV shRNAs. Co-administration of TGF-β shRNA and HBV dual-shRNA decreased HBV DNA, HBV RNA, HBsAg, HBeAg, and liver fibrosis markers in serum and tissues, and improved liver morphology more effectively than single treatments. Our results suggest that the combination of shRNAs against HBV and TGF-β could be developed into a viable treatment for human HBV infection.
Collapse
|
197
|
Omar R, Yang J, Liu H, Davies NM, Gong Y. Hepatic Stellate Cells in Liver Fibrosis and siRNA-Based Therapy. Rev Physiol Biochem Pharmacol 2017; 172:1-37. [PMID: 27534415 DOI: 10.1007/112_2016_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatic fibrosis is a reversible wound-healing response to either acute or chronic liver injury caused by hepatitis B or C, alcohol, and toxic agents. Hepatic fibrosis is characterized by excessive accumulation and reduced degradation of extracellular matrix (ECM). Excessive accumulation of ECM alters the hepatic architecture leading to liver fibrosis and cirrhosis. Cirrhosis results in failure of common functions of the liver. Hepatic stellate cells (HSC) play a major role in the development of liver fibrosis as HSC are the main source of the excessive production of ECM in an injured liver. RNA interference (RNAi) is a recently discovered therapeutic tool that may provide a solution to manage multiple diseases including liver fibrosis through silencing of specific gene expression in diseased cells. However, gene silencing using small interfering RNA (siRNA) is encountering many challenges in the body after systemic administration. Efficient and stable siRNA delivery to the target cells is a key issue for the development of siRNA therapeutic. For that reason, various viral and non-viral carriers for liver-targeted siRNA delivery have been developed. This review will cover the current strategies for the treatment of liver fibrosis as well as discussing non-viral approaches such as cationic polymers and lipid-based nanoparticles for targeted delivery of siRNA to the liver.
Collapse
Affiliation(s)
- Refaat Omar
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Jiaqi Yang
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Haoyuan Liu
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
| | - Neal M Davies
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, 8613-114 Street, Edmonton, AB, Canada, T6G 2H1
| | - Yuewen Gong
- College of Pharmacy, Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, Canada, R3E 0T5.
| |
Collapse
|
198
|
Marlowe JL, Akopian V, Karmali P, Kornbrust D, Lockridge J, Semple S. Recommendations of the Oligonucleotide Safety Working Group's Formulated Oligonucleotide Subcommittee for the Safety Assessment of Formulated Oligonucleotide-Based Therapeutics. Nucleic Acid Ther 2017; 27:183-196. [PMID: 28609186 DOI: 10.1089/nat.2017.0671] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of lipid formulations has greatly improved the ability to effectively deliver oligonucleotides and has been instrumental in the rapid expansion of therapeutic development programs using oligonucleotide drugs. However, the development of such complex multicomponent therapeutics requires the implementation of unique, scientifically sound approaches to the nonclinical development of these drugs, based upon a hybrid of knowledge and experiences drawn from small molecule, protein, and oligonucleotide therapeutic drug development. The relative paucity of directly applicable regulatory guidance documents for oligonucleotide therapeutics in general has resulted in the generation of multiple white papers from oligonucleotide drug development experts and members of the Oligonucleotide Safety Working Group (OSWG). The members of the Formulated Oligonucleotide Subcommittee of the OSWG have utilized their collective experience working with a variety of formulations and their associated oligonucleotide payloads, as well as their insights into regulatory considerations and expectations, to generate a series of consensus recommendations for the pharmacokinetic characterization and nonclinical safety assessment of this unique class of therapeutics. It should be noted that the focus of Subcommittee discussions was on lipid nanoparticle and other types of particulate formulations of therapeutic oligonucleotides and not on conjugates or other types of modifications of oligonucleotide structure intended to facilitate delivery.
Collapse
Affiliation(s)
- Jennifer L Marlowe
- 1 Novartis Institutes for Biomedical Research , Cambridge, Massachusetts
| | | | | | | | | | - Sean Semple
- 6 Arbutus Biopharma Corporation , Burnaby, Canada
| |
Collapse
|
199
|
Leber N, Nuhn L, Zentel R. Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromol Biosci 2017; 17. [PMID: 28605133 DOI: 10.1002/mabi.201700092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/04/2017] [Indexed: 02/02/2023]
Abstract
Short pharmaceutical active oligonucleotides such as small interfering RNA (siRNA) or cytidine-phosphate-guanosine (CpG) are considered as powerful therapeutic alternatives, especially to medicate hard-to-treat diseases (e.g., liver fibrosis or cancer). Unfortunately, these molecules are equipped with poor pharmacokinetic properties that prevent them from translation. Well-defined nanosized carriers can provide opportunities to optimize their delivery and guide them to their site of action. Among several concepts, this Feature Article focuses on cationic nanohydrogel particles as a universal delivery system for small anionic molecules including siRNA and CpG. Cationic nanohydrogels are derived from preaggregated precursor block copolymers, which are further cross-linked to obtain well-defined nanoparticles of tunable sizes and with (degradable) cationic cores. Novel opportunities for oligonucleotide delivery in vitro and in vivo with respect to liver fibrosis therapies will be highlighted as well as perspectives toward modulating the immune system. In general, the approach of covalently stabilized cationic carrier systems can contribute to find advanced oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Nadine Leber
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
200
|
Krzysztoń R, Salem B, Lee DJ, Schwake G, Wagner E, Rädler JO. Microfluidic self-assembly of folate-targeted monomolecular siRNA-lipid nanoparticles. NANOSCALE 2017; 9:7442-7453. [PMID: 28530287 DOI: 10.1039/c7nr01593c] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Non-viral delivery of nucleic acids for therapies based on RNA interference requires a rational design and optimal self-assembly strategies. Nucleic acid particles need to be small, stable and functional in terms of selective cell uptake and controlled release of encapsulated nucleic acids. Here we report on small (∼38 nm) monomolecular nucleic acid/lipid particles (mNALPs) that contain single molecules of short double-stranded oligonucleotides covered by a tight, highly curved lipid bilayer. The particles consist of DOPE, DOTAP, DOPC and DSPE-PEG(2000) and are assembled with 21 bp double-stranded DNA or small interfering RNA by solvent exchange on a hydrodynamic-focusing microfluidic chip. In comparison to vortex mixing by hand this method increases the encapsulation efficiency by 20%, and yields particles with a narrower size distribution, negligible aggregate formation and high stability in blood plasma and serum. Modification of mNALPs with folate-conjugated PEG-lipids results in specific binding and uptake by epithelial carcinoma KB cells overexpressing folate receptors. Binding is significantly reduced by competitive inhibition using free folate and is not observed with non-targeted mNALPs, revealing high specificity. The functionalized mNALPs show gene silencing in the presence of chloroquine, an endosome-destabilizing agent. Together, the robust self-assembly of small-sized mNALPs with their high stability and receptor-specific cell uptake demonstrate that the tight, PEG-grafted lipid-bilayer encapsulation may offer a promising approach towards the delivery of short double-stranded oligonucleotides.
Collapse
Affiliation(s)
- R Krzysztoń
- Faculty of Physics, Ludwig-Maximilians-Universität Munich (LMU), Geschwister-Scholl-Platz 1, Munich 80539, Germany
| | | | | | | | | | | |
Collapse
|