151
|
Kokou F, Con P, Barki A, Nitzan T, Slosman T, Mizrahi I, Cnaani A. Short- and long-term low-salinity acclimation effects on the branchial and intestinal gene expression in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:11-18. [DOI: 10.1016/j.cbpa.2019.01.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022]
|
152
|
Impact of the replacement of dietary fish oil by animal fats and environmental salinity on the metabolic response of European Seabass (Dicentrarchus labrax). Comp Biochem Physiol B Biochem Mol Biol 2019; 233:46-59. [PMID: 31004746 DOI: 10.1016/j.cbpb.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
The replacement of fish oil (FO) with other lipid sources (e.g. animal fats, AF) in aquafeeds improves the sustainability of aquaculture, even though alternatives have different fatty acid (FA) profiles. FO contains a higher proportion of long-chain polyunsaturated fatty acids (LC-PUFAs) than AF. LC-PUFAs have key physiological roles, despite limited biosynthetic capacity in marine fish. Therefore, replacing FO in feeds may limit physiological responses when fish face environmental challenges such as an acute change in salinity. To test this hypothesis, juvenile seabass (62.6 ± 1.6 g, 50 fish/ 500 L tank) were fed three different isoproteic and isolipidic diets in which the replacement levels of FO by AF varied (0%, 75% or 100% AF). Fish were fed the experimental diets at 2% their body weight (BW) daily for 85 days (20.0 ± 1.0 °C; 35‰). Thereafter, half of the fish were transferred to tanks at 15‰ or 35‰ salinity and sampled at 24 h and 72 h. Plasma osmolality, Na+, glucose, cholesterol and lactate levels were altered by the changing salinity, although cortisol remained unchanged. Standard metabolic rate was similar irrespective of the experimental factors. However, maximal metabolic rate decreased by 4-10% in fish subjected to a 15‰ salinity. Intestinal chymotrypsin activity was modified by the diet, with this digestive enzyme along with trypsin showing a two-fold increase in activity at 15‰ salinity. Hepatic lipid peroxidation (LPO) showed a ~1.4-fold increase at 15‰ salinity. Additionally, LPO and glutathione reductase activity were ~1.6-fold higher in fish fed the FO diet. Citrate synthase activity in gills was increased in fish fed the 100% AF diet. Therefore, both dietary replacement of FO by AF and environmental salinity have an impact on the metabolic response of seabass, although interactions between both factors (diet and salinity) are negligible in the metabolic parameters investigated. The results are relevant to the aquaculture industry considering the potential usage of AF to replace FO in aquafeeds and because of the variations in salinity experienced by fish cultured in transitional waters.
Collapse
|
153
|
Chen B, Li Y, Peng W, Zhou Z, Shi Y, Pu F, Luo X, Chen L, Xu P. Chromosome-Level Assembly of the Chinese Seabass ( Lateolabrax maculatus) Genome. Front Genet 2019; 10:275. [PMID: 31019525 PMCID: PMC6459032 DOI: 10.3389/fgene.2019.00275] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/12/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Yun Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Wenzhu Peng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineer Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineer Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineer Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Shenzhen Research Institute of Xiamen University, Shenzhen, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineer Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,State-Province Joint Engineer Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Peng Xu
- Shenzhen Research Institute of Xiamen University, Shenzhen, China.,State-Province Joint Engineer Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
154
|
Ion uptake pathways in European sea bass Dicentrarchus labrax. Gene 2019; 692:126-137. [DOI: 10.1016/j.gene.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/20/2023]
|
155
|
Vandeputte M, Gagnaire PA, Allal F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim Genet 2019; 50:195-206. [PMID: 30883830 PMCID: PMC6593706 DOI: 10.1111/age.12779] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2019] [Indexed: 01/13/2023]
Abstract
The European sea bass (Dicentrarchus labrax L.) is a marine fish of key economic and cultural importance in Europe. It is now more an aquaculture than a fisheries species (>96% of the production in 2016), although modern rearing techniques date back only from the late 1980s. It also has high interest for evolutionary studies, as it is composed of two semispecies (Atlantic and Mediterranean lineages) that have come into secondary contact following the last glaciation. Based on quantitative genetics studies of most traits of interest over the past 10–15 years, selective breeding programs are now applied to this species, which is at the beginning of its domestication process. The availability of a good quality reference genome has accelerated the development of new genomic resources, including SNP arrays that will enable genomic selection to improve genetic gain. There is a need to improve feed efficiency, both for economic and environmental reasons, but this will require novel phenotyping approaches. Further developments will likely focus on the understanding of genotype‐by‐environment interactions, which will be important both for efficient breeding of farmed stocks and for improving knowledge of the evolution of natural populations. At the interface between both, the domestication process must be better understood to improve production and also to fully evaluate the possible impact of aquaculture escapees on wild populations. The latter is an important question for all large‐scale aquaculture productions.
Collapse
Affiliation(s)
- M Vandeputte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,MARBEC, Ifremer-CNRS-IRD-UM, Université de Montpellier, 34250, Palavas-les-Flots, France
| | - P-A Gagnaire
- Institut des Sciences de l'Evolution de Montpellier, UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - F Allal
- MARBEC, Ifremer-CNRS-IRD-UM, Université de Montpellier, 34250, Palavas-les-Flots, France
| |
Collapse
|
156
|
Riquet F, Liautard-Haag C, Woodall L, Bouza C, Louisy P, Hamer B, Otero-Ferrer F, Aublanc P, Béduneau V, Briard O, El Ayari T, Hochscheid S, Belkhir K, Arnaud-Haond S, Gagnaire PA, Bierne N. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 2019; 73:817-835. [PMID: 30854632 DOI: 10.1111/evo.13696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Diverging semi-isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long-snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry-i.e., in the same geographical zone-with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon-like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus-specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome-wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome-wide island of differentiation. Since Atlantic lineages do not map to lagoon-sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts-i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Cathy Liautard-Haag
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Lucy Woodall
- Department of Zoology, University of Oxford, Wytham, OX2 8QJ, United Kingdom.,Natural History Museum, London, SW7 5BD, United Kingdom
| | - Carmen Bouza
- Department of Genetics, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrick Louisy
- ECOMERS Laboratory, University of Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, Nice, France.,Association Peau-Bleue, 46 rue des Escais, Agde, France
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Spain
| | - Philippe Aublanc
- Institut océanographique Paul Ricard, Ile des Embiez, Six-Fours-les-Plages, France
| | - Vickie Béduneau
- Océarium du Croisic, Avenue de Saint Goustan, Le Croisic, France
| | - Olivier Briard
- Aquarium de Biarritz, Biarritz Océan, Plateau de l'Atalaye, Biarritz, France
| | - Tahani El Ayari
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sandra Hochscheid
- Stazione Zoologica Anton Dohrn, Department Research Infrastructures for Marine Biological Resources, Aquarium Unit, Napoli, Italy
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sophie Arnaud-Haond
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,Ifremer-MARine Biodiversity, Exploitation and Conservation, UMR 9190 IRD-IFREMER-UM-CNRS, Sète, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| |
Collapse
|
157
|
Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat Ecol Evol 2019; 3:657-667. [PMID: 30833758 DOI: 10.1038/s41559-019-0814-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022]
Abstract
Recombination between loci underlying mate choice and ecological traits is a major evolutionary force acting against speciation with gene flow. The evolution of linkage disequilibrium between such loci is therefore a fundamental step in the origin of species. Here, we show that this process can take place in the absence of physical linkage in hamlets-a group of closely related reef fishes from the wider Caribbean that differ essentially in colour pattern and are reproductively isolated through strong visually-based assortative mating. Using full-genome analysis, we identify four narrow genomic intervals that are consistently differentiated among sympatric species in a backdrop of extremely low genomic divergence. These four intervals include genes involved in pigmentation (sox10), axial patterning (hoxc13a), photoreceptor development (casz1) and visual sensitivity (SWS and LWS opsins) that develop islands of long-distance and inter-chromosomal linkage disequilibrium as species diverge. The relatively simple genomic architecture of species differences facilitates the evolution of linkage disequilibrium in the presence of gene flow.
Collapse
|
158
|
Marcionetti A, Rossier V, Roux N, Salis P, Laudet V, Salamin N. Insights into the Genomics of Clownfish Adaptive Radiation: Genetic Basis of the Mutualism with Sea Anemones. Genome Biol Evol 2019; 11:869-882. [PMID: 30830203 PMCID: PMC6430985 DOI: 10.1093/gbe/evz042] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 02/06/2023] Open
Abstract
Clownfishes are an iconic group of coral reef fishes, especially known for their mutualism with sea anemones. This mutualism is particularly interesting as it likely acted as the key innovation that triggered clownfish adaptive radiation. Indeed, after the acquisition of the mutualism, clownfishes diversified into multiple ecological niches linked with host and habitat use. However, despite the importance of this mutualism, the genetic mechanisms allowing clownfishes to interact with sea anemones are still unclear. Here, we used a comparative genomics and molecular evolutionary analyses to investigate the genetic basis of clownfish mutualism with sea anemones. We assembled and annotated the genome of nine clownfish species and one closely related outgroup. Orthologous genes inferred between these species and additional publicly available teleost genomes resulted in almost 16,000 genes that were tested for positively selected substitutions potentially involved in the adaptation of clownfishes to live in sea anemones. We identified 17 genes with a signal of positive selection at the origin of clownfish radiation. Two of them (Versican core protein and Protein O-GlcNAse) show particularly interesting functions associated with N-acetylated sugars, which are known to be involved in sea anemone discharge of toxins. This study provides the first insights into the genetic mechanisms of clownfish mutualism with sea anemones. Indeed, we identified the first candidate genes likely to be associated with clownfish protection form sea anemones, and thus the evolution of their mutualism. Additionally, the genomic resources acquired represent a valuable resource for further investigation of the genomic basis of clownfish adaptive radiation.
Collapse
Affiliation(s)
- Anna Marcionetti
- Department of Computational Biology, Génopode, University of Lausanne, Switzerland
| | - Victor Rossier
- Department of Computational Biology, Génopode, University of Lausanne, Switzerland
| | - Natacha Roux
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne University, Banyuls-sur-Mer, France
| | - Pauline Salis
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne University, Banyuls-sur-Mer, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232 BIOM, Sorbonne University, Banyuls-sur-Mer, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Switzerland
| |
Collapse
|
159
|
Liu Y, Wen H, Qi X, Zhang X, Zhang K, Fan H, Tian Y, Hu Y, Li Y. Genome-wide identification of the Na+/H+ exchanger gene family in Lateolabrax maculatus and its involvement in salinity regulation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:286-298. [DOI: 10.1016/j.cbd.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/21/2023]
|
160
|
Nagasawa T, Kawaguchi M, Yano T, Isoyama S, Yasumasu S, Okabe M. Translocation of promoter-conserved hatching enzyme genes with intron-loss provides a new insight in the role of retrocopy during teleostean evolution. Sci Rep 2019; 9:2448. [PMID: 30792427 PMCID: PMC6385490 DOI: 10.1038/s41598-019-38693-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/17/2018] [Indexed: 11/12/2022] Open
Abstract
The hatcing enzyme gene (HE) encodes a protease that is indispensable for the hatching process and is conserved during vertebrate evolution. During teleostean evolution, it is known that HE experienced a drastic transfiguration of gene structure, namely, losing all of its introns. However, these facts are contradiction with each other, since intron-less genes typically lose their original promoter because of duplication via mature mRNA, called retrocopy. Here, using a comparative genomic assay, we showed that HEs have changed their genomic location several times, with the evolutionary timings of these translocations being identical to those of intron-loss. We further showed that HEs maintain the promoter sequence upstream of them after translocation. Therefore, teleostean HEs are unique genes which have changed intra- (exon-intron) and extra-genomic structure (genomic loci) several times, although their indispensability for the reproductive process of hatching implies that HE genes are translocated by retrocopy with their promoter sequence.
Collapse
Affiliation(s)
- Tatsuki Nagasawa
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Research Fellow of the Japan Society for the Promotion of Science (JSPS), Tokyo, 102-0083, Japan.,Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Tohru Yano
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Sho Isoyama
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan.
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
161
|
Medina P, Gómez A, Zanuy S, Blázquez M. Involvement of the retinoic acid signaling pathway in sex differentiation and pubertal development in the European sea bass Dicentrarchus labrax. Heliyon 2019; 5:e01201. [PMID: 30839897 PMCID: PMC6365411 DOI: 10.1016/j.heliyon.2019.e01201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Retinoic Acid (RA) is a vitamin A derivative present in many biological processes including embryogenesis, organ development and cell differentiation. The RA signaling pathway is essential for the onset of meiosis in tetrapods, although its role in fish reproduction needs further evidence. This study reports the expression profiles of several genes involved in this pathway during sex differentiation and the first reproductive season in European sea bass (Dicentrarchus labrax) gonads. The assessed genes are representative of several steps of the pathway including retinol transport, RA synthesis, nuclear receptors, RA transport and degradation. The study includes a synteny analysis of stra8, a tetrapod meiosis gatekeeper, in several taxa. The results show that, these genes were overexpressed during early gonad development and their expression decreased during meiosis progression in males and during vitellogenesis in females. Specifically, a decrease of cyp26a1, involved in RA degradation, together with an increase of aldh1a2 and aldh1a3, in charge of RA-synthesis, might ensure the availability of high RA levels at the time of meiosis in males and females. Moreover, the absence of stra8 in the European sea bass genome, as well as the conserved genomic neighbourhood found in other taxa, suggest a stra8 independent signaling for RA during meiosis. Taken together, our results might help to better understand the role of RA signaling in teleost gonad development.
Collapse
Affiliation(s)
- Paula Medina
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Torre la Sal, Castellón, Spain
| | - Mercedes Blázquez
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
162
|
Egnew N, Renukdas N, Ramena Y, Yadav AK, Kelly AM, Lochmann RT, Sinha AK. Physiological insights into largemouth bass (Micropterus salmoides) survival during long-term exposure to high environmental ammonia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:72-82. [PMID: 30530206 DOI: 10.1016/j.aquatox.2018.11.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Waterborne ammonia is an environmental pollutant that is toxic to all aquatic animals. However, ammonia induced toxicity as well as compensatory mechanisms to defend against high environmental ammonia (HEA) are not well documented at present for largemouth bass (Micropterus salmoides), a high value fish for culture and sport fisheries in the United States. To provide primary information on the sensitivity of this species to ammonia toxicity, a 96 h-LC50 test was conducted. Thereafter, responses at physiological, ion-regulatory and transcript levels were determined to get insights into the underlying adaptive strategies to ammonia toxicity. For this purpose, fish were progressively exposed to HEA (8.31 mg/L representing 25% of 96 h-LC50) for 3, 7, 14, 21 and 28 days. Temporal effects of HEA on oxygen consumption rate (MO2), ammonia and urea dynamics, plasma ions (Na+, Cl- and K+), branchial Na+/K+-ATPase (NKA) and H+-ATPase activity, muscle water content (MWC), energy store (glycogen, lipid and protein) as well as branchial mRNA expression of Rhesus (Rh) glycoproteins were assessed. Probit analysis showed that 96 h-LC50 of (total) ammonia (as NH4HCO3) at 25 °C and pH 7.8 was 33.24 mg/L. Results from sub-lethal end-points shows that ammonia excretion rate (Jamm) was strongly inhibited after 7 days of HEA, but was unaffected at 3, 14 and 21 days. At 28 days fish were able to increase Jamm efficiently and concurrently, plasma ammonia re-established to the basal level. Urea production was increased as evidenced by a considerable elevation of plasma urea, but urea excretion rate remained unaltered. Expression of Rhcg isoform (Rhcg2) mRNA was up-regulated in parallel with restored or increased Jamm, suggesting its ammonia excreting role in largemouth bass. Exposure to HEA also displayed pronounced augmentations in NKA activity, exemplified by a rise in plasma [Na+]. Furthermore, [K+], [Cl-] and MWC homeostasis were disrupted followed by recovery to the control levels. H+-ATPase activity was elevated but NKA did not appear to function preferentially as a Na+/NH4+-ATPase. From 14 days onwards MO2 was depressed, potentially an attempt towards minimizing catabolism. Glycogen content in liver and muscle were temporarily depleted, whereas a remarkable increment in protein was evident at the last exposure period. Overall, these data suggest that ammonia induced toxicity can disturb several biological processes in largemouth bass, however, it can adapt to the long-term sub-lethal ammonia concentrations by activating various components of ammonia excretory, ion-regulatory and metabolic pathways.
Collapse
Affiliation(s)
- Nathan Egnew
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| | - Nilima Renukdas
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Yathish Ramena
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA; Great Salt Lake Brine Shrimp Cooperative, Inc., 1750 W 2450 S, Ogden, 84401, UT, USA
| | - Amit K Yadav
- Aquaculture Research Institute, Department of Animal and Veterinary Science, University of Idaho, Moscow, 83844, ID, USA
| | - Anita M Kelly
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Rebecca T Lochmann
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA
| | - Amit Kumar Sinha
- Department of Aquaculture and Fisheries, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, 71601, AR, USA.
| |
Collapse
|
163
|
El Ayari T, Trigui El Menif N, Hamer B, Cahill AE, Bierne N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity (Edinb) 2019; 122:770-784. [PMID: 30675016 DOI: 10.1038/s41437-018-0174-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/26/2023] Open
Abstract
The Almeria-Oran Front (AOF) is a recognised hotspot of genetic differentiation in the sea, with genetic discontinuities reported in more than 50 species. The AOF is a barrier to dispersal and an ecological boundary; both can determine the position of these genetic breaks. However, the maintenance of genetic differentiation is likely reinforced by genetic barriers. A general drawback of previous studies is an insufficient density of sampling sites at the transition zone, with a conspicuous lack of samples from the southern coastline. We analysed the fine-scale genetic structure in the mussel Mytilus galloprovincialis using a few ancestry-informative loci previously identified from genome scans. We discovered a 600-km-wide mosaic hybrid zone eastward of the AOF along the Algerian coasts. This mosaic zone provides a new twist to our understanding of the Atlantic-Mediterranean transition because it demonstrates that the two lineages can live in sympatry with ample opportunities to interbreed in a large area, but they hardly do so. This implies that some form of reproductive isolation must exist to maintain the two genetic backgrounds locally cohesive. The mosaic zone ends with an abrupt genetic shift at a barrier to dispersal in the Gulf of Bejaia, Eastern Algeria. Simulations of endogenous or exogenous selection in models that account for the geography and hydrodynamic features of the region support the hypothesis that sister hybrid zones could have been differentially trapped at two alternative barriers to dispersal and/or environmental boundaries, at Almeria in the north and Bejaia in the south. A preponderantly unidirectional north-south gene flow next to the AOF can also maintain a patch of intrinsically maintained genetic background in the south and the mosaic structure, even in the absence of local adaptation. Our results concur with the coupling hypothesis that suggests that natural barriers can explain the position of genetic breaks, while their maintenance depends on genetic barriers.
Collapse
Affiliation(s)
- Tahani El Ayari
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Faculty of Sciences of Bizerta, Laboratory of Environment Bio-monitoring, University of Carthage, 7021, Zarzouna, Bizerta, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerta, Laboratory of Environment Bio-monitoring, University of Carthage, 7021, Zarzouna, Bizerta, Tunisia
| | - Bojan Hamer
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Grad Zagreb, Croatia
| | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
164
|
Manuzzi A, Zane L, Muñoz-Merida A, Griffiths AM, Veríssimo A. Population genomics and phylogeography of a benthic coastal shark (Scyliorhinus canicula) using 2b-RAD single nucleotide polymorphisms. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Alice Manuzzi
- CIBIO – U.P. – Research Center for Biodiversity and Genetic Resources, Vairão, Portugal
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej, Silkeborg, Denmark
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Roma, Italy
| | - Antonio Muñoz-Merida
- CIBIO – U.P. – Research Center for Biodiversity and Genetic Resources, Vairão, Portugal
| | | | - Ana Veríssimo
- CIBIO – U.P. – Research Center for Biodiversity and Genetic Resources, Vairão, Portugal
- Virginia Institute of Marine Science, College of William and Mary, VA, USA
| |
Collapse
|
165
|
Costa RA, Martins RST, Capilla E, Anjos L, Power DM. Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evol Biol 2018; 18:191. [PMID: 30545285 PMCID: PMC6293640 DOI: 10.1186/s12862-018-1310-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage. Electronic supplementary material The online version of this article (10.1186/s12862-018-1310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - L Anjos
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - D M Power
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
166
|
Machado M, Azeredo R, Fontinha F, Fernández-Boo S, Conceição LEC, Dias J, Costas B. Dietary Methionine Improves the European Seabass ( Dicentrarchus labrax) Immune Status, Inflammatory Response, and Disease Resistance. Front Immunol 2018; 9:2672. [PMID: 30524433 PMCID: PMC6256742 DOI: 10.3389/fimmu.2018.02672] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 11/22/2022] Open
Abstract
Methionine presents a pivotal role in the regulation of many cellular events with crucial impact on the immune system, such as in processes involved in the control of inflammation and polyamines synthesis. Accordingly, the present study aimed to assess the modulatory effects of dietary methionine on the European seabass (Dicentrarchus labrax) immune status, inflammatory response and disease resistance to Photobacterium damselae subsp. piscicida (Phdp). For this purpose, fish were randomly distributed in three independent groups (three replicates per group) and each was fed the corresponding diet: a control diet (CTRL) formulated to meet the established amino acid requirements for the species; a diet supplemented with methionine at 0.5% of feed weight relative to the CTRL diet (8.2% of methionine concentration above CTRL); and one supplemented with methionine at 1% of feed weight to the CTRL diet (11.8% of methionine concentration above CTRL). To evaluate the immune status of fish fed with each of the diets before being submitted to bacterial infection fish were sampled from each group at 2 and 4 weeks after the beginning of feeding. Non-sampled fish were injected intraperitoneally with Phdp (5 × 103 cfu/fish) at 4 weeks after initiation of feeding and the inflammatory response (at 4, 24, and 48 h post-infection) and survival (lasting 21 days post-infection) evaluated. Fish hematological profile, peripheral cell dynamics, plasma humoral immune parameters, leucocyte migration to the inflammatory focus and head-kidney gene expression were evaluated. Results show that methionine dietary supplementation improves seabass cellular immune status without evidence of activation of pro-inflammatory mechanisms. Additionally, the observed enhanced immune status provided by methionine supplementation translated into an improved immune response to infection, as higher cellular differentiation/proliferation and recruitment to the inflammatory focus, improved plasma humoral immune parameters and modulation of key immune-related genes was observed. Lastly, after a bacterial challenge, higher survival was observed in fish fed supplemented diets, ultimately corroborating the positive effect of methionine administration for 4 weeks in the cellular immune status.
Collapse
Affiliation(s)
- Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Filipa Fontinha
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sergio Fernández-Boo
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal
| | | | | | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental, Matosinhos, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
167
|
Sarropoulou E, Sundaram AYM, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, Mylonas CC, Magoulas A. Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili. Gigascience 2018; 6:1-13. [PMID: 29126158 PMCID: PMC5751066 DOI: 10.1093/gigascience/gix108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/02/2017] [Indexed: 02/05/2023] Open
Abstract
Background Teleosts of the genus Seriola, commonly known as amberjacks, are of high commercial value in international markets due to their flesh quality and worldwide distribution. The Seriola species of interest to Mediterranean aquaculture is the greater amberjack (Seriola dumerili). This species holds great potential for the aquaculture industry, but in captivity, reproduction has proved to be challenging, and observed growth dysfunction hinders their domestication. Insights into molecular mechanisms may contribute to a better understanding of traits like growth and sex, but investigations to unravel the molecular background of amberjacks have begun only recently. Findings Illumina HiSeq sequencing generated a high-coverage greater amberjack genome sequence comprising 45 909 scaffolds. Comparative mapping to the Japanese yellowtail (Seriola quinqueriadiata) and to the model species medaka (Oryzias latipes) allowed the generation of in silico groups. Additional gonad transcriptome sequencing identified sex-biased transcripts, including known sex-determining and differentiation genes. Investigation of the muscle transcriptome of slow-growing individuals showed that transcripts involved in oxygen and gas transport were differentially expressed compared with fast/normal-growing individuals. On the other hand, transcripts involved in muscle functions were found to be enriched in fast/normal-growing individuals. Conclusion The present study provides the first insights into the molecular background of male and female amberjacks and of fast- and slow-growing fish. Therefore, valuable molecular resources have been generated in the form of a first draft genome and a reference transcriptome. Sex-biased genes, which may also have roles in sex determination or differentiation, and genes that may be responsible for slow growth are suggested.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Arvind Y M Sundaram
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Elisavet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Georgios Kotoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Gregor D Gilfillan
- Norwegian High Throughput Sequencing Centre, Department of Medical Genetics, Oslo University Hospital (Ullevål), Kirkeveien 166 0450, Oslo, Norway
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| | - Antonios Magoulas
- Institute of Marine Biology, Biotechnology and Aquaculture Hellenic Centre for Marine Research Crete, Thalassocosmos, Gournes Pediados, P.O.Box 2214, 71003 Heraklion Crete, Greece
| |
Collapse
|
168
|
Beichman AC, Huerta-Sanchez E, Lohmueller KE. Using Genomic Data to Infer Historic Population Dynamics of Nonmodel Organisms. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062431] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genome sequence data are now being routinely obtained from many nonmodel organisms. These data contain a wealth of information about the demographic history of the populations from which they originate. Many sophisticated statistical inference procedures have been developed to infer the demographic history of populations from this type of genomic data. In this review, we discuss the different statistical methods available for inference of demography, providing an overview of the underlying theory and logic behind each approach. We also discuss the types of data required and the pros and cons of each method. We then discuss how these methods have been applied to a variety of nonmodel organisms. We conclude by presenting some recommendations for researchers looking to use genomic data to infer demographic history.
Collapse
Affiliation(s)
- Annabel C. Beichman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
| | - Emilia Huerta-Sanchez
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Current affiliation: Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095, USA
- Interdepartmental Program in Bioinformatics and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
169
|
Shao C, Li C, Wang N, Qin Y, Xu W, Liu Q, Zhou Q, Zhao Y, Li X, Liu S, Chen X, Mahboob S, Liu X, Chen S. Chromosome-level genome assembly of the spotted sea bass, Lateolabrax maculatus. Gigascience 2018; 7:5099471. [PMID: 30239684 PMCID: PMC6240815 DOI: 10.1093/gigascience/giy114] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Background The spotted sea bass (Lateolabrax maculatus) is a valuable commercial fish that is widely cultured in China. While analyses using molecular markers and population genetics have been conducted, genomic resources are lacking. Findings Here, we report a chromosome-scale assembly of the spotted sea bass genome by high-depth genome sequencing, assembly, and annotation. The genome scale was 0.67 Gb with contig and scaffold N50 length of 31 Kb and 1,040 Kb, respectively. Hi-C scaffolding of the genome resulted in 24 pseudochromosomes containing 77.68% of the total assembled sequences. A total of 132.38 Mb repeat sequences were detected, accounting for 20.73% of the assembled genome. A total of 22, 015 protein-coding genes were predicted, of which 96.52% were homologous to proteins in various databases. In addition, we constructed a phylogenetic tree using 1,586 single-copy gene families and identified 125 unique gene families in the spotted sea bass genome. Conclusions We assembled a spotted sea bass genome that will be a valuable genomic resource to understanding the biology of the spotted sea bass and will also lead to the development of molecular breeding techniques to generate spotted sea bass with better economic traits.
Collapse
Affiliation(s)
- Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Chang Li
- BGI Education Center, University of Chinese Academy of Sciences, Beishan Road, Shenzhen, 518083, China.,BGI-Qingdao, BGI-Shenzhen, Hengyun Mountain Road, Qingdao, 266555, China.,BGI-Shenzhen, Beishan Road, Shenzhen, 518083, China
| | - Na Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Yating Qin
- BGI-Qingdao, BGI-Shenzhen, Hengyun Mountain Road, Qingdao, 266555, China.,BGI-Shenzhen, Beishan Road, Shenzhen, 518083, China
| | - Wenteng Xu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Hengyun Mountain Road, Qingdao, 266555, China
| | - Qian Zhou
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| | - Yong Zhao
- BGI-Qingdao, BGI-Shenzhen, Hengyun Mountain Road, Qingdao, 266555, China
| | - Xihong Li
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Hengyun Mountain Road, Qingdao, 266555, China.,BGI-Shenzhen, Beishan Road, Shenzhen, 518083, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Huchenghuan Road 999, Shanghai, 201306, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.,Department of Zoology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Hengyun Mountain Road, Qingdao, 266555, China.,BGI-Shenzhen, Beishan Road, Shenzhen, 518083, China
| | - Songlin Chen
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road 1, Qingdao, 266237, China
| |
Collapse
|
170
|
Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC, Kono TJY, Bilandžija H, Borowsky R, Espinasa L, O'Quin K, Ornelas-García CP, Yoshizawa M, Carlson B, Maldonado E, Gross JB, Cartwright RA, Rohner N, Warren WC, McGaugh SE. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra, Astyanax mexicanus. Mol Ecol 2018; 27:4397-4416. [PMID: 30252986 PMCID: PMC6261294 DOI: 10.1111/mec.14877] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/08/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.
Collapse
Affiliation(s)
- Adam Herman
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Yaniv Brandvain
- Plant and Microbial Biology, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - James Weagley
- Ecology, Evolution, and Behavior, Gortner Lab, University of Minnesota, Saint Paul, Minnesota
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, Maryland
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Thomas J Y Kono
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota
| | - Helena Bilandžija
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
- Department of Biology, University of Maryland, College Park, Maryland
| | | | - Luis Espinasa
- School of Science, Marist College, Poughkeepsie, New York
| | - Kelly O'Quin
- Department of Biology, Centre College, Danville, Kentucky
| | - Claudia P Ornelas-García
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawaii
| | - Brian Carlson
- Department of Biology, College of Wooster, Wooster, Ohio
| | - Ernesto Maldonado
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St Louis, Missouri
| | - Suzanne E McGaugh
- Department of Molecular Biology, Rudjer Boskovic Institute, Zagreb, Croatia
| |
Collapse
|
171
|
Brennan RS, Healy TM, Bryant HJ, La MV, Schulte PM, Whitehead A. Integrative Population and Physiological Genomics Reveals Mechanisms of Adaptation in Killifish. Mol Biol Evol 2018; 35:2639-2653. [PMID: 30102365 PMCID: PMC11325861 DOI: 10.1093/molbev/msy154] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adaptive divergence between marine and freshwater (FW) environments is important in generating phyletic diversity within fishes, but the genetic basis of this process remains poorly understood. Genome selection scans can identify adaptive loci, but incomplete knowledge of genotype-phenotype connections makes interpreting their significance difficult. In contrast, association mapping (genome-wide association mapping [GWAS], random forest [RF] analyses) links genotype to phenotype, but offer limited insight into the evolutionary forces shaping variation. Here, we combined GWAS, RF, and selection scans to identify loci important in adaptation to FW environments. We utilized FW-native and brackish water (BW)-native populations of Atlantic killifish (Fundulus heteroclitus) as well as a naturally admixed population between the two. We measured morphology and multiple physiological traits that differ between populations and may contribute to osmotic adaptation (salinity tolerance, hypoxia tolerance, metabolic rate, body shape) and used a reduced representation approach for genome-wide genotyping. Our results show patterns of population divergence in physiological capabilities that are consistent with local adaptation. Population genomic scans between BW-native and FW-native populations identified genomic regions evolving by natural selection, whereas association mapping revealed loci that contribute to variation for each trait. There was substantial overlap in the genomic regions putatively under selection and loci associated with phenotypic traits, particularly for salinity tolerance, suggesting that these regions and genes are important for adaptive divergence between BW and FW environments. Together, these data provide insight into the mechanisms that enable diversification of fishes across osmotic boundaries.
Collapse
Affiliation(s)
- Reid S Brennan
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
- Department of Biology, University of Vermont, Burlington, VT
| | - Timothy M Healy
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA
| | - Heather J Bryant
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Man Van La
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology, University of California-Davis, Davis, CA
| |
Collapse
|
172
|
Van Belleghem SM, Vangestel C, De Wolf K, De Corte Z, Möst M, Rastas P, De Meester L, Hendrickx F. Evolution at two time frames: Polymorphisms from an ancient singular divergence event fuel contemporary parallel evolution. PLoS Genet 2018; 14:e1007796. [PMID: 30422983 PMCID: PMC6258555 DOI: 10.1371/journal.pgen.1007796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/27/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
When environments change, populations may adapt surprisingly fast, repeatedly and even at microgeographic scales. There is increasing evidence that such cases of rapid parallel evolution are fueled by standing genetic variation, but the source of this genetic variation remains poorly understood. In the saltmarsh beetle Pogonus chalceus, short-winged 'tidal' and long-winged 'seasonal' ecotypes have diverged in response to contrasting hydrological regimes and can be repeatedly found along the Atlantic European coast. By analyzing genomic variation across the beetles' distribution, we reveal that alleles selected in the tidal ecotype are spread across the genome and evolved during a singular and, likely, geographically isolated divergence event, within the last 190 Kya. Due to subsequent admixture, the ancient and differentially selected alleles are currently polymorphic in most populations across its range, which could potentially allow for the fast evolution of one ecotype from a small number of random individuals, as low as 5 to 15, from a population of the other ecotype. Our results suggest that cases of fast parallel ecological divergence can be the result of evolution at two different time frames: divergence in the past, followed by repeated selection on the same divergently evolved alleles after admixture. These findings highlight the importance of an ancient and, likely, allopatric divergence event for driving the rate and direction of contemporary fast evolution under gene flow. This mechanism is potentially driven by periods of geographic isolation imposed by large-scale environmental changes such as glacial cycles.
Collapse
Affiliation(s)
- Steven M. Van Belleghem
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Carl Vangestel
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Katrien De Wolf
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Zoë De Corte
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Markus Möst
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Pasi Rastas
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Frederik Hendrickx
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
173
|
Faggion S, Vandeputte M, Chatain B, Gagnaire PA, Allal F. Population-specific variations of the genetic architecture of sex determination in wild European sea bass Dicentrarchus labrax L. Heredity (Edinb) 2018; 122:612-621. [PMID: 30356226 DOI: 10.1038/s41437-018-0157-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/10/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
Polygenic sex determination (PSD) may show variations in terms of genetic and environmental components between populations of fish species exposed/adapted to different environments. The European sea bass (Dicentrarchus labrax) is an interesting model, combining both a PSD system and a genetic subdivision into an Atlantic and a Mediterranean lineage, with genetic substructures within the Mediterranean Sea. Here, we produced experimental progeny crosses (N = 927) from broodstock sampled in four wild populations (North Atlantic, NAT; Western Mediterranean, WEM; North-Eastern Mediterranean, NEM; South-Eastern Mediterranean, SEM). We found less females than males in the progeny, both in the global dataset (32.5%) and within each paternal group (from 25.1% for NEM to 39.0% for WEM), with significant variation among populations, dams, and sires. Sex, body weight (BW), and body length (BL) showed moderate heritability (0.52 ± 0.17, 0.46 ± 0.17, 0.34 ± 0.15, respectively) and sex was genetically correlated with BW and BL, with rAsex/BW = 0.69 ± 0.12 and rA sex/BL = 0.66 ± 0.13. A weighted GWAS performed both on the global dataset and within each paternal group revealed a different genetic architecture of sex determination between Atlantic and Mediterranean populations (9 QTLs found in NAT, 7 in WEM, 5 in NEM, and 4 in SEM, with a cumulated variance explained of 27.04%, 21.87%, 15.89%, and 12.10%, respectively) and a more similar genetic architecture among geographically close populations compared to geographically distant populations, consistent with the hypothesis of a population-specific evolution of polygenic sex determination systems in different environments.
Collapse
Affiliation(s)
- Sara Faggion
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis, Viale dell'Università, 16, 35020, Legnaro, PD, Italy.,MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, Palavas-les-Flots, France
| | - Marc Vandeputte
- MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, Palavas-les-Flots, France.,GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, 78350, Paris, France
| | - Béatrice Chatain
- MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, Palavas-les-Flots, France
| | | | - François Allal
- MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, Palavas-les-Flots, France.
| |
Collapse
|
174
|
Anastasiadi D, Vandeputte M, Sánchez-Baizán N, Allal F, Piferrer F. Dynamic epimarks in sex-related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination. Epigenetics 2018; 13:988-1011. [PMID: 30265213 PMCID: PMC6284782 DOI: 10.1080/15592294.2018.1529504] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 12/13/2022] Open
Abstract
The integration of genomic and environmental influences into methylation patterns to bring about a phenotype is of central interest in developmental epigenetics, but many details are still unclear. The sex ratios of the species used here, the European sea bass, are determined by genetic and temperature influences. We created four families from parents known to produce offspring with different sex ratios, exposed larvae to masculinizing temperatures and examined, in juvenile gonads, the DNA methylation of seven genes related to sexual development by a targeted sequencing approach. The genes most affected by both genetics and environment were cyp19a1a and dmrt1, with contrasting sex-specific methylation and temperature responses. The relationship between cyp19a1a methylation and expression is relevant to the epigenetic regulation of vertebrate sex, and we report the evidence of such relationship only below a methylation threshold, ~ 80%, and that it was sex-specific: negatively correlated in females but positively correlated in males. From parents to offspring, the methylation in gonads was midway between oocytes and sperm, with bias towards oocytes for amh-r2, er-β2, fsh-r and cyp19a1a. In contrast, dmrt1 levels resembled those of sperm. The methylation of individual CpGs from foxl2, er-β2 and nr3c1 were conserved from parents to offspring, whereas those of cyp19a1a, dmrt1 and amh-r2 were affected by temperature. Utilizing a machine-learning procedure based on the methylation levels of a selected set of CpGs, we present the first, to our knowledge, system based on epigenetic marks capable of predicting sex in an animal with ~ 90% accuracy and discuss possible applications.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Marc Vandeputte
- MARBEC, Univ. Montpellier, Ifremer-CNRS-IRD, Palavas-les-Flots, France
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Núria Sánchez-Baizán
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - François Allal
- MARBEC, Univ. Montpellier, Ifremer-CNRS-IRD, Palavas-les-Flots, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
175
|
Yang W, While GM, Laakkonen H, Sacchi R, Zuffi MAL, Scali S, Salvi D, Uller T. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol Ecol 2018; 27:4213-4224. [DOI: 10.1111/mec.14861] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Weizhao Yang
- Department of Biology; Lund University; Lund Sweden
| | - Geoffrey M. While
- School of Biological Sciences; University of Tasmania; Hobart Tasmania Australia
| | | | - Roberto Sacchi
- Department of Earth and Environmental Sciences; University of Pavia; Pavia Italy
| | | | | | - Daniele Salvi
- Department of Health, Life and Environmental Sciences; University of L'Aquila; L'Aquila Italy
- CIBIO-InBIO; Centro de Investigação em Biodiversidade e Recursos Genéticos; University of Porto; Vairão Portugal
| | - Tobias Uller
- Department of Biology; Lund University; Lund Sweden
- Edward Grey Institute; Department of Zoology; University of Oxford; Oxford UK
| |
Collapse
|
176
|
Gagnaire PA, Lamy JB, Cornette F, Heurtebise S, Dégremont L, Flahauw E, Boudry P, Bierne N, Lapègue S. Analysis of Genome-Wide Differentiation between Native and Introduced Populations of the Cupped Oysters Crassostrea gigas and Crassostrea angulata. Genome Biol Evol 2018; 10:2518-2534. [PMID: 30184067 PMCID: PMC6161763 DOI: 10.1093/gbe/evy194] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 01/01/2023] Open
Abstract
The Pacific cupped oyster is genetically subdivided into two sister taxa, Crassostrea gigas and Crassostrea angulata, which are in contact in the north-western Pacific. The nature and origin of their genetic and taxonomic differentiation remains controversial due the lack of known reproductive barriers and the high degree of morphologic similarity. In particular, whether the presence of ecological and/or intrinsic isolating mechanisms contributes to species divergence is unknown. The recent co-introduction of both taxa into Europe offers a unique opportunity to test how genetic differentiation is maintained under new environmental and demographic conditions. We generated a pseudochromosome assembly of the Pacific oyster genome using a combination of BAC-end sequencing and scaffold anchoring to a new high-density linkage map. We characterized genome-wide differentiation between C. angulata and C. gigas in both their native and introduced ranges, and showed that gene flow between species has been facilitated by their recent co-introductions in Europe. Nevertheless, patterns of genomic divergence between species remain highly similar in Asia and Europe, suggesting that the environmental transition caused by the co-introduction of the two species did not affect the genomic architecture of their partial reproductive isolation. Increased genetic differentiation was preferentially found in regions of low recombination. Using historical demographic inference, we show that the heterogeneity of differentiation across the genome is well explained by a scenario whereby recent gene flow has eroded past differentiation at different rates across the genome after a period of geographical isolation. Our results thus support the view that low-recombining regions help in maintaining intrinsic genetic differences between the two species.
Collapse
Affiliation(s)
| | - Jean-Baptiste Lamy
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Florence Cornette
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Serge Heurtebise
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Emilie Flahauw
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| | - Pierre Boudry
- Ifremer, UMR LEMAR, Laboratoire des Sciences de l’Environnement Marin (UBO, CNRS, IRD, Ifremer), Plouzané, France
| | - Nicolas Bierne
- Institut des Sciences de l’Evolution, ISEM-CNRS, UMR5554, Montpellier, France
| | - Sylvie Lapègue
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, La Tremblade, France
| |
Collapse
|
177
|
Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, Vitulo N, Quoc VH, Carraro R, Bertotto D, Franch R, Maroso F, Aslam ML, Sonesson AK, Simionati B, Malacrida G, Cestaro A, Caberlotto S, Sarropoulou E, Mylonas CC, Power DM, Patarnello T, Canario AVM, Tsigenopoulos C, Bargelloni L. Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish. Commun Biol 2018; 1:119. [PMID: 30271999 PMCID: PMC6123679 DOI: 10.1038/s42003-018-0122-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Bruno Louro
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Viet Ha Quoc
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Roberta Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Francesco Maroso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | | | | | | | | | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via Edmund Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Stefano Caberlotto
- Valle Cà Zuliani Società Agricola Srl, Via Timavo 76, 34074, Monfalcone, Gorizia, Italy
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Costantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Deborah M Power
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Adelino V M Canario
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Costas Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy.
| |
Collapse
|
178
|
Robledo D, Palaiokostas C, Bargelloni L, Martínez P, Houston R. Applications of genotyping by sequencing in aquaculture breeding and genetics. REVIEWS IN AQUACULTURE 2018; 10:670-682. [PMID: 30220910 PMCID: PMC6128402 DOI: 10.1111/raq.12193] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2016] [Indexed: 05/18/2023]
Abstract
Selective breeding is increasingly recognized as a key component of sustainable production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Christos Palaiokostas
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPadovaItaly
| | - Paulino Martínez
- Department of ZoologyGenetics and Physical AnthropologyFaculty of VeterinaryUniversity of Santiago de CompostelaLugoSpain
| | - Ross Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| |
Collapse
|
179
|
Cardoso JCR, Félix RC, Costa C, Palma PFS, Canário AVM, Power DM. Evolution of the glucagon-like system across fish. Gen Comp Endocrinol 2018; 264:113-130. [PMID: 29056448 DOI: 10.1016/j.ygcen.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 12/25/2022]
Abstract
In fishes, including the jawless lampreys, the most ancient lineage of extant vertebrates, plasma glucose levels are highly variable and regulation is more relaxed than in mammals. The regulation of glucose and lipid in fishes in common with mammals involves members of the glucagon (GCG)-like family of gastrointestinal peptides. In mammals, four peptides GCG, glucagon-like peptide 1 and 2 (GLP1 and GLP2) and glucose-dependent insulinotropic peptide (GIP) that activate four specific receptors exist. However, in lamprey and other fishes the glucagon-like family evolved differently and they retained additional gene family members (glucagon-related peptide, gcrp and its receptor, gcrpr) that are absent from mammals. In the present study, we analysed the evolution of the glucagon-like system in fish and characterized gene expression of the family members in the European sea bass (Dicentrarchus labrax) a teleost fish. Phylogenetic analysis revealed that multiple receptors and peptides of the glucagon-like family emerged early during the vertebrate radiation and evolved via lineage specific events. Synteny analysis suggested that family member gene loss is likely to be the result of a single gene deletion event. Lamprey was the only fish where a putative glp1r persisted and the presence of the receptor gene in the genomes of the elephant shark and coelacanth remains unresolved. In the coelacanth and elephant shark, unique proglucagon genes were acquired which in the former only encoded Gcg and Glp2 and in the latter, shared a similar structure to the teleost proglucagon gene but possessed an extra exon coding for Glp-like peptide that was most similar to Glp2. The variable tissue distribution of the gene transcripts encoding the ligands and receptors of the glucagon-like system in an advanced teleost, the European sea bass, suggested that, as occurs in mammals, they have acquired distinct functions. Statistically significant (p < .05) down-regulation of teleost proglucagon a in sea bass with modified plasma glucose levels confirmed the link between these peptides and metabolism. The tissue distribution of members of the glucagon-like system in sea bass and human suggests that evolution of the brain-gut-peptide regulatory loop diverged between teleosts and mammals despite the overall conservation and similarity of glucagon-like family members.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Carina Costa
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro F S Palma
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Adelino V M Canário
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
180
|
Ocampo Daza D, Larhammar D. Evolution of the growth hormone, prolactin, prolactin 2 and somatolactin family. Gen Comp Endocrinol 2018; 264:94-112. [PMID: 29339183 DOI: 10.1016/j.ygcen.2018.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/29/2017] [Accepted: 01/11/2018] [Indexed: 12/30/2022]
Abstract
Growth hormone (GH), prolactin (PRL), prolactin 2 (PRL2) and somatolactin (SL) belong to the same hormone family and have a wide repertoire of effects including development, osmoregulation, metabolism and stimulation of growth. Both the hormone and the receptor family have been proposed to have expanded by gene duplications in early vertebrate evolution. A key question is how hormone-receptor preferences have arisen among the duplicates. The first step to address this is to determine the time window for these duplications. Specifically, we aimed to see if duplications resulted from the two basal vertebrate tetraploidizations (1R and 2R). GH family genes from a broad range of vertebrate genomes were investigated using a combination of sequence-based phylogenetic analyses and comparisons of synteny. We conclude that the PRL and PRL2 genes arose from a common ancestor in 1R/2R, as shown by neighboring gene families. No other gene duplicates were preserved from these tetraploidization events. The ancestral genes that would give rise to GH and PRL/PRL2 arose from an earlier duplication; most likely a local gene duplication as they are syntenic in several species. Likewise, some evidence suggests that SL arose from a local duplication of an ancestral GH/SL gene in the same time window, explaining the lack of similarity in chromosomal neighbors to GH, PRL or PRL2. Thus, the basic triplet of ancestral GH, PRL/PRL2 and SL genes appear to be unexpectedly ancient. Following 1R/2R, only SL was duplicated in the teleost-specific tetraploidization 3R, resulting in SLa and SLb. These time windows contrast with our recent report that the corresponding receptor genes GHR and PRLR arose through a local duplication in jawed vertebrates and that both receptor genes duplicated further in 3R, which reveals a surprising asynchrony in hormone and receptor gene duplications.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| |
Collapse
|
181
|
Fraïsse C, Roux C, Gagnaire PA, Romiguier J, Faivre N, Welch JJ, Bierne N. The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: the effects of sequencing techniques and sampling strategies. PeerJ 2018; 6:e5198. [PMID: 30083438 PMCID: PMC6071616 DOI: 10.7717/peerj.5198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/19/2018] [Indexed: 01/25/2023] Open
Abstract
Genome-scale diversity data are increasingly available in a variety of biological systems, and can be used to reconstruct the past evolutionary history of species divergence. However, extracting the full demographic information from these data is not trivial, and requires inferential methods that account for the diversity of coalescent histories throughout the genome. Here, we evaluate the potential and limitations of one such approach. We reexamine a well-known system of mussel sister species, using the joint site frequency spectrum (jSFS) of synonymous mutations computed either from exome capture or RNA-seq, in an Approximate Bayesian Computation (ABC) framework. We first assess the best sampling strategy (number of: individuals, loci, and bins in the jSFS), and show that model selection is robust to variation in the number of individuals and loci. In contrast, different binning choices when summarizing the jSFS, strongly affect the results: including classes of low and high frequency shared polymorphisms can more effectively reveal recent migration events. We then take advantage of the flexibility of ABC to compare more realistic models of speciation, including variation in migration rates through time (i.e., periodic connectivity) and across genes (i.e., genome-wide heterogeneity in migration rates). We show that these models were consistently selected as the most probable, suggesting that mussels have experienced a complex history of gene flow during divergence and that the species boundary is semi-permeable. Our work provides a comprehensive evaluation of ABC demographic inference in mussels based on the coding jSFS, and supplies guidelines for employing different sequencing techniques and sampling strategies. We emphasize, perhaps surprisingly, that inferences are less limited by the volume of data, than by the way in which they are analyzed.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department of Genetics, University of Cambridge, Cambridge, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Camille Roux
- Université de Lille, Unité Evo-Eco-Paléo (EEP), UMR 8198, Villeneuve d’Ascq, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jonathan Romiguier
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Nicolas Faivre
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolas Bierne
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
182
|
Nevado B, Contreras-Ortiz N, Hughes C, Filatov DA. Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. THE NEW PHYTOLOGIST 2018; 219:779-793. [PMID: 29862512 DOI: 10.1111/nph.15243] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/30/2018] [Indexed: 05/10/2023]
Abstract
Mountain ranges are amongst the most species-rich habitats, with many large and rapid evolutionary radiations. The tempo and mode of diversification in these systems are key unanswered questions in evolutionary biology. Here we study the Andean Lupinus radiation to understand the processes driving very rapid diversification in montane systems. We use genomic and transcriptomic data of multiple species and populations, and apply phylogenomic and demographic analyses to test whether diversification proceeded without interspecific gene flow - as expected if Andean orogeny and geographic isolation were the main drivers of diversification - or if diversification was accompanied by gene flow, in which case other processes were probably involved. We uncover several episodes of gene flow between species, including very recent events likely to have been prompted by changes in habitat connectivity during Pleistocene glacial cycles. Furthermore, we find that gene flow between species was heterogeneously distributed across the genome. We argue that exceptionally fast diversification of Andean Lupinus was partly a result of Late Pleistocene glacial cycles, with associated cycles of expansion and contraction driving geographic isolation or secondary contact of species. Furthermore, heterogeneous gene flow across the genome suggests a role for selection and ecological speciation in rapid diversification in this system.
Collapse
Affiliation(s)
- Bruno Nevado
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Natalia Contreras-Ortiz
- Laboratorio de Botánica y Sistemática, Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado Aéreo, 4976, Bogotá, Colombia
- Jardín Botánico de Bogotá 'José Celestino Mutis', Avenida Calle 63 No. 68-95, Bogotá DC, Colombia
| | - Colin Hughes
- Department of Systematic & Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Dmitry A Filatov
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
183
|
Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenetics Chromatin 2018; 11:37. [PMID: 29958539 PMCID: PMC6025724 DOI: 10.1186/s13072-018-0205-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is one of the main epigenetic mechanisms for the regulation of gene expression in eukaryotes. In the standard model, methylation in gene promoters has received the most attention since it is generally associated with transcriptional silencing. Nevertheless, recent studies in human tissues reveal that methylation of the region downstream of the transcription start site is highly informative of gene expression. Also, in some cell types and specific genes it has been found that methylation of the first intron, a gene feature typically rich in enhancers, is linked with gene expression. However, a genome-wide, tissue-independent, systematic comparative analysis of the relationship between DNA methylation in the first intron and gene expression across vertebrates has not been explored yet. RESULTS The most important findings of this study are: (1) using different tissues from a modern fish, we show a clear genome-wide, tissue-independent quasi-linear inverse relationship between DNA methylation of the first intron and gene expression. (2) This relationship is conserved across vertebrates, since it is also present in the genomes of a model pufferfish, a model frog and different human tissues. Among the gene features, tissues and species interrogated, the first intron's negative correlation with the gene expression was most consistent. (3) We identified more tissue-specific differentially methylated regions (tDMRs) in the first intron than in any other gene feature. These tDMRs have positive or negative correlation with gene expression, indicative of distinct mechanisms of tissue-specific regulation. (4) Lastly, we identified CpGs in transcription factor binding motifs, enriched in the first intron, the methylation of which tended to increase with the distance from the first exon-first intron boundary, with a concomitant decrease in gene expression. CONCLUSIONS Our integrative analysis clearly reveals the important and conserved role of the methylation level of the first intron and its inverse association with gene expression regardless of tissue and species. These findings not only contribute to our basic understanding of the epigenetic regulation of gene expression but also identify the first intron as an informative gene feature regarding the relationship between DNA methylation and gene expression where future studies should be focused.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesc Piferrer
- Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
184
|
Duranton M, Allal F, Fraïsse C, Bierne N, Bonhomme F, Gagnaire PA. The origin and remolding of genomic islands of differentiation in the European sea bass. Nat Commun 2018; 9:2518. [PMID: 29955054 PMCID: PMC6023918 DOI: 10.1038/s41467-018-04963-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
Speciation is a complex process that leads to the progressive establishment of reproductive isolation barriers between diverging populations. Genome-wide comparisons between closely related species have revealed the existence of heterogeneous divergence patterns, dominated by genomic islands of increased divergence supposed to contain reproductive isolation loci. However, this divergence landscape only provides a static picture of the dynamic process of speciation, during which confounding mechanisms unrelated to speciation can interfere. Here we use haplotype-resolved whole-genome sequences to identify the mechanisms responsible for the formation of genomic islands between Atlantic and Mediterranean sea bass lineages. Local ancestry patterns show that genomic islands first emerged in allopatry through linked selection acting on a heterogeneous recombination landscape. Then, upon secondary contact, preexisting islands were strongly remolded by differential introgression, revealing variable fitness effects among regions involved in reproductive isolation. Interestingly, we find that divergent regions containing ancient polymorphisms conferred the strongest resistance to introgression. The speciation process tends to generate ‘genomic islands’ of increased divergence. Here, the authors use haplotype–resolved whole-genome sequences of European sea bass lineages to infer divergence history and show that linked selection generated genomic islands that resist introgression at secondary contact.
Collapse
Affiliation(s)
- Maud Duranton
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France. .,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - François Allal
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,MARBEC, Université de Montpellier, Ifremer-CNRS-IRD-UM, 34250, Palavas-les-Flots, France
| | - Christelle Fraïsse
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - François Bonhomme
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
185
|
Barrachina F, Anastasiadi D, Jodar M, Castillo J, Estanyol JM, Piferrer F, Oliva R. Identification of a complex population of chromatin-associated proteins in the European sea bass (Dicentrarchus labrax) sperm. Syst Biol Reprod Med 2018; 64:502-517. [PMID: 29939100 DOI: 10.1080/19396368.2018.1482383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A very common conception about the function of the spermatozoon is that its unique role is to transmit the paternal genome to the next generation. Most of the sperm genome is known to be condensed in many species by protamines, which are small and extremely positively charged proteins (50-70% arginine) with the functions of streamlining the sperm cell and protecting its DNA. However, more recently, it has been shown in mammals that 2-10% of its mature sperm chromatin is also associated to a complex population of histones and chromatin-associated proteins differentially distributed in the genome. These proteins are transferred to the oocyte upon fertilization and may be involved in the epigenetic marking of the paternal genome. However, little information is so far available on the additional potential sperm chromatin proteins present in other protamine-containing non-mammalian vertebrates detected through high-throughput mass spectrometry. Thus, we started the present work with the goal of characterizing the mature sperm proteome of the European sea bass, with a particular focus on the sperm chromatin, chosen as a representative of non-mammalian vertebrate protamine-containing species. Proteins were isolated by acidic extraction from purified sperm cells and from purified sperm nuclei, digested with trypsin, and subsequently the peptides were separated using liquid chromatography and identified through tandem mass spectrometry. A total of 296 proteins were identified. Of interest, the presence of 94 histones and other chromatin-associated proteins was detected, in addition to the protamines. These results provide phylogenetically strategic information, indicating that the coexistence of histones, additional chromatin proteins, and protamines in sperm is not exclusive of mammals, but is also present in other protamine-containing vertebrates. Thus, it indicates that the epigenetic marking of the sperm chromatin, first demonstrated in mammals, could be more fundamental and conserved than previously thought. Abbreviations: AU-PAGE: acetic acid-urea polyacrylamide gel electrophoresis; CPC: chromosomal passenger complex; DTT: dithiothreitol; EGA: embryonic genome activation; FDR: false discovery rate; GO: Gene Ontology; IAA: iodoacetamide; LC: liquid chromatography; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; MS: mass spectrometry; MS/MS: tandem mass spectrometry; MW: molecular weight; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffered saline; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCA: trichloroacetic acid.
Collapse
Affiliation(s)
- Ferran Barrachina
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Dafni Anastasiadi
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Meritxell Jodar
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Judit Castillo
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Josep Maria Estanyol
- d Proteomics Unit, Scientific and Technological Centers from the University of Barcelona , University of Barcelona , Barcelona , Spain
| | - Francesc Piferrer
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Rafael Oliva
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| |
Collapse
|
186
|
Roesti M. Varied Genomic Responses to Maladaptive Gene Flow and Their Evidence. Genes (Basel) 2018; 9:E298. [PMID: 29899287 PMCID: PMC6027369 DOI: 10.3390/genes9060298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/02/2022] Open
Abstract
Adaptation to a local environment often occurs in the face of maladaptive gene flow. In this perspective, I discuss several ideas on how a genome may respond to maladaptive gene flow during adaptation. On the one hand, selection can build clusters of locally adaptive alleles at fortuitously co-localized loci within a genome, thereby facilitating local adaptation with gene flow ('allele-only clustering'). On the other hand, the selective pressure to link adaptive alleles may drive co-localization of the actual loci relevant for local adaptation within a genome through structural genome changes or an evolving intra-genomic crossover rate ('locus clustering'). While the expected outcome is, in both cases, a higher frequency of locally adaptive alleles in some genome regions than others, the molecular units evolving in response to gene flow differ (i.e., alleles versus loci). I argue that, although making this distinction is important, we commonly lack the critical empirical evidence to do so. This is mainly because many current approaches are biased towards detecting local adaptation in genome regions with low crossover rates. The importance of low-crossover genome regions for adaptation with gene flow, such as in co-localizing relevant loci within a genome, thus remains unclear. Future empirical investigations should address these questions by making use of comparative genomics, where multiple de novo genome assemblies from species evolved under different degrees of genetic exchange are compared. This research promises to advance our understanding of how a genome adapts to maladaptive gene flow, thereby promoting adaptive divergence and reproductive isolation.
Collapse
Affiliation(s)
- Marius Roesti
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
187
|
Palaiokostas C, Cariou S, Bestin A, Bruant JS, Haffray P, Morin T, Cabon J, Allal F, Vandeputte M, Houston RD. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol 2018; 50:30. [PMID: 29884113 PMCID: PMC5994081 DOI: 10.1186/s12711-018-0401-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND European sea bass (Dicentrarchus labrax) is one of the most important species for European aquaculture. Viral nervous necrosis (VNN), commonly caused by the redspotted grouper nervous necrosis virus (RGNNV), can result in high levels of morbidity and mortality, mainly during the larval and juvenile stages of cultured sea bass. In the absence of efficient therapeutic treatments, selective breeding for host resistance offers a promising strategy to control this disease. Our study aimed at investigating genetic resistance to VNN and genomic-based approaches to improve disease resistance by selective breeding. A population of 1538 sea bass juveniles from a factorial cross between 48 sires and 17 dams was challenged with RGNNV with mortalities and survivors being recorded and sampled for genotyping by the RAD sequencing approach. RESULTS We used genome-wide genotype data from 9195 single nucleotide polymorphisms (SNPs) for downstream analysis. Estimates of heritability of survival on the underlying scale for the pedigree and genomic relationship matrices were 0.27 (HPD interval 95%: 0.14-0.40) and 0.43 (0.29-0.57), respectively. Classical genome-wide association analysis detected genome-wide significant quantitative trait loci (QTL) for resistance to VNN on chromosomes (unassigned scaffolds in the case of 'chromosome' 25) 3, 20 and 25 (P < 1e06). Weighted genomic best linear unbiased predictor provided additional support for the QTL on chromosome 3 and suggested that it explained 4% of the additive genetic variation. Genomic prediction approaches were tested to investigate the potential of using genome-wide SNP data to estimate breeding values for resistance to VNN and showed that genomic prediction resulted in a 13% increase in successful classification of resistant and susceptible animals compared to pedigree-based methods, with Bayes A and Bayes B giving the highest predictive ability. CONCLUSIONS Genome-wide significant QTL were identified but each with relatively small effects on the trait. Tests of genomic prediction suggested that incorporating genome-wide SNP data is likely to result in higher accuracy of estimated breeding values for resistance to VNN. RAD sequencing is an effective method for generating such genome-wide SNPs, and our findings highlight the potential of genomic selection to breed farmed European sea bass with improved resistance to VNN.
Collapse
Affiliation(s)
- Christos Palaiokostas
- The Roslin Institute¸Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Sophie Cariou
- Ferme Marine De Douhet, BP 4, 17840 La Brée Les Bains, France
| | - Anastasia Bestin
- SYSAAF, LPGP-INRA, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | - Pierrick Haffray
- SYSAAF, LPGP-INRA, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - François Allal
- MARBEC, Université de Montpellier, Ifremer-CNRS-IRD-UM, Palavas-les-Flots, France
| | - Marc Vandeputte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Ross D. Houston
- The Roslin Institute¸Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
188
|
Rougemont Q, Bernatchez L. The demographic history of Atlantic salmon (Salmo salar) across its distribution range reconstructed from approximate Bayesian computations. Evolution 2018; 72:1261-1277. [PMID: 29644624 DOI: 10.1101/142372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 05/18/2023]
Abstract
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo-genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| |
Collapse
|
189
|
Jacobs A, Hughes MR, Robinson PC, Adams CE, Elmer KR. The Genetic Architecture Underlying the Evolution of a Rare Piscivorous Life History Form in Brown Trout after Secondary Contact and Strong Introgression. Genes (Basel) 2018; 9:genes9060280. [PMID: 29857499 PMCID: PMC6026935 DOI: 10.3390/genes9060280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/17/2023] Open
Abstract
Identifying the genetic basis underlying phenotypic divergence and reproductive isolation is a longstanding problem in evolutionary biology. Genetic signals of adaptation and reproductive isolation are often confounded by a wide range of factors, such as variation in demographic history or genomic features. Brown trout (Salmo trutta) in the Loch Maree catchment, Scotland, exhibit reproductively isolated divergent life history morphs, including a rare piscivorous (ferox) life history form displaying larger body size, greater longevity and delayed maturation compared to sympatric benthivorous brown trout. Using a dataset of 16,066 SNPs, we analyzed the evolutionary history and genetic architecture underlying this divergence. We found that ferox trout and benthivorous brown trout most likely evolved after recent secondary contact of two distinct glacial lineages, and identified 33 genomic outlier windows across the genome, of which several have most likely formed through selection. We further identified twelve candidate genes and biological pathways related to growth, development and immune response potentially underpinning the observed phenotypic differences. The identification of clear genomic signals divergent between life history phenotypes and potentially linked to reproductive isolation, through size assortative mating, as well as the identification of the underlying demographic history, highlights the power of genomic studies of young species pairs for understanding the factors shaping genetic differentiation.
Collapse
Affiliation(s)
- Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Martin R Hughes
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow G63 0AW, Scotland, UK.
| | - Paige C Robinson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | - Colin E Adams
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
- Scottish Centre for Ecology and the Natural Environment, University of Glasgow, Rowardennan, Loch Lomond, Glasgow G63 0AW, Scotland, UK.
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
190
|
Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, Jiang X, Cai H, Ebersberger I, Xu M, Zhang X, Chen J, Luo W, Chen B, Chen J, Liu H, Li J, Lai R, Bai M, Wei J, Yi S, Wang H, Cao X, Zhou X, Zhao Y, Wei K, Yang R, Liu B, Zhao S, Fang X, Schartl M, Qian X, Wang W. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. Gigascience 2018; 6:1-13. [PMID: 28535200 PMCID: PMC5570040 DOI: 10.1093/gigascience/gix039] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/20/2017] [Indexed: 01/24/2023] Open
Abstract
The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.
Collapse
Affiliation(s)
- Han Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunhai Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiumeng Min
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Yongming Gu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Jianbo Jian
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xiewu Jiang
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Huimin Cai
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt D-60438, Germany
| | - Meng Xu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xinhui Zhang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianwei Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Wei Luo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Boxiang Chen
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.,Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Junhui Chen
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiang Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Ruifang Lai
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingzhou Bai
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Jin Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaokui Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanling Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyun Zhou
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhua Zhao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaijian Wei
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruibin Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingnan Liu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Shancen Zhao
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Xiaodong Fang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen 518083, China
| | - Manfred Schartl
- Physiological Chemistry, University of Würzburg, Biozentrum, Am Hubland, and Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg 97070, Germany.,Texas A&M Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Xueqiao Qian
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
| | - Weimin Wang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
191
|
Haenel Q, Laurentino TG, Roesti M, Berner D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol Ecol 2018; 27:2477-2497. [PMID: 29676042 DOI: 10.1111/mec.14699] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/02/2023]
Abstract
Understanding the distribution of crossovers along chromosomes is crucial to evolutionary genomics because the crossover rate determines how strongly a genome region is influenced by natural selection on linked sites. Nevertheless, generalities in the chromosome-scale distribution of crossovers have not been investigated formally. We fill this gap by synthesizing joint information on genetic and physical maps across 62 animal, plant and fungal species. Our quantitative analysis reveals a strong and taxonomically widespread reduction of the crossover rate in the centre of chromosomes relative to their peripheries. We demonstrate that this pattern is poorly explained by the position of the centromere, but find that the magnitude of the relative reduction in the crossover rate in chromosome centres increases with chromosome length. That is, long chromosomes often display a dramatically low crossover rate in their centre, whereas short chromosomes exhibit a relatively homogeneous crossover rate. This observation is compatible with a model in which crossover is initiated from the chromosome tips, an idea with preliminary support from mechanistic investigations of meiotic recombination. Consequently, we show that organisms achieve a higher genome-wide crossover rate by evolving smaller chromosomes. Summarizing theory and providing empirical examples, we finally highlight that taxonomically widespread and systematic heterogeneity in crossover rate along chromosomes generates predictable broad-scale trends in genetic diversity and population differentiation by modifying the impact of natural selection among regions within a genome. We conclude by emphasizing that chromosome-scale heterogeneity in crossover rate should urgently be incorporated into analytical tools in evolutionary genomics, and in the interpretation of resulting patterns.
Collapse
Affiliation(s)
- Quiterie Haenel
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | - Marius Roesti
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
192
|
Rougeux C, Bernatchez L, Gagnaire PA. Modeling the Multiple Facets of Speciation-with-Gene-Flow toward Inferring the Divergence History of Lake Whitefish Species Pairs (Coregonus clupeaformis). Genome Biol Evol 2018; 9:2057-2074. [PMID: 28903535 PMCID: PMC5737413 DOI: 10.1093/gbe/evx150] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
Parallel divergence across replicated species pairs occurring in similar environmental contrasts may arise through distinct evolutionary scenarios. Deciphering whether such parallelism actually reflects repeated parallel divergence driven by divergent selection or a single divergence event with subsequent gene flow needs to be ascertained. Reconstructing historical gene flow is therefore of fundamental interest to understand how demography and selection jointly shaped genomic divergence during speciation. Here, we use an extended modeling framework to explore the multiple facets of speciation-with-gene-flow with demo-genetic divergence models that capture both temporal and genomic variation in effective population size and migration rate. We investigate the divergence history of replicate sympatric species pairs of Lake Whitefish (normal benthic and dwarf limnetic) characterized by variable degrees of ecological divergence and reproductive isolation. Genome-wide SNPs were used to document the extent of genetic differentiation in each species pair, and 26 divergence models were fitted and compared with the unfolded joint allele frequency spectrum of each pair. We found evidence that a recent (circa 3,000–4,000 generations) asymmetrical secondary contact between expanding postglacial populations has accompanied Whitefish diversification. Our results suggest that heterogeneous genomic differentiation has emerged through the combined effects of linked selection generating variable rates of lineage sorting across the genome during geographical isolation, and heterogeneous introgression eroding divergence at different rates across the genome upon secondary contact. This study thus provides a new retrospective insight into the historical demographic and selective processes that shaped a continuum of divergence associated with ecological speciation.
Collapse
Affiliation(s)
- Clément Rougeux
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Pierre-Alexandre Gagnaire
- Université de Montpellier, Place Eugène Bataillon, France.,Institut des Sciences de l'Évolution de Montpellier-UMR 5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, Montpellier, France
| |
Collapse
|
193
|
Souissi A, Bonhomme F, Manchado M, Bahri-Sfar L, Gagnaire PA. Genomic and geographic footprints of differential introgression between two divergent fish species (Solea spp.). Heredity (Edinb) 2018; 121:579-593. [PMID: 29713088 DOI: 10.1038/s41437-018-0079-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/12/2018] [Accepted: 03/10/2018] [Indexed: 11/09/2022] Open
Abstract
Investigating gene flow between closely related species and its variation across the genome is important to understand how reproductive barriers shape genome divergence before speciation is complete. An efficient way to characterize differential gene flow is to study how the genetic interactions that take place in hybrid zones selectively filter gene exchange between species, leading to heterogeneous genome divergence. In the present study, genome-wide divergence and introgression patterns were investigated between two sole species, Solea senegalensis and Solea aegyptiaca, using restriction-associated DNA sequencing (RAD-Seq) to analyze samples taken from a transect spanning the hybrid zone. An integrative approach combining geographic and genomic clines methods with an analysis of individual locus introgression accounting for the demographic history of divergence was conducted. Our results showed that the two sole species have come into secondary contact postglacially, after experiencing a prolonged period (ca. 1.1 to 1.8 Myrs) of allopatric separation. Secondary contact resulted in the formation of a tension zone characterized by strong reproductive isolation, which only allowed introgression in a limited fraction of the genome. We found multiple evidence for a preferential direction of introgression in the S. aegyptiaca genetic background, indicating a possible recent or ongoing movement of the hybrid zone. Deviant introgression signals found in the opposite direction suggested that S. senegalensis could have possibly undergone adaptive introgression that has not yet spread throughout the entire species range. Our study thus illustrates the varied outcomes of genetic interactions between divergent gene pools that recently met after a long history of divergence.
Collapse
Affiliation(s)
- Ahmed Souissi
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France. .,CNRS-Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral, 34200, Sète, France. .,Faculté des Sciences de Tunis UR11ES08 Biologie intégrative et écologie évolutive et fonctionnelle des milieux aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| | - François Bonhomme
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,CNRS-Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral, 34200, Sète, France
| | - Manuel Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500, El Puerto de Santa María, Cádiz, Spain
| | - Lilia Bahri-Sfar
- Faculté des Sciences de Tunis UR11ES08 Biologie intégrative et écologie évolutive et fonctionnelle des milieux aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Pierre-Alexandre Gagnaire
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,CNRS-Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Station Méditerranéenne de l'Environnement Littoral, 34200, Sète, France
| |
Collapse
|
194
|
Matz MV, Treml EA, Aglyamova GV, Bay LK. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet 2018; 14:e1007220. [PMID: 29672529 PMCID: PMC5908067 DOI: 10.1371/journal.pgen.1007220] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Can genetic adaptation in reef-building corals keep pace with the current rate of sea surface warming? Here we combine population genomics, biophysical modeling, and evolutionary simulations to predict future adaptation of the common coral Acropora millepora on the Great Barrier Reef (GBR). Genomics-derived migration rates were high (0.1–1% of immigrants per generation across half the latitudinal range of the GBR) and closely matched the biophysical model of larval dispersal. Both genetic and biophysical models indicated the prevalence of southward migration along the GBR that would facilitate the spread of heat-tolerant alleles to higher latitudes as the climate warms. We developed an individual-based metapopulation model of polygenic adaptation and parameterized it with population sizes and migration rates derived from the genomic analysis. We find that high migration rates do not disrupt local thermal adaptation, and that the resulting standing genetic variation should be sufficient to fuel rapid region-wide adaptation of A. millepora populations to gradual warming over the next 20–50 coral generations (100–250 years). Further adaptation based on novel mutations might also be possible, but this depends on the currently unknown genetic parameters underlying coral thermal tolerance and the rate of warming realized. Despite this capacity for adaptation, our model predicts that coral populations would become increasingly sensitive to random thermal fluctuations such as ENSO cycles or heat waves, which corresponds well with the recent increase in frequency of catastrophic coral bleaching events. Coral reefs worldwide are suffering high mortality from severe thermal stress episodes induced by acute ocean warming events. Under the current rate of warming, will corals be gone before the end of this century? Here we combine population genomics with biophysical and evolutionary modeling to investigate adaptive potential of a common reef-building coral from the Great Barrier Reef. To approach this task, we have developed a predictive model of polygenic adaptation in a system of multiple inter-connected populations that exist in a heterogeneous and changing environment. Applying this model to our coral species, we find that populations successfully adapt to diverse local temperatures along the range of the Great Barrier Reef despite high migrant exchange and should collectively harbor enough adaptive genetic variants to fuel region-wide thermal adaptation for another century and perhaps longer. In the same time, the model predicts that random thermal fluctuations will induce increasingly severe coral mortality episodes, which aligns well with observations over the last few decades.
Collapse
Affiliation(s)
- Mikhail V. Matz
- University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Eric A. Treml
- University of Melbourne, Melbourne, Melbourne, Victoria, Australia
| | | | - Line K. Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
195
|
Parreira B, Cardoso JCR, Costa R, Couto AR, Bruges-Armas J, Power DM. Persistence of the ABCC6 genes and the emergence of the bony skeleton in vertebrates. Sci Rep 2018; 8:6027. [PMID: 29662086 PMCID: PMC5902450 DOI: 10.1038/s41598-018-24370-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
The ATP-binding cassette transporter 6 (ABCC6) gene encodes a cellular transmembrane protein transporter (MRP6) that is involved in the regulation of tissue calcification in mammals. Mutations in ABCC6 are associated with human ectopic calcification disorders. To gain insight into its evolution and involvement in tissue calcification we conducted a comparative analysis of the ABCC6 gene and the related gene ABCC1 from invertebrates to vertebrates where a bony endoskeleton first evolved. Taking into consideration the role of ABCC6 in ectopic calcification of human skin we analysed the involvement of both genes in the regeneration of scales, mineralized structures that develop in fish skin. The ABCC6 gene was only found in bony vertebrate genomes and was absent from Elasmobranchs, Agnatha and from invertebrates. In teleost fish the abcc6 gene duplicated but the two genes persisted only in some teleost genomes. Six disease causing amino acid mutations in human MRP6 are a normal feature of abcc6 in fish, suggesting they do not have a deleterious effect on the protein. After scale removal the abcc6 (5 and 10 days) and abcc1 (10 days) gene expression was up-regulated relative to the intact control skin and this coincided with a time of intense scale mineralization.
Collapse
Affiliation(s)
- Bruna Parreira
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal
| | - João C R Cardoso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rita Costa
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana Rita Couto
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal
| | - Jácome Bruges-Armas
- Serviço Especializado de Epidemiologia e Biologia Molecular (SEEBMO), Hospital de Santo Espírito da Ilha Terceira, Azores, Portugal.,CEDOC - Chronic Diseases Research Center, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
196
|
Tørresen OK, Brieuc MSO, Solbakken MH, Sørhus E, Nederbragt AJ, Jakobsen KS, Meier S, Edvardsen RB, Jentoft S. Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genomics 2018; 19:240. [PMID: 29636006 PMCID: PMC5894186 DOI: 10.1186/s12864-018-4616-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background Increased availability of genome assemblies for non-model organisms has resulted in invaluable biological and genomic insight into numerous vertebrates, including teleosts. Sequencing of the Atlantic cod (Gadus morhua) genome and the genomes of many of its relatives (Gadiformes) demonstrated a shared loss of the major histocompatibility complex (MHC) II genes 100 million years ago. An improved version of the Atlantic cod genome assembly shows an extreme density of tandem repeats compared to other vertebrate genome assemblies. Highly contiguous assemblies are therefore needed to further investigate the unusual immune system of the Gadiformes, and whether the high density of tandem repeats found in Atlantic cod is a shared trait in this group. Results Here, we have sequenced and assembled the genome of haddock (Melanogrammus aeglefinus) – a relative of Atlantic cod – using a combination of PacBio and Illumina reads. Comparative analyses reveal that the haddock genome contains an even higher density of tandem repeats outside and within protein coding sequences than Atlantic cod. Further, both species show an elevated number of tandem repeats in genes mainly involved in signal transduction compared to other teleosts. A characterization of the immune gene repertoire demonstrates a substantial expansion of MCHI in Atlantic cod compared to haddock. In contrast, the Toll-like receptors show a similar pattern of gene losses and expansions. For the NOD-like receptors (NLRs), another gene family associated with the innate immune system, we find a large expansion common to all teleosts, with possible lineage-specific expansions in zebrafish, stickleback and the codfishes. Conclusions The generation of a highly contiguous genome assembly of haddock revealed that the high density of short tandem repeats as well as expanded immune gene families is not unique to Atlantic cod – but possibly a feature common to all, or most, codfishes. A shared expansion of NLR genes in teleosts suggests that the NLRs have a more substantial role in the innate immunity of teleosts than other vertebrates. Moreover, we find that high copy number genes combined with variable genome assembly qualities may impede complete characterization of these genes, i.e. the number of NLRs in different teleost species might be underestimates. Electronic supplementary material The online version of this article (10.1186/s12864-018-4616-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Marine S O Brieuc
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | - Alexander J Nederbragt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
197
|
Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 2018; 19:217. [PMID: 29580201 PMCID: PMC5870821 DOI: 10.1186/s12864-018-4579-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/02/2018] [Indexed: 12/24/2022] Open
Abstract
Background Adaptive genomics may help predicting how a species will respond to future environmental changes. Genomic signatures of local adaptation in marine organisms are often driven by environmental selective agents impacting the physiology of organisms. With one of the highest salinity level, the Mediterranean Sea provides an excellent model to investigate adaptive genomic divergence underlying salinity adaptation. In the present study, we combined six genome scan methods to detect potential genomic signal of selection in the striped red mullet (Mullus surmuletus) populations distributed across a wide salinity gradient. We then blasted these outlier sequences on published fish genomic resources in order to identify relevant potential candidate genes for salinity adaptation in this species. Results Altogether, the six genome scan methods found 173 outliers out of 1153 SNPs. Using a blast approach, we discovered four candidate SNPs belonging to three genes potentially implicated in adaptation of M. surmuletus to salinity. The allele frequency at one of these SNPs significantly increases with salinity independently from the effect of longitude. The gene associated to this SNP, SOCS2, encodes for an inhibitor of cytokine and has previously been shown to be expressed under osmotic pressure in other marine organisms. Additionally, our results showed that genome scan methods not correcting for spatial structure can still be an efficient strategy to detect potential footprints of selection, when the spatial and environmental variation are confounded, and then, correcting for spatial structure in a second step represents a conservative method. Conclusion The present outcomes bring evidences of potential genomic footprint of selection, which suggest an adaptive response of M. surmuletus to salinity conditions in the Mediterranean Sea. Additional genomic data such as sequencing of a full-genome and transcriptome analyses of gene expression would provide new insights regarding the possibility that some striped red mullet populations are locally adapted to their saline environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4579-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia Dalongeville
- CEFE UMR 5175, EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, 34293, Montpellier, France. .,MARBEC UMR 9190, CNRS - IRD - Université Montpellier - Ifremer, 34095, Montpellier, France.
| | - Laura Benestan
- Departement de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - David Mouillot
- MARBEC UMR 9190, CNRS - IRD - Université Montpellier - Ifremer, 34095, Montpellier, France
| | - Stephane Lobreaux
- Laboratoire d'Ecologie Alpine, UMR-CNRS 5553, Université Joseph Fourier, BP53 38041, Grenoble, France
| | - Stéphanie Manel
- CEFE UMR 5175, EPHE, PSL Research University, CNRS, UM, SupAgro, IRD, INRA, 34293, Montpellier, France
| |
Collapse
|
198
|
Menon M, Bagley JC, Friedline CJ, Whipple AV, Schoettle AW, Leal‐Sàenz A, Wehenkel C, Molina‐Freaner F, Flores‐Rentería L, Gonzalez‐Elizondo MS, Sniezko RA, Cushman SA, Waring KM, Eckert AJ. The role of hybridization during ecological divergence of southwestern white pine (
Pinus strobiformis
) and limber pine (
P. flexilis
). Mol Ecol 2018; 27:1245-1260. [DOI: 10.1111/mec.14505] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Mitra Menon
- Integrative Life Sciences Virginia Commonwealth University Richmond VA USA
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Justin C. Bagley
- Department of Biology Virginia Commonwealth University Richmond VA USA
- Departamento de Zoologia Universidade de Brasília Brasília DF Brazil
| | | | - Amy V. Whipple
- Department of Biological Sciences and Merriam Powel Center for Environmental Research Northern Arizona University Flagstaff AZ USA
| | - Anna W. Schoettle
- Rocky Mountain Research Station USDA Forest Service Ft. Collins CO USA
| | - Alejandro Leal‐Sàenz
- Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales Universidad Juárez del Estado de Durango Durango Mexico
| | - Christian Wehenkel
- Instituto de Silvicultura e Industria de la Madera Universidad Juarez del Estado de Durango Durango Mexico
| | - Francisco Molina‐Freaner
- Institutos de Geologia y Ecologia Universidad Nacional Autónoma de Mexico, Estación Regional del Noroeste Hermosillo Sonora Mexico
| | | | | | | | - Samuel A. Cushman
- Rocky Mountain Research Station USDA Forest Service Flagstaff AZ USA
| | | | - Andrew J. Eckert
- Department of Biology Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
199
|
High-Throughput Sequencing and Linkage Mapping of a Clownfish Genome Provide Insights on the Distribution of Molecular Players Involved in Sex Change. Sci Rep 2018; 8:4073. [PMID: 29511241 PMCID: PMC5840384 DOI: 10.1038/s41598-018-22282-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
Clownfishes are an excellent model system for investigating the genetic mechanism governing hermaphroditism and socially-controlled sex change in their natural environment because they are broadly distributed and strongly site-attached. Genomic tools, such as genetic linkage maps, allow fine-mapping of loci involved in molecular pathways underlying these reproductive processes. In this study, a high-density genetic map of Amphiprion bicinctus was constructed with 3146 RAD markers in a full-sib family organized in 24 robust linkage groups which correspond to the haploid chromosome number of the species. The length of the map was 4294.71 cM, with an average marker interval of 1.38 cM. The clownfish linkage map showed various levels of conserved synteny and collinearity with the genomes of Asian and European seabass, Nile tilapia and stickleback. The map provided a platform to investigate the genomic position of genes with differential expression during sex change in A. bicinctus. This study aims to bridge the gap of genome-scale information for this iconic group of species to facilitate the study of the main gene regulatory networks governing social sex change and gonadal restructuring in protandrous hermaphrodites.
Collapse
|
200
|
Maroso F, Hillen JEJ, Pardo BG, Gkagkavouzis K, Coscia I, Hermida M, Franch R, Hellemans B, Van Houdt J, Simionati B, Taggart JB, Nielsen EE, Maes G, Ciavaglia SA, Webster LMI, Volckaert FAM, Martinez P, Bargelloni L, Ogden R. Performance and precision of double digestion RAD (ddRAD) genotyping in large multiplexed datasets of marine fish species. Mar Genomics 2018; 39:64-72. [PMID: 29496460 DOI: 10.1016/j.margen.2018.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/29/2023]
Abstract
The development of Genotyping-By-Sequencing (GBS) technologies enables cost-effective analysis of large numbers of Single Nucleotide Polymorphisms (SNPs), especially in "non-model" species. Nevertheless, as such technologies enter a mature phase, biases and errors inherent to GBS are becoming evident. Here, we evaluated the performance of double digest Restriction enzyme Associated DNA (ddRAD) sequencing in SNP genotyping studies including high number of samples. Datasets of sequence data were generated from three marine teleost species (>5500 samples, >2.5 × 1012 bases in total), using a standardized protocol. A common bioinformatics pipeline based on STACKS was established, with and without the use of a reference genome. We performed analyses throughout the production and analysis of ddRAD data in order to explore (i) the loss of information due to heterogeneous raw read number across samples; (ii) the discrepancy between expected and observed tag length and coverage; (iii) the performances of reference based vs. de novo approaches; (iv) the sources of potential genotyping errors of the library preparation/bioinformatics protocol, by comparing technical replicates. Our results showed use of a reference genome and a posteriori genotype correction improved genotyping precision. Individual read coverage was a key variable for reproducibility; variance in sequencing depth between loci in the same individual was also identified as an important factor and found to correlate to tag length. A comparison of downstream analysis carried out with ddRAD vs single SNP allele specific assay genotypes provided information about the levels of genotyping imprecision that can have a significant impact on allele frequency estimations and population assignment. The results and insights presented here will help to select and improve approaches to the analysis of large datasets based on RAD-like methodologies.
Collapse
Affiliation(s)
- F Maroso
- Department of Compared Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy.
| | - J E J Hillen
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32 Box 2439, B-3000 Leuven, Belgium
| | - B G Pardo
- Departmento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - K Gkagkavouzis
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - I Coscia
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32 Box 2439, B-3000 Leuven, Belgium; School of Environmental and Life Science, Rm 332, Peel Building, University of Salford, Salford M5 4WT, UK
| | - M Hermida
- Departmento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - R Franch
- Department of Compared Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - B Hellemans
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32 Box 2439, B-3000 Leuven, Belgium
| | - J Van Houdt
- Department of Human Genetics, University of Leuven, O&N I Herestraat 49 - Box 602, B-3000 Leuven, Belgium
| | - B Simionati
- BMR Genomics, Via Redipuglia 21a, Padova, Italy
| | - J B Taggart
- Division of Environmental and Evolutionary Biology, School of Biology and Biochemistry, The Queen's University of Belfast, Belfast BT7 INN, UK
| | - E E Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600 Silkeborg, Denmark
| | - G Maes
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32 Box 2439, B-3000 Leuven, Belgium; Department of Human Genetics, University of Leuven, O&N I Herestraat 49 - Box 602, B-3000 Leuven, Belgium; Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Marine and Environmental Sciences, Faculty of Science and Engineering, James Cook University, Townsville, 4811, QLD, Australia
| | - S A Ciavaglia
- Science and Advice for Scottish Agriculture, Roddinglaw Road, Edinburgh EH12 9FJ, UK
| | - L M I Webster
- Science and Advice for Scottish Agriculture, Roddinglaw Road, Edinburgh EH12 9FJ, UK
| | - F A M Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. de Bériotstraat 32 Box 2439, B-3000 Leuven, Belgium
| | - P Martinez
- Departmento de Zoología, Genética y Antropología Física, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - L Bargelloni
- Department of Compared Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - R Ogden
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | |
Collapse
|