151
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
152
|
Mukhopadhyay S, Badgandi HB, Hwang SH, Somatilaka B, Shimada IS, Pal K. Trafficking to the primary cilium membrane. Mol Biol Cell 2017; 28:233-239. [PMID: 28082521 PMCID: PMC5231892 DOI: 10.1091/mbc.e16-07-0505] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022] Open
Abstract
The primary cilium has been found to be associated with a number of cellular signaling pathways, such as vertebrate hedgehog signaling, and implicated in the pathogenesis of diseases affecting multiple organs, including the neural tube, kidney, and brain. The primary cilium is the site where a subset of the cell's membrane proteins is enriched. However, pathways that target and concentrate membrane proteins in cilia are not well understood. Processes determining the level of proteins in the ciliary membrane include entry into the compartment, removal, and retention by diffusion barriers such as the transition zone. Proteins that are concentrated in the ciliary membrane are also localized to other cellular sites. Thus it is critical to determine the particular role for ciliary compartmentalization in sensory reception and signaling pathways. Here we provide a brief overview of our current understanding of compartmentalization of proteins in the ciliary membrane and the dynamics of trafficking into and out of the cilium. We also discuss major unanswered questions regarding the role that defects in ciliary compartmentalization might play in disease pathogenesis. Understanding the trafficking mechanisms that underlie the role of ciliary compartmentalization in signaling might provide unique approaches for intervention in progressive ciliopathies.
Collapse
Affiliation(s)
- Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Hemant B Badgandi
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Issei S Shimada
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| | - Kasturi Pal
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
153
|
Zhao L, Wang L, Chi C, Lan W, Su Y. The emerging roles of phosphatases in Hedgehog pathway. Cell Commun Signal 2017; 15:35. [PMID: 28931407 PMCID: PMC5607574 DOI: 10.1186/s12964-017-0191-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 01/12/2023] Open
Abstract
Hedgehog signaling is evolutionarily conserved and plays a pivotal role in cell fate determination, embryonic development, and tissue renewal. As aberrant Hedgehog signaling is tightly associated with a broad range of human diseases, its activities must be precisely controlled. It has been known that several core components of Hedgehog pathway undergo reversible phosphorylations mediated by protein kinases and phosphatases, which acts as an effective regulatory mechanism to modulate Hedgehog signal activities. In contrast to kinases that have been extensively studied in these phosphorylation events, phosphatases were thought to function in an unspecific manner, thus obtained much less emphasis in the past. However, in recent years, increasing evidence has implicated that phosphatases play crucial and specific roles in the context of developmental signaling, including Hedgehog signaling. In this review, we present a summary of current progress on phosphatase studies in Hedgehog pathway, emphasizing the multiple employments of protein serine/threonine phosphatases during the transduction of morphogenic Hedgehog signal in both Drosophila and vertebrate systems, all of which provide insights into the importance of phosphatases in the specific regulation of Hedgehog signaling.
Collapse
Affiliation(s)
- Long Zhao
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Liguo Wang
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chunli Chi
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Wenwen Lan
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
154
|
Shetty M, Ramdas N, Sahni S, Mullapudi N, Hegde S. A Homozygous Missense Variant in INPP5E Associated with Joubert Syndrome and Related Disorders. Mol Syndromol 2017; 8:313-317. [PMID: 29230161 DOI: 10.1159/000479673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Joubert syndrome and related disorders (JSRD; ORPHA 140874) is a complex set of neurodevelopmental disorders with multiple organ involvement. JSRD is a type of ciliopathy which is caused by the presence of defective primary cilia in an individual. JSRD is commonly inherited in an autosomal recessive pattern, and more than 23 genes are known to be associated with JSRD. We report a novel homozygous mutation identified in the INPP5E gene, c.1303C>T, which leads to a change of an amino acid from arginine to tryptophan at residue 435 in the protein chain. In silico analysis indicates that p.Arg435Trp substitution affects the functionality of the protein product of the gene. Our result adds to the growing body of evidences that underlines the clinical utility of next-generation sequencing in the diagnosis of a genetic disorder when clinical features are inconclusive.
Collapse
Affiliation(s)
- Mitesh Shetty
- Department of Medical Genetics, Manipal Hospital, Bangalore, India
| | - Nimmy Ramdas
- Department of Medical Genetics, Manipal Hospital, Bangalore, India
| | - Shubhi Sahni
- Department of Medical Genetics, Manipal Hospital, Bangalore, India
| | | | - Sridevi Hegde
- Department of Medical Genetics, Manipal Hospital, Bangalore, India
| |
Collapse
|
155
|
Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario. 3 Biotech 2017; 7:251. [PMID: 28721681 DOI: 10.1007/s13205-017-0878-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022] Open
Abstract
Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.
Collapse
|
156
|
Van De Weghe JC, Rusterholz TD, Latour B, Grout ME, Aldinger KA, Shaheen R, Dempsey JC, Maddirevula S, Cheng YHH, Phelps IG, Gesemann M, Goel H, Birk OS, Alanzi T, Rawashdeh R, Khan AO, Bamshad MJ, Nickerson DA, Neuhauss SC, Dobyns WB, Alkuraya FS, Roepman R, Bachmann-Gagescu R, Doherty D, Doherty D. Mutations in ARMC9, which Encodes a Basal Body Protein, Cause Joubert Syndrome in Humans and Ciliopathy Phenotypes in Zebrafish. Am J Hum Genet 2017. [PMID: 28625504 DOI: 10.1016/j.ajhg.2017.05.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
157
|
Conduit SE, Ramaswamy V, Remke M, Watkins DN, Wainwright BJ, Taylor MD, Mitchell CA, Dyson JM. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene 2017. [PMID: 28650469 DOI: 10.1038/onc.2017.208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sonic Hedgehog (SHH) signaling at primary cilia drives the proliferation and progression of a subset of medulloblastomas, the most common malignant paediatric brain tumor. Severe side effects associated with conventional treatments and resistance to targeted therapies has led to the need for new strategies. SHH signaling is dependent on primary cilia for signal transduction suggesting the potential for cilia destabilizing mechanisms as a therapeutic target. INPP5E is an inositol polyphosphate 5-phosphatase that hydrolyses PtdIns(4,5)P2 and more potently, the phosphoinositide (PI) 3-kinase product PtdIns(3,4,5)P3. INPP5E promotes SHH signaling during embryonic development via PtdIns(4,5)P2 hydrolysis at cilia, that in turn regulates the cilia recruitment of the SHH suppressor GPR161. However, the role INPP5E plays in cancer is unknown and the contribution of PI3-kinase signaling to cilia function is little characterized. Here, we reveal INPP5E promotes SHH signaling in SHH medulloblastoma by negatively regulating a cilia-compartmentalized PI3-kinase signaling axis that maintains primary cilia on tumor cells. Conditional deletion of Inpp5e in a murine model of constitutively active Smoothened-driven medulloblastoma slowed tumor progression, suppressed cell proliferation, reduced SHH signaling and promoted tumor cell cilia loss. PtdIns(3,4,5)P3, its effector pAKT and the target pGSK3β, which when non-phosphorylated promotes cilia assembly/stability, localized to tumor cell cilia. The number of PtdIns(3,4,5)P3/pAKT/pGSK3β-positive cilia was increased in cultured Inpp5e-null tumor cells relative to controls. PI3-kinase inhibition or expression of wild-type, but not catalytically inactive HA-INPP5E partially rescued cilia loss in Inpp5e-null tumor cells in vitro. INPP5E mRNA and copy number were reduced in human SHH medulloblastoma compared to other molecular subtypes and consistent with the murine model, reduced INPP5E was associated with improved overall survival. Therefore our study identifies a compartmentalized PtdIns(3,4,5)P3/AKT/GSK3β signaling axis at cilia in SHH-dependent medulloblastoma that is regulated by INPP5E to maintain tumor cell cilia, promote SHH signaling and thereby medulloblastoma progression.
Collapse
Affiliation(s)
- S E Conduit
- Department of Biochemistry and Molecular Biology, Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - V Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - M Remke
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - D N Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia.,Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - B J Wainwright
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - M D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C A Mitchell
- Department of Biochemistry and Molecular Biology, Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - J M Dyson
- Department of Biochemistry and Molecular Biology, Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
158
|
Bangs F, Anderson KV. Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028175. [PMID: 27881449 DOI: 10.1101/cshperspect.a028175] [Citation(s) in RCA: 422] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog (Hh) signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hh signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here, we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type-specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands.
Collapse
Affiliation(s)
- Fiona Bangs
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
159
|
Hsu KS, Chuang JZ, Sung CH. The Biology of Ciliary Dynamics. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027904. [PMID: 28062565 DOI: 10.1101/cshperspect.a027904] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The cilium is an evolutionally conserved apical membrane protrusion that senses and transduces diverse signals to regulate a wide range of cellular activities. The cilium is dynamic in length, structure, and protein composition. Dysregulation of ciliary dynamics has been linked with ciliopathies and other human diseases. The cilium undergoes cell-cycle-dependent assembly and disassembly, with ciliary resorption linked with G1-S transition and cell-fate choice. In the resting cell, the cilium remains sensitive to environmental cues for remodeling during tissue homeostasis and repair. Recent findings further reveal an interplay between the cilium and extracellular vesicles and identify bioactive cilium-derived vesicles, posing a previously unrecognized role of cilia for sending signals. The photoreceptor outer segment is a notable dynamic cilium. A recently discovered protein transport mechanism in photoreceptors maintains light-regulated homeostasis of ciliary length.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10065
| | - Jen-Zen Chuang
- The Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10065
| | - Ching-Hwa Sung
- Departments of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
160
|
Abstract
Macroautophagy (autophagy) is a highly conserved intracellular degradation system that is essential for homeostasis in eukaryotic cells. Due to the wide variety of the cytoplasmic targets of autophagy, its dysregulation is associated with many diseases in humans, such as neurodegenerative diseases, heart disease and cancer. During autophagy, cytoplasmic materials are sequestered by the autophagosome - a double-membraned structure - and transported to the lysosome for digestion. The specific stages of autophagy are induction, formation of the isolation membrane (phagophore), formation and maturation of the autophagosome and, finally, fusion with a late endosome or lysosome. Although there are significant insights into each of these steps, the mechanisms of autophagosome-lysosome fusion are least understood, although there have been several recent advances. In this Commentary, we will summarize the current knowledge regarding autophagosome-lysosome fusion, focusing on mammals, and discuss the remaining questions and future directions of the field.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan.,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, 565-0871 Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan .,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, 565-0871 Osaka University, Osaka, Japan
| |
Collapse
|
161
|
De Craene JO, Bertazzi DL, Bär S, Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int J Mol Sci 2017; 18:ijms18030634. [PMID: 28294977 PMCID: PMC5372647 DOI: 10.3390/ijms18030634] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphoinositides are lipids involved in the vesicular transport of proteins and lipids between the different compartments of eukaryotic cells. They act by recruiting and/or activating effector proteins and thus are involved in regulating various cellular functions, such as vesicular budding, membrane fusion and cytoskeleton dynamics. Although detected in small concentrations in membranes, their role is essential to cell function, since imbalance in their concentrations is a hallmark of many cancers. Their synthesis involves phosphorylating/dephosphorylating positions D3, D4 and/or D5 of their inositol ring by specific lipid kinases and phosphatases. This process is tightly regulated and specific to the different intracellular membranes. Most enzymes involved in phosphoinositide synthesis are conserved between yeast and human, and their loss of function leads to severe diseases (cancer, myopathy, neuropathy and ciliopathy).
Collapse
Affiliation(s)
- Johan-Owen De Craene
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Dimitri L Bertazzi
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Séverine Bär
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| | - Sylvie Friant
- Department of Molecular and Cellular Genetics, Université de Strasbourg, CNRS, GMGM UMR 7156, F-67000 Strasbourg, France.
| |
Collapse
|
162
|
Goetz SC, Bangs F, Barrington CL, Katsanis N, Anderson KV. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS One 2017; 12:e0173399. [PMID: 28291807 PMCID: PMC5349470 DOI: 10.1371/journal.pone.0173399] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/20/2017] [Indexed: 12/04/2022] Open
Abstract
The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure.
Collapse
Affiliation(s)
- Sarah C. Goetz
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Fiona Bangs
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
| | - Chloe L. Barrington
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Nicholas Katsanis
- Department of Cell Biology and Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, United States of America
| | - Kathryn V. Anderson
- Program in Developmental Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Ave. New York, United States of America
| |
Collapse
|
163
|
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) are a group of inherited diseases that affect genes encoding proteins that localize to primary cilia or centrosomes. With few exceptions, ciliopathies are inherited in an autosomal recessive manner, and affected individuals manifest early during childhood or adolescence. NPHP-RC are genetically very heterogeneous, and, currently, mutations in more than 90 genes have been described as single-gene causes. The phenotypes of NPHP-RC are very diverse, and include cystic-fibrotic kidney disease, brain developmental defects, retinal degeneration, skeletal deformities, facial dimorphism, and, in some cases, laterality defects, and congenital heart disease. Mutations in the same gene can give rise to diverse phenotypes depending on the mutated allele. At the same time, there is broad phenotypic overlap between different monogenic genes. The identification of monogenic causes of ciliopathies has furthered the understanding of molecular mechanism and cellular pathways involved in the pathogenesis.
Collapse
|
164
|
INPP5E Preserves Genomic Stability through Regulation of Mitosis. Mol Cell Biol 2017; 37:MCB.00500-16. [PMID: 28031327 PMCID: PMC5335510 DOI: 10.1128/mcb.00500-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/17/2016] [Indexed: 12/13/2022] Open
Abstract
The partially understood phosphoinositide signaling cascade regulates multiple aspects of cellular metabolism. Previous studies revealed that INPP5E, the inositol polyphosphate-5-phosphatase that is mutated in the developmental disorders Joubert and MORM syndromes, is essential for the function of the primary cilium and maintenance of phosphoinositide balance in nondividing cells. Here, we report that INPP5E further contributes to cellular homeostasis by regulating cell division. We found that silencing or genetic knockout of INPP5E in human and murine cells impairs the spindle assembly checkpoint, centrosome and spindle function, and maintenance of chromosomal integrity. Consistent with a cell cycle regulatory role, we found that INPP5E expression is cell cycle dependent, peaking at mitotic entry. INPP5E localizes to centrosomes, chromosomes, and kinetochores in early mitosis and shuttles to the midzone spindle at mitotic exit. Our findings identify the previously unknown, essential role of INPP5E in mitosis and prevention of aneuploidy, providing a new perspective on the function of this phosphoinositide phosphatase in health and development.
Collapse
|
165
|
Greene NDE, Leung KY, Copp AJ. Inositol, neural tube closure and the prevention of neural tube defects. Birth Defects Res 2017; 109:68-80. [PMID: 27324558 PMCID: PMC5353661 DOI: 10.1002/bdra.23533] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/24/2016] [Accepted: 05/08/2016] [Indexed: 12/29/2022]
Abstract
Susceptibility to neural tube defects (NTDs), such as anencephaly and spina bifida is influenced by genetic and environmental factors including maternal nutrition. Maternal periconceptional supplementation with folic acid significantly reduces the risk of an NTD-affected pregnancy, but does not prevent all NTDs, and "folic acid non-responsive" NTDs continue to occur. Similarly, among mouse models of NTDs, some are responsive to folic acid but others are not. Among nutritional factors, inositol deficiency causes cranial NTDs in mice while supplemental inositol prevents spinal and cranial NTDs in the curly tail (Grhl3 hypomorph) mouse, rodent models of hyperglycemia or induced diabetes, and in a folate-deficiency induced NTD model. NTDs also occur in mice lacking expression of certain inositol kinases. Inositol-containing phospholipids (phosphoinositides) and soluble inositol phosphates mediate a range of functions, including intracellular signaling, interaction with cytoskeletal proteins, and regulation of membrane identity in trafficking and cell division. Myo-inositol has been trialed in humans for a range of conditions and appears safe for use in human pregnancy. In pilot studies in Italy and the United Kingdom, women took inositol together with folic acid preconceptionally, after one or more previous NTD-affected pregnancies. In nonrandomized cohorts and a randomized double-blind study in the United Kingdom, no recurrent NTDs were observed among 52 pregnancies reported to date. Larger-scale fully powered trials are needed to determine whether supplementation with inositol and folic acid would more effectively prevent NTDs than folic acid alone. Birth Defects Research 109:68-80, 2017. © 2016 The Authors Birth Defects Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas D E Greene
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Kit-Yi Leung
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre and Developmental Biology & Cancer Programme, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
166
|
Phua SC, Chiba S, Suzuki M, Su E, Roberson EC, Pusapati GV, Schurmans S, Setou M, Rohatgi R, Reiter JF, Ikegami K, Inoue T. Dynamic Remodeling of Membrane Composition Drives Cell Cycle through Primary Cilia Excision. Cell 2017; 168:264-279.e15. [PMID: 28086093 DOI: 10.1016/j.cell.2016.12.032] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/27/2016] [Accepted: 12/21/2016] [Indexed: 12/16/2022]
Abstract
The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, the primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by the cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate in distal cilia. This change triggers otherwise-forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. While cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer.
Collapse
Affiliation(s)
- Siew Cheng Phua
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Shuhei Chiba
- Laboratory of Biological Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masako Suzuki
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Emily Su
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elle C Roberson
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Koji Ikegami
- Department of Cellular and Molecular Anatomy and International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
167
|
Nascimbeni AC, Codogno P, Morel E. Phosphatidylinositol-3-phosphate in the regulation of autophagy membrane dynamics. FEBS J 2017; 284:1267-1278. [PMID: 27973739 DOI: 10.1111/febs.13987] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a key player in membrane dynamics and trafficking regulation. Most PI3P is associated with endosomal membranes and with the autophagosome preassembly machinery, presumably at the endoplasmic reticulum. The enzyme responsible for most PI3P synthesis, VPS34 and proteins such as Beclin1 and ATG14L that regulate PI3P levels are positive modulators of autophagy initiation. It had been assumed that a local PI3P pool was present at autophagosomes and preautophagosomal structures, such as the omegasome and the phagophore. This was recently confirmed by the demonstration that PI3P-binding proteins participate in the complex sequence of signalling that results in autophagosome assembly and activity. Here we summarize the historical discoveries of PI3P lipid kinase involvement in autophagy, and we discuss the proposed role of PI3P during autophagy, notably during the autophagosome biogenesis sequence.
Collapse
Affiliation(s)
- Anna Chiara Nascimbeni
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France.,Université Paris Descartes-Sorbonne Paris Cité, France
| |
Collapse
|
168
|
Dyson JM, Conduit SE, Feeney SJ, Hakim S, DiTommaso T, Fulcher AJ, Sriratana A, Ramm G, Horan KA, Gurung R, Wicking C, Smyth I, Mitchell CA. INPP5E regulates phosphoinositide-dependent cilia transition zone function. J Cell Biol 2016; 216:247-263. [PMID: 27998989 PMCID: PMC5223597 DOI: 10.1083/jcb.201511055] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 09/19/2016] [Accepted: 12/02/2016] [Indexed: 02/07/2023] Open
Abstract
Dyson et al. demonstrate that the inositol polyphosphate 5-phosphatase INPP5E is essential for Hedgehog-dependent embryonic development. By regulating PI(4,5)P2 and PI(3,4,5)P3 signals at cilia, INPP5E contributes to cilia transition zone function and thereby Smoothened accumulation at cilia. Human ciliopathies, including Joubert syndrome (JBTS), arise from cilia dysfunction. The inositol polyphosphate 5-phosphatase INPP5E localizes to cilia and is mutated in JBTS. Murine Inpp5e ablation is embryonically lethal and recapitulates JBTS, including neural tube defects and polydactyly; however, the underlying defects in cilia signaling and the function of INPP5E at cilia are still emerging. We report Inpp5e−/− embryos exhibit aberrant Hedgehog-dependent patterning with reduced Hedgehog signaling. Using mouse genetics, we show increasing Hedgehog signaling via Smoothened M2 expression rescues some Inpp5e−/− ciliopathy phenotypes and “normalizes” Hedgehog signaling. INPP5E’s phosphoinositide substrates PI(4,5)P2 and PI(3,4,5)P3 accumulated at the transition zone (TZ) in Hedgehog-stimulated Inpp5e−/− cells, which was associated with reduced recruitment of TZ scaffolding proteins and reduced Smoothened levels at cilia. Expression of wild-type, but not 5-phosphatase-dead, INPP5E restored TZ molecular organization and Smoothened accumulation at cilia. Therefore, we identify INPP5E as an essential point of convergence between Hedgehog and phosphoinositide signaling at cilia that maintains TZ function and Hedgehog-dependent embryonic development.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Sandra Hakim
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Tia DiTommaso
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Kristy A Horan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Carol Wicking
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.,Development and Stem Cells Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
169
|
Jao LE, Akef A, Wente SR. A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies. Mol Biol Cell 2016; 28:120-127. [PMID: 28035044 PMCID: PMC5221616 DOI: 10.1091/mbc.e16-09-0675] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/11/2023] Open
Abstract
Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer's vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function.
Collapse
Affiliation(s)
- Li-En Jao
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Abdalla Akef
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240
| |
Collapse
|
170
|
Park J, Lee N, Kavoussi A, Seo JT, Kim CH, Moon SJ. Ciliary Phosphoinositide Regulates Ciliary Protein Trafficking in Drosophila. Cell Rep 2016; 13:2808-16. [PMID: 26723017 DOI: 10.1016/j.celrep.2015.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
Abstract
Cilia are highly specialized antennae-like cellular organelles. Inositol polyphosphate 5-phosphatase E (INPP5E) converts PI(4,5)P2 into PI4P and is required for proper ciliary function. Although Inpp5e mutations are associated with ciliopathies in humans and mice, the precise molecular role INPP5E plays in cilia remains unclear. Here, we report that Drosophila INPP5E (dINPP5E) regulates ciliary protein trafficking by controlling the phosphoinositide composition of ciliary membranes. Mutations in dInpp5e lead to hearing deficits due to the mislocalization of dTULP and mechanotransduction channels, Inactive and NOMPC, in chordotonal cilia. Both loss of dINPP5E and ectopic expression of the phosphatidylinositol-4-phosphate 5-kinase Skittles increase PI(4,5)P2 levels in the ciliary base. The fact that Skittles expression phenocopies the dInpp5e mutants confirms a central role for PI(4,5)P2 in the regulation of dTULP, Inactive, and NOMPC localization. These data suggest that the spatial localization and levels of PI(4,5)P2 in ciliary membranes are important regulators of ciliary trafficking and function.
Collapse
Affiliation(s)
- Jina Park
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Nayoung Lee
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Adriana Kavoussi
- Department of Pharmacology, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Brain Research Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea.
| | - Seok Jun Moon
- Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
171
|
Abstract
Ptdns(4,5)P2 is a minor structural lipid of the plasma membrane (PM), but a master regulator of PM function. Serving either as a substrate for the generation of second messengers, or more commonly as a ligand triggering protein recruitment or activation, it regulates most aspects of PM function. Understanding how this relatively simple biological macromolecule can regulate such a vast array of different functions in parallel, is the key to understanding the biology of the PM as a whole, in both health and disease. In this review, potential mechanisms are discussed that might explain how a lipid can separately regulate so many protein complexes. The focus is on the spatial distribution of the lipid molecules, their metabolism and their interactions. Open questions that still need to be resolved are highlighted, as are potential experimental approaches that might shed light on the mechanisms at play. Moreover, the broader question is raised as to whether PtdIns(4,5)P2 should be thought of as a bona fide signalling molecule or more of a simple lipid cofactor or perhaps both, depending on the context of the particular function in question.
Collapse
|
172
|
Martens S, Nakamura S, Yoshimori T. Phospholipids in Autophagosome Formation and Fusion. J Mol Biol 2016; 428:S0022-2836(16)30455-7. [PMID: 27984040 PMCID: PMC7610884 DOI: 10.1016/j.jmb.2016.10.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Autophagosomes are double membrane organelles that are formed during a process referred to as macroautophagy. They serve to deliver cytoplasmic material into the lysosome for degradation. Autophagosomes are formed in a de novo manner and are the result of substantial membrane remodeling processes involving numerous protein-lipid interactions. While most studies focus on the proteins involved in autophagosome formation it is obvious that lipids including phospholipids, sphingolipids and sterols play an equally important role. Here we summarize the current knowledge about the role of lipids, especially focusing on phospholipids and their interplay with the autophagic protein machinery during autophagosome formation and fusion.
Collapse
Affiliation(s)
- Sascha Martens
- Max F. Perutz Laboratories, University of Vienna, Dr Bohr-Gasse 9/3, 1030 Vienna, Austria.
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
173
|
Buke B, Canverenler E, İpek G, Canverenler S, Akkaya H. Diagnosis of Joubert syndrome via ultrasonography. J Med Ultrason (2001) 2016; 44:197-202. [DOI: 10.1007/s10396-016-0751-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 09/26/2016] [Indexed: 01/25/2023]
|
174
|
Stephen LA, Ismail S. Shuttling and sorting lipid-modified cargo into the cilia. Biochem Soc Trans 2016; 44:1273-1280. [PMID: 27911709 DOI: 10.1042/bst20160122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 11/17/2022]
Abstract
Primary cilia are hair-like microtubule-based organelles that can be found on almost all human cell types. Although the cilium is not separated from the cell by membranes, their content is different from that of the cell body and their membrane composition is distinct from that of the plasma membrane. Here, we will introduce a molecular machinery that shuttles and sorts lipid-modified proteins to the cilium, thus contributing in maintaining its distinct composition. The mechanism involves the binding of the GDI-like solubilising factors, uncoordinated (UNC)119a, UNC119b and PDE6D, to the lipid-modified ciliary cargo and the specific release of the cargo in the cilia by the ciliary small G-protein Arl3 in a GTP-dependent manner.
Collapse
Affiliation(s)
- Louise A Stephen
- CR-UK Beatson Institute, Garscube Estate Switchback Road, Glasgow G61 1BD, U.K
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate Switchback Road, Glasgow G61 1BD, U.K
| |
Collapse
|
175
|
Suzuki T, Miyake N, Tsurusaki Y, Okamoto N, Alkindy A, Inaba A, Sato M, Ito S, Muramatsu K, Kimura S, Ieda D, Saitoh S, Hiyane M, Suzumura H, Yagyu K, Shiraishi H, Nakajima M, Fueki N, Habata Y, Ueda Y, Komatsu Y, Yan K, Shimoda K, Shitara Y, Mizuno S, Ichinomiya K, Sameshima K, Tsuyusaki Y, Kurosawa K, Sakai Y, Haginoya K, Kobayashi Y, Yoshizawa C, Hisano M, Nakashima M, Saitsu H, Takeda S, Matsumoto N. Molecular genetic analysis of 30 families with Joubert syndrome. Clin Genet 2016; 90:526-535. [PMID: 27434533 DOI: 10.1111/cge.12836] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/27/2016] [Accepted: 07/14/2016] [Indexed: 02/02/2023]
Abstract
Joubert syndrome (JS) is rare recessive disorders characterized by the combination of hypoplasia/aplasia of the cerebellar vermis, thickened and elongated superior cerebellar peduncles, and a deep interpeduncular fossa which is defined by neuroimaging and is termed the 'molar tooth sign'. JS is genetically highly heterogeneous, with at least 29 disease genes being involved. To further understand the genetic causes of JS, we performed whole-exome sequencing in 24 newly recruited JS families. Together with six previously reported families, we identified causative mutations in 25 out of 30 (24 + 6) families (83.3%). We identified eight mutated genes in 27 (21 + 6) Japanese families, TMEM67 (7/27, 25.9%) and CEP290 (6/27, 22.2%) were the most commonly mutated. Interestingly, 9 of 12 CEP290 disease alleles were c.6012-12T>A (75.0%), an allele that has not been reported in non-Japanese populations. Therefore c.6012-12T>A is a common allele in the Japanese population. Importantly, one Japanese and one Omani families carried compound biallelic mutations in two distinct genes (TMEM67/RPGRIP1L and TMEM138/BBS1, respectively). BBS1 is the causative gene in Bardet-Biedl syndrome. These concomitant mutations led to severe and/or complex clinical features in the patients, suggesting combined effects of different mutant genes.
Collapse
Affiliation(s)
- T Suzuki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Y Tsurusaki
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - N Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - A Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - A Inaba
- Yokohama City University Medical Center, Children's Medical Center, Yokohama, Japan
| | - M Sato
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - S Ito
- Department of Pediatrics, Graduate school of Medicine, Yokohama City University, Yokohama, Japan
| | - K Muramatsu
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - S Kimura
- Kumamoto City Child Development Support Center, Kumamoto, Japan
| | - D Ieda
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - S Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - M Hiyane
- Division of Child Neurology, Okinawa Prefectural Southern Medical Center & Children's Medical Center, Okinawa, Japan
| | - H Suzumura
- Department of Pediatrics, Dokkyo Medical University, Tochigi, Japan
| | - K Yagyu
- Department of Child and Adolescent Psychiatry, Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| | - H Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - M Nakajima
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - N Fueki
- Division of Rehabilitation, Nagano Children's Hospital, Nagano, Japan
| | - Y Habata
- Department of Pediatric Rehabilitation, Hokkaido Medical Center for Child Health and Rehabilitation, Hokkaido, Japan
| | - Y Ueda
- Nire-no-kai Children's Clinic, Hokkaido, Japan
| | - Y Komatsu
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Yan
- Department of Pediatrics, Kyorin University School of Medicine, Tokyo, Japan
| | - K Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Y Shitara
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - S Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Aichi, Japan
| | - K Ichinomiya
- Department of Neonatology, Gunma Children's Medical Center, Gunma, Japan
| | - K Sameshima
- Division of Medical Genetics, Gunma Children's Medical Center, Gunma, Japan
| | - Y Tsuyusaki
- Division of Neurology, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - K Kurosawa
- Division of Medical Genetics, Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Y Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - K Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai, Japan
| | - Y Kobayashi
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan.,Academic Renal Unit, School of Clinical Science, University of Bristol, Bristol, UK
| | - C Yoshizawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Gunma, Japan
| | - M Hisano
- Department of Nephrology, Chiba Children's Hospital, Chiba, Japan
| | - M Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - H Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - S Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - N Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
176
|
Dutta N, Seo S. RPGR, a prenylated retinal ciliopathy protein, is targeted to cilia in a prenylation- and PDE6D-dependent manner. Biol Open 2016; 5:1283-9. [PMID: 27493202 PMCID: PMC5051646 DOI: 10.1242/bio.020461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RPGR (retinitis pigmentosa GTPase regulator) is a ciliary protein associated with several forms of inherited retinal degenerative diseases. PDE6D is a ubiquitously expressed prenyl-binding protein and involved in ciliary targeting of prenylated proteins. The current working model for the RPGR function depicts that RPGR acts as a scaffold protein to recruit cargo-loaded PDE6D to primary cilia. Here, we present evidence demonstrating an alternative relationship between RPGR and PDE6D, in which RPGR is a cargo of PDE6D for ciliary targeting. We found that the constitutive isoform of RPGR, which is prenylated, requires prenylation for its ciliary localization. We also found that there are at least two independent ciliary targeting signals in RPGR: one within the N-terminal region that contains the RCC1-like domain and the other near the prenylation site at the C-terminus. Ablation of PDE6D blocked ciliary targeting of RPGR. Our study indicates that prenylated RPGR is one of the cargos of PDE6D for ciliary trafficking and provides insight into the mechanisms by which RPGR is targeted to cilia. Summary: RPGR is a ciliary protein that functions as a scaffold to recruit cargo-loaded PDE6D to cilia. Our study shows that RPGR is also a cargo of PDE6D.
Collapse
Affiliation(s)
- Nirmal Dutta
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
177
|
Affiliation(s)
- Linsen Li
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
178
|
Xu W, Jin M, Hu R, Wang H, Zhang F, Yuan S, Cao Y. The Joubert Syndrome Protein Inpp5e Controls Ciliogenesis by Regulating Phosphoinositides at the Apical Membrane. J Am Soc Nephrol 2016; 28:118-129. [PMID: 27401686 DOI: 10.1681/asn.2015080906] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 05/30/2016] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides, a family of phosphorylated derivatives of phosphatidylinositol (PtdIns), are tightly regulated both temporally and spatially by PtdIns phosphatases and kinases. Mutations in inositol polyphosphate 5-phosphatase E (INPP5E) cause Joubert syndrome, a human disorder associated with numerous ciliopathic defects, including renal cyst formation, linking phosphoinositides to ciliopathies. However, the molecular mechanism by which INPP5E-mediated PtdIns signaling regulates ciliogenesis and cystogenesis is unclear. Here, we utilized an in vivo vertebrate model of renal cystogenesis to show that Inpp5e enzymatic activity at the apical membrane directs apical docking of basal bodies in renal epithelia. Knockdown or knockout of inpp5e led to ciliogenesis defects and cystic kidneys in zebrafish. Furthermore, knockdown of inpp5e in embryos led to defects in cell polarity, cortical organization of F-actin, and apical segregation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 Knockdown of the ezrin gene, which encodes an ezrin/radixin/moesin (ERM) protein that crosslinks PtdIns(4,5)P2 and F-actin, phenocopied inpp5e knockdowns. Notably, overexpression of the ezrin gene rescued inpp5e morphants. Finally, treatment with the PI 3-kinase inhibitor LY294002, which decreases PtdIns(3,4,5)P3 levels, rescued the cellular, phenotypic, and renal functional defects in inpp5e-knockdown embryos. Together, our data indicate that Inpp5e functions as a key regulator of cell polarity in the renal epithelia, by inhibiting PtdIns(3,4,5)P3 and subsequently stabilizing PtdIns(4,5)P2 and recruiting Ezrin, F-actin, and basal bodies to the apical membrane, and suggest a possible novel approach for treating human ciliopathies.
Collapse
Affiliation(s)
- Wenyan Xu
- Department of Molecular and Cell Biology, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Miaomiao Jin
- Department of Molecular and Cell Biology, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Ruikun Hu
- Department of Molecular and Cell Biology, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Hong Wang
- Department of Molecular and Cell Biology, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Fan Zhang
- Department of Molecular and Cell Biology, Tongji University School of Life Sciences and Technology, Shanghai, China
| | - Shiaulou Yuan
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; and
| | - Ying Cao
- Department of Molecular and Cell Biology, Tongji University School of Life Sciences and Technology, Shanghai, China; .,Tongji University and Shanghai Changzheng Hospital Joint Research Center for Translational Medicine, Changzheng Hospital, Shanghai, China
| |
Collapse
|
179
|
The expanding phenotypic spectra of kidney diseases: insights from genetic studies. Nat Rev Nephrol 2016; 12:472-83. [PMID: 27374918 DOI: 10.1038/nrneph.2016.87] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Next-generation sequencing (NGS) has led to the identification of previously unrecognized phenotypes associated with classic kidney disease genes. In addition to improving diagnostics for genetically heterogeneous diseases and enabling a faster rate of gene discovery, NGS has enabled an expansion and redefinition of nephrogenetic disease categories. Findings from these studies raise the question of whether disease diagnoses should be made on clinical grounds, on genetic evidence or a combination thereof. Here, we discuss the major kidney disease-associated genes and gene categories for which NGS has expanded the phenotypic spectrum. For example, COL4A3-5 genes, which are classically associated with Alport syndrome, are now understood to also be involved in the aetiology of focal segmental glomerulosclerosis. DGKE, which is associated with nephrotic syndrome, is also mutated in patients with atypical haemolytic uraemic syndrome. We examine how a shared genetic background between diverse clinical phenotypes can provide insight into the function of genes and novel links with essential pathophysiological mechanisms. In addition, we consider genetic and epigenetic factors that contribute to the observed phenotypic heterogeneity of kidney diseases and discuss the challenges in the interpretation of genetic data. Finally, we discuss the implications of the expanding phenotypic spectra associated with kidney disease genes for clinical practice, genetic counselling and personalized care, and present our recommendations for the use of NGS-based tests in routine nephrology practice.
Collapse
|
180
|
Kittel-Schneider S, Lorenz C, Auer J, Weißflog L, Reif A. DGKH genetic risk variant influences gene expression in bipolar affective disorder. J Affect Disord 2016; 198:148-57. [PMID: 27016658 DOI: 10.1016/j.jad.2016.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/03/2016] [Accepted: 03/09/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND DGKH is a replicated risk gene of bipolar disorder (BD). However, the pathophysiological role of the coded protein, diacylglycerol kinase eta, remains elusive. METHODS In this proof-of-concept study we isolated mRNA from peripheral blood and fibroblasts of heterozygote DGKH risk variants carriers (risk haplotype rs994856/rs9525580/rs9525584 GAT) with bipolar disorder and non-risk variant carriers with and without bipolar disorder. Gene expression of DGKH1, DGKH2, INPP5E, PI4K2B, PIK4CA, PLCG2, PRKCA, PRKCD, PRKCE and PRKCH was analysed by qRT PCR. RESULTS DGKH1 expression was increased in peripheral blood of risk variant carriers (p=0.027). In fibroblast cells, PRKCD expression was significantly increased in DGKH GAT carriers (p=0.037). Patients with a current depressive episode had lower PRKCD levels and lithium treatment was associated with increased PRKCA expression (p=0.005, and p=0.033). LIMITATIONS No homozygote risk variant carriers and no healthy risk variant carriers were included due to their infrequency. Bipolar patients carrying the GAT haplotype were older with marginal significance, as age had also an influence on DGKH expression levels but not on PRKCD levels, replication with better age-matched samples and also bigger samples are needed. CONCLUSIONS The results add evidence for the role of fibroblast cells and peripheral blood as useful tools in the functional characterisation of risk gene variants. Also a combination of genotyping and peripheral gene expression analysis could proof useful in the search of biomarkers for endophenotypes. Furthermore, we could confirm the role of the inositol-1,4,5-triphosphate second messenger pathway and protein kinase C in the pathogenesis of BD.
Collapse
Affiliation(s)
- Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany.
| | - Carina Lorenz
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Joyce Auer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Lena Weißflog
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt, Germany
| |
Collapse
|
181
|
Hasegawa J, Iwamoto R, Otomo T, Nezu A, Hamasaki M, Yoshimori T. Autophagosome-lysosome fusion in neurons requires INPP5E, a protein associated with Joubert syndrome. EMBO J 2016; 35:1853-67. [PMID: 27340123 DOI: 10.15252/embj.201593148] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/27/2016] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a multistep membrane traffic pathway. In contrast to autophagosome formation, the mechanisms underlying autophagosome-lysosome fusion remain largely unknown. Here, we describe a novel autophagy regulator, inositol polyphosphate-5-phosphatase E (INPP5E), involved in autophagosome-lysosome fusion process. In neuronal cells, INPP5E knockdown strongly inhibited autophagy by impairing the fusion step. A fraction of INPP5E is localized to lysosomes, and its membrane anchoring and enzymatic activity are necessary for autophagy. INPP5E decreases lysosomal phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), one of the substrates of the phosphatase, that counteracts cortactin-mediated actin filament stabilization on lysosomes. Lysosomes require actin filaments on their surface for fusing with autophagosomes. INPP5E is one of the genes responsible for Joubert syndrome, a rare brain abnormality, and mutations found in patients with this disease caused defects in autophagy. Taken together, our data reveal a novel role of phosphoinositide on lysosomes and an association between autophagy and neuronal disease.
Collapse
Affiliation(s)
- Junya Hasegawa
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan Department of Genetics, Graduate School of Medicine Osaka University, Osaka, Japan
| | - Ryo Iwamoto
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan
| | - Takanobu Otomo
- Department of Genetics, Graduate School of Medicine Osaka University, Osaka, Japan
| | - Akiko Nezu
- Department of Genetics, Graduate School of Medicine Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan Department of Genetics, Graduate School of Medicine Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan Department of Genetics, Graduate School of Medicine Osaka University, Osaka, Japan
| |
Collapse
|
182
|
Abstract
Primary cilia are organelles that are present on many different cell types, either transiently or permanently. They play a crucial role in receiving signals from the environment and passing these signals to other parts of the cell. In that way, they are involved in diverse processes such as adipocyte differentiation and olfactory sensation. Mutations in genes coding for ciliary proteins often have pleiotropic effects and lead to clinical conditions, ciliopathies, with multiple symptoms. In this study, we reviewed observations from ciliopathies with obesity as one of the symptoms. It shows that variation in cilia-related genes is itself not a major cause of obesity in the population but may be a part of the multifactorial aetiology of this complex condition. Both common polymorphisms and rare deleterious variants may contribute to the obesity risk. Genotype-phenotype relationships have been noticed. Among the ciliary genes, obesity differs with regard to severity and age of onset, which may relate to the influence of each gene on the balance between pro- and anti-adipogenic processes. Analysis of the function and location of the proteins encoded by these ciliary genes suggests that obesity is more linked to activities at the basal area of the cilium, including initiation of the intraflagellar transport, but less to the intraflagellar transport itself. Regarding the role of cilia, three possible mechanistic processes underlying obesity are described: adipogenesis, neuronal food intake regulation and food odour perception.
Collapse
|
183
|
Verhey KJ, Yang W. Permeability barriers for generating a unique ciliary protein and lipid composition. Curr Opin Cell Biol 2016; 41:109-16. [PMID: 27232950 DOI: 10.1016/j.ceb.2016.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 01/08/2023]
Abstract
Cilia (and flagella) are microtubule-based protrusions that are found in single or multiple copies on the surface of most eukaryotic cells. Defects in cilia formation and/or function have now been correlated with an expanding spectrum of human genetic diseases termed ciliopathies. Recent work indicates that cilia are indeed a bona fide organelle with a unique protein and lipid content that enables specific cellular functions. Despite the physiological and clinical relevance of cilia, our understanding of how a unique protein and lipid composition is generated for this organelle remains poor. Here we review recent work on the mechanisms that determine the protein and lipid content, and thus the functional outputs, of this unique organelle.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
184
|
Jeong JY, Kweon HJ, Suh BC. Dual Regulation of R-Type CaV2.3 Channels by M1 Muscarinic Receptors. Mol Cells 2016; 39:322-9. [PMID: 26923189 PMCID: PMC4844939 DOI: 10.14348/molcells.2016.2292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/27/2022] Open
Abstract
Voltage-gated Ca(2+) (CaV) channels are dynamically modulated by G protein-coupled receptors (GPCR). The M1 muscarinic receptor stimulation is known to enhance CaV2.3 channel gating through the activation of protein kinase C (PKC). Here, we found that M1 receptors also inhibit CaV2.3 currents when the channels are fully activated by PKC. In whole-cell configuration, the application of phorbol 12-myristate 13-acetate (PMA), a PKC activator, potentiated CaV2.3 currents by ∼two-fold. After the PMA-induced potentiation, stimulation of M1 receptors decreased the CaV2.3 currents by 52 ± 8%. We examined whether the depletion of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is responsible for the muscarinic suppression of CaV2.3 currents by using two methods: the Danio rerio voltage-sensing phosphatase (Dr-VSP) system and the rapamycin-induced translocatable pseudojanin (PJ) system. First, dephosphorylation of PI(4,5)P2 to phosphatidylinositol 4-phosphate (PI(4)P) by Dr-VSP significantly suppressed CaV2.3 currents, by 53 ± 3%. Next, dephosphorylation of both PI(4)P and PI(4,5)P2 to PI by PJ translocation further decreased the current by up to 66 ± 3%. The results suggest that CaV2.3 currents are modulated by the M1 receptor in a dual mode-that is, potentiation through the activation of PKC and suppression by the depletion of membrane PI(4,5)P2. Our results also suggest that there is rapid turnover between PI(4)P and PI(4,5)P2 in the plasma membrane.
Collapse
Affiliation(s)
- Jin-Young Jeong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Hae-Jin Kweon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988,
Korea
| |
Collapse
|
185
|
Fansa EK, Kösling SK, Zent E, Wittinghofer A, Ismail S. PDE6δ-mediated sorting of INPP5E into the cilium is determined by cargo-carrier affinity. Nat Commun 2016; 7:11366. [PMID: 27063844 PMCID: PMC5512577 DOI: 10.1038/ncomms11366] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 03/18/2016] [Indexed: 01/06/2023] Open
Abstract
The phosphodiesterase 6 delta subunit (PDE6δ) shuttles several farnesylated cargos between membranes. The cargo sorting mechanism between cilia and other compartments is not understood. Here we show using the inositol polyphosphate 5'-phosphatase E (INPP5E) and the GTP-binding protein (Rheb) that cargo sorting depends on the affinity towards PDE6δ and the specificity of cargo release. High-affinity cargo is exclusively released by the ciliary transport regulator Arl3, while low-affinity cargo is released by Arl3 and its non-ciliary homologue Arl2. Structures of PDE6δ/cargo complexes reveal the molecular basis of the sorting signal which depends on the residues at the -1 and -3 positions relative to farnesylated cysteine. Structure-guided mutation allows the generation of a low-affinity INPP5E mutant which loses exclusive ciliary localization. We postulate that the affinity to PDE6δ and the release by Arl2/3 in addition to a retention signal are the determinants for cargo sorting and enrichment at its destination.
Collapse
Affiliation(s)
- Eyad Kalawy Fansa
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | - Eldar Zent
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Alfred Wittinghofer
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Shehab Ismail
- CR-UK Beatson Institute, Garscube Estate Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
186
|
Hakim S, Dyson JM, Feeney SJ, Davies EM, Sriratana A, Koenig MN, Plotnikova OV, Smyth IM, Ricardo SD, Hobbs RM, Mitchell CA. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet 2016; 25:2295-2313. [PMID: 27056978 DOI: 10.1093/hmg/ddw097] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022] Open
Abstract
Polycystic kidney disease (PKD) is a common cause of renal failure with few effective treatments. INPP5E is an inositol polyphosphate 5-phosphatase that dephosphorylates phosphoinositide 3-kinase (PI3K)-generated PI(3,4,5)P3 and is mutated in ciliopathy syndromes. Germline Inpp5e deletion is embryonically lethal, attributed to cilia stability defects, and is associated with polycystic kidneys. However, the molecular mechanisms responsible for PKD development upon Inpp5e loss remain unknown. Here, we show conditional inactivation of Inpp5e in mouse kidney epithelium results in severe PKD and renal failure, associated with a partial reduction in cilia number and hyperactivation of PI3K/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signaling. Treatment with an mTORC1 inhibitor improved kidney morphology and function, but did not affect cilia number or length. Therefore, we identify Inpp5e as an essential inhibitor of the PI3K/Akt/mTORC1 signaling axis in renal epithelial cells, and demonstrate a critical role for Inpp5e-dependent mTORC1 regulation in PKD suppression.
Collapse
Affiliation(s)
- Sandra Hakim
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jennifer M Dyson
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sandra J Feeney
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Elizabeth M Davies
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Absorn Sriratana
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Monica N Koenig
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Olga V Plotnikova
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ian M Smyth
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Robin M Hobbs
- Development and Stem Cell program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Christina A Mitchell
- Cancer Program, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
187
|
de Goede C, Yue WW, Yan G, Ariyaratnam S, Chandler KE, Downes L, Khan N, Mohan M, Lowe M, Banka S. Role of reverse phenotyping in interpretation of next generation sequencing data and a review of INPP5E related disorders. Eur J Paediatr Neurol 2016; 20:286-295. [PMID: 26748598 DOI: 10.1016/j.ejpn.2015.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Next Generation Sequencing (NGS) is a useful tool in diagnosis of rare disorders but the interpretation of data can be challenging in clinical settings. We present results of extended studies on a family of multiple members with global developmental delay and learning disability, where another research group postulated the underlying cause to be a homozygous RABL6 missense variant. METHODS AND RESULTS Using data from the Exome Variant Server, we show that missense RABL6 variants are unlikely to cause early onset rare developmental disorder. Protein structural analysis, cellular functional studies and reverse phenotyping proved that the condition in this family is due to a homozygous INPP5E mutation. An in-depth review of mutational and phenotypic spectrum associated with INPP5E demonstrated that mutations in this gene lead to a range of cilliopathy-phenotypes. DISCUSSION We use this study as an example to demonstrate the importance of careful clinical evaluation of multiple family members, reverse phenotyping, considering the unknown phenotypic variability of rare diseases, utilizing publically available genomic databases and conducting appropriate bioinformatics and functional studies while interpreting results from NGS in uncertain cases. We emphasize that interpretation of NGS data is an iterative process and its dynamic nature should be explained to patients and families. Our study shows that developmental delay, intellectual disability, hypotonia and ocular motor apraxia are common in INPP5E-related disorders and considerable intra-familial phenotypic variability is possible. We have compiled the INPP5E mutational spectrum and provided novel insights into their molecular mechanisms.
Collapse
Affiliation(s)
- Christian de Goede
- Department of Paediatric Neurology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK; Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Guanhua Yan
- Faculty of Life Sciences, University of Manchester, UK
| | - Shyamala Ariyaratnam
- Department of Community and Neurodevelopmental Paediatrics, Royal Blackburn Hospital, East Lancashire Hospital NHS Trust, Blackburn, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Downes
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nasaim Khan
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Meyyammai Mohan
- Department of Ophthalmology, Royal Blackburn Hospital, East Lancashire Hospital NHS Trust, Blackburn, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
188
|
Phosphatidylinositol phosphate kinase PIPKIγ and phosphatase INPP5E coordinate initiation of ciliogenesis. Nat Commun 2016; 7:10777. [PMID: 26916822 PMCID: PMC4773430 DOI: 10.1038/ncomms10777] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/19/2016] [Indexed: 02/08/2023] Open
Abstract
Defective primary cilia are causative to a wide spectrum of human genetic disorders, termed ciliopathies. Although the regulation of ciliogenesis is intensively studied, how it is initiated remains unclear. Here we show that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) and inositol polyphosphate-5-phosphatase E (INPP5E), a Joubert syndrome protein, localize to the centrosome and coordinate the initiation of ciliogenesis. PIPKIγ counteracts INPP5E in regulating tau-tubulin kinase-2 (TTBK2) recruitment to the basal body, which promotes the removal of microtubule capping protein CP110 and the subsequent axoneme elongation. Interestingly, INPP5E and its product—PtdIns(4)P—accumulate at the centrosome/basal body in non-ciliated, but not ciliated, cells. PtdIns(4)P binding to TTBK2 and the distal appendage protein CEP164 compromises the TTBK2-CEP164 interaction and inhibits the recruitment of TTBK2. Our results reveal that PtdIns(4)P homoeostasis, coordinated by PIPKIγ and INPP5E at the centrosome/ciliary base, is vital for ciliogenesis by regulating the CEP164-dependent recruitment of TTBK2. The primary cilium is essential for embryonic development and tissue pattern formation. Here the authors show that PIPKIγ localizes to the basal body of the primary cilium and cooperates with the Joubert Syndrome associated protein INPP5E to regulate the initiation of ciliogenesis.
Collapse
|
189
|
Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem Soc Trans 2016; 44:240-52. [DOI: 10.1042/bst20150214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.
Collapse
|
190
|
Abstract
The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
191
|
Cellular Mechanisms of Ciliary Length Control. Cells 2016; 5:cells5010006. [PMID: 26840332 PMCID: PMC4810091 DOI: 10.3390/cells5010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022] Open
Abstract
Cilia and flagella are evolutionarily conserved, membrane-bound, microtubule-based organelles on the surface of most eukaryotic cells. They play important roles in coordinating a variety of signaling pathways during growth, development, cell mobility, and tissue homeostasis. Defects in ciliary structure or function are associated with multiple human disorders called ciliopathies. These diseases affect diverse tissues, including, but not limited to the eyes, kidneys, brain, and lungs. Many processes must be coordinated simultaneously in order to initiate ciliogenesis. These include cell cycle, vesicular trafficking, and axonemal extension. Centrioles play a central role in both cell cycle progression and ciliogenesis, making the transition between basal bodies and mitotic spindle organizers integral to both processes. The maturation of centrioles involves a functional shift from cell division toward cilium nucleation which takes place concurrently with its migration and fusion to the plasma membrane. Several proteinaceous structures of the distal appendages in mother centrioles are required for this docking process. Ciliary assembly and maintenance requires a precise balance between two indispensable processes; so called assembly and disassembly. The interplay between them determines the length of the resulting cilia. These processes require a highly conserved transport system to provide the necessary substances at the tips of the cilia and to recycle ciliary turnover products to the base using a based microtubule intraflagellar transport (IFT) system. In this review; we discuss the stages of ciliogenesis as well as mechanisms controlling the lengths of assembled cilia.
Collapse
|
192
|
Hanke-Gogokhia C, Wu Z, Gerstner CD, Frederick JM, Zhang H, Baehr W. Arf-like Protein 3 (ARL3) Regulates Protein Trafficking and Ciliogenesis in Mouse Photoreceptors. J Biol Chem 2016; 291:7142-55. [PMID: 26814127 DOI: 10.1074/jbc.m115.710954] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Indexed: 12/22/2022] Open
Abstract
Arf-like protein 3 (ARL3) is a ubiquitous small GTPase expressed in ciliated cells of plants and animals. Germline deletion ofArl3in mice causes multiorgan ciliopathy reminiscent of Bardet-Biedl or Joubert syndromes. As photoreceptors are elegantly compartmentalized and have cilia, we probed the function of ARL3 (ADP-ribosylation factor (Arf)-like 3 protein) by generating rod photoreceptor-specific (prefix(rod)) and retina-specific (prefix(ret))Arl3deletions. In predegenerate(rod)Arl3(-/-)mice, lipidated phototransduction proteins showed trafficking deficiencies, consistent with the role of ARL3 as a cargo displacement factor for lipid-binding proteins. By contrast,(ret)Arl3(-/-)rods and cones expressing Cre recombinase during embryonic development formed neither connecting cilia nor outer segments and degenerated rapidly. Absence of cilia infers participation of ARL3 in ciliogenesis and axoneme formation. Ciliogenesis was rescued, and degeneration was reversed in part by subretinal injection of adeno-associated virus particles expressing ARL3-EGFP. The conditional knock-out phenotypes permitted identification of two ARL3 functions, both in the GTP-bound form as follows: one as a regulator of intraflagellar transport participating in photoreceptor ciliogenesis and the other as a cargo displacement factor transporting lipidated protein to the outer segment. Surprisingly, a farnesylated inositol polyphosphate phosphatase only trafficked from the endoplasmic reticulum to the Golgi, thereby excluding it from a role in photoreceptor cilia physiology.
Collapse
Affiliation(s)
- Christin Hanke-Gogokhia
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and the Department of Biochemistry and Biology, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Zhijian Wu
- the NEI, National Institutes of Health, Bethesda, Maryland 20892
| | - Cecilia D Gerstner
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and
| | - Jeanne M Frederick
- From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and
| | - Houbin Zhang
- the Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan, China, the School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan, China, and
| | - Wolfgang Baehr
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132, From the Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, and the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
193
|
Slaats GG, Isabella CR, Kroes HY, Dempsey JC, Gremmels H, Monroe GR, Phelps IG, Duran KJ, Adkins J, Kumar SA, Knutzen DM, Knoers NV, Mendelsohn NJ, Neubauer D, Mastroyianni SD, Vogt J, Worgan L, Karp N, Bowdin S, Glass IA, Parisi MA, Otto EA, Johnson CA, Hildebrandt F, van Haaften G, Giles RH, Doherty D. MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J Med Genet 2016; 53:62-72. [PMID: 26490104 PMCID: PMC5060087 DOI: 10.1136/jmedgenet-2015-103250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Joubert syndrome (JS) is a recessive ciliopathy characterised by a distinctive brain malformation 'the molar tooth sign'. Mutations in >27 genes cause JS, and mutations in 12 of these genes also cause Meckel-Gruber syndrome (MKS). The goals of this work are to describe the clinical features of MKS1-related JS and determine whether disease causing MKS1 mutations affect cellular phenotypes such as cilium number, length and protein content as potential mechanisms underlying JS. METHODS We measured cilium number, length and protein content (ARL13B and INPP5E) by immunofluorescence in fibroblasts from individuals with MKS1-related JS and in a three-dimensional (3D) spheroid rescue assay to test the effects of disease-related MKS1 mutations. RESULTS We report MKS1 mutations (eight of them previously unreported) in nine individuals with JS. A minority of the individuals with MKS1-related JS have MKS features. In contrast to the truncating mutations associated with MKS, all of the individuals with MKS1-related JS carry ≥ 1 non-truncating mutation. Fibroblasts from individuals with MKS1-related JS make normal or fewer cilia than control fibroblasts, their cilia are more variable in length than controls, and show decreased ciliary ARL13B and INPP5E. Additionally, MKS1 mutant alleles have similar effects in 3D spheroids. CONCLUSIONS MKS1 functions in the transition zone at the base of the cilium to regulate ciliary INPP5E content, through an ARL13B-dependent mechanism. Mutations in INPP5E also cause JS, so our findings in patient fibroblasts support the notion that loss of INPP5E function, due to either mutation or mislocalisation, is a key mechanism underlying JS, downstream of MKS1 and ARL13B.
Collapse
Affiliation(s)
- Gisela G. Slaats
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hester Y. Kroes
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Glen R. Monroe
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Karen J. Duran
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jonathan Adkins
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sairam A. Kumar
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dana M. Knutzen
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Nine V. Knoers
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nancy J. Mendelsohn
- Department of Medical Genetics, Children’s Hospitals & Clinics of Minnesota, Minneapolis, MN, USA
| | - David Neubauer
- Department of Child, Adolescent and Developmental Neurology, University Children’s Hospital Ljubljana, Ljubljana, Slovenia
| | | | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women’s Hospital, Birmingham, UK
| | - Lisa Worgan
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, Australia
| | - Natalya Karp
- Medical Genetics Program, Department of Pediatrics, London Health Science Centre, University of Western Ontario, London, Ontario, Canada
| | - Sarah Bowdin
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ian A. Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Melissa A. Parisi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Edgar A. Otto
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Colin A. Johnson
- Section of Ophthalmology and Neuroscience, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds, UK
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gijs van Haaften
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel H. Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| |
Collapse
|
194
|
Izawa I, Goto H, Kasahara K, Inagaki M. Current topics of functional links between primary cilia and cell cycle. Cilia 2015; 4:12. [PMID: 26719793 PMCID: PMC4696186 DOI: 10.1186/s13630-015-0021-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022] Open
Abstract
Primary cilia, microtubule-based sensory structures, orchestrate various critical signals during development and tissue homeostasis. In view of the rising interest into the reciprocal link between ciliogenesis and cell cycle, we discuss here several recent advances to understand the molecular link between the individual step of ciliogenesis and cell cycle control. At the onset of ciliogenesis (the transition from centrosome to basal body), distal appendage proteins have been established as components indispensable for the docking of vesicles at the mother centriole. In the initial step of axonemal extension, CP110, Ofd1, and trichoplein, key negative regulators of ciliogenesis, are found to be removed by a kinase-dependent mechanism, autophagy, and ubiquitin–proteasome system, respectively. Of note, their disposal functions as a restriction point to decide that the axonemal nucleation and extension begin. In the elongation step, Nde1, a negative regulator of ciliary length, is revealed to be ubiquitylated and degraded by CDK5-SCFFbw7 in a cell cycle-dependent manner. With regard to ciliary length control, it has been uncovered in flagellar shortening of Chlamydomonas that cilia itself transmit a ciliary length signal to cytoplasm. At the ciliary resorption step upon cell cycle re-entry, cilia are found to be disassembled not only by Aurora A-HDAC6 pathway but also by Nek2-Kif24 and Plk1-Kif2A pathways through their microtubule-depolymerizing activity. On the other hand, it is becoming evident that the presence of primary cilia itself functions as a structural checkpoint for cell cycle re-entry. These data suggest that ciliogenesis and cell cycle intimately link each other, and further elucidation of these mechanisms will contribute to understanding the pathology of cilia-related disease including cancer and discovering targets of therapeutic interventions.
Collapse
Affiliation(s)
- Ichiro Izawa
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan
| | - Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan ; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan ; Department of Oncology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 467-8603 Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan ; Department of Cellular Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| |
Collapse
|
195
|
Schueler M, Halbritter J, Phelps IG, Braun DA, Otto EA, Porath JD, Gee HY, Shendure J, O'Roak BJ, Lawson JA, Nabhan MM, Soliman NA, Doherty D, Hildebrandt F. Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies. J Med Genet 2015; 53:208-14. [PMID: 26673778 DOI: 10.1136/jmedgenet-2015-103304] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The term nephronophthisis-related ciliopathies (NPHP-RC) describes a group of rare autosomal-recessive cystic kidney diseases, characterised by broad genetic and clinical heterogeneity. NPHP-RC is frequently associated with extrarenal manifestations and accounts for the majority of genetically caused chronic kidney disease (CKD) during childhood and adolescence. Generation of a molecular diagnosis has been impaired by this broad genetic heterogeneity. However, recently developed high-throughput exon sequencing techniques represent powerful and efficient tools to screen large cohorts for dozens of causative genes. METHODS Therefore, we performed massively multiplexed targeted sequencing using the modified molecular inversion probe strategy (MIPs) in an international cohort of 384 patients diagnosed with NPHP-RC. RESULTS As a result, we established the molecular diagnoses in 81/384 unrelated individuals (21.1%). We detected 127 likely disease-causing mutations in 18 of 34 evaluated NPHP-RC genes, 22 of which were novel. We further compared a subgroup of current findings to the results of a previous study in which we used an array-based microfluidic PCR technology in the same cohort. While 78 likely disease-causing mutations were previously detected by the array-based microfluidic PCR, the MIPs approach identified 94 likely pathogenic mutations. Compared with the previous approach, MIPs redetected 66 out of 78 variants and 28 previously unidentified variants, for a total of 94 variants. CONCLUSIONS In summary, we demonstrate that the modified MIPs technology is a useful approach to screen large cohorts for a multitude of established NPHP genes in order to identify the underlying molecular cause. Combined application of two independent library preparation and sequencing techniques, however, may still be indicated for Mendelian diseases with extensive genetic heterogeneity in order to further increase diagnostic sensitivity.
Collapse
Affiliation(s)
- Markus Schueler
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jan Halbritter
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA Divison of Nephrology, Department of Internal Medicine, University Clinic Leipzig, Leipzig, Germany
| | - Ian G Phelps
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniela A Braun
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan D Porath
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Heon Yung Gee
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jay Shendure
- University of Washington, Genome Sciences, Seattle, Washington, USA
| | - Brian J O'Roak
- Oregon Health and Science University, Molecular and Medical Genetics, Portland, Oregon, USA
| | - Jennifer A Lawson
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marwa M Nabhan
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Neveen A Soliman
- Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt
| | - Dan Doherty
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Friedhelm Hildebrandt
- Divison of Nephology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
196
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
197
|
Garcia-Gonzalo FR, Phua SC, Roberson EC, Garcia G, Abedin M, Schurmans S, Inoue T, Reiter JF. Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. Dev Cell 2015; 34:400-409. [PMID: 26305592 DOI: 10.1016/j.devcel.2015.08.001] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Abstract
Primary cilia interpret vertebrate Hedgehog (Hh) signals. Why cilia are essential for signaling is unclear. One possibility is that some forms of signaling require a distinct membrane lipid composition, found at cilia. We found that the ciliary membrane contains a particular phosphoinositide, PI(4)P, whereas a different phosphoinositide, PI(4,5)P2, is restricted to the membrane of the ciliary base. This distribution is created by Inpp5e, a ciliary phosphoinositide 5-phosphatase. Without Inpp5e, ciliary PI(4,5)P2 levels are elevated and Hh signaling is disrupted. Inpp5e limits the ciliary levels of inhibitors of Hh signaling, including Gpr161 and the PI(4,5)P2-binding protein Tulp3. Increasing ciliary PI(4,5)P2 levels or conferring the ability to bind PI(4)P on Tulp3 increases the ciliary localization of Tulp3. Lowering Tulp3 in cells lacking Inpp5e reduces ciliary Gpr161 levels and restores Hh signaling. Therefore, Inpp5e regulates ciliary membrane phosphoinositide composition, and Tulp3 reads out ciliary phosphoinositides to control ciliary protein localization, enabling Hh signaling.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Siew C Phua
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Elle C Roberson
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Monika Abedin
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-Research Centre, Université de Liège, 4000-Liège, Belgium
| | - Takanari Inoue
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| |
Collapse
|
198
|
Srour M, Hamdan F, McKnight D, Davis E, Mandel H, Schwartzentruber J, Martin B, Patry L, Nassif C, Dionne-Laporte A, Ospina L, Lemyre E, Massicotte C, Laframboise R, Maranda B, Labuda D, Décarie JC, Rypens F, Goldsher D, Fallet-Bianco C, Soucy JF, Laberge AM, Maftei C, Boycott K, Brais B, Boucher RM, Rouleau G, Katsanis N, Majewski J, Elpeleg O, Kukolich M, Shalev S, Michaud J, Michaud JL. Joubert Syndrome in French Canadians and Identification of Mutations in CEP104. Am J Hum Genet 2015; 97:744-53. [PMID: 26477546 DOI: 10.1016/j.ajhg.2015.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022] Open
Abstract
Joubert syndrome (JBTS) is a primarily autosomal-recessive disorder characterized by a distinctive mid-hindbrain and cerebellar malformation, oculomotor apraxia, irregular breathing, developmental delay, and ataxia. JBTS is a genetically heterogeneous ciliopathy. We sought to characterize the genetic landscape associated with JBTS in the French Canadian (FC) population. We studied 43 FC JBTS subjects from 35 families by combining targeted and exome sequencing. We identified pathogenic (n = 32 families) or possibly pathogenic (n = 2 families) variants in genes previously associated with JBTS in all of these subjects, except for one. In the latter case, we found a homozygous splice-site mutation (c.735+2T>C) in CEP104. Interestingly, we identified two additional non-FC JBTS subjects with mutations in CEP104; one of these subjects harbors a maternally inherited nonsense mutation (c.496C>T [p.Arg166*]) and a de novo splice-site mutation (c.2572-2A>G), whereas the other bears a homozygous frameshift mutation (c.1328_1329insT [p.Tyr444fs*3]) in CEP104. Previous studies have shown that CEP104 moves from the mother centriole to the tip of the primary cilium during ciliogenesis. Knockdown of CEP104 in retinal pigment epithelial (RPE1) cells resulted in severe defects in ciliogenesis. These observations suggest that CEP104 acts early during cilia formation by regulating the conversion of the mother centriole into the cilia basal body. We conclude that disruption of CEP104 causes JBTS. Our study also reveals that the cause of JBTS has been elucidated in the great majority of our FC subjects (33/35 [94%] families), even though JBTS shows substantial locus and allelic heterogeneity in this population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques L Michaud
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada; Department of Pediatrics, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Neurosciences, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
199
|
Jensen VL, Li C, Bowie RV, Clarke L, Mohan S, Blacque OE, Leroux MR. Formation of the transition zone by Mks5/Rpgrip1L establishes a ciliary zone of exclusion (CIZE) that compartmentalises ciliary signalling proteins and controls PIP2 ciliary abundance. EMBO J 2015; 34:2537-56. [PMID: 26392567 PMCID: PMC4609185 DOI: 10.15252/embj.201488044] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 08/22/2015] [Accepted: 08/26/2015] [Indexed: 01/09/2023] Open
Abstract
Cilia are thought to harbour a membrane diffusion barrier within their transition zone (TZ) that compartmentalises signalling proteins. How this "ciliary gate" assembles and functions remains largely unknown. Contrary to current models, we present evidence that Caenorhabditis elegans MKS-5 (orthologue of mammalian Mks5/Rpgrip1L/Nphp8 and Rpgrip1) may not be a simple structural scaffold for anchoring > 10 different proteins at the TZ, but instead, functions as an assembly factor. This activity is needed to form TZ ultrastructure, which comprises Y-shaped axoneme-to-membrane connectors. Coiled-coil and C2 domains within MKS-5 enable TZ localisation and functional interactions with two TZ modules, consisting of Meckel syndrome (MKS) and nephronophthisis (NPHP) proteins. Discrete roles for these modules at basal body-associated transition fibres and TZ explain their redundant functions in making essential membrane connections and thus sealing the ciliary compartment. Furthermore, MKS-5 establishes a ciliary zone of exclusion (CIZE) at the TZ that confines signalling proteins, including GPCRs and NPHP-2/inversin, to distal ciliary subdomains. The TZ/CIZE, potentially acting as a lipid gate, limits the abundance of the phosphoinositide PIP2 within cilia and is required for cell signalling. Together, our findings suggest a new model for Mks5/Rpgrip1L in TZ assembly and function that is essential for establishing the ciliary signalling compartment.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel V Bowie
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lara Clarke
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Swetha Mohan
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
200
|
Phua SC, Lin YC, Inoue T. An intelligent nano-antenna: Primary cilium harnesses TRP channels to decode polymodal stimuli. Cell Calcium 2015; 58:415-22. [PMID: 25828566 PMCID: PMC4564334 DOI: 10.1016/j.ceca.2015.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/30/2022]
Abstract
The primary cilium is a solitary hair-like organelle on the cell surface that serves as an antenna sensing ever-changing environmental conditions. In this review, we will first recapitulate the molecular basis of the polymodal sensory function of the primary cilia, specifically focusing on transient receptor potential (TRP) channels that accumulate inside the organelle and conduct calcium ions (Ca(2+)). Each subfamily member, namely TRPP2 TRPP3, TRPC1 and TRPV4, is gated by multiple environmental factors, including chemical (receptor ligands, intracellular second messengers such as Ca(2+)), mechanical (fluid shear stress, hypo-osmotic swelling), or physical (temperature, voltage) stimuli. Both activity and heterodimer compositions of the TRP channels may be dynamically regulated for precise tuning to the varying dynamic ranges of the individual input stimuli. We will thus discuss the potential regulation of TRP channels by local second messengers. Despite its reported importance in embryonic patterning and tissue morphogenesis, the precise functional significance of the downstream Ca(2+) signals of the TRP channels remains unknown. We will close our review by featuring recent technological advances in visualizing and analyzing signal transduction inside the primary cilia, together with current perspectives illuminating the functional significance of intraciliary Ca(2+) signals.
Collapse
Affiliation(s)
- Siew Cheng Phua
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Yu-Chun Lin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Takanari Inoue
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Center for Cell Dynamics, Institute for Basic Biomedical Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Precursory Research for Embryonic Science and Technology (PRESTO) Investigator, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| |
Collapse
|