151
|
Molle D, Maiuri P, Boireau S, Bertrand E, Knezevich A, Marcello A, Basyuk E. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 2007; 4:36. [PMID: 17537237 PMCID: PMC1904240 DOI: 10.1186/1742-4690-4-36] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/30/2007] [Indexed: 11/23/2022] Open
Abstract
HIV-1 transcription is tightly regulated: silent in long-term latency and highly active in acutely-infected cells. Transcription is activated by the viral protein Tat, which recruits the elongation factor P-TEFb by binding the TAR sequence present in nascent HIV-1 RNAs. In this study, we analyzed the dynamic of the TAR:Tat:P-TEFb complex in living cells, by performing FRAP experiments at HIV-1 transcription sites. Our results indicate that a large fraction of Tat present at these sites is recruited by Cyclin T1. We found that in the presence of Tat, Cdk9 remained bound to nascent HIV-1 RNAs for 71s. In contrast, when transcription was activated by PMA/ionomycin, in the absence of Tat, Cdk9 turned-over rapidly and resided on the HIV-1 promoter for only 11s. Thus, the mechanism of trans-activation determines the residency time of P-TEFb at the HIV-1 gene, possibly explaining why Tat is such a potent transcriptional activator. In addition, we observed that Tat occupied HIV-1 transcription sites for 55s, suggesting that the TAR:Tat:P-TEFb complex dissociates from the polymerase following transcription initiation, and undergoes subsequent cycles of association/dissociation.
Collapse
Affiliation(s)
- Dorothée Molle
- IGMM-CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France
| | - Paolo Maiuri
- Laboratory of Molecular Virology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | | | - Edouard Bertrand
- IGMM-CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France
| | - Anna Knezevich
- Laboratory of Molecular Virology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | - Eugenia Basyuk
- IGMM-CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
152
|
Buvoli M, Buvoli A, Leinwand LA. Interplay between exonic splicing enhancers, mRNA processing, and mRNA surveillance in the dystrophic Mdx mouse. PLoS One 2007; 2:e427. [PMID: 17487273 PMCID: PMC1855434 DOI: 10.1371/journal.pone.0000427] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/15/2007] [Indexed: 02/05/2023] Open
Abstract
Background Pre-mRNA splicing, the removal of introns from RNA, takes place within the spliceosome, a macromolecular complex composed of five small nuclear RNAs and a large number of associated proteins. Spliceosome assembly is modulated by the 5′ and 3′ splice site consensus sequences situated at the ends of each intron, as well as by exonic and intronic splicing enhancers/silencers recognized by SR and hnRNP proteins. Nonsense mutations introducing a premature termination codon (PTC) often result in the activation of cellular quality control systems that reduce mRNA levels or alter the mRNA splicing pattern. The mdx mouse, a commonly used genetic model for Duchenne muscular dystrophy (DMD), lacks dystrophin by virtue of a premature termination codon (PTC) in exon 23 that also severely reduces the level of dystrophin mRNA. However, the effect of the mutation on dystrophin RNA processing has not yet been described. Methodology/Principal Finding Using combinations of different biochemical and cellular assays, we found that the mdx mutation partially disrupts a multisite exonic splicing enhancer (ESE) that is recognized by a 40 kDa SR protein. In spite of the presence of an inefficient intron 22 3′ splice site containing the rare GAG triplet, the mdx mutation does not activate nonsense-associated altered splicing (NAS), but induces exclusively nonsense-mediated mRNA decay (NMD). Functional binding sites for SR proteins were also identified in exon 22 and 24, and in vitro experiments show that SR proteins can mediate direct association between exon 22, 23, and 24. Conclusions/Significance Our findings highlight the complex crosstalk between trans-acting factors, cis-elements and the RNA surveillance machinery occurring during dystrophin mRNA processing. Moreover, they suggest that dystrophin exon–exon interactions could play an important role in preventing mdx exon 23 skipping, as well as in facilitating the pairing of committed splice sites.
Collapse
Affiliation(s)
- Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Ada Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
153
|
Kulaeva OI, Gaykalova D, Studitsky VM. Transcription through chromatin by RNA polymerase II: histone displacement and exchange. Mutat Res 2007; 618:116-29. [PMID: 17313961 PMCID: PMC1924643 DOI: 10.1016/j.mrfmmm.2006.05.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
The process of transcript elongation by RNA polymerase II (Pol II) involves transcription-dependent exchange and displacement of all core histones and is tightly controlled by numerous protein complexes modifying chromatin structure. These processes can contribute to regulation of transcription initiation and elongation, as well as the chromatin state. Recent data suggest that the histone octamer is displaced from DNA at a high rate of transcription, but can survive less frequent transcription that is accompanied only by partial loss of H2A/H2B histones. Here we propose that critical density of Pol II molecules could be required for displacement of the histone octamer and discuss mechanisms that are most likely involved in the processes of histone exchange.
Collapse
Affiliation(s)
- Olga I. Kulaeva
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Daria Gaykalova
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| | - Vasily M. Studitsky
- Department of Pharmacology, UMDNJ, Robert Wood Johnson Medical School, 675 Hoes Lane, Room 405, Piscataway, NJ 08854, USA
| |
Collapse
|
154
|
Pérez-Ortín JE, Alepuz PM, Moreno J. Genomics and gene transcription kinetics in yeast. Trends Genet 2007; 23:250-7. [PMID: 17379352 DOI: 10.1016/j.tig.2007.03.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/30/2007] [Accepted: 03/09/2007] [Indexed: 11/30/2022]
Abstract
As an adaptive response to new conditions, mRNA concentrations in eukaryotes are readjusted after any environmental change. Although mRNA concentrations can be modified by altering synthesis and/or degradation rates, the rapidity of the transition to a new concentration depends on the regulation of mRNA stability. There are several plausible transcriptional strategies following environmental change, reflecting different degrees of compromise between speed of response and cost of synthesis. The recent development of genomic techniques now enables researchers to determine simultaneously (either directly or indirectly) the transcription rates and mRNA half-lifes, together with mRNA concentrations, corresponding to all yeast genes. Such experiments could provide a new picture of the transcriptional response, by enabling us to characterize the kinetic strategies that are used by different genes under given environmental conditions.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, C/ Dr. Moliner 50, E46100 Burjassot, Spain.
| | | | | |
Collapse
|
155
|
Nakabayashi A, Sueoka K, Tajima H, Sato K, Sakamoto Y, Katou S, Yoshimura Y. Well-devised quantification analysis for duplication mutation of Duchenne muscular dystrophy aimed at preimplantation genetic diagnosis. J Assist Reprod Genet 2007; 24:233-40. [PMID: 17340191 PMCID: PMC3454970 DOI: 10.1007/s10815-007-9111-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 01/25/2007] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Preimplantation genetic diagnosis (PGD) has been performed for deletion and point mutation type of Duchenne muscular dystrophy (DMD). Our aim was to develop a PGD technique, not yet established, to directly detect duplication mutation instead of substitute diagnosis similar to gender determination. METHODS Our method is based on comparative quantification using conventional duplex PCR, real-time PCR and gender determination. We evaluated this method in single lymphocytes from a duplication type of DMD patient and a normal male. RESULTS There was a significant difference in the mean values of the ratios (the mutation locus/a normal reference): mean value +/- SE was 1.84 +/- 0.15 in the duplication patient, and 1.00 +/- 0.09 in the normal male (p < 0.001). CONCLUSION It is suggested that our comparative quantification method could be a new option in PGD for carriers with duplication mutation who wish to have an unaffected son.
Collapse
Affiliation(s)
- Akira Nakabayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
156
|
The coupling of alternative splicing and nonsense-mediated mRNA decay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:190-211. [PMID: 18380348 DOI: 10.1007/978-0-387-77374-2_12] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Most human genes exhibit alternative splicing, but not all alternatively spliced transcripts produce functional proteins. Computational and experimental results indicate that a substantial fraction of alternative splicing events in humans result in mRNA isoforms that harbor a premature termination codon (PTC). These transcripts are predicted to be degraded by the nonsense-mediated mRNA decay (NMD) pathway. One explanation for the abundance of PTC-containing isoforms is that they represent splicing errors that are identified and degraded by the NMD pathway. Another potential explanation for this startling observation is that cells may link alternative splicing and NMD to regulate the abundance of mRNA transcripts. This mechanism, which we call "Regulated Unproductive Splicing and Translation" (RUST), has been experimentally shown to regulate expression of a wide variety of genes in many organisms from yeast to human. It is frequently employed for autoregulation of proteins that affect the splicing process itself. Thus, alternative splicing and NMD act together to play an important role in regulating gene expression.
Collapse
|
157
|
Kornblihtt AR. Coupling Transcription and Alternative Splicing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 623:175-89. [DOI: 10.1007/978-0-387-77374-2_11] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
158
|
Chin D, Boyle GM, Theile DR, Parsons PG, Coman WB. The human genome and gene expression profiling. J Plast Reconstr Aesthet Surg 2006; 59:902-11. [PMID: 16920579 DOI: 10.1016/j.bjps.2006.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 09/09/2005] [Accepted: 01/13/2006] [Indexed: 11/16/2022]
Abstract
The mapping and sequencing of the human genome has generated a large resource for answering questions about human disease. This achievement is akin in scientific importance to developing the periodic table of elements. Plastic surgery has always been at the frontier medical research. This resource will help us to improve our understanding on the many unknown physiological and pathogical conditions we deal with daily, such as wound healing keloid scar formation, Dupuytren's disease, rheumatoid arthritis, vascular malformation and carcinogenesis. We are primed in obtaining both disease and normal tissues to use this resource and applying it to clinical use. This review is about the human genome, the basis of gene expression profiling and how it will affect our clinical and research practices in the future and for those embarking on the use of this new technology as a research tool, we provide a brief insight on its limitations and pitfalls.
Collapse
Affiliation(s)
- David Chin
- Melanoma Genomics Group, The Queensland Institute of Medical Research, Herston, Brisbane 4029, Queensland, Australia.
| | | | | | | | | |
Collapse
|
159
|
A different spectrum of DMD gene mutations in local Chinese patients with Duchenne/Becker muscular dystrophy. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200607010-00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
160
|
Roussel MR, Zhu R. Stochastic kinetics description of a simple transcription model. Bull Math Biol 2006; 68:1681-713. [PMID: 16967259 DOI: 10.1007/s11538-005-9048-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 08/08/2005] [Indexed: 11/29/2022]
Abstract
We study a stochastic model of transcription kinetics in order to characterize the distributions of transcriptional delay and of elongation rates. Transcriptional delay is the time which elapses between the binding of RNA polymerase to a promoter sequence and its dissociation from the DNA template strand with consequent release of the transcript. Transcription elongation is the process by which the RNA polymerase slides along the template strand. The model considers a DNA template strand with one promoter site and n nucleotide sites, and five types of reaction processes, which we think are key ones in transcription. The chemical master equation is a set of ordinary differential equations in 3(n) variables, where n is the number of bases in the template. This model is too huge to be handled if n is large. We manage to get a reduced Markov model which has only 2n independent variables and can well approximate the original dynamics. We obtain a number of analytical and numerical results for this model, including delay and transcript elongation rate distributions. Recent studies of single-RNA polymerase transcription by using optical-trapping techniques raise an issue of whether the elongation rates measured in a population are heterogeneous or not. Our model implies that in the cases studied, different RNA polymerase molecules move at different characteristic rates along the template strand. We also discuss the implications of this work for the mathematical modeling of genetic regulatory circuits.
Collapse
Affiliation(s)
- Marc R Roussel
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| | | |
Collapse
|
161
|
Aartsma-Rus A, Kaman WE, Weij R, den Dunnen JT, van Ommen GJB, van Deutekom JCT. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14:401-7. [PMID: 16753346 DOI: 10.1016/j.ymthe.2006.02.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 02/20/2006] [Accepted: 02/22/2006] [Indexed: 11/24/2022] Open
Abstract
Through antisense-induced single-, double-, and multiexon skipping, we have previously demonstrated restoration of dystrophin expression in Duchenne muscular dystrophy (DMD) patient-derived muscle cells in vitro. In this study we further explored the frontiers of this strategy by using specific combinations of 2'-O-methyl phosphorothioate antisense oligonucleotides (AONs) targeting either one or multiple exons. We show that skipping efficiencies may indeed be improved by targeting two putative splicing regulatory sequences within one exon. In particular, such double targeting was effective for the thus far "unskippable" exons 47 and 57. We previously reported the feasibility of multiexon skipping spanning exon 45 to exon 51, using a combination of AONs targeting both outer exons (45 and 51). This would be applicable to 13% of all DMD patients. We here explored the frontiers of multiexon skipping both to increase the number of patients that can be treated with the same set of AONs and to mimic large deletions found in relatively mildly affected BMD patients. We aimed at inducing larger multiexon-skipping stretches, such as exons 17-51, exons 42-55, and exons 45-59. However, this appeared complicated and may be dependent on cotranscriptional splicing and the size of the flanking introns.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- DMD Genetic Therapy Group, Center for Human and Clinical Genetics, Leiden University Medical Center, RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
162
|
Abstract
The incorporation of time delays can greatly affect the behaviour of partial differential equations and dynamical systems. In addition, there is evidence that time delays in gene expression due to transcription and translation play an important role in the dynamics of cellular systems. In this paper, we investigate the effects of incorporating gene expression time delays into a one-dimensional putative reaction diffusion pattern formation mechanism on both stationary domains and domains with spatially uniform exponential growth. While oscillatory behaviour is rare, we find that the time taken to initiate and stabilise patterns increases dramatically as the time delay is increased. In addition, we observe that on rapidly growing domains the time delay can induce a failure of the Turing instability which cannot be predicted by a naive linear analysis of the underlying equations about the homogeneous steady state. The dramatic lag in the induction of patterning, or even its complete absence on occasions, highlights the importance of considering explicit gene expression time delays in models for cellular reaction diffusion patterning.
Collapse
Affiliation(s)
- E A Gaffney
- The School of Mathematics, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
163
|
Hu KJ, Leung PC. Complete, precise, and innocuous loss of multiple introns in the currently intronless, active cathepsin L-like genes, and inference from this event. Mol Phylogenet Evol 2006; 38:685-96. [PMID: 16290010 DOI: 10.1016/j.ympev.2005.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 09/03/2005] [Accepted: 09/06/2005] [Indexed: 11/23/2022]
Abstract
Retrotransposition typically generates pseudogenes. Here we demonstrate a different fate of the retro-processed genes through a novel mechanism in which the retro-processed genes still maintain their sequence intactness and the original functions. We show that the shrimp cathepsin L (CatL) gene MeCatL has lost all of its five introns. Also, ProEPB, the ancestor of the CatL-like barley EPBs and rice REP1, has lost all of its three introns. The multiple introns in a gene might have been eliminated simultaneously and precisely at the original locus for the CatL-like genes of shrimp, barley, rice, Drosophila, and Theileria. We reason that retrotransposition is not responsible for the generation of a processed active intronless (PAI) gene when the gene product retains its sequence intactness and its original function. We propose that double-strand-break repair (DSBR) machinery might play a role in cDNA-mediated homologous recombination (cDMHR) that causes the loss of introns. The cDMHR/DSBR pathway is probably a fundamental mechanism for intron loss in PAI genes and in some asymmetric-intron genes.
Collapse
Affiliation(s)
- Ke-Jin Hu
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | | |
Collapse
|
164
|
Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, Wener AD, Wang G, Bevan SC, Newton DC, Marsden PA. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest 2006; 115:3128-39. [PMID: 16276418 PMCID: PMC1265848 DOI: 10.1172/jci20806] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 08/30/2005] [Indexed: 11/17/2022] Open
Abstract
We tested the hypothesis that induction of neuronal NO synthase (nNOS) impairs vascular smooth muscle contractility after hypoxia. nNOS protein was increased in aorta, mesenteric arterioles, pulmonary arteries, brain, and diaphragm from rats exposed to 8% O2 for 48 hours and in human aortic SMCs after hypoxic incubation (1% O2). Ca-dependent NO synthase activity was increased in endothelium-denuded aortic segments from hypoxia-exposed rats. N-nitro-L-arginine methyl ester enhanced the contractile responses of endothelium-denuded aortic rings and mesenteric arterioles from hypoxia-exposed but not normoxic rats (P < 0.05). The hypoxia-inducible mRNA transcript expressed by human cells was found to contain a novel 5'-untranslated region, consistent with activation of transcription in the genomic region contiguous with exon 2. Translational efficiency of this transcript is markedly increased compared with previously described human nNOS mRNAs. Transgenic mice possessing a lacZ reporter construct under control of these genomic sequences demonstrated expression of the construct after exposure to hypoxia (8% O2, 48 hours) in the aorta, mesenteric arterioles, renal papilla, and brain. These results reveal a novel human nNOS promoter that confers the ability to rapidly upregulate nNOS expression in response to hypoxia with a functionally significant effect on vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Michael E Ward
- Division of Respirology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
During the twentieth century the gene emerged as the major driving force of biology. Initially, even the nature and behavior of gene vehicles, the chromosomes, were subjected to doubts. The basic or standard gene concept, as a unit of function, mutation, and recombination, had to be revised. Half a century was required for reaching a general consensus about the chemical nature of the genetic material, DNA and RNA. The relationship between single genes and individual proteins was a great milestone at the middle of the twentieth century, but within two decades it was realized that the relationship was more complex. Understanding of genetic coding, transcription, and translation during the 1960s laid a firm foundation to the "nucleic doctrine," harking back to the dicta of Lederberg (1959) and meaning that single nucleic acid genes alone were responsible for each separate function within the cell. However, important aspects of gene expression are recognized now as a function of the genome and many genes collaborate in circuits. It has come to light that genes may be mobile, exist in plasmids and cytoplasmic organelles, and can be imported by nonsexual means from other organisms or as synthetic products. Epigenetics has reborn as a new field of developmental genetics. The unorthodox prion proteins can even simulate some gene properties. Genetics was to an extent reincarnated as of the twenty-first century by assimilating the tools of cybernetics and of many formerly distant areas of science. This overview highlights some of the historical milestones that contributed to the development of our image of the gene, extending elements of issues laid down by Rédei (2003).
Collapse
Affiliation(s)
- George P Rédei
- University of Missouri, Life Sciences Center, Columbia, Missouri 65203, USA
| | | | | |
Collapse
|
166
|
Wilton SD, Fletcher S. Redirecting Splicing to Address Dystrophin Mutations: Molecular By-pass Surgery. ALTERNATIVE SPLICING AND DISEASE 2006; 44:161-97. [PMID: 17076269 DOI: 10.1007/978-3-540-34449-0_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mutations in the dystrophin gene that prevent synthesis of a functional protein lead to Duchenne muscular dystrophy (DMD), the most common serious childhood muscular dystrophy. The major isoform is produced in skeletal muscle and the size of the dystrophin gene and complexity of expression have posed great challenges to the development of a therapy for DMD. Considerable progress has been made in the areas of gene and cell replacement, yet it appears that any potential therapy for DMD is still some years away. Other approaches are being considered, and one that has generated substantial interest over the last few years is induced exon skipping. Antisense oligonucleotides have been used to block abnormal splice sites and force pre-mRNA processing back to the normal patterns. This approach is re-interpreted to address the more common dystrophin mutations, where normal splice sites are targeted to induce abnormal splicing, resulting in specific exon exclusion. Selected exon removal during processing of the dystrophin pre-mRNA can by-pass nonsense mutations or restore a disrupted reading frame arising from genomic deletions or duplications. Attributes of the dystrophin gene that have hampered gene replacement therapy may be regarded as positive features for induced exon skipping, which may be regarded as a form of by-pass surgery at the molecular level. In humans, antisense oligonucleotides have been more generally applied to down-regulate specific gene expression, for the treatment of acquired conditions such as malignancies and viral infections. From interesting in vitro experiments several years ago, the dystrophin exon-skipping field has progressed to the stage of planning for clinical trials.
Collapse
Affiliation(s)
- Stephen D Wilton
- Experimental Molecular Medicine Group, Centre for Neuromuscular and Neurological Disorders, University of Western Australia
| | | |
Collapse
|
167
|
Biederer T. Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 2006; 87:139-50. [PMID: 16311015 DOI: 10.1016/j.ygeno.2005.08.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 07/31/2005] [Accepted: 08/15/2005] [Indexed: 12/20/2022]
Abstract
SynCAM 1 (synaptic cell adhesion molecule 1, alternatively named Tslc1 and nectin-like protein 3) belongs to the immunoglobulin superfamily and is an adhesion molecule that operates in a variety of important contexts. Exemplary are its roles in adhesion at synapses in the central nervous system and as tumor suppressor. Here, I describe a family of genes homologous to SynCAM 1 comprising four genes found solely in vertebrates. All SynCAM genes encode proteins with three immunoglobulin-like domains of the V-set, C1-set, and I-set subclasses. Comparison of genomic with cDNA sequences provides their exon-intron structure. Alternative splicing generates isoforms of SynCAM proteins, and diverse SynCAM 1 and 2 isoforms are created in an extracellular region rich in predicted O-glycosylation sites. Protein interaction motifs in the cytosolic sequence are highly conserved among all four SynCAM proteins, indicating their critical functional role. These findings aim to facilitate the understanding of SynCAM genes and provide the framework to examine the physiological functions of this family of vertebrate-specific adhesion molecules.
Collapse
Affiliation(s)
- Thomas Biederer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
168
|
Ferreiro V, Giliberto F, Francipane L, Szijan I. The role of polymorphic short tandem (CA)n repeat loci segregation analysis in the detection of Duchenne muscular dystrophy carriers and prenatal diagnosis. ACTA ACUST UNITED AC 2005; 9:67-80. [PMID: 16137182 DOI: 10.1007/bf03260074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Duchenne and Becker muscular dystrophies (DMD/BMD) are X-linked diseases caused by mutations in the dystrophin gene at Xp21.2; they include gross deletions (60%), duplications (10%), and small mutations (30%). Since there is no cure or effective treatment for progressive muscular dystrophy, prevention of the disease is important and strongly depends on carrier-status information. Two-thirds of DMD/BMD cases are familial; thus, female relatives are candidates for carrier-risk assessment. AIM Segregation analysis of polymorphic short tandem (CA)n repeats [STR-(CA)n] was used to establish and compare the haplotypes of female relatives of patients with DMD/BMD with those of the patient in order to identify the mutant dystrophin gene and thus determine each female relative's carrier status. METHODS 248 individuals from 52 families were studied through segregation of up to 11 STR-(CA)n loci. The assay was performed on leukocyte DNA by PCR amplification, polyacrylamide-gel electrophoresis and autoradiography. Haplotypes were established by determination of alleles on the autoradiography. RESULTS 38 of 51 (75%) female relatives from familial cases were diagnosed as carriers or non-carriers with a 95-100% likelihood, and 18 out of 56 (32%) female relatives from sporadic cases could be excluded from the risk of being a DMD carrier with the same probability. In addition, STR studies detected gross deletions in 13 of the 52 (25%) families in both male and female individuals, four of which were de novo deletions. STR assays were also informative in families without an available DNA sample of an affected male and in two of seven symptomatic females. Determination of carrier status was particularly significant for prediction of DMD risk in prenatal analysis of five male chorionic villi. Other genetic events revealed by STR analysis were: (i) 11 recombinations identified in 6.6% of meiosis in the DMD families; (ii) germinal mosaicism detected in two female carriers; and (iii) changes in STR-(CA)n length during transmission from father to daughters, including three retractions and one elongation at an estimated rate of 0.004. CONCLUSION The STR assay is an excellent molecular tool for carrier-status identification and the detection of deletions and other genetic changes in families affected by DMD/BMD. Thus, it is useful in genetic counseling for the prevention of this disease.
Collapse
Affiliation(s)
- Veronica Ferreiro
- Catedra de Genetica y Biología Molecular, Facultad de Farmacia y Bioquímica, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
169
|
Björk P, Wetterberg-Strandh I, Baurén G, Wieslander L. Chironomus tentans-repressor splicing factor represses SR protein function locally on pre-mRNA exons and is displaced at correct splice sites. Mol Biol Cell 2005; 17:32-42. [PMID: 16236800 PMCID: PMC1345644 DOI: 10.1091/mbc.e05-04-0339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chironomus tentans-repressor splicing factor (Ct-RSF) represses the activation of splicing by SR proteins in vitro. Ct-RSF colocalizes with the Ser-Arg-rich (SR) protein hrp45 in interchromatin granule clusters and coimmunoprecipitates with hrp45 in nuclear extracts. Ct-RSF and hrp45 can also interact directly in vitro. Ct-RSF and hrp45 are recruited together to transcribing genes and associate with growing pre-mRNAs. Ct-RSF and hrp45 colocalize at a large number of gene loci. Injection of anti-Ct-RSF antibodies into nuclei of living cells blocks association of both Ct-RSF and hrp45 with the growing pre-mRNA, whereas binding of U2 small nuclear ribonucleoprotein particle (snRNP) to the pre-mRNA is unaffected. On the intron-rich Balbiani ring (BR) 3 pre-mRNA, hrp45 as well as U1 and U2 snRNPs bind extensively, whereas relatively little Ct-RSF is present. In contrast, the BR1 and BR2 pre-mRNAs, dominated by exon sequences, bind relatively much Ct-RSF compared with hrp45 and snRNPs. Our data suggest that Ct-RSF represses SR protein function at exons and that the assembly of spliceosomes at authentic splice sites displaces Ct-RSF locally.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
170
|
Abstract
Understanding the different molecular mechanisms responsible for gene expression has been a central interest of molecular biologists for several decades. Transcription, the initial step of gene expression, consists of converting the genetic code into a dynamic messenger RNA that will specify a required cellular function following translocation to the cytoplasm and translation. We now possess an in-depth understanding of the mechanism and regulations of transcription. By contrast, an understanding of the dynamics of an individual gene's expression in real time is just beginning to emerge following recent technological developments.
Collapse
Affiliation(s)
- Xavier Darzacq
- Department of Anatomy, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
171
|
Chromatin Remodeling by RNA Polymerase II. Mol Biol 2005. [DOI: 10.1007/s11008-005-0071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
172
|
Graham IR, Hill VJ, Manoharan M, Inamati GB, Dickson G. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays. J Gene Med 2005; 6:1149-58. [PMID: 15386737 DOI: 10.1002/jgm.603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The activity of synthetic antisense oligonucleotides (splicomers) designed to block pre-mRNA splicing at specific exons has been demonstrated in a number of model systems, including constitutively spliced exons in mouse dystrophin RNA. Splicomer reagents directed to Duchenne muscular dystrophy (DMD) RNAs might thus circumvent nonsense or frame-shifting mutations, leading to therapeutic expression of partially functional dystrophin, as occurs in the milder, allelic (Becker) form of the disease (BMD). METHODS Functional and hybridisation array screens have been used to select optimised splicomers directed to exon 23 of dystrophin mRNA which carries a nonsense mutation in the mdx mouse. Splicomers were transfected into cultured primary muscle cells, and dystrophin mRNA assessed for exon exclusion. Splicomers were also administered to the muscles of mdx mice. RESULTS Oligonucleotide array analyses with dystrophin pre-mRNA probes revealed strong and highly specific hybridisation patterns spanning the exon 23/intron 23 boundary, indicating an open secondary structure conformation in this region of the RNA. Functional screening of splicomer arrays by direct analysis of exon 23 RNA splicing in mdx muscle cultures identified a subset of biologically active reagents which target sequence elements associated with the 5' splice site region of dystrophin intron 23; splicomer-mediated exclusion of exon 23 was specific and dose-responsive up to a level exceeding 50% of dystrophin mRNA, and Western blotting demonstrated de novo expression of dystrophin protein at 2-5% of wild-type levels. Direct intramuscular administration of optimised splicomer reagents in vivo resulted in the reappearance of sarcolemmal dystrophin immunoreactivity in > 30% of muscle fibres in the mdx mouse CONCLUSIONS These results suggest that correctly designed splicomers may have direct therapeutic value in vivo, not only for DMD, but also for a range of other genetic disorders.
Collapse
Affiliation(s)
- Ian R Graham
- Centre for Biomedical Science, School of Biological Sciences, Royal Holloway-University of London, Egham TW20 0EX, UK.
| | | | | | | | | |
Collapse
|
173
|
Kornblihtt AR, de la Mata M, Fededa JP, Munoz MJ, Nogues G. Multiple links between transcription and splicing. RNA (NEW YORK, N.Y.) 2004; 10:1489-98. [PMID: 15383674 PMCID: PMC1370635 DOI: 10.1261/rna.7100104] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.
Collapse
Affiliation(s)
- Alberto R Kornblihtt
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IFIByNE-CONICET, Ciudad Universitaria, Pabellón II (C1428EHA) Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
174
|
Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. ACTA ACUST UNITED AC 2004; 165:191-202. [PMID: 15117966 PMCID: PMC2172041 DOI: 10.1083/jcb.200310139] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport.
Collapse
Affiliation(s)
- Chris Molenaar
- Dept. of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
175
|
Singh B, Gupta RS. Genomic organization and linkage via a bidirectional promoter of the AP-3 (adaptor protein-3) mu3A and AK (adenosine kinase) genes: deletion mutants of AK in Chinese hamster cells extend into the AP-3 mu3A gene. Biochem J 2004; 378:519-28. [PMID: 14575525 PMCID: PMC1223951 DOI: 10.1042/bj20031219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 10/07/2003] [Accepted: 10/24/2003] [Indexed: 11/17/2022]
Abstract
The cDNA and genomic DNA for the mu3A subunit of the AP-3 (adaptor protein-3) complex were cloned from Chinese hamster cells. The AP-3 mu3A genes in Chinese hamster, human and mouse each comprise nine exons and eight introns, with all introns located in identical positions in the species studied. The AP-3 mu3A genes in these species are linked in a head-to-head fashion with the gene for the purine salvage pathway enzyme AK (adenosine kinase). These genes share the first exon, and a 512 bp fragment covering the intervening untranslated sequence has the characteristic of a CpG island promoter, and it effectively carried out transcription in both directions. Deletion studies indicate that this region contains both positive and negative regulatory elements affecting transcription of these genes. In comparison with the AP-3 mu3A gene (27 kb), the AK gene in human is very large (558 kb), with average exon and intron lengths of approx. 100 bp and 55.7 kb respectively. The ratio of non-coding to coding sequence in the human AK gene is >550, which is the highest reported for any gene. We also present evidence that a number of AK- mutants of Chinese hamster ovary cells contain large deletions that affect both of these genes. In addition to lacking part of the AK gene, two of these mutants also lacked all of the exons and introns corresponding to the AP-3 mu3A gene. These mutants should prove useful in elucidating the role of AP-3 mu3A in vesicle-mediated protein sorting--a process that is altered in Hermansky-Pudlak syndrome. Detailed phylogenetic analysis of the micro family of proteins presented here also provides insight into how different AP complexes are related and may have evolved.
Collapse
Affiliation(s)
- Bhag Singh
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | |
Collapse
|
176
|
Custódio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA (NEW YORK, N.Y.) 2004; 10:622-33. [PMID: 15037772 PMCID: PMC1370553 DOI: 10.1261/rna.5258504] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Studies over the past years indicate that there is extensive coupling between nuclear export of mRNA and pre-mRNA processing. Here, we visualized the distribution of exon junction complex (EJC) proteins and RNA export factors relative to sites of abundant pre-mRNA synthesis in the nucleus. We analyzed both HeLa cells infected with adenovirus and murine erythroleukemia (MEL) cells stably transfected with the human beta-globin gene. Using in situ hybridization and confocal microscopy, we observe accumulation of EJC proteins (REF/Aly, Y14, SRm160, UAP56, RNPS1, and Magoh) and core spliceosome components (U snRNPs) at sites of transcription. This suggests that EJC proteins bind stably to pre-mRNA cotranscriptionally. No concentration of the export factors NXF1/TAP, p15, and Dbp5 was detected on nascent transcripts, arguing that in mammalian cells these proteins bind the mRNA shortly before or after release from the sites of transcription. These results also suggest that binding of EJC proteins to the mRNA is not sufficient to recruit TAP-p15, consistent with recent findings showing that the EJC does not play a crucial role in mRNA export. Contrasting to the results obtained in MEL cells expressing normal human beta-globin transcripts, mutant pre-mRNAs defective in splicing and 3'end processing do not colocalize with SRm160, REF, UAP56, or Sm proteins. This shows that the accumulation of EJC proteins at transcription sites requires efficient processing of the nascent pre-mRNAs, arguing that transcription per se is not sufficient for the stable assembly of the EJC.
Collapse
Affiliation(s)
- Noélia Custódio
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal
| | | | | | | | | | | |
Collapse
|
177
|
Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. ACTA ACUST UNITED AC 2004; 1677:79-86. [PMID: 15020049 DOI: 10.1016/j.bbaexp.2003.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/18/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
The transcription elongation complex, once thought to be composed of merely the DNA template, RNA polymerase II and the nascent RNA transcript, is now burgeoning as a unit as multifaceted and complicated as the transcription initiation complex. Studies concentrated in defining the elongation stage of transcription during the past recent years have resulted in the discovery of a diverse collection of transcription elongation factors that are either directly involved in the regulation of the rate of the elongating RNA polymerase II or can modulate messenger RNA (mRNA) processing and transport. Such studies have demonstrated that the elongation stage of transcription is highly regulated and has opened a new era of studies defining the molecular role of such transcription elongation factors in cellular development, differentiation and disease progression. Recent studies on the role of RNA polymerase II elongation factors in regulating of the overall rate of transcription both in vitro and in vivo, histone modification by methylation and organismal development will be reviewed here.
Collapse
Affiliation(s)
- Ali Shilatifard
- Department of Biochemistry and the Cancer Center, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
178
|
|
179
|
Abstract
Synthesis of eukaryotic mRNA by RNA polymerase II is an elaborate biochemical process that requires the concerted action of a large set of transcription factors. RNA polymerase II transcription proceeds through multiple stages designated preinitiation, initiation, and elongation. Historically, studies of the elongation stage of eukaryotic mRNA synthesis have lagged behind studies of the preinitiation and initiation stages; however, in recent years, efforts to elucidate the mechanisms governing elongation have led to the discovery of a diverse collection of transcription factors that directly regulate the activity of elongating RNA polymerase II. Moreover, these studies have revealed unanticipated roles for the RNA polymerase II elongation complex in such processes as DNA repair and recombination and the proper processing and nucleocytoplasmic transport of mRNA. Below we describe these recent advances, which highlight the important role of the RNA polymerase II elongation complex in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Ali Shilatifard
- Edward A. Doisey Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
180
|
Wang J, Li S, Zhang Y, Zheng H, Xu Z, Ye J, Yu J, Wong GKS. Vertebrate gene predictions and the problem of large genes. Nat Rev Genet 2003; 4:741-9. [PMID: 12951575 DOI: 10.1038/nrg1160] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To find unknown protein-coding genes, annotation pipelines use a combination of ab initio gene prediction and similarity to experimentally confirmed genes or proteins. Here, we show that although the ab initio predictions have an intrinsically high false-positive rate, they also have a consistently low false-negative rate. The incorporation of similarity information is meant to reduce the false-positive rate, but in doing so it increases the false-negative rate. The crucial variable is gene size (including introns)--genes of the most extreme sizes, especially very large genes, are most likely to be incorrectly predicted.
Collapse
Affiliation(s)
- Jun Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ. Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:361-9. [PMID: 17166135 DOI: 10.1046/j.1467-7652.2003.00034.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In a screen for MADS box genes which activate and/or repress flowering in rice, we identified a gene encoding a MADS domain protein (OsSOC1) related to the Arabidopsis gene AtSOC1. AtSOC1 and OsSOC1 show a 97% amino acid similarity in their MADS domain. The rice gene contains a large first intron of 27.6 kb compared to the 1 kb intron in Arabidopsis. OsSOC1 is located on top of the short arm of chromosome 3, tightly linked to the heading date locus, Hd9. OsSOC1 is expressed in vegetative tissues, and expression is elevated at the time of floral initiation, 40-50 days after sowing, and remains uniformly high thereafter, similar to the expression pattern of AtSOC1. The constitutive expression of OsSOC1 in Arabidopsis results in early flowering, suggesting that the rice gene is a functional equivalent of AtSOC1. We were not able to identify FLC-like sequences in the rice genome; however, we show that ectopic expression of the Arabidopsis FLC delays flowering in rice, and the up-regulation of OsSOC1 at the onset of flowering initiation is delayed in the AtFLC transgenic lines. The reciprocal recognition and flowering time effects of genes introduced into either Arabidopsis or rice suggest that some components of the flowering pathways may be shared. This points to a potential application in the manipulation of flowering time in cereals using well characterized Arabidopsis genes.
Collapse
Affiliation(s)
- Million Tadege
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | |
Collapse
|
182
|
Abstract
Feedback inhibition of gene expression is a widespread phenomenon in which the expression of a gene is downregulated by its protein product. Feedback in eukaryotic cells involves time delays resulting from transcription, transcript splicing and processing, and protein synthesis. In principle, such delays can result in oscillatory mRNA and protein expression. However, experimental evidence of such delay-driven oscillations has been lacking. Using mathematical modeling informed by recent data, I show that the observed oscillatory expression and activity of three proteins is most likely to be driven by transcriptional delays. Each protein (Hes1, p53, and NF-kappaB) is a component of a short feedback inhibition loop. The oscillatory period is determined by the delay and the protein and mRNA half-lives, but it is robust to changes in the rates of transcription and protein synthesis. In contrast to nondelayed models, delayed models do not require additional components in the feedback loop. These results provide direct evidence that transcriptional delays can drive oscillatory gene activity and highlight the importance of considering delays when analyzing genetic regulatory networks, particularly in processes such as developmental pattern formation, where short half-lives and feedback inhibition are common.
Collapse
Affiliation(s)
- Nicholas A M Monk
- Centre for Bioinformatics and Computational Biology, University of Sheffield, Royal Hallamshire Hospital, Sheffield, S10 2JF, United Kingdom.
| |
Collapse
|
183
|
Kotovic KM, Lockshon D, Boric L, Neugebauer KM. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 2003; 23:5768-79. [PMID: 12897147 PMCID: PMC166328 DOI: 10.1128/mcb.23.16.5768-5779.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence that pre-mRNA processing events are temporally and, in some cases, mechanistically coupled to transcription has led to the proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. Here we address two key questions raised by this proposal: (i) whether the U1 snRNP, which binds to the 5' splice site of each intron, is recruited cotranscriptionally in vivo and, (ii) if so, where along the length of active genes the U1 snRNP is concentrated. Using chromatin immunoprecipitation (ChIP) in yeast, we show that elevated levels of the U1 snRNP were specifically detected in gene regions containing introns and downstream of introns but not along the length of intronless genes. In contrast to capping enzymes, which bind directly to Pol II, the U1 snRNP was poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP was dependent on RNA synthesis and was abolished by intron removal. Microarray analysis revealed that intron-containing genes were preferentially selected by ChIP with the U1 snRNP. Thus, U1 snRNP accumulation at genes correlated with the presence and position of introns, indicating that introns are necessary for cotranscriptional U1 snRNP recruitment and/or retention.
Collapse
Affiliation(s)
- Kimberly M Kotovic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
184
|
Abstract
Intense research in recent years has shown that many pre-mRNA processing events are co-transcriptional or at least begin during RNA synthesis by RNA polymerase II (Pol II). But is it important that pre-mRNA processing occurs co-transcriptionally? Whereas Pol II directs 5' capping of mRNA by binding to and recruiting all three capping activities to transcription units, co-transcriptional splicing is not obligatory. In some cases, such as alternative splicing, splicing may occur post-transcriptionally owing to the slower kinetics of splicing unfavorable introns. Despite recent models in which splicing factors are bound directly to the C-terminal domain (CTD) of Pol II, little evidence supports that view. Instead, interactions between snRNPs and transcription elongation factors provide the strongest molecular evidence for a physical link between transcription and splicing. Transcription termination depends on polyadenylation signals, but, like splicing, polyadenylation per se probably begins co-transcriptionally and continues post-transcriptionally. Nascent RNA plays an important role in determining which transcripts are polyadenylated and which alternative terminal exon is used. A recent addition to co-transcriptional RNA processing is a possible RNA surveillance step prior to release of the mRNP from the transcription unit, which appears to coordinate nuclear transport with mRNA processing and may be mediated by components of the nuclear exosome.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
185
|
Errington SJ, Mann CJ, Fletcher S, Wilton SD. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene. J Gene Med 2003; 5:518-27. [PMID: 12797117 DOI: 10.1002/jgm.361] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive muscle wasting disorder characterised by the absence of the protein dystrophin. Antisense oligonucleotides have been used to re-direct dystrophin pre-mRNA processing by blocking sequences crucial to pre-mRNA splicing, thereby inducing skipping of specific exons. We wished to determine which splicing motifs are most amenable as targets for antisense oligonucleotide induction of efficient and specific skipping of selected exons. METHODS Antisense oligonucleotides were directed at regions of dystrophin exon 19 involved in pre-mRNA splicing, including the donor and acceptor splice sites and the exon splicing enhancer (ESE). Cultured myotubes were transfected with antisense oligonucleotides at various concentrations and studies undertaken to determine both specificity and efficiency of induced exon 19 skipping. RESULTS Antisense oligonucleotides as small as 12 nucleotides targeting the ESE induced consistent and specific skipping of only exon 19 in both human and normal and mdx mouse myotubes. Antisense oligonucleotides directed at the donor and acceptor splice sites also induced specific exon 19 skipping while mismatched antisense oligonucleotides could only induce skipping when delivered at higher concentrations. No other dystrophin exons were removed from the mature mRNA as a consequence of these antisense oligonucleotides treatments. CONCLUSIONS Antisense oligonucleotides directed at the ESE tended to be marginally more efficient than those which targeted the donor or acceptor splice sites, based on their ability to induce specific skipping at lower concentrations. The specificity of exon removal does not appear to be a function of target selection, but may reflect the combination of the splicing motifs and position of that exon in the pre-mRNA.
Collapse
|
186
|
Suh D, Seguin B, Atkinson S, Ozdamar B, Staffa A, Emili A, Mouland A, Cochrane A. Mapping of determinants required for the function of the HIV-1 env nuclear retention sequence. Virology 2003; 310:85-99. [PMID: 12788633 DOI: 10.1016/s0042-6822(03)00073-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Control of HIV-1 RNA processing and transport are critical to the successful replication of the virus. In previous work, we identified a region within the HIV-1 env that is involved in mediating nuclear retention of unspliced viral RNA. To define this sequence further and identify elements required for function, deletion mutagenesis was carried out. Progressive 5' and 3' deletions map the nuclear retention sequence (NRS) within the intron between nts 8281 and 8381. While deletion of sequences comprising the 3'ss had no effect, removal of the 5'ss resulted in cytoplasmic accumulation of unspliced RNA. Sequence analysis determined that the region corresponding to the NRS is highly conserved among HIV-1 strains. To evaluate whether this NRS interacts with cellular factors, RNA electrophoretic mobility shift assays (REMSA) were performed. We show that the NRS specifically interacts with cellular factors present in HeLa nuclear extracts, and, by UV crosslinking, correlates with the binding of a 49-kDa protein. Immunoprecipitation of the UV crosslinked products determined that this 49-kDa protein corresponds to hnRNP C.
Collapse
Affiliation(s)
- Daniel Suh
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S-1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
We use a modified form of ChIP to analyze the recruitment of seven sets of proteins to the yeast GAL genes upon induction. We resolve three stages of recruitment: first SAGA, then Mediator, and finally Pol II along with four other proteins (including TBP) bind the promoter. In a strain lacking SAGA, Mediator is recruited with a time course indistinguishable from that observed in wild-type cells. Our results are consistent with the notion that a single species of activator, Gal4, separately contacts, and thereby directly recruits, SAGA and Mediator.
Collapse
Affiliation(s)
- Gene O Bryant
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | |
Collapse
|
188
|
Nowakowski RS, Caviness VS, Takahashi T, Hayes NL. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex. Results Probl Cell Differ 2003; 39:1-25. [PMID: 12353465 DOI: 10.1007/978-3-540-46006-0_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
During the development of the neocortex, cell proliferation occurs in two specialized zones adjacent to the lateral ventricle. One of these zones, the ventricular zone, produces most of the neurons of the neocortex. The proliferating population that resides in the ventricular zone is a pseudostratified ventricular epithelium (PVE) that looks uniform in routine histological preparations, but is, in fact, an active and dynamically changing population. In the mouse, over the course of a 6-day period, the PVE produces approximately 95% of the neurons of the adult neocortex. During this time, the cell cycle of the PVE population lengthens from about 8 h to over 18 h and the progenitor population passes through a total of 11 cell cycles. This 6-day, 11-cell cycle period comprises the "neuronogenetic interval" (NI). At each passage through the cell cycle, the proportion of daughter cells that exit the cell cycle (Q cells) increases from 0 at the onset of the NI to 1 at the end of the NI. The proportion of daughter cells that re-enter the cell cycle (P cells) changes in a complementary fashion from 1 at the onset of the NI to 0 at the end of the NI. This set of systematic changes in the cell cycle and the output from the proliferative population of the PVE allows a quantitative and mathematical treatment of the expansion of the PVE and the growth of the cortical plate that nicely accounts for the observed expansion and growth of the developing neocortex. In addition, we show that the cells produced during a 2-h window of development during specific cell cycles reside in a specific set of laminae in the adult cortex, but that the distributions of the output from consecutive cell cycles overlap. These dynamic events occur in all areas of the PVE underlying the neocortex, but there is a gradient of maturation that begins in the rostrolateral neocortex near the striatotelencephalic junction and which spreads across the surface of the neocortex over a period of 24-36 h. The presence of the gradient across the hemisphere is a possible source of positional information that could be exploited during development to establish the areal borders that characterize the adult neocortex.
Collapse
Affiliation(s)
- Richard S Nowakowski
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
189
|
Abstract
In previous studies we demonstrated that a modified human HSP70b promoter (HSE.70b) directs high levels of gene expression to tumor cells after mild hyperthermia treatment in the range of 41.5-44 degrees C. This transcriptional targeting system exhibits low basal activity at 37 degrees C, is highly induced (950-fold) after mild heat treatment (43 degrees C/30 min), and returns to basal activity levels within 12-24 hours of activation. Here we describe heat-directed targeting of an activated form of the Gibbon ape leukemia virus env protein (GALV FMG) to tumor cells. GALV FMG mediates cell-cell fusion, and when expressed in tumor cells can produce bystander effects of up to 1:200. Transient transfection of a HSE70b.GALV FMG minigene caused extensive syncytia formation in HeLa and HT-1080 cells following mild heat treatment (44 degrees C/30 min). Stable transfection into HT-1080 cells produced a cell line (HG5) that exhibits massive syncytia formation and a 60% reduction in viability relative to a vector-only control (CI1) following heat treatment in vitro. Mild hyperthermia also resulted in syncytia formation, necrosis, and complete macroscopic regression of HG5 xenograft tumors grown in the footpads of mice with severe combined immunodeficiency disorders (SCID). Median survival increased from 12.5 (in heated CI1 controls) to 52 days after a single heat treatment. Heat-directed tumor cell fusion may prove to be a highly beneficial adjunct to existing cancer treatment strategies that take advantage of the synergistic interaction between mild hyperthermia and radiation or chemotherapeutic drugs.
Collapse
Affiliation(s)
- Anthony M Brade
- Division of Experimental Therapeutics, Ontario Cancer Institute, University Health Network, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
190
|
Bar I, Tissir F, Lambert de Rouvroit C, De Backer O, Goffinet AM. The gene encoding disabled-1 (DAB1), the intracellular adaptor of the Reelin pathway, reveals unusual complexity in human and mouse. J Biol Chem 2003; 278:5802-12. [PMID: 12446734 DOI: 10.1074/jbc.m207178200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Disabled-1 (Dab1) gene encodes a key regulator of Reelin signaling. Reelin is a large glycoprotein secreted by neurons of the developing brain, particularly Cajal-Retzius cells. The DAB1 protein docks to the intracellular part of the Reelin very low density lipoprotein receptor and apoE receptor type 2 and becomes tyrosine-phosphorylated following binding of Reelin to cortical neurons. In mice, mutations of Dab1 and Reelin generate identical phenotypes. In humans, Reelin mutations are associated with brain malformations and mental retardation; mutations in DAB1 have not been identified. Here, we define the organization of Dab1, which is similar in human and mouse. The Dab1 gene spreads over 1100 kb of genomic DNA and is composed of 14 exons encoding the major protein form, some alternative internal exons, and multiple 5'-exons. Alternative polyadenylation and splicing events generate DAB1 isoforms. Several 5'-untranslated regions (UTRs) correspond to different promoters. Two 5'-UTRs (1A and 1B) are predominantly used in the developing brain. 5'-UTR 1B is composed of 10 small exons spread over 800 kb. With a genomic length of 1.1 Mbp for a coding region of 5.5 kb, Dab1 provides a rare example of genomic complexity, which will impede the identification of human mutations.
Collapse
Affiliation(s)
- Isabelle Bar
- Neurobiology Unit, University of Namur Medical School, 61, rue de Bruxelles, B5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
191
|
Lewis BP, Green RE, Brenner SE. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 2003; 100:189-92. [PMID: 12502788 PMCID: PMC140922 DOI: 10.1073/pnas.0136770100] [Citation(s) in RCA: 781] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Accepted: 11/06/2002] [Indexed: 01/10/2023] Open
Abstract
To better understand the role of alternative splicing, we conducted a large-scale analysis of reliable alternative isoforms of known human genes. Each isoform was classified according to its splice pattern and supporting evidence. We found that one-third of the alternative transcripts examined contain premature termination codons, and most persist even after rigorous filtering by multiple methods. These transcripts are apparent targets of nonsense-mediated mRNA decay (NMD), a surveillance mechanism that selectively degrades nonsense mRNAs. Several of these transcripts are from genes for which alternative splicing is known to regulate protein expression by generating alternate isoforms that are differentially subjected to NMD. We propose that regulated unproductive splicing and translation (RUST), through the coupling of alternative splicing and NMD, may be a pervasive, underappreciated means of regulating protein expression.
Collapse
Affiliation(s)
- Benjamin P Lewis
- Department of Plant and Microbial Biology, Graduate Group, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
192
|
Newton DC, Bevan SC, Choi S, Robb GB, Millar A, Wang Y, Marsden PA. Translational regulation of human neuronal nitric-oxide synthase by an alternatively spliced 5'-untranslated region leader exon. J Biol Chem 2003; 278:636-44. [PMID: 12403769 DOI: 10.1074/jbc.m209988200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the neuronal nitric-oxide synthase (nNOS) mRNA is subject to complex cell-specific transcriptional regulation, which is mediated by alternative promoters. Unexpectedly, we identified a 89-nucleotide alternatively spliced exon located in the 5'-untranslated region between exon 1 variants and a common exon 2 that contains the translational initiation codon. Alternative splicing events that do not affect the open reading frame are distinctly uncommon in mammals; therefore, we assessed its functional relevance. Transient transfection of reporter RNAs performed in a variety of cell types revealed that this alternatively spliced exon acts as a potent translational repressor. Stably transfected cell lines confirmed that the alternatively spliced exon inhibited translation of the native nNOS open reading frame. Reverse transcription-PCR and RNase protection assays indicated that nNOS mRNAs containing this exon are common and expressed in both a promoter-specific and tissue-restricted fashion. Mutational analysis identified the functional cis-element within this novel exon, and a secondary structure prediction revealed that it forms a putative stem-loop. RNA electrophoretic mobility shift assay techniques revealed that a specific cytoplasmic RNA-binding complex interacts with this motif. Hence, a unique splicing event within a 5'-untranslated region is demonstrated to introduce a translational control element. This represents a newer model for the translational control of a mammalian mRNA.
Collapse
Affiliation(s)
- Derek C Newton
- Renal Division and the Department of Medicine, St. Michael's Hospital and University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
193
|
Wheway JM, Roberts RG. The dystrophin lymphocyte promoter revisited: 4.5-megabase intron, or artifact? Neuromuscul Disord 2003; 13:17-20. [PMID: 12467728 DOI: 10.1016/s0960-8966(02)00195-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The human dystrophin gene has seven generally recognised promoters and one, the so-called lymphocyte promoter, whose status remains uncertain. We re-evaluated this promoter in the light of recently available human and mouse genome sequences, and attempted to compare its activity in lymphocytes with that of the muscle promoter. We find that the lymphocyte promoter lies immediately adjacent to the chronic granulomatous disease gene, CYBB, approximately 4.5 megabases upstream of dystrophin exon 2. This makes the supposed lymphocyte dystrophin primary transcript 7 megabases in size, with an expected transcription time in excess of 2 days. We also find that lymphocyte promoter use in peripheral blood lymphocytes is negligible compared to that of the muscle promoter in the same tissue. Together with the presence in the intron of a sense-strand multi-exon gene, and lack of conserved linkage in the mouse, we propose that the lymphocyte promoter is not a biologically significant part of the dystrophin gene.
Collapse
Affiliation(s)
- Joanna M Wheway
- Division of Medical and Molecular Genetics, GKT Medical School, 8th Floor, Guy's Tower, Guy's Hospital, London SE1 9RT, UK
| | | |
Collapse
|
194
|
Bastianutto C, De Visser M, Muntoni F, Klamut HJ, Patarnello T. A novel muscle-specific enhancer identified within the deletion overlap region of two XLDC patients lacking muscle exon 1 of the human dystrophin gene. Genomics 2002; 80:614-20. [PMID: 12504853 DOI: 10.1006/geno.2002.7015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies point to the involvement of several discrete transcriptional enhancers in the modulation of dystrophin gene expression in skeletal and cardiac muscle. Analysis of deletion breakpoints in two X-linked dilated cardiomyopathy patients with mutations that remove muscle exon 1 identified a 3.2-kb deletion overlap region (XLDC3.2) between -1199 and +2057 bp predicted to contain regulatory elements essential for dystrophin gene expression in cardiac muscle. A novel-sequence-based search strategy was used to identify a 543-bp region downstream of muscle exon 1 rich in cardiac-specific transcriptional elements. Designated dystrophin muscle enhancer 2 (DME2), this candidate enhancer was seen to function in a position- and orientation-independent manner in muscle cell lines but not in fibroblasts. As only modest activity was observed in primary neonatal rat cardiomyocytes, DME2 is thought to play a role in dystrophin gene regulation at later stages of cardiac muscle development.
Collapse
Affiliation(s)
- Carlo Bastianutto
- Ontario Cancer Institute, Princess Margaret Hospital, Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
195
|
Mann CJ, Honeyman K, McClorey G, Fletcher S, Wilton SD. Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy. J Gene Med 2002; 4:644-54. [PMID: 12439856 DOI: 10.1002/jgm.295] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal genetic disorder caused by dystrophin gene mutations that preclude synthesis of a functional protein. One potential treatment of the disorder has utilised antisense oligoribonucleotides (AOs) to induce removal of disease-associated exons during pre-mRNA processing. Induced in-frame mRNA transcripts encode a shorter but functional dystrophin. We have investigated and improved the design of AOs capable of removing exon 23, and thus the disease-causing nonsense mutation, from mRNA in the mdx mouse model of DMD. METHODS H-2K(b)-tsA58 mdx cultures were transfected with complexes of Lipofectin and AOs. Exon skipping was detected by RT-PCR and subsequent protein production was demonstrated by Western blotting. AOs were delivered at a range of doses in order to compare relative efficiencies. RESULTS We describe effective and reproducible exon 23 skipping with several AOs, including one as small as 17 nucleotides. Furthermore, the location of a sensitive exon 23 target site has been refined, whilst minimum effective doses have been estimated in vitro. These doses are significantly lower than previously reported and were associated with the synthesis of dystrophin protein in vitro. CONCLUSIONS These results demonstrate the increasing feasibility of an AO-based therapy for treatment of DMD. By refining AO design we have been able to reduce the size and the effective dose of the AOs and have dramatically improved the efficiency of the technique.
Collapse
Affiliation(s)
- Christopher J Mann
- Australian Neuromuscular Research Institute, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Western Australia, 6907
| | | | | | | | | |
Collapse
|
196
|
Gnatt A. Elongation by RNA polymerase II: structure-function relationship. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:175-90. [PMID: 12213651 DOI: 10.1016/s0167-4781(02)00451-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II is the eukaryotic enzyme that transcribes all the mRNA in the cell. Complex mechanisms of transcription and its regulation underlie basic functions including differentiation and morphogenesis. Recent evidence indicates the process of RNA chain elongation as a key step in transcription control. Elongation was therefore expected and found to be linked to human diseases. For these reasons, major efforts in determining the structures of RNA polymerases from yeast and bacteria, at rest and as active enzymes, were undertaken. These studies have revealed much information regarding the processes involved in transcription. Eukaryotic RNA polymerases and their homologous bacterial counterparts are flexible enzymes with domains that separate DNA and RNA, prevent the escape of nucleic acids during transcription, allow for extended pausing or "arrest" during elongation, allow for translocation of the DNA and more. Structural studies of RNA polymerases are described below within the context of the process of transcription elongation, its regulation and function.
Collapse
Affiliation(s)
- Averell Gnatt
- Department of Pharmacology and Experimental Therapeutics and Department of Pathology, University of Maryland Baltimore, 655 West Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
197
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
198
|
Khattak S, Im H, Park T, Ahnn J, Spoerel NA. dELL, a drosophila homologue of transcription elongation factor ELL (Eleven-nineteen Lysine rich Leukemia), is required for early development. Cell Biochem Funct 2002; 20:119-27. [PMID: 11979508 DOI: 10.1002/cbf.960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ELL (Eleven-nineteen Lysine rich Leukemia) is known to be an elongation factor resembling elongin for RNA polymerase II transcription. A homologue of human ELL (hELL) was identified in Drosophila melanogaster (dELL) and several cDNA clones were isolated from the embryonic cDNA library. We showed that dELL is expressed mainly in the ovaries and early embryonic stages by developmental Northern blot. dELL encodes a protein of 912 amino acids which is substantially longer than the hELL (612 aa). Immunostaining revealed that dELL was localized to nuclei in early embryos and to nuclei of nurse cells and follicle cells in the ovary suggesting its important role in early development of drosophila. To elucidate the function of this gene in drosophila, P-element mobilization was performed by utilizing a P-element inserted upstream of dELL. Southern analysis showed that isolated mutants are internal P-element deletions. These P-element deletions can now be used to isolate dELL mutations by EMS mutagenesis.
Collapse
Affiliation(s)
- Shahryar Khattak
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
199
|
Tabuchi K, Südhof TC. Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics 2002; 79:849-59. [PMID: 12036300 DOI: 10.1006/geno.2002.6780] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurexins are neuron-specific vertebrate proteins with hundreds of differentially spliced isoforms that may function in synapse organization. We now show that Drosophila melanogaster and Caenorhabditis elegans express a single gene encoding only an alpha-neurexin, whereas humans and mice express three genes, each of which encodes alpha- and beta-neurexins transcribed from separate promoters. The neurexin genes are very large (up to 1.62 Mb), with the neurexin-3 gene occupying almost 2% of human chromosome 14. Although invertebrate and vertebrate neurexins exhibit a high degree of evolutionary conservation, only vertebrate neurexins are subject to extensive alternative splicing that uses mechanisms ranging from strings of mini-exons to multiple alternative splice donor and acceptor sites. Consistent with their proposed role in synapse specification, neurexins thus have evolved from relatively simple genes in invertebrates to diversified genes in vertebrates with multiple promoters and extensive alternative splicing.
Collapse
Affiliation(s)
- Katsuhiko Tabuchi
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | |
Collapse
|
200
|
Keckarević M, Savić D, Culjković B, Zamurović N, Major T, Keckarević D, Todorović S, Romac S. [Duchenne's and Becker's muscular dystrophy: analysis of phenotype-genotype correlation in 28 patients] ]. SRP ARK CELOK LEK 2002; 130:154-8. [PMID: 12395434 DOI: 10.2298/sarh0206154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Duchenne's and Becker's muscular dystrophy (DMD & BMD) is a X linked disease caused by mutations in the dystrophic gene. DMD is the malign form of the disease, which significantly shortens the lifetime of the patient, while BMD has late onset with slow progression. Sixty five percent of DMD and BMD cases are caused by deletion of one or more exons in the dystrophic gene, while duplications cause these diseases in 6 to 7% of the cases. There are two hot spots for deletions and duplications. These are exons in the proximal part of the gene (3rd to 18th) and exons of a distal part of the gene (45th to 52nd). The remaining 30% of DMD and BMD cases are caused by point mutations, small deletions or inversions in the dystrophic gene. The correlation between the severity of the disease and the position of deletion shows that most of the out of frame deletions cause DMD phenotype, while in frame deletions result in BMD phenotype. We report on the results of 28 non-related DMD and BMD patients. In 57% of cases deletions were detected and all were found in the distal hot spot of the gene. These results suggest that in most of the cases, out of frame deletions produce DMD phenotype while in frame deletions result in BMD phenotype. This is in compliance with data from literature.
Collapse
|