151
|
Voermans NC, van Alfen N, Pillen S, Lammens M, Schalkwijk J, Zwarts MJ, van Rooij IA, Hamel BCJ, van Engelen BG. Neuromuscular involvement in various types of Ehlers-Danlos syndrome. Ann Neurol 2009; 65:687-97. [DOI: 10.1002/ana.21643] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
152
|
Järveläinen H, Sainio A, Koulu M, Wight TN, Penttinen R. Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 2009; 61:198-223. [PMID: 19549927 PMCID: PMC2830117 DOI: 10.1124/pr.109.001289] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix (ECM) consists of numerous macromolecules classified traditionally into collagens, elastin, and microfibrillar proteins, proteoglycans including hyaluronan, and noncollagenous glycoproteins. In addition to being necessary structural components, ECM molecules exhibit important functional roles in the control of key cellular events such as adhesion, migration, proliferation, differentiation, and survival. Any structural inherited or acquired defect and/or metabolic disturbance in the ECM may cause cellular and tissue alterations that can lead to the development or progression of disease. Consequently, ECM molecules are important targets for pharmacotherapy. Specific agents that prevent the excess accumulation of ECM molecules in the vascular system, liver, kidney, skin, and lung; alternatively, agents that inhibit the degradation of the ECM in degenerative diseases such as osteoarthritis would be clinically beneficial. Unfortunately, until recently, the ECM in drug discovery has been largely ignored. However, several of today's drugs that act on various primary targets affect the ECM as a byproduct of the drugs' actions, and this activity may in part be beneficial to the drugs' disease-modifying properties. In the future, agents and compounds targeting directly the ECM will significantly advance the treatment of various human diseases, even those for which efficient therapies are not yet available.
Collapse
Affiliation(s)
- Hannu Järveläinen
- Department of Medicine, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
153
|
Saxena K, Kitzmiller KJ, Wu YL, Zhou B, Esack N, Hiremath L, Chung EK, Yang Y, Yu CY. Great genotypic and phenotypic diversities associated with copy-number variations of complement C4 and RP-C4-CYP21-TNX (RCCX) modules: a comparison of Asian-Indian and European American populations. Mol Immunol 2009; 46:1289-303. [PMID: 19135723 PMCID: PMC2716727 DOI: 10.1016/j.molimm.2008.11.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 11/22/2008] [Indexed: 01/26/2023]
Abstract
Inter-individual gene copy-number variations (CNVs) probably afford human populations the flexibility to respond to a variety of environmental challenges, but also lead to differential disease predispositions. We investigated gene CNVs for complement component C4 and steroid 21-hydroxylase from the RP-C4-CYP21-TNX (RCCX) modules located in the major histocompatibility complex among healthy Asian-Indian Americans (AIA) and compared them to European Americans. A combination of definitive techniques that yielded cross-confirmatory results was used. The medium gene copy-numbers for C4 and its isotypes, acidic C4A and basic C4B, were 4, 2 and 2, respectively, but their frequencies were only 53-56%. The distribution patterns for total C4 and C4A are skewed towards the high copy-number side. For example, the frequency of AIA-subjects with three copies of C4A (30.7%) was 3.92-fold of those with a single copy (7.83%). The monomodular-short haplotype with a single C4B gene and the absence of C4A, which is in linkage-disequilibrium with HLA DRB1*0301 in Europeans and a strong risk factor for autoimmune diseases, has a frequency of 0.012 in AIA but 0.106 among healthy European Americans (p=6.6x10(-8)). The copy-number and the size of C4 genes strongly determine the plasma C4 protein concentrations. Parallel variations in copy-numbers of CYP21A (CYP21A1P) and TNXA with total C4 were also observed. Notably, 13.1% of AIA-subjects had three copies of the functional CYP21B, which were likely generated by recombinations between monomodular and bimodular RCCX haplotypes. The high copy-numbers of C4 and the high frequency of RCCX recombinants offer important insights to the prevalence of autoimmune and genetic diseases.
Collapse
Affiliation(s)
- Kapil Saxena
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
| | - Kathryn J. Kitzmiller
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Yee Ling Wu
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Bi Zhou
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
| | - Nazreen Esack
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
| | - Leena Hiremath
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Erwin K. Chung
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio
| | - Yan Yang
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio
| | - C. Yung Yu
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus Ohio 43205
- Department of Pediatrics, The Ohio State University, Columbus, Ohio
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
154
|
Voermans NC, Bonnemann CG, Hamel BCJ, Jungbluth H, van Engelen BG. Joint hypermobility as a distinctive feature in the differential diagnosis of myopathies. J Neurol 2009; 256:13-27. [PMID: 19221853 DOI: 10.1007/s00415-009-0105-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 09/08/2008] [Indexed: 02/07/2023]
Abstract
Congenital and adult-onset inherited myopathies represent a wide spectrum of syndromes. Classification is based upon clinical features and biochemical and genetic defects. Joint hypermobility is one of the distinctive clinical features that has often been underrecognized so far. We therefore present an overview of myopathies associated with joint hypermobility: Ullrich congenital muscular dystrophy, Bethlem myopathy, congenital muscular dystrophy with joint hyperlaxity, multi-minicore disease, central core disease, and limb girdle muscular dystrophy 2E with joint hyperlaxity and contractures. We shortly discuss a second group of disorders characterised by both muscular features and joint hypermobility: the inherited disorders of connective tissue Ehlers-Danlos syndrome and Marfan syndrome. Furthermore, we will briefly discuss the extent and pattern of joint hypermobility in these myopathies and connective tissue disorders and propose two grading scales commonly used to score the severity of joint hypermobility. We will conclude focusing on the various molecules involved in these disorders and on their role and interactions in muscle and tendon, with a view to further elucidate the pathophysiology of combined hypermobility and myopathy. Hopefully, this review will contribute to enhanced recognition of joint hypermobility and thus be of aid in differential diagnosis.
Collapse
Affiliation(s)
- N C Voermans
- Neuromuscular Centre Nijmegen, Dept. of Neurology, 935, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
155
|
Rhee DJ, Haddadin RI, Kang MH, Oh DJ. Matricellular proteins in the trabecular meshwork. Exp Eye Res 2008; 88:694-703. [PMID: 19101543 DOI: 10.1016/j.exer.2008.11.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 11/14/2008] [Accepted: 11/20/2008] [Indexed: 12/17/2022]
Abstract
The trabecular meshwork is one of the primary tissues of interest in the normal regulation and dysregulation of intraocular pressure (IOP) that is a causative risk factor for primary open-angle glaucoma. Matricellular proteins generally function to allow cells to modulate their attachments with and alter the characteristics of their surrounding extracellular matrix (ECM). In non-ocular tissues, matricellular proteins generally increase fibrosis. Since ECM turnover is very important to the outflow facility, matricellular proteins may have a significant role in the regulation of IOP. The formalized study of matricellular proteins in trabecular meshwork is in its infancy. SPARC, thrombospondins-1 and -2, and tenascins-C and -X, and osteopontin have been localized to varying areas within the trabecular meshwork. Preliminary evidence indicates that SPARC and thrombospondin-1 play a role in the regulation of IOP and possibly the pathophysiology of glaucoma. These data show promise that matricellular proteins are involved in IOP dysregulation and are potential therapeutic targets. Further study is needed to clarify these roles.
Collapse
Affiliation(s)
- Douglas J Rhee
- Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
156
|
Nanomechanical properties of tenascin-X revealed by single-molecule force spectroscopy. J Mol Biol 2008; 385:1277-86. [PMID: 19071135 DOI: 10.1016/j.jmb.2008.11.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/10/2008] [Accepted: 11/18/2008] [Indexed: 11/22/2022]
Abstract
Tenascin-X is an extracellular matrix protein and binds a variety of molecules in extracellular matrix and on cell membrane. Tenascin-X plays important roles in regulating the structure and mechanical properties of connective tissues. Using single-molecule atomic force microscopy, we have investigated the mechanical properties of bovine tenascin-X in detail. Our results indicated that tenascin-X is an elastic protein and the fibronectin type III (FnIII) domains can unfold under a stretching force and refold to regain their mechanical stability upon the removal of the stretching force. All the 30 FnIII domains of tenascin-X show similar mechanical stability, mechanical unfolding kinetics, and contour length increment upon domain unfolding, despite their large sequence diversity. In contrast to the homogeneity in their mechanical unfolding behaviors, FnIII domains fold at different rates. Using the 10th FnIII domain of tenascin-X (TNXfn10) as a model system, we constructed a polyprotein chimera composed of alternating TNXfn10 and GB1 domains and used atomic force microscopy to confirm that the mechanical properties of TNXfn10 are consistent with those of the FnIII domains of tenascin-X. These results lay the foundation to further study the mechanical properties of individual FnIII domains and establish the relationship between point mutations and mechanical phenotypic effect on tenascin-X. Moreover, our results provided the opportunity to compare the mechanical properties and design of different forms of tenascins. The comparison between tenascin-X and tenascin-C revealed interesting common as well as distinguishing features for mechanical unfolding and folding of tenascin-C and tenascin-X and will open up new avenues to investigate the mechanical functions and architectural design of different forms of tenascins.
Collapse
|
157
|
Voermans N, Bönnemann C, Huijing P, Hamel B, van Kuppevelt T, de Haan A, Schalkwijk J, van Engelen B, Jenniskens G. Clinical and molecular overlap between myopathies and inherited connective tissue diseases. Neuromuscul Disord 2008; 18:843-56. [DOI: 10.1016/j.nmd.2008.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 03/05/2008] [Accepted: 05/28/2008] [Indexed: 12/13/2022]
|
158
|
Bader HL, Keene DR, Charvet B, Veit G, Driever W, Koch M, Ruggiero F. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes. Matrix Biol 2008; 28:32-43. [PMID: 18983916 DOI: 10.1016/j.matbio.2008.09.580] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 01/28/2023]
Abstract
Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.
Collapse
|
159
|
Endo T, Ariga H, Matsumoto KI. Truncated form of tenascin-X, XB-S, interacts with mitotic motor kinesin Eg5. Mol Cell Biochem 2008; 320:53-66. [DOI: 10.1007/s11010-008-9898-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022]
|
160
|
Kadler KE, Hill A, Canty-Laird EG. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr Opin Cell Biol 2008; 20:495-501. [PMID: 18640274 PMCID: PMC2577133 DOI: 10.1016/j.ceb.2008.06.008] [Citation(s) in RCA: 515] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 11/29/2022]
Abstract
Collagens are triple helical proteins that occur in the extracellular matrix (ECM) and at the cell–ECM interface. There are more than 30 collagens and collagen-related proteins but the most abundant are collagens I and II that exist as D-periodic (where D = 67 nm) fibrils. The fibrils are of broad biomedical importance and have central roles in embryogenesis, arthritis, tissue repair, fibrosis, tumor invasion, and cardiovascular disease. Collagens I and II spontaneously form fibrils in vitro, which shows that collagen fibrillogenesis is a selfassembly process. However, the situation in vivo is not that simple; collagen I-containing fibrils do not form in the absence of fibronectin, fibronectin-binding and collagen-binding integrins, and collagen V. Likewise, the thin collagen II-containing fibrils in cartilage do not form in the absence of collagen XI. Thus, in vivo, cellular mechanisms are in place to control what is otherwise a protein self-assembly process. This review puts forward a working hypothesis for how fibronectin and integrins (the organizers) determine the site of fibril assembly, and collagens V and XI (the nucleators) initiate collagen fibrillogenesis.
Collapse
Affiliation(s)
- Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
161
|
Imura K, Sato I. Novel localization of tenascin-X in adult mouse leptomeninges and choroid plexus. Ann Anat 2008; 190:324-8. [PMID: 18595676 DOI: 10.1016/j.aanat.2008.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/23/2008] [Accepted: 04/23/2008] [Indexed: 01/18/2023]
Abstract
Tenascin-X (Tn-X) belongs to the tenascin family of glycoproteins and is clearly associated with the human connective tissue disorder Ehlers-Danlos syndrome. Recently, human single nucleotide polymorphism analyses showed that Tn-X is associated with schizophrenia. Tn-X-related central nervous system (CNS) disorder has been reported in recent years. However, details of Tn-X localization are not clear in the adult cerebral cortex and its meninges. Using immunohistochemical techniques, we found novel localizations of Tn-X in the leptomeningeal trabecula (TB) of adult mice and in the connective tissue of the choroid plexus (CP) in the brains of mice. Subsequent immunohistochemical studies showed complementary localization of Tn-X in the leptomeninges and CP. Localization of tenascin-C was not detected in the leptomeningeal TB or in the connective tissue of the CP. These results might provide insight into the role of Tn-X in the pathogenesis of disorders in the CNS.
Collapse
Affiliation(s)
- Kosuke Imura
- Department of Anatomy, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, Japan.
| | | |
Collapse
|
162
|
Analysis of obstetric complications and uterine connective tissue in tenascin-X-deficient humans and mice. Cell Tissue Res 2008; 332:523-32. [PMID: 18335242 PMCID: PMC2386751 DOI: 10.1007/s00441-008-0591-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 01/22/2008] [Indexed: 11/15/2022]
Abstract
Tenascin-X (TNX) is a large, multi-domain, extracellular matrix glycoprotein. Complete deficiency of TNX in humans leads to a recessive form of Ehlers-Danlos syndrome (EDS), and TNX haploinsufficiency is a cause of hypermobility type EDS. EDS patients appear to have a higher risk of several complications during pregnancy, such as pelvic instability, premature rupture of membranes, and postpartum hemorrhage. Here, we present a study of genitourinary and obstetric complications in TNX-deficient women of reproductive age. We have found complications, such as uterus prolapses, that are in agreement with previous findings in other EDS types. In TNX knockout (KO) mice, we have observed mild pregnancy-related abnormalities. Morphological and immunohistological analysis of uterine tissues has not revealed obvious quantitative or spatial differences between TNX KO and wildtype mice with respect to collagen types I, III, V, and XII or elastic fibers. We conclude that TNX-deficient women are at risk of obstetric complications, but that TNX KO mice show only a mild phenotype. Furthermore, we show that TNX is involved in the stability of elastic fibers rather than in their initial deposition.
Collapse
|
163
|
Chiquet M, Tunç-Civelek V, Sarasa-Renedo A. Gene regulation by mechanotransduction in fibroblasts. Appl Physiol Nutr Metab 2008; 32:967-73. [PMID: 18059623 DOI: 10.1139/h07-053] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mechanical forces are important for connective tissue homeostasis. How do fibroblasts sense mechanical stress and how do they translate this information into an adaptive remodeling of the extracellular matrix (ECM)? Tenascin-C is rapidly induced in vivo by loading muscles and in vitro by stretching fibroblasts. Regulation of tenascin-C expression by mechanical signals occurs at the transcriptional level. Integrin receptors physically link the ECM to the cytoskeleton and act as force transducers: intracellular signals are triggered when integrins engage with ECM, and later when forces are applied. We found that cyclic strain does not induce tenascin-C messenger ribonucleic acid (mRNA) in fibroblasts lacking the beta1-integrin chain. An important link in integrin-dependent mechanotransduction is the small guanosine 5'-triphosphatase. RhoA and its target kinase, ROCK. In fibroblasts, cyclic strain activates RhoA and thereby induces ROCK-dependent actin assembly. Interestingly, tenascin-C mRNA induction by cyclic strain was suppressed by relaxing the cytoskeleton with a ROCK inhibitor or by actin depolymerization. Conversely, chemical activators of RhoA enhanced the effect of strain both on actin dynamics and on tenascin-C expression. Thus, RhoA/ROCK-controlled actin dynamics are required for the induction of specific ECM genes by mechanical stress. These findings have implications for the understanding of regeneration and for tissue engineering.
Collapse
Affiliation(s)
- Matthias Chiquet
- ITI Research Institute for Dental and Skeletal Biology, University of Bern, Murtenstrasse 35, CH-3010 Bern, Switzerland.
| | | | | |
Collapse
|
164
|
Rendle DI, Durham AE, Smith KC. Hereditary equine regional dermal asthenia in a quarter horse bred in the United Kingdom. Vet Rec 2008; 162:20-2. [DOI: 10.1136/vr.162.1.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- D. I. Rendle
- Liphook Equine Hospital; Forest Mere Liphook Hampshire GU30 7JG
| | - A. E. Durham
- Liphook Equine Hospital; Forest Mere Liphook Hampshire GU30 7JG
| | - K. C. Smith
- Centre for Preventive Medicine; Animal Health Trust; Lanwades Park, Kentford Newmarket Suffolk CB8 7UU
| |
Collapse
|
165
|
Voermans NC, Jenniskens GJ, Hamel BC, Schalkwijk J, Guicheney P, van Engelen BG. Ehlers-Danlos syndrome due to tenascin-X deficiency: muscle weakness and contractures support overlap with collagen VI myopathies. Am J Med Genet A 2007; 143A:2215-9. [PMID: 17702048 DOI: 10.1002/ajmg.a.31899] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
166
|
Kamatani Y, Matsuda K, Ohishi T, Ohtsubo S, Yamazaki K, Iida A, Hosono N, Kubo M, Yumura W, Nitta K, Katagiri T, Kawaguchi Y, Kamatani N, Nakamura Y. Identification of a significant association of a single nucleotide polymorphism in TNXB with systemic lupus erythematosus in a Japanese population. J Hum Genet 2007; 53:64-73. [DOI: 10.1007/s10038-007-0219-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 10/22/2007] [Indexed: 11/25/2022]
|
167
|
Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R, Tucker RP. Avian tenascin-W: expression in smooth muscle and bone, and effects on calvarial cell spreading and adhesion in vitro. Dev Dyn 2007; 235:1532-42. [PMID: 16534782 DOI: 10.1002/dvdy.20731] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tenascins are glycoproteins found primarily in the embryonic extracellular matrix. Here we have characterized the fourth and final member of the tenascin family in birds: tenascin-W. Avian tenascin-W has 3.5 epidermal growth factor-like repeats, 6 fibronectin type III domains, and a C-terminal fibrinogen-related domain. Immunohistochemistry reveals that avian tenascin-W is expressed transiently in developing smooth muscle, tendons, and ligaments, but the primary site of tenascin-W expression during development is in the extracellular matrix of bone and the cellular periosteum. In bony matrix, tenascin-W-coated fibrils partly overlap with fibrils that contain tenascin-C. The anti-tenascin-W also labels fibrils in cultures of osteogenic embryonic chicken calvarial cells. Primary calvarial cells cultured on purified tenascin-W become rounded, and fewer of these cells spread on fibronectin when tenascin-W is added to the medium when compared with calvarial cells cultured on fibronectin alone. Moreover, tenascin-W reduces the adhesion of calvarial cells to collagen type I in a shear force assay. We conclude that tenascin-W is likely to play a phylogenetically conserved role in developing bone and that it shares some of the basic anti-adhesive and matrix modulatory properties as tenascin-C.
Collapse
Affiliation(s)
- Caroline V Meloty-Kapella
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, California 95616-8643, USA
| | | | | | | |
Collapse
|
168
|
Voermans NC, Altenburg TM, Hamel BC, de Haan A, van Engelen BG. Reduced quantitative muscle function in tenascin-X deficient Ehlers-Danlos patients. Neuromuscul Disord 2007; 17:597-602. [PMID: 17588758 DOI: 10.1016/j.nmd.2007.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/16/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
The Ehlers-Danlos Syndrome (EDS) is a heterogeneous group of heritable connective tissue disorders. Skeletal muscle features belong to the clinical criteria of EDS and are generally interpreted to result from increased tendon distensibility or exercise avoidance. However, muscle function in EDS has hardly been investigated as such. We performed a pilot study consisting of clinical investigations, electromyography, muscle ultrasound, muscle biopsy, and quantitative muscle function tests on two EDS patients with deficiency of tenascin-X. Quantitative muscle function proved severely reduced despite normal findings on electromyography and muscle biopsy. These findings dispute the interpretation of increased tendon distensibility. We hypothesize that alterations in the extracellular matrix modify myofascial force transmission and thus influence muscle function in EDS.
Collapse
Affiliation(s)
- N C Voermans
- Neuromuscular Centre Nijmegen, Department of Neurology, 935, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
169
|
Abstract
Ehlers-Danlos syndrome type IV, the vascular type of Ehlers-Danlos syndromes (EDS), is an inherited connective tissue disorder defined by characteristic facial features (acrogeria) in most patients, translucent skin with highly visible subcutaneous vessels on the trunk and lower back, easy bruising, and severe arterial, digestive and uterine complications, which are rarely, if at all, observed in the other forms of EDS. The estimated prevalence for all EDS varies between 1/10,000 and 1/25,000, EDS type IV representing approximately 5 to 10% of cases. The vascular complications may affect all anatomical areas, with a tendency toward arteries of large and medium diameter. Dissections of the vertebral arteries and the carotids in their extra- and intra-cranial segments (carotid-cavernous fistulae) are typical. There is a high risk of recurrent colonic perforations. Pregnancy increases the likelihood of a uterine or vascular rupture. EDS type IV is inherited as an autosomal dominant trait that is caused by mutations in the COL3A1 gene coding for type III procollagen. Diagnosis is based on clinical signs, non-invasive imaging, and the identification of a mutation of the COL3A1 gene. In childhood, coagulation disorders and Silverman's syndrome are the main differential diagnoses; in adulthood, the differential diagnosis includes other Ehlers-Danlos syndromes, Marfan syndrome and Loeys-Dietz syndrome. Prenatal diagnosis can be considered in families where the mutation is known. Choriocentesis or amniocentesis, however, may entail risk for the pregnant woman. In the absence of specific treatment for EDS type IV, medical intervention should be focused on symptomatic treatment and prophylactic measures. Arterial, digestive or uterine complications require immediate hospitalisation, observation in an intensive care unit. Invasive imaging techniques are contraindicated. Conservative approach is usually recommended when caring for a vascular complication in a patient suffering from EDS type IV. Surgery may, however, be required urgently to treat potentially fatal complications.
Collapse
Affiliation(s)
- Dominique P Germain
- Centre de référence pour la maladie de Fabry et les maladies héréditaires du tissu conjonctif (syndromes d'Ehlers-Danlos, pseudoxanthome élastique, mucopolysaccharidoses), Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
170
|
Nakayama R, Nemoto T, Takahashi H, Ohta T, Kawai A, Seki K, Yoshida T, Toyama Y, Ichikawa H, Hasegawa T. Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 2007; 20:749-59. [PMID: 17464315 DOI: 10.1038/modpathol.3800794] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In soft tissue sarcomas, the diagnosis of malignant fibrous histiocytoma (MFH) has been a very controversial issue, and MFH is now considered to be reclassified into pleomorphic subtypes of other sarcomas. To characterize MFH genetically, we used an oligonucleotide microarray to analyze gene expression in 105 samples from 10 types of soft tissue tumors. Spindle cell and pleomorphic sarcomas, such as dedifferentiated liposarcoma, myxofibrosarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor (MPNST), fibrosarcoma and MFH, showed similar gene expression patterns compared to other tumors. Samples from those five sarcoma types could be classified into respective clusters based on gene expression by excluding MFH samples. We calculated distances between MFH samples and other five sarcoma types (dedifferentiated liposarcoma, myxofibrosarcoma, leiomyosarcoma, MPNST and fibrosarcoma) based on differentially expressed genes and evaluated similarities. Three of the 21 MFH samples showed marked similarities to one of the five sarcoma types, which were supported by histological findings. Although most of the remaining 18 MFH samples showed little or no histological resemblance to one of the five sarcoma types, 12 of them showed moderate similarities in terms of gene expression. These results explain the heterogeneity of MFH and show that the majority of MFHs could be reclassified into pleomorphic subtypes of other sarcomas. Taken together, gene expression profiling could be a useful tool to unveil the difference in the underlying molecular backgrounds, which leads to a rational taxonomy and diagnosis of a diverse group of soft tissue sarcomas.
Collapse
Affiliation(s)
- Robert Nakayama
- Cancer Transcriptome Project, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Tochigi M, Zhang X, Ohashi J, Hibino H, Otowa T, Rogers M, Kato T, Okazaki Y, Kato N, Tokunaga K, Sasaki T. Association study between the TNXB locus and schizophrenia in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:305-9. [PMID: 17192952 DOI: 10.1002/ajmg.b.30441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chromosome 6p21-24 region, which contains the human leukocyte antigen (HLA) region, has been suggested as an important locus for a susceptibility gene for schizophrenia. Recently, a significant association between schizophrenia and the TNXB locus, located immediately telomeric of the NOTCH4 locus in the HLA region, was observed. Few studies have further investigated the region in schizophrenia. In the present study, we investigated the region in a Japanese population. Subjects included 241 patients with schizophrenia and 290 controls. Twenty-six single nucleotide polymorphisms (SNPs) and the corresponding haplotypes were analyzed. As a result, exactly the same SNPs in the TNXB locus (rs1009382 and rs204887) as in the previous study were associated with schizophrenia (P = 0.034 and 0.034, respectively, uncorrected). A SNP (rs2071287) in the NOTCH4 locus and haplotype around it were also suggested to associate with the disease, consistent with another previous study (P = 0.041 and permutation P = 0.024, respectively, uncorrected). Although these associations became insignificant after Bonferroni correction, the findings might provide support for the association of the TNXB locus or its adjacent region of the NOTCH4 locus with schizophrenia.
Collapse
Affiliation(s)
- Mamoru Tochigi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Egging DF, Peeters ACTM, Grebenchtchikov N, Geurts-Moespot A, Sweep CGJ, den Heijer M, Schalkwijk J. Identification and characterization of multiple species of tenascin-X in human serum. FEBS J 2007; 274:1280-9. [PMID: 17263730 DOI: 10.1111/j.1742-4658.2007.05671.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We analysed the diversity of tenascin-X (TNX) species in serum and studied parameters that could affect determination of TNX levels in serum. Using western blot analysis we identified at least seven distinct TNX species, ranging from 75 kDa to the presumably full-length 450 kDa form. Purification of serum TNX followed by sequence analysis positively identified two major TNX species of 75 and 140 kDa. We found that serum TNX binds to tropoelastin but not to fibrillar collagens. We conclude that serum TNX is composed of distinct molecular species that retain functional activity.
Collapse
Affiliation(s)
- D F Egging
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
173
|
Lévy P, Ripoche H, Laurendeau I, Lazar V, Ortonne N, Parfait B, Leroy K, Wechsler J, Salmon I, Wolkenstein P, Dessen P, Vidaud M, Vidaud D, Bièche I. Microarray-Based Identification of Tenascin C and Tenascin XB, Genes Possibly Involved in Tumorigenesis Associated with Neurofibromatosis Type 1. Clin Cancer Res 2007; 13:398-407. [PMID: 17202312 DOI: 10.1158/1078-0432.ccr-06-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a complex variety of clinical manifestations. The hallmark of NF1 is the onset of heterogeneous (dermal or plexiform) benign neurofibromas. Plexiform neurofibromas can give rise to malignant peripheral nerve sheath tumors, which are resistant to conventional therapies. EXPERIMENTAL DESIGN To identify new signaling pathways involved in the malignant transformation of plexiform neurofibromas, we applied a 22,000-oligonucleotide microarray approach to a series of plexiform neurofibromas and malignant peripheral nerve sheath tumors. Changes in the expression of selected genes were then confirmed by real-time quantitative reverse transcription-PCR. RESULTS We identified two tenascin gene family members that were significantly deregulated in both human NF1-associated tumors and NF1-deficient primary cells: Tenascin C (TNC) was up-regulated whereas tenascin XB (TNXB) was down-regulated during tumor progression. TNC activation is mainly due to the up-regulation of large TNC splice variants. Immunohistochemical studies showed that TNC transcripts are translated into TNC protein in TNC-overexpressing tumors. Aberrant transcriptional activation of TNC seems to be principally mediated by activator protein transcription factor complexes. CONCLUSION TNXB and TNC may be involved in the malignant transformation of plexiform neurofibromas. Anti-TNC antibodies, already used successfully in clinical trials to treat malignant human gliomas, may be an appropriate new therapeutic strategy for NF1.
Collapse
Affiliation(s)
- Pascale Lévy
- Laboratoire de Génétique Moléculaire-Institut National de la Sante et de la Recherche Medicale U745, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris V, 4 avenue de l'Observatoire, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Egging D, van Vlijmen-Willems I, van Tongeren T, Schalkwijk J, Peeters A. Wound healing in tenascin-X deficient mice suggests that tenascin-X is involved in matrix maturation rather than matrix deposition. Connect Tissue Res 2007; 48:93-8. [PMID: 17453911 DOI: 10.1080/03008200601166160] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein whose absence in humans leads to a recessive form of Ehlers-Danlos Syndrome (EDS). TNX deficient patients have hypermobile joints and fragile skin, but unlike the classical type of EDS, no atrophic scars were observed. Anecdotal evidence suggested that wound healing in TNX deficient patients is abnormal, but no detailed study has been performed so far. To address the role of TNX in wound healing, we analyzed skin wound morphology and mechanical properties of scars in TNX knockout (KO) mice. Breaking strength of unwounded skin of KO mice is significantly lower (<50%) than that of wild-type (WT) mice. In the early stage of wound healing when TNX is hardly expressed in WT wounds (day 7), WT and KO skin are of similar strength. After 14 days, when TNX starts to be expressed at moderate levels in wounds of WT mice, the WT scars gain a further increase in breaking strength, whereas KO scars do not progress beyond the mechanical strength of uninjured KO skin. No obvious differences between KO and WT mice were noted in the rate of wound closure, or in expression of fibrillar collagens during wound healing. We conclude that TNX is unlikely to be involved in matrix deposition in the early phase of wound healing, but it is required in the later phase when remodeling and maturation of the matrix establishes and improves its biomechanical properties.
Collapse
Affiliation(s)
- David Egging
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands.
| | | | | | | | | |
Collapse
|
175
|
T. LEXIKON DER MEDIZINISCHEN LABORATORIUMSDIAGNOSTIK 2007. [PMCID: PMC7119912 DOI: 10.1007/978-3-540-49520-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
176
|
Lethias C, Carisey A, Comte J, Cluzel C, Exposito JY. A model of tenascin-X integration within the collagenous network. FEBS Lett 2006; 580:6281-5. [PMID: 17078949 DOI: 10.1016/j.febslet.2006.10.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 10/24/2022]
Abstract
Tenascin-X is an extracellular matrix protein whose absence leads to an Ehlers-Danlos syndrome in humans, characterized mainly by disorganisation of collagen and elastic fibril networks. After producing recombinant full-length tenascin-X in mammalian cells, we find that this protein assembled into disulfide-linked oligomers. Trimers were the predominant form observed using rotary shadowing. By solid phase interaction studies, we demonstrate that tenascin-X interacts with types I, III and V fibrillar collagen molecules when they are in native conformation. The use of tenascin-X variants with large regions deleted indicated that both epidermal growth factor repeats and the fibrinogen-like domain are involved in this interaction. Moreover, we demonstrate that tenascin-X binds to the fibril-associated types XII and XIV collagens. We thus suggest that tenascin-X, via trimerization and multiple interactions with components of collagenous fibrils, plays a crucial role in the organisation of extracellular matrices.
Collapse
Affiliation(s)
- Claire Lethias
- Institut de Biologie et Chimie des Protéines, IFR 128 Biosciences Lyon-Gerland, CNRS UMR 5086, Université de Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| | | | | | | | | |
Collapse
|
177
|
Egging D, van den Berkmortel F, Taylor G, Bristow J, Schalkwijk J. Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch Dermatol Res 2006; 298:389-96. [PMID: 17033827 DOI: 10.1007/s00403-006-0706-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/28/2006] [Accepted: 09/02/2006] [Indexed: 10/24/2022]
Abstract
Tenascin-X (TNX) is a large 450 kDa extracellular matrix protein expressed in a variety of tissues including skin, joints and blood vessels. Deficiency of TNX causes a recessive form of Ehlers-Danlos syndrome characterized by joint hypermobility, skin fragility and hyperextensible skin. Skin of TNX deficient patients shows abnormal elastic fibers and reduced collagen deposition. The mechanism by which TNX deficiency leads to connective tissue alterations is unknown. Here we report that C-terminal domains of human TNX bind to major dermal fibrillar collagens and tropoelastin. We have mapped these interactions to the fibronectin type III repeat 29 (FNIII29) and the C-terminal fibrinogen domain (FbgX) of TNX. In addition we found that FNIII29 of TNX accelerates collagen fibrillogenesis in vitro. We hypothesize that TNX contributes to matrix stability and is possibly involved in collagen fibril formation.
Collapse
Affiliation(s)
- David Egging
- Department of Dermatology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
178
|
Abstract
The interstitial extracellular matrix tenascin-X (iTNX), which has a molecular mass of roughly 450 kDa, is expressed at high levels in muscular tissues and skin. In this study, we identified the serum form of TNX (sTNX) with a molecular mass of 200 kDa in the mouse. Western blot analysis with specific antibodies against fibronectin type III-like (FNIII) repeats of TNX and N-terminal sequence analysis of 200-kDa sTNX revealed that the N-terminus of sTNX is located in the juncture between the 16th FNIII (M16) and 17th FNIII (M17) repeats of iTNX. The 200-kDa sTNX contains 15 FNIII repeats and a fibrinogen domain identical to the Cterminal portion of the iTNX. TNX-deficient mice lacked not only iTNX but also sTNX. Furthermore, 200-kDa sTNX was generated by cleavage of the spleen iTNX by spleen homogenate, and its generation was inhibited by protease inhibitors. These results suggest that sTNX is generated by proteolytic cleavage of iTNX.
Collapse
Affiliation(s)
- Ken-ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
179
|
Bristow J, Carey W, Egging D, Schalkwijk J. Tenascin-X, collagen, elastin, and the Ehlers-Danlos syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2006; 139C:24-30. [PMID: 16278880 DOI: 10.1002/ajmg.c.30071] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tenascin-X is an extracellular matrix protein initially identified because the gene encoding it overlaps with the human CYP21B gene. Because studies of gene and protein function of other tenascins had been poorly predictive of essential functions in vivo, we used a genetic approach that critically relied on an understanding of the genomic locus to uncover an association between inactivating tenascin-X mutations and novel recessive and dominant forms of Ehlers-Danlos syndrome (EDS). Tenascin-X provides the first example of a gene outside of the fibrillar collagens and their processing enzymes that causes EDS. Tenascin-X null mice recapitulate the skin findings of the human disease, confirming a causative role for this gene in EDS. Further evaluation of these mice showed that tenascin-X is an important regulator of collagen deposition in vivo, suggesting a novel mechanism of disease in this form of EDS. Further studies suggest that tenascin-X may do this through both direct and indirect interactions with the collagen fibril. Recent studies show that TNX effects on matrix extend beyond the collagen to the elastogenic pathway and matrix remodeling enzymes. Tenascin-X serves as a compelling example of how human "experiments of nature" can guide us to an understanding of genes whose function may not be evident from their sequence or in vitro studies of their encoded proteins.
Collapse
Affiliation(s)
- James Bristow
- Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA.
| | | | | | | |
Collapse
|
180
|
Veit G, Hansen U, Keene DR, Bruckner P, Chiquet-Ehrismann R, Chiquet M, Koch M. Collagen XII interacts with avian tenascin-X through its NC3 domain. J Biol Chem 2006; 281:27461-70. [PMID: 16861231 DOI: 10.1074/jbc.m603147200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Large oligomeric proteins often contain several binding sites for different molecules and can therefore induce formation of larger protein complexes. Collagen XII, a multidomain protein with a small collagenous region, interacts with fibrillar collagens through its C-terminal region. However, no interactions to other extracellular proteins have been identified involving the non-collagenous N-terminal NC3 domain. To further elucidate the components of protein complexes present close to collagen fibrils, different extracellular matrix proteins were tested for interaction in a solid phase assay. Binding to the NC3 domain of collagen XII was found for the avian homologue of tenascin-X that in humans is linked to Ehlers-Danlos disease. The binding was further characterized by surface plasmon resonance spectroscopy and supported by immunohistochemical co-localization in chick and mouse tissue. On the ultrastructural level, detection of collagen XII and tenascin-X by immunogold labeling confirmed this finding.
Collapse
Affiliation(s)
- Guido Veit
- Center for Biochemistry, Department of Dermatology, Medical Faculty, University of Cologne, D-50931 Cologne, Germany, and Shriners Hospital for Children Research Center, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Lincoln J, Lange AW, Yutzey KE. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development. Dev Biol 2006; 294:292-302. [PMID: 16643886 DOI: 10.1016/j.ydbio.2006.03.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 03/06/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
The mature heart valves are dynamic structures composed of highly organized cell lineages and extracellular matrices. The discrete architecture of connective tissue within valve leaflets and supporting structures allows the valve to withstand life-long functional demands and changes in hemodynamic forces and load. The dysregulation of ECM organization is a common feature of heart valve disease and can often be linked to genetic defects in matrix protein structure or developmental regulation. Recent studies have identified specific regulatory pathways that are active in the developing valve structures and also control cartilage, tendon, and bone development. This review will focus on the regulatory hierarchies that control normal and abnormal heart valve development in parallel with other connective tissue cell types.
Collapse
Affiliation(s)
- Joy Lincoln
- Division of Molecular Cardiovascular Biology, MLC 7020, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
182
|
Sato I, Uneno R, Miwa Y, Sunohara M. Distribution of tenascin-C and tenascin-X, apoptotic and proliferating cells in postnatal soft-diet rat temporomandibular joint (TMJ). Ann Anat 2006; 188:127-36. [PMID: 16551009 DOI: 10.1016/j.aanat.2005.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We immunohistochemically examined the relationship between the distribution of extracellular matrix glycoproteins (tenascin-C and tenascin-X), apoptotic cells, and proliferating cells to determine the effect of a soft diet in the rat temporomandibular joint (TMJ) over a period of 4 weeks from 21 days of age. Using confocal Laser scanning microscopy, strong expression of tenascin-C and tenascin-X was found in the soft-diet group, mainly from the proliferative layer to the cartilage layer of the condyle, and posterior and anterior regions of the disk, in contrast to that of the control group, which was fed a hard diet. The number of proliferating cells in the soft-diet group was lower than that in the control group and was especially low in the calcified zone and proliferative cell layer of the sagittal section of the TMJ. The apoptotic cells were found mainly in the endochondral ossification layer of the condyle. On day 28 in the soft-diet group, they were also highly concentrated in endochondral ossification layer of the anterior condyle beneath the disk. A few apoptotic cells were observed in the synovial membrane and the disk. These distributions reflect the process of replication in the TMJ in accordance with the feeding of a soft diet.
Collapse
Affiliation(s)
- Iwao Sato
- Department of Anatomy, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi Chiyoda-Ku, Tokyo 102-8159, Japan.
| | | | | | | |
Collapse
|
183
|
Shichi D, Kikkawa EF, Ota M, Katsuyama Y, Kimura A, Matsumori A, Kulski JK, Naruse TK, Inoko H. The haplotype block, NFKBIL1-ATP6V1G2-BAT1-MICB-MICA, within the class III-class I boundary region of the human major histocompatibility complex may control susceptibility to hepatitis C virus-associated dilated cardiomyopathy. ACTA ACUST UNITED AC 2005; 66:200-8. [PMID: 16101831 DOI: 10.1111/j.1399-0039.2005.00457.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiomyopathy is a heart muscle disease with impaired stretch response that can result in severe heart failure and sudden death. A small proportion of hepatitis C virus (HCV)-infected patients may be predisposed to develop dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). The molecular mechanisms involved in the predisposition remain unknown due in part to the lack of information on their genetic background. Because the human leukocyte antigen (HLA) region has a pivotal role in controlling the susceptibility to HCV-induced liver disease, we hypothesized that particular HLA alleles and/or non-HLA gene alleles within the human major histocompatibility complex (MHC) genomic region might control the predisposition to HCV-associated DCM (HCV-DCM) and/or HCV-associated HCM (HCV-HCM). Here, we present mapping results of the MHC-related susceptibility gene locus for HCV-associated cardiomyopathy by analyzing microsatellite and single nucleotide polymorphism markers. To delineate the susceptibility locus, we genotyped 44 polymorphic markers scattered across the entire MHC region in a total of 59 patients (21 HCV-DCM and 38 HCV-HCM) and 120 controls. We mapped HCV-DCM susceptibility to a non-HLA gene locus spanning from NFKBIL1 to MICA gene loci within the MHC class III-class I boundary region. Our results showed that HCV-DCM was more strongly associated with alleles of the non-HLA genes rather than the HLA genes themselves. In addition, no significant association was found between the MHC markers and HCV-HCM. This marked difference in the MHC-related disease susceptibility for HCV- associated cardiomyopathy strongly suggests that the development of HCV- DCM and HCV-HCM is under the control of different pathogenic mechanisms.
Collapse
Affiliation(s)
- D Shichi
- Department of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Egging DF, van Vlijmen I, Starcher B, Gijsen Y, Zweers MC, Blankevoort L, Bristow J, Schalkwijk J. Dermal connective tissue development in mice: an essential role for tenascin-X. Cell Tissue Res 2005; 323:465-74. [PMID: 16331473 DOI: 10.1007/s00441-005-0100-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
Deficiency of the extracellular matrix protein tenascin-X (TNX) causes a recessive form of Ehlers-Danlos syndrome (EDS) characterized by hyperextensible skin and hypermobile joints. It is not known whether the observed alterations of dermal collagen fibrils and elastic fibers in these patients are caused by disturbed assembly and deposition or by altered stability and turnover. We used biophysical measurements and immunofluorescence to study connective tissue properties in TNX knockout and wild-type mice. We found that TNX knockout mice, even at a young age, have greatly disturbed biomechanical properties of the skin. No joint abnormalities were noted at any age. The spatio-temporal expression of TNX during normal mouse skin development, during embryonic days 13-19 (E13-E19), was distinct from tropoelastin and the dermal fibrillar collagens type I, III, and V. Our data show that TNX is not involved in the earliest phase (E10-E14) of the deposition of collagen fibrils and elastic fibers during fetal development. From E15 to E19, TNX starts partially to colocalize with the dermal collagens and elastin, and in adult mice, TNX is present in the entire dermis. In adult TNX knockout mice, we observed an apparent increase of elastin. We conclude that TNX knockout mice only partially recapitulate the phenotype of TNX-deficient EDS patients, and that TNX could potentially be involved in maturation and/or maintenance of the dermal collagen and elastin network.
Collapse
Affiliation(s)
- D F Egging
- Department of Dermatology Nijmegen, Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Tendons and ligaments (T/L) are very similar fibrous tissues that respectively connect muscle to bone and bone to bone. They are comprised of fibroblasts that produce large amounts of extra-cellular matrix, resulting in a dense and hypocellular structure. The complex molecular organization of T/L, together with high water content, are responsible for their viscoelastic properties, hence insuring their mechanical function. We will first review recent work on tendon embryology and discuss ligament formation, which has been less documented. We will next summarize our current knowledge of T/L molecular architecture, alterations of which are a major cause for disease. We will finally focus on T/L repair after injury and on genetic diseases responsible for T/L defects.
Collapse
Affiliation(s)
- Samuel Tozer
- Centre National de la Recherche Scientifique (CNRS) UMR7622, Paris, France
| | | |
Collapse
|
186
|
Zweers MC, Dean WB, van Kuppevelt TH, Bristow J, Schalkwijk J. Elastic fiber abnormalities in hypermobility type Ehlers-Danlos syndrome patients with tenascin-X mutations. Clin Genet 2005; 67:330-4. [PMID: 15733269 DOI: 10.1111/j.1399-0004.2005.00401.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ehlers-Danlos syndrome (EDS) is a heterogeneous group of connective tissue disorders with characteristic skin and joint involvement. The concept that EDS is a disease of fibrillar collagen was challenged by the identification of a clinically distinct, recessive type of EDS caused by deficiency of the extracellular matrix protein tenascin-X (TNX). Interestingly, haploinsufficiency of TNX is associated with the dominantly inherited hypermobility type of EDS. In this study, we examined whether missense mutations in the TNX gene can account for some of the cases of hypermobility type EDS. Furthermore, we studied whether missense mutations or heterozygosity for truncating mutations in the TNX gene lead to alterations in the dermal connective tissue. Sequence analysis revealed three missense mutations in TNX in hypermobility type EDS patients, which were not present in 192 control alleles. Morphometric analysis of skin biopsies of these patients showed altered elastic fibers in one of them, suggesting that this missense mutation is disease causing. Light microscopic and ultrastructural changes of the elastic fibers were observed in TNX-haploinsufficient hypermobility type EDS patients, which were not found in hypermobility type EDS patients in whom TNX mutations were excluded. Our results indicate that the observed alterations in elastic fibers are specific for hypermobility type EDS patients with mutations of TNX.
Collapse
Affiliation(s)
- M C Zweers
- Department of Dermatology, University Medical Center Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
187
|
Affiliation(s)
- Henry C Hsia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
188
|
Lindor NM, Bristow J. Tenascin-X deficiency in autosomal recessive Ehlers-Danlos syndrome. Am J Med Genet A 2005; 135:75-80. [PMID: 15793839 DOI: 10.1002/ajmg.a.30671] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present two unrelated individuals with complete deficiency of tenascin-X, resulting in an autosomal recessive form of Ehlers-Danlos syndrome (EDS). Consistent with the original description of tenascin-X deficiency, these individuals had marked skin hyperextensibility, easy bruising, and joint laxity. Unlike classical EDS they did not have atrophic scarring or poor wound healing. Significant medical problems occurring in these individuals included severe diverticular intestinal disease, mitral valve prolapse requiring valve replacement, and obstructive airway disease.
Collapse
Affiliation(s)
- Noralane M Lindor
- Department of Medical Genetics, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
189
|
Ezzeddine H, Sabouraud P, Eschard C, El Tourjuman O, Bednarek N, Motte J. Polymicrogyrie bifrontale et syndrome d'Ehlers-Danlos. Arch Pediatr 2005; 12:173-5. [PMID: 15694543 DOI: 10.1016/j.arcped.2004.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 11/12/2004] [Indexed: 10/26/2022]
Abstract
The authors describe the case of a six-year-old girl with Ehlers-Danlos syndrome associated to bilateral symmetrical frontal polymicrogyria. Several extracellular matrix components, including collagen, are directly implicated in the neuronal migration. We think that a defect in collagen or in another extracellular matrix protein during fetal development could result in this association.
Collapse
Affiliation(s)
- H Ezzeddine
- Service de pédiatrie A, hôpital Manchester, 45 avenue Manchester, 08011 Charleville-Mézières cedex, France
| | | | | | | | | | | |
Collapse
|
190
|
Götte M, Kresse H. Defective Glycosaminoglycan Substitution of Decorin in a Patient With Progeroid Syndrome Is a Direct Consequence of Two Point Mutations in the Galactosyltransferase I (�4galT-7) Gene. Biochem Genet 2005; 43:65-77. [PMID: 15859521 DOI: 10.1007/s10528-005-1068-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The small dermatan sulfate proteoglycan decorin is involved in the regulation of collagen fibrillogenesis, cell adhesion and migration, and growth factor signaling. In a progeroid patient carrying two point mutations in beta4 galactosyltransferase I (beta4GalT-7) only 50% of the decorin core protein molecules are substituted with glycosaminoglycan chains. We expressed decorin, as well as wild-type and mutant alleles of beta4GalT-7 in galactosyltransferase-deficient CHO618 cells. Decorin was less efficiently substituted with glycosaminoglycan chains upon expression of beta4GalT-7(186D) compared to beta4GalT-7-expressing cells. Decorin from beta4GalT-7-expressing cells displayed increased molecular heterogeneity. Decorin glycosaminoglycan chains were completely susceptible to chondroitinase ABC treatment. Cells expressing beta4GalT-7(206P) did not synthesize the proteoglycanform of decorin. Thus, the beta4GalT-7 mutations directly affect the molecular phenotype of decorin observed in a patient with the progeroid form of Ehlers-Danlos syndrome, which may be a major mechanistic cause for the skin and wound healing defects observed in this patient.
Collapse
Affiliation(s)
- Martin Götte
- Department of Obstetrics and Gynecology, Münster University Hospital, Domagkstr-11, D-48149 Münster, Germany.
| | | |
Collapse
|
191
|
Abstract
More than 90% of cases of congenital adrenal hyperplasia (CAH) are caused by mutations of the CYP21 gene. The occurrence of defective CYP21 genes, including 15 mutations, has been attributed to intergenic recombination of DNA sequences from CYP21P, and shows no influence on the RP1-C4A-CYP21P-XA-RP2-C4BCYP21- TNXB gene locus on chromosome 6p21.3. However, multiple gene deletions in this region produce at least three categories of gene arrangements: (a) C4A-CYP21P/CYP21-TNXB, in which there is a CYP21P/CYP21 fusion gene; (b) C4A-XCYP21-TNXB, where XCYP21 indicates that the CYP21 gene contains mutations of IVS2 (-12A/C>G and 707-714delGAGACTAC); and (c) C4A-CYP21P-TNXA/TNXB, in which the TNX A and B genes are fused. Among them, seven different structures of the CYP21 haplotype were found at these three loci. Formation of the C4A-CYP21P/CYP21-TNXB locus produced four distinct CYP21P/CYP21 chimeras. The C4A-XCYP21-TNXB locus contained the IVS2 mutation -12A/C>G and 707-714delGAGACTAC from the XCYP21 gene; and two kinds of TNXA/TNXB hybrids were found in the C4A-CYP21P-TNXA/TNXB locus. The seven different CYP21 alleles produced 3.2 kb Taq I fragments caused by deletion of the RP2-XA-C4B locus. Therefore, production of a 3.2-kb CYP21 allele shows diversity, but is not a unique feature of the CYP21P gene. Most of these gene arrangements probably exist in the C4A-XCYP21-TNXB and C4A-CYP21P/CYP21-TNXB gene loci. The existence of the C4A-CYP21P-TNXA/TNXB locus might not be common in CAH patients with 21-hydroxylase deficiency.
Collapse
Affiliation(s)
- Hsien-Hsiung Lee
- King Car Food Industrial Co., Yuan-Shan Research Institute, Taiwan, Republic of China.
| |
Collapse
|
192
|
|
193
|
Watanabe K, Konishi K, Sato I. Distribution of tenascin-C and -X and expression of tenascin-C and X mRNA in the postnatal rat tongue. Ann Anat 2004; 186:547-54. [PMID: 15646290 DOI: 10.1016/s0940-9602(04)80105-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Different distributions of tenascin-C and -X are found in various organs. However, the role of the tenascin family in the process of formation in the papillae epithelium during development is poorly understood. In order to find more information an tenascin-C and -X distributions during tongue development, immunohistocheminical studies have been carried out to demonstrate these distributions. The number of PCNA positive cells gradually increased from 5- to 15-days, and decreased on 21-days in the intercellular space of the epithelal layer in the postnatal development of rat tongue (150 specimens of Wistar male rats (0-, 5-, 10-, 15-, and 21-days). The reaction of tenascin-C was found mainly in the intercellular space of the epithelial layer on contrast to that of tenascin-X which was mainly found an the epithelial layer under a confocal laser scanning microscope. The level of mRNA of tenascin-C (600bp) and tenascin-X (588bp) gradually decreased from 5-days using RT-PCR methods. The different distribution of these extracellular matrices and weakly-regulated expressions may be related to the replication process of the epithelium in the tongue during development.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Department of Anatomy, School of Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan
| | | | | |
Collapse
|
194
|
Zweers MC, Hakim AJ, Grahame R, Schalkwijk J. Joint hypermobility syndromes: the pathophysiologic role of tenascin-X gene defects. ACTA ACUST UNITED AC 2004; 50:2742-9. [PMID: 15457441 DOI: 10.1002/art.20488] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Manon C Zweers
- University Medical Centre St. Radboud, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
195
|
Kurihara K, Sato I. Distribution of tenascin-C and -X, and soft X-ray analysis of the mandibular symphysis during mandible formation in the human fetus. Okajimas Folia Anat Jpn 2004; 81:49-55. [PMID: 15455729 DOI: 10.2535/ofaj.81.49] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the development of the human mandible, the process of bone calcification, distribution and expression of tenascin-C and -X in the mental symphyseal region are unknown. The purpose of this study was to determine the distribution of these extracellular matrices in the connective tissue around calcified tissues located on the mental symphyseal region of the human fetus during development through histological and radiographical studies. The radiographic density increased from 16 weeks to 24 weeks gestation in all examined regions; in contrast, the diameter of muscle fiber in the suprahyoid muscles (digastric anterior and geniohyoid muscles) inserted into the inner mental symphyseal region increased from 24 weeks gestation. The extracellular matrices (tenascin) were shown to have a different distribution in the mental symphyseal region of the human fetus at each stage. These different distributions of tenascin-C and -X were found around the epithelium and the endomysium of the mental symphyseal region, and affect the specific formation of the mandible during ossification with hyoid muscle development in human fetus.
Collapse
Affiliation(s)
- Kazuhiro Kurihara
- Department of Anatomy, School of Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan
| | | |
Collapse
|
196
|
Minamitani T, Ikuta T, Saito Y, Takebe G, Sato M, Sawa H, Nishimura T, Nakamura F, Takahashi K, Ariga H, Matsumoto KI. Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp Cell Res 2004; 298:305-15. [PMID: 15242785 DOI: 10.1016/j.yexcr.2004.04.030] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/15/2004] [Indexed: 11/20/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX regulates the expression of type VI collagen. In this study, we investigated the binding of TNX to type I collagen as well as to type VI collagen and the effects of these proteins on fibrillogenesis of type I collagen. Full-length recombinant TNX, which is expressed in and purified from mammalian cell cultures, and type VI collagen purified from bovine placenta were used. Solid-phase assays revealed that TNX or type VI collagen bound to type I collagen, although TNX did not bind to type VI collagen, fibronectin, or laminin. The rate of collagen fibril formation and its quantity, measured as increased turbidity, was markedly increased by the presence of TNX, whereas type VI collagen did not increase the quantity but accelerated the rate of collagen fibril formation. Combined treatment of both had an additive effect on the rate of collagen fibril formation. Furthermore, deletion of the epidermal growth factor-like (EGF) domain or fibrinogen-like domain of TNX attenuated the initial rate of collagen fibril formation. Finally, we observed abnormally large collagen fibrils by electron microscopy in the skin from TNX-deficient (TNX-/-) mice during development. These findings demonstrate a fundamental role for TNX and type VI collagen in regulation of collagen fibrillogenesis in vivo and in vitro.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Minamitani T, Ariga H, Matsumoto KI. Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp Cell Res 2004; 297:49-60. [PMID: 15194424 DOI: 10.1016/j.yexcr.2004.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/01/2004] [Indexed: 11/29/2022]
Abstract
Tenascin-X (TNX) is an extracellular matrix glycoprotein. We previously demonstrated that TNX-null fibroblasts exhibit decreased cell-matrix and cell-cell adhesion. In this study, we used a differential display technique to determine the genes involved in this process. Differential display analysis of wild-type and TNX-null fibroblasts revealed that mRNA expression level of type VI collagen alpha3 is predominantly decreased in TNX-null fibroblasts. Expression levels of mRNAs of other subunits of type VI collagen, alpha2 and alpha3 chains, were also remarkably decreased in TNX-null fibroblasts. The protein level of alpha3 chain of type VI collagen was also reduced in TNX-null fibroblasts. However, the organization of type VI collagen in the extracellular matrix of TNX-null fibroblasts was similar to that of wild-type fibroblasts. Transient expression of TNX in Balb3T3 cells caused an increase in the level of mRNA of type VI collagen compared with that in vector control and increased the promoter activity of type VI collagen alpha1 subunit gene. In addition, the expression levels of type I collagen and other collagen fibril-associated molecules such as type XII and type XIV collagens, decorin, lumican and fibromodulin in wild-type and TNX-null fibroblasts were compared. It was found that the mRNA expression levels of type I collagen and collagen fibril-associated molecules other than decorin were decreased and that the expression level of decorin was increased in TNX-null fibroblasts. The results suggest the possibility that TNX mediates not only cell-cell and cell-matrix interactions but also fibrillogenesis via collagen fibril-associated molecules.
Collapse
Affiliation(s)
- Takeharu Minamitani
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | |
Collapse
|
198
|
Matsumoto KI, Minamitani T, Orba Y, Sato M, Sawa H, Ariga H. Induction of matrix metalloproteinase-2 by tenascin-X deficiency is mediated through the c-Jun N-terminal kinase and protein tyrosine kinase phosphorylation pathway. Exp Cell Res 2004; 297:404-14. [PMID: 15212943 DOI: 10.1016/j.yexcr.2004.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 03/23/2004] [Indexed: 10/26/2022]
Abstract
The results of our previous study showed that tumor invasion and metastasis are promoted in extracellular matrix (ECM) tenascin-X-deficient (TNX-/-) mice via increased expression of matrix metalloproteinases (MMPs). However, little is known about the relationship between TNX deficiency and activation of MMP genes. In this study, we investigated the molecular mechanism by which TNX deficiency activates the MMP-2 gene. We examined the intracellular signaling pathways that regulate gene expression of the proteinase in isolated fibroblasts. Results of gelatin zymography showed that MMP-2 was induced to a greater extent in TNX-/- fibroblasts embedded in type I collagen than in wild-type fibroblasts. RT-PCR analysis revealed that the increased level of MMP-2 expression was caused at the transcription level. Conversely, stable overexpression of TNX in a fibroblast cell line reduced MMP-2 expression and suppressed MMP-2 promoter activity. In addition, treatment of TNX-/- fibroblasts with SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and genistein, a tyrosine kinase inhibitor, suppressed the increased level of proMMP-2 and increased MMP-2 promoter activity in TNX-/- fibroblasts. Furthermore, increased activation of JNK and tyrosine phosphorylation of certain proteins were observed in TNX-/- fibroblasts. These findings suggest that induction of MMP-2 by TNX deficiency is mediated, at least in part, through the JNK and protein tyrosine kinase phosphorylation pathway.
Collapse
Affiliation(s)
- Ken-Ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita, Sapporo 060-0812, Japan.
| | | | | | | | | | | |
Collapse
|
199
|
Matsumoto KI, Sato T, Oka S, Orba Y, Sawa H, Kabayama K, Inokuchi JI, Ariga H. Triglyceride accumulation and altered composition of triglyceride-associated fatty acids in the skin of tenascin-X-deficient mice. Genes Cells 2004; 9:737-48. [PMID: 15298681 DOI: 10.1111/j.1356-9597.2004.00755.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tenascin-X (TNX) is a member of the tenascin family of glycoproteins of the extracellular matrix. Here, we observed abnormalities in the skin of TNX-deficient mice in comparison with that of wild-type mice. Histological analysis with Oil Red O staining demonstrated that there was considerable accumulation of lipid in the skin of TNX-deficient (TNX-/-) mice. By thin-layer chromatography of total lipids, it was found that the level of triglyceride was significantly increased in TNX-/- mice. The mRNA levels of most of the lipogenic enzyme genes examined were remarkably increased in TNX-/- mice. By gas chromatography-mass spectrometry analysis of triglyceride-associated fatty acids in the skin, saturated fatty acid palmitoic acid was decreased, whereas unsaturated fatty acids palmitoleic acid and oleic acid were increased in TNX-/- mice compared with those in wild-type mice. Conversely, fibroblast cell lines transfected with TNX showed a significant decrease in the amount of triglyceride. An increase in the saturated fatty acid stearic acid and decreases in the unsaturated fatty acids palmitoleic acid, oleic acid and linoleic acid, compared to those in mock-transfected cells were also caused by over-expression of TNX. These results indicate that TNX is involved in the regulation of triglyceride synthesis and the regulation of composition of triglyceride-associated fatty acids.
Collapse
Affiliation(s)
- Ken-ichi Matsumoto
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Affiliation(s)
- Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|