151
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
152
|
Costa-Guda J, Lauter K, Naveh-Many T, Silver J, Arnold A. Mutational analysis of the PTH 3'-untranslated region in parathyroid disorders. Clin Endocrinol (Oxf) 2006; 65:806-9. [PMID: 17121534 DOI: 10.1111/j.1365-2265.2006.02670.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Sequence alterations in untranslated regions (UTRs) of genes are important contributors to human diseases, including hereditary thrombophilia, hereditary hyperferritinaemia-cataract and fragile X mental retardation syndromes. Recently, functional studies of the 3'-UTR of the PTH gene, encoding parathyroid hormone, have highlighted it as a potential target for pathogenic mutations in patients with parathyroid dysfunction. Regulation of PTH gene expression occurs in part through protein binding to a specific 26 nucleotide instability element in the 3'-UTR of PTH mRNA, in a sequence-dependent manner. Thus, the PTH 3'-UTR has emerged as an important potential contributor to parathyroid dysfunction. Therefore, we sought to rigorously examine the PTH 3'-UTR in patients with primary and secondary parathyroid disorders, including primary parathyroid hyperplasia, secondary parathyroid hyperplasia, sporadic parathyroid adenoma and familial hypoparathyroidism of unknown genetic basis. PATIENTS AND DESIGN Twenty-one parathyroid glands from 14 patients with primary parathyroid hyperplasia, 40 sporadic parathyroid adenomas from 40 patients, 42 parathyroid glands from 29 patients with secondary parathyroid hyperplasia and peripheral blood leucocytes from 24 affected members of eight kindreds with familial hypoparathyroidism of unknown genetic basis were examined for mutations in the 3'-UTR of the PTH gene. RESULTS No alterations from the normal sequence were detected in any of the 127 samples examined. CONCLUSIONS Based on the absence of identifiable DNA sequence alterations in these forms of parathyroid dysfunction, it is unlikely that mutation of the PTH 3'-UTR contributes frequently to their pathogenesis.
Collapse
Affiliation(s)
- Jessica Costa-Guda
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT 06030-3101, USA
| | | | | | | | | |
Collapse
|
153
|
Shiohara M, Shiozawa R, Kurata K, Matsuura H, Arai F, Yasuda T, Koike K. Effect of parathyroid hormone administration in a patient with severe hypoparathyroidism caused by gain-of-function mutation of calcium-sensing receptor. Endocr J 2006; 53:797-802. [PMID: 16983178 DOI: 10.1507/endocrj.k06-053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypoparathyroidism caused by gain-of-function mutations of the calcium-sensing receptor (CaR) in the transmembrane domain is usually severe and difficult to manage. A patient with severe hypoparathyroidism, caused by CaR activating mutation F821L, was treated for 3 days (Day 1 to Day 3) with synthetic human parathyroid hormone 1-34 (teriparatide, PTH). An Ellsworth-Howard test of the patient revealed normal responses of urine phosphate and cyclic AMP excretion, indicating that the patient's renal tubules normally responded to extrinsic PTH. On Day 1 to Day 3, 0.9 microg/kg/day of PTH was administered subcutaneously twice daily at 0800 and 2000. On Day 1, the serum calcium level that was 1.8 mmol/l before PTH administration increased to 2.1 mmol/l at 1200, and gradually decreased to 1.8 mmol/l at 2000. On Days 2 and 3, the maximum calcium levels were 2.5 and 2.4 mmol/l, respectively, at 1200. At 2000, they returned to or below basal levels at 0800. On Day 4 without PTH administration, the calcium levels were maintained at the basal levels at Day 0. The urine calcium/creatinine (Ca/Cr) ratio that was high (>0.4) before PTH injection decreased after PTH administration (0.4>). Changes in the ionized calcium levels were almost parallel with the total calcium levels. The serum inorganic phosphate (IP) level decreased to 2.4 mmol/l at 1000, but gradually increased before the second PTH injection to the level at 0800 on Day 1. The minimum IP level on Days 2 and 3 was 2.1 mmol/l and 2.0 mmol/l, respectively. In contrast to the remarkable changes in the serum calcium level by PTH treatment, the serum magnesium levels showed few changes. These results indicate that PTH therapy could be effective in correcting serum and urine calcium and the phosphate levels in hypoparathyroidism caused by activating mutation of CaR.
Collapse
Affiliation(s)
- Masaaki Shiohara
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
154
|
Chattopadhyay N, Brown EM. Role of calcium-sensing receptor in mineral ion metabolism and inherited disorders of calcium-sensing. Mol Genet Metab 2006; 89:189-202. [PMID: 16919492 DOI: 10.1016/j.ymgme.2006.07.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 12/28/2022]
Abstract
The extracellular calcium-sensing receptor (CaR), a G protein-coupled receptor that resides on the parathyroid cell surface negatively regulates secretion of parathyroid hormone (PTH). The CaR is functionally expressed in bone, kidney, and gut--the three major calcium-translocating organs involved in calcium homeostasis. Further studies are needed to define fully the homeostatic roles of the CaR in tissues that are involved in systemic extracellular calcium [Ca(2+)](o) homeostasis. The role of the CaR in regulating calcium metabolism has been greatly clarified by the identification and studies of genetically determined disorders that either activate or inactivate the receptor. Antibodies to the CaR that either activate or inactivate it produce syndromes resembling the corresponding genetic diseases. Expression of the CaR is significantly reduced in primary and secondary hyperparathyroidism, which could contribute to the defective [Ca(2+)](o)-sensing in these conditions. Calcimimetics act as CaR agonists or allosteric activators and thereby potentiate the effects of [Ca(2+)](o) on parathyroid cell function. This kind of pharmacological manipulation of the CaR is now used for the treatment of hyperparathyroid states, whereby the calcimimetics increase the activation of the CaR at any given level of extracellular calcium. Calcimimetics are also an effective element in the treatment of secondary hyperparathyroidism, particularly in dialysis patients, by virtue of reducing plasma levels of PTH, calcium and phosphate.
Collapse
Affiliation(s)
- Naibedya Chattopadhyay
- Division of Endocrinology, Central Drug Research Institute, Chattar Manzil Palace, Lucknow 226 001, India.
| | | |
Collapse
|
155
|
Sarin R, Tomar N, Ray D, Gupta N, Sharma YD, Goswami R. Absence of pathogenic calcium sensing receptor mutations in sporadic idiopathic hypoparathyroidism. Clin Endocrinol (Oxf) 2006; 65:359-63. [PMID: 16918956 DOI: 10.1111/j.1365-2265.2006.02604.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sporadic idiopathic hypoparathyroidism (SIH) is the most common cause of hypoparathyroidism. While calcium sensing receptor (CaSR) autoantibodies are observed in 49% of cases, aetiopathogenetic mechanisms in others are under investigation. Mutations in the PTH gene including its 3' untranslated region, autoimmune regulator gene and lead CTLA-4 gene single nucleotide polymorphism (SNPs) are not associated with the disease. There are reports of de novo activating mutations of the CaSR gene in a few patients with SIH. OBJECTIVE To assess the frequency of CaSR mutations in patients with SIH. SUBJECTS AND METHODS DNA sequencing of all six translating exons and nine of 12 intron/exon boundaries of the CaSR gene was performed by Sangers dideoxy chain termination method using an automated sequencer in 39 patients with SIH. Spot urinary calcium/creatinine ratio in the fasting state and ultrasonography of the abdomen was performed to assess hypercalciuria and nephrolithiasis. The PCR-RFLP analysis was performed using Hin1II restriction endonuclease in 32 additional patients with SIH and 90 healthy controls to further assess the prevalence of a novel missense SNP observed in the DNA sequencing. RESULTS Nucleotide sequence analysis revealed the presence of a wild type CaSR gene in all subjects, except in one patient who showed a missense mutation (Val621Met) due to substitution of base G-->A in the heterozygous state at position 79877 in exon 7 (codon 621) coding for the first transmembrane loop of the CaSR. The V621M polymorphism was confirmed by PCR-RFLP and was due to a maternal allele. However, the mother and brother of this patient with the same SNP were asymptomatic and had normal serum chemistry indicating the functionally inert nature of the polymorphism. None of the additional 32 patients with SIH and 90 controls showed V621M SNP. The urinary calcium/creatinine ratio and ultrasonography were normal in all patients with SIH. CONCLUSION De novo activating mutation of the CaSR gene typical of familial hypoparathyroidism is not common among patients with SIH in India.
Collapse
Affiliation(s)
- Ritu Sarin
- Department of Endocrinologya nd Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | |
Collapse
|
156
|
D'Souza-Li L. The calcium-sensing receptor and related diseases. ACTA ACUST UNITED AC 2006; 50:628-39. [PMID: 17117288 DOI: 10.1590/s0004-27302006000400008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 03/20/2006] [Indexed: 12/17/2022]
Abstract
The calcium-sensing receptor (CASR) adjusts the extracellular calcium set point regulating PTH secretion and renal calcium excretion. The receptor is expressed in several tissues and is also involved in other cellular functions such as proliferation, differentiation and other hormonal secretion. High extracellular calcium levels activate the receptor resulting in modulation of several signaling pathways depending on the target tissues. Mutations in the CASR gene can result in gain or loss of receptor function. Gain of function mutations are associated to Autossomal dominant hypocalcemia and Bartter syndrome type V, while loss of function mutations are associated to Familial hypocalciuric hypercalcemia and Neonatal severe hyperparathyroidism. More than one hundred mutations were described in this gene. In addition to calcium, the receptor also interacts with several ions and polyamines. The CASR is a potential therapeutic target to treatment of diseases including hyperparathyroidism and osteoporosis, since its interaction with pharmacological compounds results in modulation of PTH secretion.
Collapse
Affiliation(s)
- Lília D'Souza-Li
- Pediatric Endocrinology Laboratory, Center for Investigation in Pediatrics, São Paulo, Brazil.
| |
Collapse
|
157
|
Mittelman SD, Hendy GN, Fefferman RA, Canaff L, Mosesova I, Cole DEC, Burkett L, Geffner ME. A hypocalcemic child with a novel activating mutation of the calcium-sensing receptor gene: successful treatment with recombinant human parathyroid hormone. J Clin Endocrinol Metab 2006; 91:2474-9. [PMID: 16608894 DOI: 10.1210/jc.2005-2605] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Persistent hypercalciuria, with the attendant risk of nephrocalcinosis and eventual renal failure, is common in hypoparathyroid patients, especially those with activating mutations of the calcium-sensing receptor (CASR) gene, being treated with oral calcium and calcitriol. Treatment with replacement PTH may be warranted, although this has yet to be evaluated in children. OBJECTIVES The objectives of this study were to identify the cause of the disorder in a young hypocalcemic patient and to assess the efficacy of treatment of the patient with recombinant human PTH(1-34). SUBJECT An infant presenting with hypocalcemia at 3 wk of age was studied. METHODS CASR gene mutation analysis was performed on genomic DNA of the proband and family members. The patient was treated with twice-daily administration of recombinant human PTH(1-34) over a 17-month period. RESULTS The proband was heterozygous for a de novo novel missense mutation (L727Q), on the border between transmembrane helix 4 and intracellular loop 2 of the CASR. When transiently expressed in a human embryonic kidney 293 cell line, the mutant receptor demonstrated a significant leftward shift in the extracellular calcium/intracellular signaling dose-response curve vs. that for the wild-type receptor [EC(50); mutant, 2.59 +/- 0.11 mm (mean +/- se) vs. wild-type, 3.78 +/- 0.12 mm, P < 0.001]. During treatment with PTH(1-34), the patient had no further serious hypocalcemic episodes, and his urinary calcium excretion declined remarkably. CONCLUSION PTH should be evaluated further as a treatment of autosomal dominant hypocalcemia in young patients.
Collapse
Affiliation(s)
- Steven D Mittelman
- Division of Endocrinology, Diabetes, and Metabolism, Childrens Hospital Los Angeles, 4650 Sunset Boulevard, Mail Stop Number 61, Los Angeles, California 90027, USA.
| | | | | | | | | | | | | | | |
Collapse
|
158
|
|
159
|
Pidasheva S, Grant M, Canaff L, Ercan O, Kumar U, Hendy GN. Calcium-sensing receptor dimerizes in the endoplasmic reticulum: biochemical and biophysical characterization of CASR mutants retained intracellularly. Hum Mol Genet 2006; 15:2200-9. [PMID: 16740594 DOI: 10.1093/hmg/ddl145] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Calcium-sensing receptor (CASR), expressed in parathyroid gland and kidney, is a critical regulator of extracellular calcium homeostasis. This G protein-coupled receptor exists at the plasma membrane as a homodimer, although it is unclear at which point in the biosynthetic pathway dimerization occurs. To address this issue, we have analyzed wild-type and mutant CASRs harboring R66H, R66C or N583X-inactivating mutations identified in familial hypocalciuric hypercalcemia/neonatal severe hyperparathyroid patients, which were transiently expressed in kidney cells. All mutants were deficient in cell signaling responses to extracellular CASR ligands relative to wild-type. All mutants, although as well expressed as wild-type, lacked mature glycosylation, indicating impaired trafficking from the endoplasmic reticulum (ER). Dimerized forms of wild-type, R66H and R66C mutants were present, but not of the N583X mutant. By immunofluorescence confocal microscopy of non-permeabilized cells, although cell surface expression was observed for the wild-type, little or none was seen for the mutants. In permeabilized cells, perinuclear staining was observed for both wild-type and mutants. By colocalization fluorescence confocal microscopy, the mutant CASRs were localized within the ER but not within the Golgi apparatus. By the use of photobleaching fluorescence resonance energy transfer microscopy, it was demonstrated that the wild-type, R66H and R66C mutants were dimerized in the ER, whereas the N583X mutant was not. Hence, constitutive CASR dimerization occurs in the ER and is likely to be necessary, but is not sufficient, for exit of the receptor from the ER and trafficking to the cell surface.
Collapse
Affiliation(s)
- Svetlana Pidasheva
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Canada QC H3A 1A1
| | | | | | | | | | | |
Collapse
|
160
|
Ardeshirpour L, Dann P, Pollak M, Wysolmerski J, VanHouten J. The calcium-sensing receptor regulates PTHrP production and calcium transport in the lactating mammary gland. Bone 2006; 38:787-93. [PMID: 16377269 DOI: 10.1016/j.bone.2005.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 10/20/2005] [Accepted: 11/04/2005] [Indexed: 11/26/2022]
Abstract
Lactating mammals must supply large amounts of calcium to the mammary gland where it is transported across mammary epithelial cells and into milk. This demand for calcium is associated with transient loss of bone mass, triggered, in part, by the secretion of parathyroid hormone-related protein (PTHrP) from the mammary gland into the circulation. The calcium-sensing receptor (CaR) is a G-protein-coupled receptor that signals in response to extracellular calcium ions. It is responsible for coordinating calcium homeostasis by regulating parathyroid hormone secretion in the parathyroid glands and by regulating calcium handling in the renal tubules. Previous studies had shown that the CaR is expressed on mammary epithelial cells during lactation, and it had been suggested that CaR signaling in the mammary gland helps to coordinate its production of PTHrP and calcium transport into milk. In this study, we examined mammary gland PTHrP production and calcium transport in CaR(+/-) mice, a genetic model of CaR insufficiency. We found that haploinsufficiency for the CaR resulted in increased PTHrP production both in vivo and in vitro. In contrast, CaR haploinsufficiency impaired calcium transport into milk in vivo and transepithelial calcium transport by mammary epithelial cells in vitro. These data provide genetic confirmation that the CaR regulates PTHrP production and calcium transport in the lactating mammary gland. This allows the mammary gland to become a calcium-sensing organ and to participate in systemic calcium homeostasis during lactation.
Collapse
Affiliation(s)
- Laleh Ardeshirpour
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Yale University School of Medicine, TAC S120, 333 Cedar Street, New Haven, CT 06520-8020, USA
| | | | | | | | | |
Collapse
|
161
|
Abstract
It has long been recognized that the secretion of PTH by chief cells in the parathyroid gland is regulated by extracellular ionized calcium. The molecular mechanism by which extracellular Ca2+ performs this feat was deduced by the cloning of the extracellular calcium-sensing receptor (CaSR) in 1993 in the laboratories of Brown and Hebert. The CaSR is a G protein-coupled cell surface receptor that belongs to family 3 of the GPCR superfamily. The CaSR senses the extracellular ionic activity of the divalent minerals Ca2+ and Mg2+ and translates this information, via a complex array of cellular signaling pathways, to modify cell and tissue function. Genetic studies have demonstrated that the activity of this receptor determines the steady-state plasma calcium concentration in humans by regulating key elements in the calcium homeostatic system. CaSR agonists (calcimimetics) and antagonists (calcilytics) have been identified and have provided both current and potential therapies for a variety of disorders. Calcimimetics can effectively reduce PTH secretion in all forms of hyperparathyroidism. They are likely to become a major therapy for secondary hyperparathyroidism associated with renal failure and for treatment of certain patients with primary hyperparathyroidism. On the therapeutic horizon are calcilytics that can transiently increase PTH and may prove useful in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| |
Collapse
|
162
|
Ward BK, Magno AL, Blitvich BJ, Rea AJ, Stuckey BGA, Walsh JP, Ratajczak T. Novel mutations in the calcium-sensing receptor gene associated with biochemical and functional differences in familial hypocalciuric hypercalcaemia. Clin Endocrinol (Oxf) 2006; 64:580-7. [PMID: 16649980 DOI: 10.1111/j.1365-2265.2006.02512.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Heterozygous inactivating mutations of the calcium-sensing receptor (CaR) gene cause familial hypocalciuric hypercalcaemia (FHH), a generally benign disorder characterized by mild to moderate PTH-dependent hypercalcaemia. We aimed to identify the causative CaR mutations in three families with FHH and examine the correlation between type of mutation and biochemical and/or functional phenotypes. PATIENTS, DESIGN AND MEASUREMENTS: The CaR gene from FHH family members was assessed for mutations by direct DNA sequencing and mutations were confirmed by restriction enzyme analysis. Functional studies on two missense mutations were conducted by introducing them by site-directed mutagenesis into the CaR cloned into a mammalian expression vector, and assessing calcium responsiveness using an inositol phosphate (IP) assay in HEK293 cells. Biochemical data from patients heterozygous for each type of mutant were correlated with functionality. RESULTS Two novel nonsense mutations (R25stop and K323stop) and one novel missense mutation (G778D) were identified. The G778D mutant receptor and another mutation identified in an earlier study (L174R) demonstrated a complete lack of Ca2+ responsiveness using the IP assay. When cotransfected with wild-type receptor, the mutant receptors demonstrated a dominant-negative effect on wild-type receptor response, with L174R having a more pronounced effect than G778D. Significantly more severe hypercalcaemia and a trend towards higher PTH levels were observed in patients heterozygous for CaR mutants with a stronger dominant-negative effect. CONCLUSIONS Naturally occurring CaR mutations with differences in dominant-negative effect on wild-type receptor demonstrate differences in biochemical severity in FHH.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
163
|
Chattopadhyay N. Effects of calcium-sensing receptor on the secretion of parathyroid hormone-related peptide and its impact on humoral hypercalcemia of malignancy. Am J Physiol Endocrinol Metab 2006; 290:E761-70. [PMID: 16603723 DOI: 10.1152/ajpendo.00350.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The extracellular calcium-sensing receptor (CaR) plays a key role in the defense against hypercalcemia by "sensing" extracellular calcium (Ca2+(o)) levels in the parathyroid and kidney, the key organs maintaining systemic calcium homeostasis. However, CaR function can be aberrant in certain pathophysiological states, e.g., in some types of cancers known to produce humoral hypercalcemia of malignancy (HHM) in humans and animal models in which high Ca2+(o), via the CaR, produces a homeostatically inappropriate stimulation of parathyroid hormone-related peptide (PTHrP) secretion from these tumors. Increased levels of PTHrP set a cycle in motion whereby elevated systemic levels of Ca2+(o) resulting from its increased bone-resorptive and positive renal calcium-reabsorbing effects give rise to hypercalcemia, which in turn begets worsening hypercalcemia by stimulating further release of PTHrP by the cancer cells. I review the relationship between CaR activation and PTHrP release in normal and tumor cells giving rise to HHM and/or malignant osteolysis and the actions of the receptor on key cellular events such as proliferation, angiogenesis, and apoptosis of cancer cells that will favor tumor growth and osseous metastasis. I also illustrate diverse signaling mechanisms underlying CaR-stimulated PTHrP secretion and other cellular events in tumor cells. Finally, I raise several necessary questions to demonstrate the roles of the receptor in promoting tumors and metastases that will enable consideration of the CaR as a potential antagonizing/neutralizing target for the treatment of HHM.
Collapse
Affiliation(s)
- Naibedya Chattopadhyay
- Div. of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
164
|
Thébault S, Hoenderop JGJ, Bindels RJM. Epithelial Ca2+ and Mg2+ channels in kidney disease. Adv Chronic Kidney Dis 2006; 13:110-7. [PMID: 16580611 DOI: 10.1053/j.ackd.2006.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many physiological functions rely on the precise maintenance of body calcium (Ca2+) and magnesium (Mg2+) balance, which is tightly regulated by the concerted actions of intestinal absorption, renal reabsorption, and exchange with bone. The kidney plays an important role in the homeostasis of divalent ions. Most Ca2+ and Mg2+ reabsorption occurs in the proximal tubules and the thick ascending limb of Henle's loop via a passive paracellular pathway. At the level of the distal convoluted tubule (DCT) and the connecting tubule (CNT), Ca2+ and Mg2+ are reabsorbed via an active transcellular route. Reabsorption of divalents in these latter segments is regulated in a Ca2+ and Mg2+-specific manner and determines the final excretion in the urine. Importantly, genetic studies, as well as molecular cloning strategies, recently identified epithelial ion channels as the gatekeepers of active Ca2+ and Mg2+ reabsorption. These channels are members of the transient receptor potential (TRP) superfamily. TRP vanilloid 5 (TRPV5) is responsible for the rate-limiting Ca2+ entry, and TRP melastatin 6 (TRPM6) constitutes the apical entry step in Mg2+ reabsorption. Dysregulation or malfunction of these influx pathways has been associated with renal Ca2+ and Mg2+ wasting. This review updates the current knowledge and the recent advances of Ca2+ and Mg2+ reabsorption and related disorders.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
165
|
Abstract
Ca2+ homeostasis is an important factor, which is underlined by the numerous clinical symptoms that involve Ca2+ deficiencies. The overall Ca2+ balance is maintained by the concerted action of Ca2+ absorption in the intestine, reabsorption in the kidney, and exchange from bone, which are all under the control of the calciotropic hormones that are released upon a demand for Ca2+. In the kidney, these calciotropic hormones affect active Ca2+ reabsorption, which consists of TRPV5 as the apical entry gate for Ca2+ influx, calbindin-D28K as an intracellular ferry for Ca2+ and, NCX1 and PMCA1b for extrusion of Ca2+ across the basolateral membrane. This review highlights the action of hormones on renal Ca2+ handling and focuses on the coordinated control of the renal Ca2+ transport proteins. Parathyroid hormone stimulates renal Ca2+ handling by regulating active Ca2+ reabsorption on both the genomic and non-genomic level. Estrogens harbor calciotropic hormone characteristics positively regulating the expression of TRPV5, independently of vitamin D. Besides having a strong regulatory effect on the expression of the intestinal Ca2+ transport proteins, vitamin D contributes to the overall Ca2+ balance by enhancing the expression of the Ca2+ transport machinery in the kidney. Dietary Ca2+ is involved in regulating its own handling by controlling the expression of the renal Ca2+ transport proteins. Thus, the magnitude of Ca2+ entry via TRPV5 controls the expression of the other Ca2+ transport proteins underlining the gatekeeper function of this Ca2+ channel in the renal Ca2+ handling.
Collapse
Affiliation(s)
- T T Lambers
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
166
|
Reinscheid RK, Xu YL, Okamura N, Zeng J, Chung S, Pai R, Wang Z, Civelli O. Pharmacological characterization of human and murine neuropeptide s receptor variants. J Pharmacol Exp Ther 2005; 315:1338-45. [PMID: 16144971 DOI: 10.1124/jpet.105.093427] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have recently shown that Neuropeptide S (NPS) can promote arousal and induce anxiolytic-like effects after central administration in rodents. Another study reported a number of natural polymorphisms in the human NPS receptor gene. Some of these polymorphisms were associated with increased risk of asthma and possibly other forms of atopic diseases, but the physiological consequences of the mutations remain unclear. One of the polymorphisms produces an Asn-Ile exchange in the first extracellular loop of the receptor protein, and a C-terminal splice variant of the NPS receptor was found overexpressed in human asthmatic airway tissue. We sought to study the pharmacology of the human receptor variants in comparison with the murine receptor protein. Here, we report that the N107I polymorphism in the human NPS receptor results in a gain-of-function characterized by an increase in agonist potency without changing binding affinity in NPSR Ile107. In contrast, the C-terminal splice variant of the human NPS receptor shows a pharmacological profile similar to NPSR Asn107. The mouse NPS receptor, which also carries an Ile residue at position 107, displays an intermediate pharmacological profile. Structure-activity relationship studies show that the amino terminus of NPS is critical for receptor activation. The altered pharmacology of the Ile107 isoform of the human NPS receptor implies a mechanism of enhanced NPS signaling that might have physiological significance for brain function as well as peripheral tissues that express NPS receptors.
Collapse
Affiliation(s)
- Rainer K Reinscheid
- Department of Pharmacology, University of California at Irvine, 360 Med Surge II, Irvine, CA 92697-4625, USA.
| | | | | | | | | | | | | | | |
Collapse
|
167
|
van Abel M, Hoenderop JGJ, Bindels RJM. The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease. Naunyn Schmiedebergs Arch Pharmacol 2005; 371:295-306. [PMID: 15747113 DOI: 10.1007/s00210-005-1021-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The epithelial Ca(2+) channels TRPV5 and TRPV6 represent a new family of Ca(2+) channels that belongs to the superfamily of transient receptor potential channels. TRPV5 and TRPV6 constitute the apical Ca(2+) entry mechanism in active Ca(2+) transport in kidney and intestine. The central role of TRPV5 and TRPV6 in active Ca(2+) (re)absorption makes it a prime target for regulation to maintain Ca(2+) balance. This review covers the hormonal regulation, interaction with accessory proteins and (patho)physiological implications of these epithelial Ca(2+) channels.
Collapse
Affiliation(s)
- Monique van Abel
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
168
|
Bouschet T, Martin S, Henley JM. Receptor-activity-modifying proteins are required for forward trafficking of the calcium-sensing receptor to the plasma membrane. J Cell Sci 2005; 118:4709-20. [PMID: 16188935 PMCID: PMC3311923 DOI: 10.1242/jcs.02598] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class III G-protein-coupled receptor (GPCR) that responds to changes in extracellular calcium concentration and plays a crucial role in calcium homeostasis. The mechanisms controlling CaSR trafficking and surface expression are largely unknown. Using a CaSR tagged with the pH-sensitive GFP super-ecliptic pHluorin (SEP-CaSR), we show that delivery of the GPCR to the cell surface is dependent on receptor-activity-modifying proteins (RAMPs). We demonstrate that SEP-CaSRs are retained in the endoplasmic reticulum (ER) in COS7 cells that do not contain endogenous RAMPs whereas they are delivered to the plasma membrane in HEK 293 cells that do express RAMP1. Coexpression of RAMP1 or RAMP3, but not RAMP2, in COS7 cells was sufficient to target the CaSR to the cell surface. RAMP1 and RAMP3 colocalised and coimmunoprecipitated with the CaSR suggesting that these proteins associate within the cell. Our results indicate that RAMP expression promotes the forward trafficking of the GPCR from the ER to the Golgi apparatus and results in mature CaSR glycosylation, which is not observed in RAMP-deficient cells. Finally, silencing of RAMP1 in the endogenously expressing HEK293 cells using siRNA resulted in altered CaSR traffic. Taken together, our results show that the association with RAMPs is necessary and sufficient to transfer the immature CaSR retained in the ER towards the Golgi where it becomes fully glycosylated prior to delivery to the plasma membrane and demonstrate a role for RAMPs in the trafficking of a class III GPCR.
Collapse
Affiliation(s)
- Tristan Bouschet
- Department of Anatomy, Medical Research Council Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Stéphane Martin
- Department of Anatomy, Medical Research Council Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Jeremy M. Henley
- Department of Anatomy, Medical Research Council Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
169
|
van Abel M, Hoenderop JGJ, van der Kemp AWCM, Friedlaender MM, van Leeuwen JPTM, Bindels RJM. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int 2005; 68:1708-21. [PMID: 16164647 DOI: 10.1111/j.1523-1755.2005.00587.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The kidney is one of the affected organs involved in the clinical symptoms of parathyroid hormone (PTH)-related disorders, like primary hyperparathyroidism and familial hypocalciuric hypercalcemia. The molecular mechanism(s) underlying alterations in renal Ca(2+) handling in these disorders is poorly understood. METHODS Parathyroidectomized and PTH-supplemented rats and mice infused with the calcimimetic compound NPS R-467 were used to study the in vivo effect of PTH on the expression of renal transcellular Ca(2+) transport proteins, including the epithelial Ca(2+) channel transient receptor potential, vanilloid, member 5 (TRPV5), calbindins, and the Na(+)/Ca(2+)-exchanger (NCX1). In addition, the effect of PTH on transepithelial Ca(2+) transport in rabbit connecting tubule/cortical collecting duct (CNT/CCD) primary cultures was determined. RESULTS Decreased PTH levels in parathyroidectomized rats or NPS R-467-infused mice, resulted in reduced expression of these proteins, which is consistent with diminished Ca(2+) reabsorption, causing the development of the observed hypocalcemia. PTH supplementation of parathyroidectomized rats restored the expression of the renal Ca(2+) transport machinery and serum Ca(2+) levels, independent of serum 1,25-dihydroxyvitamin D(3) levels and renal vitamin D or Ca(2+)-sensing receptor mRNA abundance. Inhibition of the PTH-stimulated transepithelial Ca(2+) transport by the TRPV5-specific inhibitor ruthenium red reduced the PTH-stimulated expression of calbindin-D(28K) and NCX1 in rabbit CNT/CCD primary cultures. CONCLUSION PTH stimulates renal Ca(2+) reabsorption through the coordinated expression of renal transcellular Ca(2+) transport proteins. Moreover, the PTH-induced stimulation is enhanced by the magnitude of the Ca(2+) influx through the gatekeeper TRPV5, which in turn facilitates the expression of the downstream Ca(2+) transport proteins. Therefore, the renal transcellular Ca(2+) transport proteins, including TRPV5, could contribute to the pathogenesis of PTH-related disorders.
Collapse
Affiliation(s)
- Monique van Abel
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
170
|
Lam CW, Lee KF, Chan AOK, Poon PMK, Law TY, Tong SF. Novel missense mutation in the CASR gene in a Chinese family with familial hypocalciuric hypercalcemia. Clin Chim Acta 2005; 360:167-72. [PMID: 15963484 DOI: 10.1016/j.cccn.2005.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Familial hypocalciuric hypercalcemia (FHH) is an autosomal dominant disorder characterized by asymptomatic and non-progressive hypercalcemia resulting from loss-of-function mutations of the CASR (calcium-sensing receptor) gene located on chromosome 3, or from mutations in two mapped but unidentified genes located on chromosome 19. METHODS We report a middle-aged woman incidentally found to have FHH. To determine the molecular basis of FHH in this Chinese family, we performed direct DNA sequencing of the CASR gene of the proband. RESULTS We found that the proband is heterozygous for a novel missense mutation P798T, confirming the diagnosis of FHH. Family screening showed that all of the offspring with biochemical features of FHH have the P798T mutation. The mutation, P798T, is located in the third intracellular loop of the CASR, possibly affecting the downstream calcium sensing pathway and therefore inactivating the receptor function. CONCLUSIONS The molecular basis of FHH in a Chinese family was established. The developed mutation detection assay provides a reliable method for identifying FHH carriers.
Collapse
Affiliation(s)
- Ching-Wan Lam
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
171
|
Nagano N. Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Pharmacol Ther 2005; 109:339-65. [PMID: 16102839 DOI: 10.1016/j.pharmthera.2005.06.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 12/28/2022]
Abstract
Circulating levels of calcium ion (Ca2+) are maintained within a narrow physiological range mainly by the action of parathyroid hormone (PTH) secreted from parathyroid gland (PTG) cells. PTG cells can sense small fluctuations in plasma Ca2+ levels by virtue of a cell surface Ca2+ receptor (CaR) that belongs to the superfamily of G protein-coupled receptors (GPCR). Compounds that activate the CaR and inhibit PTH secretion are termed 'calcimimetics' because they mimic or potentiate the effects of extracellular Ca2+ on PTG cell function. Preclinical studies with NPS R-568, a first generation calcimimetic compound that acts as a positive allosteric modulator of the CaR, have demonstrated that oral administration decreases serum levels of PTH and calcium, with a leftward shift in the set-point for calcium-regulated PTH secretion in normal rats. NPS R-568 also suppresses the elevation of serum PTH levels and PTG hyperplasia and can improve bone mineral density (BMD) and strength in rats with chronic renal insufficiency (CRI). Clinical trials with cinacalcet hydrochloride (cinacalcet), a compound with an improved metabolic profile, have shown that long-term treatment continues to suppress the elevation of serum levels of calcium and PTH in patients with primary hyperparathyroidism (1HPT). Furthermore, clinical trials in patients with uncontrolled secondary hyperparathyroidism (2HPT) have demonstrated that cinacalcet not only lowers serum PTH levels, but also the serum phosphorus and calcium x phosphorus product; these are a hallmark of an increased risk of cardiovascular disease and mortality in dialysis patients with end-stage renal disease. Indeed, cinacalcet has already been approved for marketing in several countries. Calcimimetic compounds like cinacalcet have great potential as an innovative medical approach to manage 1HPT and 2HPT.
Collapse
Affiliation(s)
- Nobuo Nagano
- Pharmaceutical Development Laboratories, Kirin Brewery Company, Limited, Takasaki, Gunma, Japan.
| |
Collapse
|
172
|
Bouschet T, Henley JM. Calcium as an extracellular signalling molecule: perspectives on the Calcium Sensing Receptor in the brain. C R Biol 2005; 328:691-700. [PMID: 16125647 PMCID: PMC3310908 DOI: 10.1016/j.crvi.2004.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 10/22/2004] [Indexed: 11/28/2022]
Abstract
Calcium acts as a universal signal that is responsible for controlling a spectrum of cellular processes ranging from fertilization to apoptosis. For a long time, calcium was regarded solely as an intracellular second messenger. However, the discovery that calcium can also act as an external ligand together with the molecular cloning of its cell surface receptor, the Calcium Sensing Receptor (CaSR), demonstrated that calcium also acts as an important extracellular or first messenger. Here, we give an overview of the main structural, pharmacological and physiological features of the CaSR and provide an assessment of its functions and cellular and molecular mechanisms of action. In addition, we propose possible avenues for future research into the trafficking of CaSR and the role(s) of this receptor in the central nervous system.
Collapse
Affiliation(s)
- Tristan Bouschet
- MRC Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, University walk, Bristol BS8 1TD, UK.
| | | |
Collapse
|
173
|
Abstract
Cell biologists know the calcium ion best as a vital intracellular second messenger that governs countless cellular functions. However, the recent identification of cell-surface detectors for extracellular Ca(2+) has prompted consideration of whether Ca(2+) also functions as a signaling molecule in the extracellular milieu. The cast of Ca(2+) sensors includes the well-characterized extracellular-Ca(2+)-sensing receptor, a G-protein-coupled receptor originally isolated from the parathyroid gland. In addition, other receptors, channels and membrane proteins, such as gap junction hemichannels, metabotropic glutamate receptors, HERG K(+) channels and the receptor Notch, are all sensitive to external [Ca(2+)] fluctuations. A recently cloned Ca(2+) sensor (CAS) in Arabidopsis extends this concept to the plant kingdom. Emerging evidence indicates that [Ca(2+)] in the local microenvironment outside the cell undergoes alterations potentially sufficient to exert biological actions through these sensor proteins. The extracellular space might therefore constitute a much more dynamic Ca(2+) signaling compartment than previously appreciated.
Collapse
Affiliation(s)
- Aldebaran M Hofer
- VA Boston Healthcare System and Brigham & Women's Hospital, Department of Surgery, Harvard Medical School, 1400 VFW Parkway, West Roxbury, MA 02132, USA.
| |
Collapse
|
174
|
Burren CP, Curley A, Christie P, Rodda CP, Thakker RV. A family with autosomal dominant hypocalcaemia with hypercalciuria (ADHH): mutational analysis, phenotypic variability and treatment challenges. J Pediatr Endocrinol Metab 2005; 18:689-99. [PMID: 16128246 DOI: 10.1515/jpem.2005.18.7.689] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Autosomal dominant hypocalcaemia with hypercalciuria (ADHH) is an intriguing syndrome, in which activating mutations of the calcium sensing receptor (CaSR) have recently been recognised. We describe a kindred with seven affected individuals across three generations, including patients affected in the first decade of life. Age at diagnosis varied from birth to 50 years. Affected members had hypocalcaemia (1.53-1.85 mmol/l), hypercalciuria, low but detectable parathyroid hormone (PTH) and hypomagnesaemia. Four of seven affected individuals were symptomatic (seizures, abdominal pains and paraesthesias), unrelated to severity of hypocalcaemia. Additional complications include nephrocalcinosis (n = 3) and basal ganglia calcification, identified by CT scanning in all five individuals. Symptomatic individuals were treated with calcium and calcitriol to reduce the risk of hypocalcaemic seizures. DNA sequence analysis, identified a mutation in exon 3, codon 129 (TGC-->TAC) of the CaSR gene of seven affected family members, resulting in loss of a conserved cysteine residue, potentially disrupting CaSR receptor dimerisation. Thus, a novel mutation was identified in this family, who demonstrate variability of ADHH phenotype and also illustrate the complexities of clinical management. Optimal management of ADHH is difficult and we recommend judicious treatment to avoid an increased risk of nephrocalcinosis.
Collapse
Affiliation(s)
- C P Burren
- Department of Paediatric Endocrinology, Bristol Royal Hospital for Children, United Bristol Healthcare NHS Trust, Bristol, Avon, UK.
| | | | | | | | | |
Collapse
|
175
|
Procino G, Carmosino M, Tamma G, Gouraud S, Laera A, Riccardi D, Svelto M, Valenti G. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int 2005; 66:2245-55. [PMID: 15569313 DOI: 10.1111/j.1523-1755.2004.66036.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Urinary concentrating defects and polyuria are the most important renal manifestations of hypercalcemia and the resulting hypercalciuria. In this study, we tested the hypothesis that hypercalciuria-associated polyuria in kidney collecting duct occurs through an impairment of the vasopressin-dependent aquaporin 2 (AQP2) water channel targeting to the apical membrane possibly involving calcium-sensing receptor (CaR) signaling. METHODS AQP2-transfected collecting duct CD8 cells were used as experimental model. Quantitation of cell surface AQP2 immunoreactivity was performed using an antibody recognizing the extracellular AQP2 C loop. Intracellular cyclic adenosine monophosphate (cAMP) accumulation was measured in CD8 cells using a cAMP enzyme immunoassay kit. To study the translocation of protein kinase C (PKC), membranes or cytosol fractions from CD8 cells were subjected to Western blotting using anti-PKC isozymes antibodies. The amount of F-actin was determined by spectrofluorometric techniques. Intracellular calcium measurements were performed by spectrofluorometric analysis with Fura-2/AM. RESULTS We demonstrated that extracellular calcium (Ca2+ o) (5 mmol/L) strongly inhibited forskolin-stimulated increase in AQP2 expression in the apical plasma membrane. At least three intracellular pathways activated by extracellular calcium were found to contribute to this effect. Firstly, the increase in cAMP levels in response to forskolin stimulation was drastically reduced in cells pretreated with Ca2+ o compared to untreated cells. Second, Ca2+ o activated PKC, known to counteract vasopressin response. Third, quantification of F-actin demonstrated that Ca2+ o caused a nearly twofold increase in F-actin content compared with basal conditions. All these effects were mimicked by a nonmembrane permeable agonist of the extracellular CaR, Gd3+. CONCLUSION Together, these data demonstrate that extracellular calcium, possibly acting through the endogenous CaR, antagonizes forskolin-induced AQP2 translocation to the apical plasma membrane in CD8 cells. In hypercalciuria, this mechanism might blunt water reabsorption and prevent further calcium concentration, thus protecting against a potential risk of urinary calcium-containing stone formation.
Collapse
Affiliation(s)
- Giuseppe Procino
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Wu Z, Tandon R, Ziembicki J, Nagano J, Hujer KM, Miller RT, Huang C. Role of ceramide in Ca2+-sensing receptor-induced apoptosis. J Lipid Res 2005; 46:1396-404. [PMID: 15805541 DOI: 10.1194/jlr.m500071-jlr200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased extracellular Ca(2+) ([Ca(2+)](o)) can damage tissues, but the molecular mechanisms by which this occurs are poorly defined. Using HEK 293 cell lines that stably overexpress the Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, we demonstrate that activation of the CaR leads to apoptosis, which was determined by nuclear condensation, DNA fragmentation, caspase-3 activation, and increased cytosolic cytochrome c. This CaR-induced apoptotic pathway is initiated by CaR-induced accumulation of ceramide which plays an important role in inducing cell death signals by distinct G protein-independent signaling pathways. Pretreatment of wild-type CaR-expressing cells with pertussis toxin inhibited CaR-induced [(3)H]ceramide formation, c-Jun phosphorylation, and caspase-3 activation. The ceramide accumulation, c-Jun phosphorylation, and caspase-3 activation by the CaR can be abolished by sphingomyelinase and ceramide synthase inhibitors in different time frames. Cells that express a nonfunctional mutant CaR that were exposed to the same levels of [Ca(2+)](o) showed no evidence of activation of the apoptotic pathway. In conclusion, we report the involvement of the CaR in stimulating programmed cell death via a pathway involving GTP binding protein alpha subunit (Galpha(i))-dependent ceramide accumulation, activation of stress-activated protein kinase/c-Jun N-terminal kinase, c-Jun phosphorylation, caspase-3 activation, and DNA cleavage.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Primary hyperparathyroidism (PHPT), in addition to cancer, represents an important cause of hypercalcaemia in the general population. Furthermore, hypercalcaemia, in the course of uraemic HPT, represents the late stage of chronic renal failure refractory to therapy. Neck surgery is still the only curative approach for these forms of HPT and medical treatment rarely exhibits an effective control on HPT and HPT-dependent hypercalcaemia. Moreover, some HPT patients may not undergo neck surgery due to the presence of other concomitant disorders. Therefore, more effective therapeutic approaches are needed than the commonly used 'palliative' treatments. The identification of a specific membrane receptor able to bind extracellular calcium on cells of the parathyroid and other tissues has allowed the development of new molecules acting through this receptor to reduce both parathyroid hormone secretion and the rate of parathyroid cell proliferation. Consequently, they may substantially contribute to the regulation of bloodstream calcium levels in HPT patients. Preliminary results obtained in clinical trials are encouraging, demonstrating a good efficacy and safety of such drugs. However, more in vitro and in vivo, as well as long-term clinical studies, will be necessary before they can be commonly used as therapeutical molecules in the clinical practice.
Collapse
Affiliation(s)
- Alberto Falchetti
- Department of Internal Medicine, University of Florence and Centro di Riferimento Regionale Tumori Endocrini Ereditari, Azienda Ospedaliera Careggi, Florence, Italy.
| |
Collapse
|
178
|
Hebert SC. Calcium and salinity sensing by the thick ascending limb: a journey from mammals to fish and back again. Kidney Int 2005:S28-33. [PMID: 15461699 DOI: 10.1111/j.1523-1755.2004.09105.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of the CaSR in endocrine, epithelial, CNS, and other cells have been reviewed previously [17-19, 20, 27-30, 31-33]. This brief review focuses on the roles of the CaSR in the thick ascending limb of Henle (TAL), and is written in honor of my mentor and long-term friend and colleague, Thomas E. Andreoli, on the occasion of his retirement. My early studies of TAL function with Tom Andreoli were the inspiration for this work.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, SHM B147, P.O. Box 208026, SA115 New Haven, CT 06525-8026 , USA.
| |
Collapse
|
179
|
Abstract
Hypercalciuria is an important, identifiable, and reversible risk factor in stone formation. The foremost and most fundamental step in dissecting the genetics of hypercalciuria is understanding its pathophysiology. Hypercalciuria is a complex trait. This article outlines the various factors that compromise the attempt to dissect the genetics of hypercalciuria, summarizes the clinical and experimental monogenic causes of hypercalciuria, and outlines the initial results from attempts in studying polygenic hypercalciuria. Finally, the problem is set in perspective of the current database, technologic advances and limitations are highlighted, and prospects of further advances in the field are speculated upon.
Collapse
Affiliation(s)
- Orson W Moe
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8855, USA.
| | | |
Collapse
|
180
|
Abstract
Critical to cell fate in many cell types is the ability to sense and respond to acute changes in free ionized extracellular calcium concentration ([Ca2+]o). Such tight control is mediated by the activation of a protein known as the extracellular-calcium-sensing receptor (CaR). CaR belongs to the ‘family C’ of G-protein-coupled receptors and was the first G-protein-coupled receptor to be identified to have an inorganic cation, calcium, as its ligand. While calcium is the physiological agonist of the receptor, several other polyvalent cations and polycations can also modulate CaR function as do certain L-aromatic amino acids, polyamines, salinity and pH. This feature renders the CaR uniquely capable of generating cell- and tissue-specific responses, and of integrating inputs deriving from changes in the Ca2+o concentration with signals deriving from the local metabolic environment. Here we address the role of the CaR in physiology and disease, the range of CaR modulators and the potential roles of the CaR as a metabolic sensor in a variety of physiological (and pathological) scenarios.
Collapse
Affiliation(s)
- D Riccardi
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, PO Box 911, Cardiff, CF10 3US, Wales, UK.
| | | |
Collapse
|
181
|
Canaff L, Hendy GN. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1beta. Role of the NF-kappaB PATHWAY and kappaB elements. J Biol Chem 2005; 280:14177-88. [PMID: 15684428 DOI: 10.1074/jbc.m408587200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The calcium-sensing receptor (CASR) in parathyroid, thyroid, and kidney is essential for calcium homeostasis. Hypocalcemia is common in critically ill patients having increased circulating proinflammatory cytokines, although the causes are unknown. We hypothesized that the cytokines increase CASR expression and reduce the set point for parathyroid hormone suppression by extracellular calcium, leading to hypocalcemia and hypoparathyroidism. Here, we show in vivo in the rat that parathyroid, thyroid, and kidney CASR mRNA and protein increased after injection of interleukin-1beta. This was associated with decreased circulating parathyroid hormone, calcium, and 1,25-dihydroxyvitamin D levels. Interleukin-1beta stimulated endogenous CASR gene transcripts and transfected promoter reporter activity in human thyroid C-cells (TT cells) and kidney proximal tubule (HKC) cells. Cotransfection of NF-kappaB proteins enhanced activity of the reporter constructs, whereas cotransfection with inhibitor-kappaB or application of an NF-kappaB nuclear localization sequence peptide abrogated responsiveness to cytokine or NF-kappaB proteins. Mutagenesis of some, but not all, of the potential kappaB elements in the 5' part of the CASR gene led to loss of responsiveness to cytokine. These elements conferred cytokine responsiveness to a heterologous promoter, and in electrophoretic mobility shift assays, NF-kappaB complexes formed on the same three kappaB elements. In summary, the CASR gene has several functional kappaB elements that mediate its upregulation by proinflammatory cytokines and probably contribute to altered extracellular calcium homeostasis in the critically ill.
Collapse
Affiliation(s)
- Lucie Canaff
- Departments of Medicine, Physiology and Human Genetics, McGill University and Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec H3A 1A1, Canada
| | | |
Collapse
|
182
|
Abstract
MORE PRECISE IDENTIFICATION: The progress in molecular genetics has led to better understanding of primitive magnesium deficiency. Transporters of this cation have been identified in the intestines and kidneys. The majority of congential hypomanesemia phenotypes have been correlated with a defect in magnesium transport. The primary deficiency of intestinal absorption of magnesium is responsible for hypomagnesemia and subsequent hypocalcemia. DEPENDING ON THE MECHANISM: Magnesium absorption defects in Henle's loop induce hypomagnesemia with hypercalciuria and nephrocalcinosis, autosomal dominant hypocalcemia or Bartter syndrome. In isolated dominant hypomagnesemia and Gitelman syndrome, an abnormality in the distal convoluted tubule explains the primitive hypomagnesemia, through renal leaking. Conversely, the mechanisms of recessive isolated hypomagnesemia remains unknown. ORIENTING GENETIC DIAGNOSIS: In a context of primitive hypomagnesemia, the clinical and biological presentation will orient genetic research leading to correct diagnosis. However, there are many border-line phenotypes and the pheno-genotype correlation is still imperfect.
Collapse
Affiliation(s)
- David Montaigne
- Service d'endocrinologie et métabolisme, Centre hospitalo-universitaire, Lille (59)
| | | | | | | | | |
Collapse
|
183
|
Doroszewicz J, Waldegger P, Jeck N, Seyberth H, Waldegger S. pH dependence of extracellular calcium sensing receptor activity determined by a novel technique. Kidney Int 2005; 67:187-92. [PMID: 15610242 DOI: 10.1111/j.1523-1755.2005.00069.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Increasing evidence points to the role of the extracellular Calcium Sensing Receptor (CaSR) as a multimodal receptor responding to diverse physiologic stimuli, such as extracellular divalent and polyvalent cations, amino acids, and ionic strength. Within the kidney, these stimuli converge on the CaSR to coordinate systemic calcium and water homeostasis. In this process, the impact of urinary pH changes on the activity of the CaSR has not yet been defined. We therefore performed the present study to analyze the pH sensitivity of the CaSR. METHODS To assess the activation state of the CaSR, we developed a new method based on the functional coupling between CaSR activity and gating of calcium sensitive potassium currents mediated by SK4 potassium channels. Two-electrode voltage clamping was used to determine whole cell currents in Xenopus oocytes heterologously expressing rat CaSR and rat SK4 potassium channels. RESULTS Coexpression of CaSR and SK4 gave rise to potassium currents that were dependent on CaSR-mediated intracellular calcium release, and thereby corresponded to the activation state of the CaSR. In presence of extracellular calcium, ambient alkalinization above pH 7.5 increased CaSR activity. Evaluation of the CaSR calcium sensitivity at various ambient proton concentrations revealed that this effect was due to a sensitization of the CaSR towards extracellular calcium. CONCLUSION Coexpression with SK4 potassium channels provides a fast and sensitive approach to evaluate CaSR activity in Xenopus oocytes. As disclosed by this novel technique, CaSR activity is regulated by extracellular pH.
Collapse
|
184
|
Miyashiro K, Kasamatsu TS, Steinmetz L, de Menezes Filho HC, Damiani D, Setian N, Hauache OM. Identification and functional analysis of a novel inactivating mutation (A804D) of the calcium-sensing receptor gene. Clin Endocrinol (Oxf) 2004; 61:780-2. [PMID: 15579196 DOI: 10.1111/j.1365-2265.2004.02163.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
185
|
Abstract
A near constancy of the extracellular Ca(2+) and Mg(2+) concentration is required for numerous physiologic functions at the organ, tissue, and cellular levels. This suggests that minor changes in the extracellular concentration of these divalents must be detected to allow the appropriate correction by the homeostatic systems. The maintenance of the Ca(2+) and Mg(2+) balance is controlled by the concerted action of intestinal absorption, renal excretion, and exchange with bone. After years of research, rapid progress was made recently in identification and characterization of the Ca(2+) and Mg(2+) transport proteins that contribute to the delicate balance of divalent cations. Expression-cloning approaches in combination with knockout mice models and genetic studies in families with a disturbed Mg(2+) balance revealed novel Ca(2+) and Mg(2+) gatekeeper proteins that belong to the super family of the transient receptor potential (TRP) channels. These epithelial Ca(2+) (TRPV5 and TRPV6) and Mg(2+) channels (TRPM6 and TRPM7) form prime targets for hormonal control of the active Ca(2+) and Mg(2+) flux from the urine space or intestinal lumen to the blood compartment. This review describes the characteristics of epithelial Ca(2+) and Mg(2+) transport in general and highlights in particular the distinctive features and the physiologic relevance of these new epithelial Ca(2+) and Mg(2+) channels in (patho)physiologic situations.
Collapse
Affiliation(s)
- Joost G J Hoenderop
- Department of Physiology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | | |
Collapse
|
186
|
Ruat M, Petrel C. [New insights into the pharmacology of the extracellular calcium sensing receptor]. Med Sci (Paris) 2004; 20:980-5. [PMID: 15525493 DOI: 10.1051/medsci/20042011980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaR) belongs to class III of G-protein coupled receptors. The CaR is expressed at the surface of the parathyroid cells and plays an essential role in the regulation of Ca2+ homeostasis through the control of parathyroid secretion. The CaR is activated by Ca2+ and Mg2+ present in the extracellular fluids, various di- and trivalent cations, L-aminoacids and charged molecules including several antibiotics. Calcimimetics potentiate the effect of Ca2+ and are proposed to be of therapeutic benefit for the treatment of both primary and secondary hyperparathyroidism. Calcilytics block the Ca2+-induced activation of the CaR. Three-dimensional models of the seven transmembrane domains of the human CaR have been used to identify specific residues implicated in the recognition of calcimimetics and calcilytics. These molecules should be useful for delineating the physiological roles played by the CaR in several tissues and for clarifying the direct effects attributed to extracellular Ca2+.
Collapse
Affiliation(s)
- Martial Ruat
- Institut de Neurobiologie Alfred-Fessard, IFR 2118 CNRS, Laboratoire de Neurobiologie cellulaire et moléculaire, UPR 9040 CNRS, Bâtiment 33, 1, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
187
|
Pidasheva S, D'Souza-Li L, Canaff L, Cole DEC, Hendy GN. CASRdb: calcium-sensing receptor locus-specific database for mutations causing familial (benign) hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 2004; 24:107-11. [PMID: 15241791 DOI: 10.1002/humu.20067] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Familial hypocalciuric hypercalcemia (FHH) is caused by heterozygous loss-of-function mutations in the calcium-sensing receptor (CASR), in which the lifelong hypercalcemia is generally asymptomatic. Homozygous loss-of-function CASR mutations manifest as neonatal severe hyperparathyroidism (NSHPT), a rare disorder characterized by extreme hypercalcemia and the bony changes of hyperparathyroidism, which occur in infancy. Activating mutations in the CASR gene have been identified in several families with autosomal dominant hypocalcemia (ADH), autosomal dominant hypoparathyroidism, or hypocalcemic hypercalciuria. Individuals with ADH may have mild hypocalcemia and relatively few symptoms. However, in some cases seizures can occur, especially in younger patients, and these often happen during febrile episodes due to intercurrent infection. Thus far, 112 naturally-occurring mutations in the human CASR gene have been reported, of which 80 are unique and 32 are recurrent. To better understand the mutations causing defects in the CASR gene and to define specific regions relevant for ligand-receptor interaction and other receptor functions, the data on mutations were collected and the information was centralized in the CASRdb (www.casrdb.mcgill.ca), which is easily and quickly accessible by search engines for retrieval of specific information. The information can be searched by mutation, genotype-phenotype, clinical data, in vitro analyses, and authors of publications describing the mutations. CASRdb is regularly updated for new mutations and it also provides a mutation submission form to ensure up-to-date information. The home page of this database provides links to different web pages that are relevant to the CASR, as well as disease clinical pages, sequence of the CASR gene exons, and position of mutations in the CASR. The CASRdb will help researchers to better understand and analyze the mutations, and aid in structure-function analyses.
Collapse
Affiliation(s)
- Svetlana Pidasheva
- Department of Medicine, McGill University, and Calcium Research Laboratory, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
188
|
Hough TA, Bogani D, Cheeseman MT, Favor J, Nesbit MA, Thakker RV, Lyon MF. Activating calcium-sensing receptor mutation in the mouse is associated with cataracts and ectopic calcification. Proc Natl Acad Sci U S A 2004; 101:13566-71. [PMID: 15347804 PMCID: PMC518795 DOI: 10.1073/pnas.0405516101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) plays a pivotal role in the regulation of extracellular calcium such that abnormalities, which result in a loss or gain of function, lead to hypercalcemia or hypocalcemia, respectively, in patients. Mice carrying CaSR knockout alleles develop hypercalcemia that mimics the disorders observed in humans. To date, there is no mouse model for an activating CaSR mutation. Here, we describe such a mouse model, named Nuf, originally identified for having opaque flecks in the nucleus of the lens in a screen for eye mutants. Nuf mice also display ectopic calcification, hypocalcemia, hyperphosphatemia, and inappropriately reduced levels of plasma parathyroid hormone. These features are similar to those observed in patients with autosomal dominant hypocalcemia. Inheritance studies of Nuf mice revealed that the trait was transmitted in an autosomal-dominant manner, and mapping studies located the locus to chromosome 16, in the vicinity of the CaSR gene (Mouse Genome Database symbol Gprc2a). DNA sequence analysis revealed the presence of a Gprc2a missense mutation, Leu723Gln. Transient expression of wild-type and mutant CaSRs in human embryonic kidney 293 cells demonstrated that the mutation resulted in a gain of function of the CaSR, which had a significantly lower EC(50). Thus, our results have identified a mouse model for an activating CaSR mutation, and the development of ectopic calcification and cataract formation, which tended to be milder in the heterozygote Nuf mice, indicates that an evaluation for such abnormalities in autosomal dominant hypocalcemia patients who have activating CaSR mutations is required.
Collapse
Affiliation(s)
- Tertius A Hough
- Mammalian Genetics Unit and Mary Lyon Centre, Medical Research Council, Harwell, Oxfordshire OX11 0RD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
189
|
|
190
|
Abstract
The extracellular calcium-sensing receptor (CaR) originally cloned from bovine parathyroid gland is a G protein-coupled receptor. The physiological relevance of the cloned CaR for sensing and regulating the extracellular calcium concentration has been established by identifying hyper- and hypocalcemic disorders resulting from inactivating and activating mutations, respectively, in the CaR. The cloned CaR has been stably or transiently expressed in human embryonic kidney cells and significant progress has been made in elucidating its regulation and activation process using physiological, biochemical and molecular biological methods. A large collection of naturally occurring CaR mutations offers a valuable resource for studies aimed at understanding the structure-function relationships of the receptor, including functional importance of CaR dimerization. In turn, characterization of these naturally occurring mutations has clarified the pathogenesis of clinical conditions involving abnormalities in the CaR, such as familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism.
Collapse
Affiliation(s)
- Mei Bai
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, 221 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
191
|
Abstract
The human calcium-sensing receptor (CaSR) is a 1078 amino acid cell surface protein, which is predominantly expressed in the parathyroids and kidney, and is a member of the family of G protein-coupled receptors. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium reabsorption in response to alterations in extracellular calcium concentrations. The human CaSR gene is located on chromosome 3q21.1 and loss-of-function CaSR mutations have been reported in the hypercalcaemic disorders of familial benign (hypocalciuric) hypercalcaemia (FHH, FBH or FBHH) and neonatal severe primary hyperparathyroidism (NSHPT). However, some individuals with loss-of-function CaSR mutations remain normocalcaemic. In addition, there is genetic heterogeneity amongst the forms of FHH. Thus, the majority of FHH patients have loss-of-function CaSR mutations, and this is referred to as FHH type 1. However, in one family, the causative gene for FHH is located on 19p13, referred to as FHH type 2, and in another family it is located on 19q13, referred to as FHH type 3. Gain-of-function CaSR mutations have been shown to result in autosomal dominant hypocalcaemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations, and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with three hypercalcaemic and three hypocalcaemic disorders.
Collapse
Affiliation(s)
- R V Thakker
- Nuffield Department of Clinical Medicine, Botnar Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
192
|
Chen RA, Goodman WG. Role of the calcium-sensing receptor in parathyroid gland physiology. Am J Physiol Renal Physiol 2004; 286:F1005-11. [PMID: 15130894 DOI: 10.1152/ajprenal.00013.2004] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The calcium-sensing receptor (CaSR) represents the molecular mechanism by which parathyroid cells detect changes in blood ionized calcium concentration and modulate parathyroid hormone (PTH) secretion to maintain serum calcium levels within a narrow physiological range. Much has been learned in recent years about the diversity of signal transduction through the CaSR and the various factors that affect receptor expression. Beyond its classic role as a determinant of calcium-regulated PTH secretion, signaling through the CaSR also influences both gene transcription and cell proliferation in parathyroid cells. The CaSR thus serves a broad physiological role by integrating several distinct aspects of parathyroid gland function. The current review summarizes recent developments that enhance our understanding of the CaSR and its fundamental importance in parathyroid gland physiology.
Collapse
Affiliation(s)
- Randolph A Chen
- Div. of Nephrology, 7-155 Factor Bldg., UCLA Medical Ctr., 10833 Le Conte Ave., Los Angles, CA 90095, USA
| | | |
Collapse
|
193
|
Konrad M, Schlingmann KP, Gudermann T. Insights into the molecular nature of magnesium homeostasis. Am J Physiol Renal Physiol 2004; 286:F599-605. [PMID: 15001450 DOI: 10.1152/ajprenal.00312.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Magnesium is an important cofactor for many biological processes, such as protein synthesis, nucleic acid stability, or neuromuscular excitability. Extracellular magnesium concentration is tightly regulated by the extent of intestinal absorption and renal excretion. Despite the critical role of magnesium handling, the exact mechanisms mediating transepithelial transport remained obscure. In the past few years, the genetic disclosure of inborn errors of magnesium handling revealed several new proteins along with already known molecules unexpectedly involved in renal epithelial magnesium transport, e.g., paracellin-1, a key player in paracellular magnesium and calcium reabsorption in the thick ascending limb or the gamma-subunit of the Na(+)-K(+)-ATPase in the distal convoluted tubule. In this review, we focus on TRPM6, an ion channel of the "transient receptor potential (TRP) gene family, which, when mutated, causes a combined defect of intestinal magnesium absorption and renal magnesium conservation as observed in primary hypomagnesemia with secondary hypocalcemia.
Collapse
Affiliation(s)
- Martin Konrad
- University Children's Hospital, Philipps-University, Deutschhausst. 12, 35037 Marburg, Germany.
| | | | | |
Collapse
|
194
|
Pagan YL, Hirschhorn J, Yang B, D'Souza-Li L, Majzoub JA, Hendy GN. Maternal activating mutation of the calcium-sensing receptor: implications for calcium metabolism in the neonate. J Pediatr Endocrinol Metab 2004; 17:673-7. [PMID: 15198301 DOI: 10.1515/jpem.2004.17.4.673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Two infants were studied born of a mother with autosomal dominant hypocalcemia who is heterozygous for an activating mutation in the calcium-sensing receptor gene. Both infants had serum calcium levels in the low-normal range and parathyroid hormone levels in the high-normal range and were healthy. The mother's hypocalcemia had been treated with calcium carbonate and calcitriol and she has nephrocalcinosis and mild renal insufficiency. By genetic testing, both infants were shown to have normal calcium-sensing receptor gene alleles, i.e., they had not inherited the activating mutation from their mother. This provided reassurance to the family and ensured that treatment to correct apparent hypocalcemia would not be necessary. The fact that the infants had high normal parathyroid hormone levels with normal calcium may be due to the fact that with a normal calcium-sensing receptor their parathyroid glands responded in utero to the maternal hypocalcemia with an increase in parathyroid hormone.
Collapse
Affiliation(s)
- Yanira L Pagan
- Division of Endocrinology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
195
|
Hu J, Mora S, Weber G, Zamproni I, Proverbio MC, Spiegel AM. Autosomal dominant hypocalcemia in monozygotic twins caused by a de novo germline mutation near the amino-terminus of the human calcium receptor. J Bone Miner Res 2004; 19:578-86. [PMID: 15005845 DOI: 10.1359/jbmr.040106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 10/24/2003] [Accepted: 11/25/2003] [Indexed: 12/16/2022]
Abstract
UNLABELLED To define the molecular pathogenesis of severe postnatal hypocalcemia in monozygotic twin sisters, we sequenced their CaR gene and identified a missense mutation, K29E. Expression of the mutant receptor in vitro showed a marked increase in Ca2+ sensitivity explaining the observed phenotype. Additional mutagenesis studies lead us to speculate concerning a novel mechanism whereby the K29E mutation may lead to receptor activation. INTRODUCTION Activating mutations of the Ca(2+)-sensing receptor (CaR) gene have been identified in subjects with autosomal dominant hypocalcemia. Study of such mutations has provided insight into the mechanism of activation of the CaR. MATERIALS AND METHODS We performed biochemical and molecular genetic studies on monozygotic twin sisters who presented with early postnatal hypocalcemia and on their unaffected sister and parents. Functional characterization of mutant CaRs transfected in HEK-293 cells included immunoblots to monitor protein expression and Ca2+ stimulation of phosphoinositide hydrolysis to measure Ca2+ sensitivity. RESULTS We identified a K29E missense mutation in the twin sisters but not in their parents or unaffected sister. The K29E mutant CaR showed a marked increase in Ca2+ sensitivity, including when it was co-transfected with wildtype CaR cDNA, consistent with a dominant effect. Substitution of K29 by aspartate equivalently increased CaR sensitivity, whereas conservative substitution by arginine did not. CONCLUSIONS Severe postnatal hypocalcemia in the twin sisters was caused by a de novo germline activating mutation. In a model of the Venus flytrap-like domain of the extracellular amino-terminus of the CaR, K29 is located close to a peptide loop, "loop 2," that forms part of the dimer interface and is the site of 10 of the previously reported naturally occurring activating CaR mutations. We speculate that K29E increases Ca2+ sensitivity of the CaR by disrupting a salt bridge between K29 and an acidic residue in loop 2 and thereby changes the normal structure of loop 2 that maintains the CaR in its inactive conformation.
Collapse
Affiliation(s)
- Jianxin Hu
- Molecular Pathophysiology Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
196
|
Affiliation(s)
- R V Thakker
- May Professor of Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
197
|
Abstract
Extracellular calcium has long been known to affect the rate and magnitude of renal calcium and phosphate recovery. In this review, we consider some of these findings in light of our present understanding of the tubular localization of the calcium-sensing receptor (CaSR). Experiments directly implicating the CaSR in regulating calcium and phosphate transport are described. These results point to an important role of the CaSR in regulating PTH-dependent calcium absorption by cortical thick ascending limbs and on PTH-sensitive proximal tubule phosphate transport. Possible avenues for further investigation are suggested.
Collapse
Affiliation(s)
- Jianming Ba
- Department of Pharmacology, University of Pittsburgh School of Medicine, E-1347 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
198
|
Abstract
It is now known that variations in extracellular calcium concentration exert diverse physiologic effects in a variety of tissues that are mediated by a calcium-sensing receptor (CaSRs). In parathyroid tissue, the CaSR represents the molecular mechanism by which parathyroid cells detect changes in blood ionized calcium concentration, modulate parathyroid hormone (PTH) secretion accordingly, and thus maintain serum calcium levels within a narrow physiologic range. In the kidney, the CaSR regulates renal calcium excretion and influences the transepithelial movement of water and other electrolytes. More generally, activation of the CaSR represents an important signal transduction pathway in intestine, placenta, brain, and perhaps bone. Some of these actions involve cell cycle regulation, changes that may be relevant to understanding the pathogenesis of parathyroid gland hyperplasia in secondary hyperparathyroidism caused by chronic kidney disease. The CaSR represents an appealing target for therapeutic agents designed to modify parathyroid gland function in vivo, offering the prospect of novel therapies for selected disorders of bone and mineral metabolism. Other receptors capable of responding to extracellular calcium ions also have been identified, but the functional importance of these interactions remains to be determined.
Collapse
Affiliation(s)
- William G Goodman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
199
|
Huang C, Hujer KM, Wu Z, Miller RT. The Ca2+-sensing receptor couples to Galpha12/13 to activate phospholipase D in Madin-Darby canine kidney cells. Am J Physiol Cell Physiol 2004; 286:C22-30. [PMID: 12954603 DOI: 10.1152/ajpcell.00229.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca2+-sensing receptor (CaR) couples to multiple G proteins involved in distinct signaling pathways: Galphai to inhibit the activity of adenylyl cyclase and activate ERK, Galphaq to stimulate phospholipase C and phospholipase A2, and Gbetagamma to stimulate phosphatidylinositol 3-kinase. To determine whether the receptor also couples to Galpha12/13, we investigated the signaling pathway by which the CaR regulates phospholipase D (PLD), a known Galpha12/13 target. We established Madin-Darby canine kidney (MDCK) cell lines that stably overexpress the wild-type CaR (CaRWT) or the nonfunctional mutant CaRR796W as a negative control, prelabeled these cells with [3H]palmitic acid, and measured CaR-stimulated PLD activity as the formation of [3H]phosphatidylethanol (PEt). The formation of [3H]PEt increased in a time-dependent manner in the cells that overexpress the CaRWT but not the CaRR796W. Treatment of the cells with C3 exoenzyme inhibited PLD activity, which indicates that the CaR activates the Rho family of small G proteins, targets of Galpha12/13. To determine which G protein(s) the CaR couples to in order to activate Rho and PLD, we pretreated the cells with pertussis toxin to inactivate Galphai or coexpressed regulators of G protein-signaling (RGS) proteins to attenuate G protein signaling (RGS4 for Galphai and Galphaq, and a p115RhoGEF construct containing the RGS domain for Galpha12/13). Overexpression of p115RhoGEF-RGS in the MDCK cells that overexpress CaRWT inhibited extracellular Ca2+-stimulated PLD activity, but pretreatment of cells with pertussis toxin and overexpression of RGS4 were without effect. The involvement of other signaling components such as protein kinase C, ADP-ribosylation factor, and phosphatidylinositol biphosphate was excluded. These findings demonstrate that the CaR couples to Galpha12/13 to regulate PLD via a Rho-dependent mechanism and does so independently of Galphai and Galphaq. This suggests that the CaR may regulate cytoskeleton via Galpha12/13, Rho, and PLD.
Collapse
Affiliation(s)
- Chunfa Huang
- Division of Nephrology, Department of Medicine, Case Western Reserve University, Louis Stokes Veteran Affairs Medical Center, 10701 East Boulevard 151W, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
200
|
Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 2004; 19:13-25. [PMID: 14634861 DOI: 10.1007/s00467-003-1293-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 07/25/2003] [Accepted: 07/28/2003] [Indexed: 10/26/2022]
Abstract
Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.
Collapse
Affiliation(s)
- Karl P Schlingmann
- Department of Pediatrics, Philipps University, Deutschhausstrasse 12, 35037 Marburg, Germany
| | | | | |
Collapse
|