151
|
Gong X, Ahner A, Roldan A, Lukacs GL, Thibodeau PH, Frizzell RA. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation. J Biol Chem 2015; 291:2004-2017. [PMID: 26627832 DOI: 10.1074/jbc.m115.685628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 12/24/2022] Open
Abstract
A newly identified pathway for selective degradation of the common mutant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del, is initiated by binding of the small heat shock protein, Hsp27. Hsp27 collaborates with Ubc9, the E2 enzyme for protein SUMOylation, to selectively degrade F508del CFTR via the SUMO-targeted ubiquitin E3 ligase, RNF4 (RING finger protein 4) (1). Here, we ask what properties of CFTR are sensed by the Hsp27-Ubc9 pathway by examining the ability of NBD1 (locus of the F508del mutation) to mimic the disposal of full-length (FL) CFTR. Similar to FL CFTR, F508del NBD1 expression was reduced 50-60% by Hsp27; it interacted preferentially with the mutant and was modified primarily by SUMO-2. Mutation of the consensus SUMOylation site, Lys(447), obviated Hsp27-mediated F508del NBD1 SUMOylation and degradation. As for FL CFTR and NBD1 in vivo, SUMO modification using purified components in vitro was greater for F508del NBD1 versus WT and for the SUMO-2 paralog. Several findings indicated that Hsp27-Ubc9 targets the SUMOylation of a transitional, non-native conformation of F508del NBD1: (a) its modification decreased as [ATP] increased, reflecting stabilization of the nucleotide-binding domain by ligand binding; (b) a temperature-induced increase in intrinsic fluorescence, which reflects formation of a transitional NBD1 conformation, was followed by its SUMO modification; and (c) introduction of solubilizing or revertant mutations to stabilize F508del NBD1 reduced its SUMO modification. These findings indicate that the Hsp27-Ubc9 pathway recognizes a non-native conformation of mutant NBD1, which leads to its SUMO-2 conjugation and degradation by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | | | - Ariel Roldan
- the Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gergely L Lukacs
- the Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Patrick H Thibodeau
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and
| | | |
Collapse
|
152
|
Jovcevski B, Kelly MA, Rote AP, Berg T, Gastall HY, Benesch JLP, Aquilina JA, Ecroyd H. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity. ACTA ACUST UNITED AC 2015; 22:186-95. [PMID: 25699602 DOI: 10.1016/j.chembiol.2015.01.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/07/2015] [Accepted: 01/21/2015] [Indexed: 01/06/2023]
Abstract
Serine phosphorylation of the mammalian small heat-shock protein Hsp27 at residues 15, 78, and 82 is thought to regulate its structure and chaperone function; however, the site-specific impact has not been established. We used mass spectrometry to assess the combinatorial effect of mutations that mimic phosphorylation upon the oligomeric state of Hsp27. Comprehensive dimerization yielded a relatively uncrowded spectrum, composed solely of even-sized oligomers. Modification at one or two serines decreased the average oligomeric size, while the triple mutant was predominantly a dimer. These changes were reflected in a greater propensity for oligomers to dissociate upon increased modification. The ability of Hsp27 to prevent amorphous or fibrillar aggregation of target proteins was enhanced and correlated with the amount of dissociated species present. We propose that, in vivo, phosphorylation promotes oligomer dissociation, thereby enhancing chaperone activity. Our data support a model in which dimers are the chaperone-active component of Hsp27.
Collapse
Affiliation(s)
- Blagojce Jovcevski
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Megan A Kelly
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anthea P Rote
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tracey Berg
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Heidi Y Gastall
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - Justin L P Benesch
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford OX1 3QZ, UK
| | - J Andrew Aquilina
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
153
|
Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Rep 2015; 12:1169-83. [PMID: 26257172 DOI: 10.1016/j.celrep.2015.07.023] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 05/27/2015] [Accepted: 07/09/2015] [Indexed: 02/08/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ∼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.
Collapse
|
154
|
Ahmed N, Ronchi D, Comi GP. Genes and Pathways Involved in Adult Onset Disorders Featuring Muscle Mitochondrial DNA Instability. Int J Mol Sci 2015; 16:18054-76. [PMID: 26251896 PMCID: PMC4581235 DOI: 10.3390/ijms160818054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022] Open
Abstract
Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability.
Collapse
Affiliation(s)
- Naghia Ahmed
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| | - Dario Ronchi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| | - Giacomo Pietro Comi
- Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via Francesco Sforza 35, Milan 20122, Italy.
| |
Collapse
|
155
|
Eisenhardt BD. Small heat shock proteins: recent developments. Biomol Concepts 2015; 4:583-95. [PMID: 25436758 DOI: 10.1515/bmc-2013-0028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 10/07/2013] [Indexed: 12/14/2022] Open
Abstract
Small heat shock proteins (sHSPs) are abundantly present in many different organisms at elevated temperatures. Members of the subgroup of alpha crystallin domain (ACD)-type sHSPs belong to the large family of protein chaperones. They bind non-native proteins in an ATP-independent manner, thereby holding the incorporated clients soluble for subsequent refolding by other molecular chaperoning systems. sHSPs do not actively refold incorporated peptides therefore they are sometimes referred to as holdases. Varying numbers of sHSPs have been documented in the different domains of life and dependent on the analyzed organism. Generally, diverse sHSPs possess more sequence similarities in the conserved ACD, whereas the N- and C-terminal extensions are less conserved. Despite their designation as sHSPs, they are not solely present during heat stress. sHSPs presumably help to protect cells under various stresses, but they were also found during development, e.g., in embryonic development of higher plants which is associated with ongoing seed desiccation. The functional and physiological relevance of several different sHSPs in one organism remains still unclear, especially in plants where several highly similar sHSPs are present in the same compartment. The wide range of biotic and abiotic stresses that induce the expression of multiple sHSP genes makes it challenging to define the physiological relevance of each of these versatile proteins.
Collapse
|
156
|
In silico evaluation of human small heat shock protein HSP27: Homology modeling, mutation analyses and docking studies. Bioorg Med Chem 2015; 23:3215-20. [DOI: 10.1016/j.bmc.2015.04.070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/23/2022]
|
157
|
Li X, Liu H, Fischhaber PL, Tang TS. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 2015; 132:34-58. [PMID: 26123252 DOI: 10.1016/j.pneurobio.2015.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3, SCA3), an autosomal dominant neurological disorder, is caused by an abnormal expanded polyglutamine (polyQ) repeat in the ataxin-3 protein. The length of the expanded polyQ stretch correlates positively with the severity of the disease and inversely with the age at onset. To date, we cannot fully explain the mechanism underlying neurobiological abnormalities of this disease. Yet, accumulating reports have demonstrated the functions of ataxin-3 protein in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, all of which suggest a role of ataxin-3 in the clearance of misfolded proteins. Notably, the SCA3 pathogenic form of ataxin-3 (ataxin-3(exp)) impairs the misfolded protein clearance via mechanisms that are either dependent or independent of its deubiquitinase (DUB) activity, resulting in the accumulation of misfolded proteins and the progressive loss of neurons in SCA3. Some drugs, which have been used as activators/inducers in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, have been demonstrated to be efficacious in the relief of neurodegeneration diseases like Huntington's disease (HD), Parkinson's (PD), Alzheimer's (AD) as well as SCA3 in animal models and clinical trials, putting misfolded protein clearance on the list of potential therapeutic targets. Here, we undertake a comprehensive review of the progress in understanding the physiological functions of ataxin-3 in misfolded protein clearance and how the polyQ expansion impairs misfolded protein clearance. We then detail the preclinical studies targeting the elimination of misfolded proteins for SCA3 treatment. We close with future considerations for translating these pre-clinical results into therapies for SCA3 patients.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
158
|
Lee J, Jung SC, Joo J, Choi YR, Moon HW, Kwak G, Yeo HK, Lee JS, Ahn HJ, Jung N, Hwang S, Rheey J, Woo SY, Kim JY, Hong YB, Choi BO. Overexpression of mutant HSP27 causes axonal neuropathy in mice. J Biomed Sci 2015; 22:43. [PMID: 26141737 PMCID: PMC4490621 DOI: 10.1186/s12929-015-0154-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/11/2015] [Indexed: 12/02/2022] Open
Abstract
Background Mutations in heat shock 27 kDa protein 1 (HSP27 or HSPB1) cause distal hereditary motor neuropathy (dHMN) or Charcot-Marie-Tooth disease type 2 F (CMT2F) according to unknown factors. Mutant HSP27 proteins affect axonal transport by reducing acetylated tubulin. Results We generated a transgenic mouse model overexpressing HSP27-S135F mutant protein driven by Cytomegalovirus (CMV) immediate early promoter. The mouse phenotype was similar to dHMN patients in that they exhibit motor neuropathy. To determine the phenotypic aberration of transgenic mice, behavior test, magnetic resonance imaging (MRI), electrophysiological study, and pathology were performed. Rotarod test showed that founder mice exhibited lowered motor performance. MRI also revealed marked fatty infiltration in the anterior and posterior compartments at calf level. Electrophysiologically, compound muscle action potential (CMAP) but not motor nerve conduction velocity (MNCV) was reduced in the transgenic mice. Toluidine staining with semi-thin section of sciatic nerve showed the ratio of large myelinated axon fiber was reduced, which might cause reduced locomotion in the transgenic mice. Electron microscopy also revealed abundant aberrant myelination. Immunohistochemically, neuronal dysfunctions included elevated level of phosphorylated neurofilament and reduced level of acetylated tubulin in the sural nerve of transgenic mice. There was no additional phenotype besides motor neuronal defects. Conclusions Overexpression of HSP27-S135F protein causes peripheral neuropathy. The mouse model can be applied to future development of therapeutic strategies for dHMN or CMT2F. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0154-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jaesoon Joo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Yu-Ri Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea.,Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Hyo Won Moon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Geon Kwak
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Ha Kyung Yeo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Ji-Su Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Hye-Jee Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Namhee Jung
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Korea
| | - Sunhee Hwang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea
| | - Jingeun Rheey
- Samsung Biomedical Research Institute, Samsung Advanced Institute of Technology, Seoul, Korea
| | - So-Youn Woo
- Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Ji Yon Kim
- Microbiology, Ewha Womans University School of Medicine, Seoul, Korea
| | - Young Bin Hong
- Stem Cell & Regenerative Medicine Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea.
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Korea. .,Neuroscience center, Samsung Medical Center, Seoul, Korea.
| |
Collapse
|
159
|
Xie Y, Song L, Weng Z, Liu S, Liu Z. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2015; 44:642-51. [PMID: 25827625 DOI: 10.1016/j.fsi.2015.03.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 03/20/2015] [Indexed: 05/26/2023]
Abstract
Heat shock proteins (Hsps) are a suite of highly conserved proteins whose expressions are generally induced by elevated temperature. However, many Hsps play important roles in both innate and adaptive immunity. On the basis of our previous work on Hsp40 and Hsp70 gene families in channel catfish (Ictalurus punctatus), the objective of this study was to characterize Hsp90, Hsp60, Hsp10, and small Hsp genes, and to investigate their expression profiles after bacterial infections. A total of 20 Hsp genes were identified and annotated in the channel catfish genome, including five Hsp90 genes, one Hsp60 gene, one Hsp10 gene, and 13 sHsp genes. Six Hsp genes were differentially expressed after Edwardsiella ictaluri infection, and 12 were differentially expressed after Flavobacterium columnare infection. Although expression of these genes exhibited both temporal and spatial regulation, the induction of Hsp genes was observed soon after bacterial infection, while the suppression of Hsp genes was observed at later time-points, suggesting their distinct roles in immune responses and disease defenses. A pathogen-specific expression pattern of Hsp90 was observed. After F. columnare infection, all Hsp90 genes were found up-regulated except Hsp90ab1, which was not significantly regulated. However, after E. ictaluri infection, only one Hsp90 gene was found significantly down-regulated. Both pathogen-specific and tissue-specific pattern of expression were observed with small Hsps after E. ictaluri and F. columnare bacterial infections. These results suggested that most of Hsp genes may play important roles in immune response and/or disease defense in channel catfish.
Collapse
Affiliation(s)
- Yangjie Xie
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhaohong Weng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
160
|
Muranova LK, Weeks SD, Strelkov SV, Gusev NB. Characterization of Mutants of Human Small Heat Shock Protein HspB1 Carrying Replacements in the N-Terminal Domain and Associated with Hereditary Motor Neuron Diseases. PLoS One 2015; 10:e0126248. [PMID: 25965061 PMCID: PMC4429025 DOI: 10.1371/journal.pone.0126248] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/30/2015] [Indexed: 11/18/2022] Open
Abstract
Physico-chemical properties of the mutations G34R, P39L and E41K in the N-terminal domain of human heat shock protein B1 (HspB1), which have been associated with hereditary motor neuron neuropathy, were analyzed. Heat-induced aggregation of all mutants started at lower temperatures than for the wild type protein. All mutations decreased susceptibility of the N- and C-terminal parts of HspB1 to chymotrypsinolysis. All mutants formed stable homooligomers with a slightly larger apparent molecular weight compared to the wild type protein. All mutations analyzed decreased or completely prevented phosphorylation-induced dissociation of HspB1 oligomers. When mixed with HspB6 and heated, all mutants yielded heterooligomers with apparent molecular weights close to ~400 kDa. Finally, the three HspB1 mutants possessed lower chaperone-like activity towards model substrates (lysozyme, malate dehydrogenase and insulin) compared to the wild type protein, conversely the environmental probe bis-ANS yielded higher fluorescence with the mutants than with the wild type protein. Thus, in vitro the analyzed N-terminal mutations increase stability of large HspB1 homooligomers, prevent their phosphorylation-dependent dissociation, modulate their interaction with HspB6 and decrease their chaperoning capacity, preventing normal functioning of HspB1.
Collapse
Affiliation(s)
- Lydia K. Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | - Stephen D. Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Sergei V. Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Nikolai B. Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
- * E-mail:
| |
Collapse
|
161
|
Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 2015; 78:243-73. [PMID: 25487025 DOI: 10.1007/978-3-319-11731-7_12] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.
Collapse
Affiliation(s)
- Emma J Duncan
- Molecular Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charter House Square, EC1M 6BQ, London, UK,
| | | | | | | |
Collapse
|
162
|
Wójtowicz I, Jabłońska J, Zmojdzian M, Taghli-Lamallem O, Renaud Y, Junion G, Daczewska M, Huelsmann S, Jagla K, Jagla T. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 2015; 142:994-1005. [PMID: 25715399 DOI: 10.1242/dev.115352] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture.
Collapse
Affiliation(s)
- Inga Wójtowicz
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Monika Zmojdzian
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Ouarda Taghli-Lamallem
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Yoan Renaud
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Guillaume Junion
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Malgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Sven Huelsmann
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Krzysztof Jagla
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Teresa Jagla
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| |
Collapse
|
163
|
Pareyson D, Saveri P, Sagnelli A, Piscosquito G. Mitochondrial dynamics and inherited peripheral nerve diseases. Neurosci Lett 2015; 596:66-77. [PMID: 25847151 DOI: 10.1016/j.neulet.2015.04.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental role in mitochondrial transport and mutations in some of related encoding genes cause peripheral neuropathy (TUBB3, NEFL, HSPB1, HSPB8, HSPB3, DNAJB2). In this review, we address the abnormalities in mitochondrial dynamics and their role in determining CMT disease and related neuropathies.
Collapse
Affiliation(s)
- Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy.
| | - Paola Saveri
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Anna Sagnelli
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| | - Giuseppe Piscosquito
- Clinic of Central and Peripheral Degenerative Neuropathies Unit, Department of Clinical Neurosciences - IRCCS Foundation, "C. Besta" Neurological Institute, Milan, Italy
| |
Collapse
|
164
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
165
|
Smith HL, Li W, Cheetham ME. Molecular chaperones and neuronal proteostasis. Semin Cell Dev Biol 2015; 40:142-52. [PMID: 25770416 PMCID: PMC4471145 DOI: 10.1016/j.semcdb.2015.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/27/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Protein homeostasis (proteostasis) is essential for maintaining the functionality of the proteome. The disruption of proteostasis, due to genetic mutations or an age-related decline, leads to aberrantly folded proteins that typically lose their function. The accumulation of misfolded and aggregated protein is also cytotoxic and has been implicated in the pathogenesis of neurodegenerative diseases. Neurons have developed an intrinsic protein quality control network, of which molecular chaperones are an essential component. Molecular chaperones function to promote efficient folding and target misfolded proteins for refolding or degradation. Increasing molecular chaperone expression can suppress protein aggregation and toxicity in numerous models of neurodegenerative disease; therefore, molecular chaperones are considered exciting therapeutic targets. Furthermore, mutations in several chaperones cause inherited neurodegenerative diseases. In this review, we focus on the importance of molecular chaperones in neurodegenerative diseases, and discuss the advances in understanding their protective mechanisms.
Collapse
Affiliation(s)
- Heather L Smith
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
166
|
Abstract
Loss of protein homeostasis (proteostasis) is a common feature of aging and disease that is characterized by the appearance of nonnative protein aggregates in various tissues. Protein aggregation is routinely suppressed by the proteostasis network (PN), a collection of macromolecular machines that operate in diverse ways to maintain proteome integrity across subcellular compartments and between tissues to ensure a healthy life span. Here, we review the composition, function, and organizational properties of the PN in the context of individual cells and entire organisms and discuss the mechanisms by which disruption of the PN, and related stress response pathways, contributes to the initiation and progression of disease. We explore emerging evidence that disease susceptibility arises from early changes in the composition and activity of the PN and propose that a more complete understanding of the temporal and spatial properties of the PN will enhance our ability to develop effective treatments for protein conformational diseases.
Collapse
Affiliation(s)
- Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208;
| | | |
Collapse
|
167
|
Datskevich PN, Muranova LK, Gusev NB. Attempt to optimize some properties of fluorescent chimeras of human small heat shock protein HspB1 by modifying linker length and nature. BIOCHEMISTRY (MOSCOW) 2015; 80:67-73. [PMID: 25754041 DOI: 10.1134/s0006297915010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chimerical proteins consisting of enhanced yellow fluorescent protein (EYFP) connected by linkers of different length and nature to the N-terminal end of small heat shock protein HspB1 were obtained and characterized. To obtain fluorescent chimeras with properties similar to those of unmodified small heat shock protein, we used either 12-residue-long linkers of different nature (highly flexible Gly-Ser linker (L1), rigid α-helical linker (L2), or rigid Pro-Ala linker (L3)) or highly flexible Gly-Ser linker consisting of 12, 18, or 21 residues. The wild-type HspB1 formed large stable oligomers consisting of more than 20 subunits. Independent of the length or the nature of the linker, all the fluorescent chimeras formed small (5-9 subunits) oligomers tending to dissociate at low protein concentration. Chaperone-like activity of the wild-type HspB1 and its fluorescent chimeras were compared using lysozyme as a model protein substrate. Under the conditions used, all the fluorescent chimeras possessed higher chaperone-like activity than the wild-type HspB1. Chaperone-like activity of fluorescent chimeras with L1 and L3 linkers was less different from that of the wild-type HspB1 compare to the chaperone-like activity of chimeras with rigid L2 linker. Increase in the length of L1 linker from 12 up to 21 residues leads to decrease in the difference in the chaperone-like activity between the wild-type protein and its fluorescent chimeras. Since the N-terminal domain of small heat shock proteins participates in formation of large oligomers, any way of attachment of fluorescent protein to the N-terminal end of HspB1 leads to dramatic changes in its oligomeric structure. Long flexible linkers should be used to obtain fluorescent chimeras with chaperone-like properties similar to those of the wild-type HspB1.
Collapse
Affiliation(s)
- P N Datskevich
- Lomonosov Moscow State University, Biological Faculty, Moscow, 119991, Russia.
| | | | | |
Collapse
|
168
|
Ylikallio E, Konovalova S, Dhungana Y, Hilander T, Junna N, Partanen JV, Toppila JP, Auranen M, Tyynismaa H. Truncated HSPB1 causes axonal neuropathy and impairs tolerance to unfolded protein stress. BBA CLINICAL 2015; 3:233-42. [PMID: 26675522 PMCID: PMC4661565 DOI: 10.1016/j.bbacli.2015.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
Background HSPB1 belongs to the family of small heat shock proteins (sHSP) that have importance in protection against unfolded protein stress, in cancer cells for escaping drug toxicity stress and in neurons for suppression of protein aggregates. sHSPs have a conserved α-crystalline domain (ACD), flanked by variable N- and C-termini, whose functions are not fully understood. Dominant missense variants in HSPB1, locating mostly to the ACD, have been linked to inherited neuropathy. Methods Patients underwent detailed clinical and neurophysiologic characterization. Disease causing variants were identified by exome or gene panel sequencing. Primary patient fibroblasts were used to investigate the effects of the dominant defective HSPB1 proteins. Results Frameshift variant predicting ablation of the entire C-terminus p.(Met169Cfs2*) of HSPB1 and a missense variant p.(Arg127Leu) were identified in patients with dominantly inherited motor-predominant axonal Charcot–Marie–Tooth neuropathy. We show that the truncated protein is stable and binds wild type HSPB1. Both mutations impaired the heat stress tolerance of the fibroblasts. This effect was particularly pronounced for the cells with the truncating variant, independent of heat-induced nuclear translocation and induction of global transcriptional heat response. Furthermore, the truncated HSPB1 increased cellular sensitivity to protein misfolding. Conclusion Our results suggest that truncation of the non-conserved C-terminus impairs the function of HSPB1 in cellular stress response. General significance sHSPs have important roles in prevention of protein aggregates that induce toxicity. We showed that C-terminal part of HSPB1 is critical for tolerance of unfolded protein stress, and when lacking causes axonal neuropathy in patients. C-terminal truncation of small heat shock protein HSPB1 causes neuropathy. Truncated HSPB1 is stable in patient fibroblasts and binds wild type HSPB1. C-terminus of HSPB1 is critical for tolerance to unfolded protein stress. Neuropathy may develop as a consequence of impaired cellular stress response.
Collapse
Key Words
- ACD, α-crystalline domain
- CADD, combined annotation dependent depletion
- CMT, Charcot–Marie–Tooth disease
- Charcot–Marie–Tooth neuropathy
- EMG, electromyography
- ENMG, electroneuromyography
- EVS, exome variant server
- HSPB1
- MUP, motor unit potential
- Protein misfolding
- QST, quantitative sensory testing
- SISu, Sequencing Initiative Suomi
- dHMN, distal hereditary motor neuropathy
- heat shock protein
- sHSP, small heat shock protein
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Svetlana Konovalova
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Yogesh Dhungana
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Taru Hilander
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Nella Junna
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
| | - Juhani V Partanen
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - Jussi P Toppila
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Central Hospital, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland ; Department of Neurology, Helsinki University Central Hospital, Helsinki 00290, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland ; Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
169
|
Real-time heterogeneous protein–protein interaction between αA-crystallin N-terminal mutants and αB-crystallin using quartz crystal microbalance (QCM). Amino Acids 2015; 47:1035-43. [DOI: 10.1007/s00726-015-1935-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 02/04/2015] [Indexed: 02/06/2023]
|
170
|
Treweek TM, Meehan S, Ecroyd H, Carver JA. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 2015; 72:429-451. [PMID: 25352169 PMCID: PMC11113218 DOI: 10.1007/s00018-014-1754-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.
Collapse
Affiliation(s)
- Teresa M Treweek
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
171
|
Gentil BJ, Tibshirani M, Durham HD. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 2015; 360:609-20. [PMID: 25567110 DOI: 10.1007/s00441-014-2082-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 11/19/2014] [Indexed: 12/21/2022]
Abstract
Neurons are extremely polarised cells in which the cytoskeleton, composed of microtubules, microfilaments and neurofilaments, plays a crucial role in maintaining structure and function. Neurofilaments, the 10-nm intermediate filaments of neurons, provide structure and mechanoresistance but also provide a scaffolding for the organization of the nucleus and organelles such as mitochondria and ER. Disruption of neurofilament organization and expression or metabolism of neurofilament proteins is characteristic of certain neurological syndromes including Amyotrophic Lateral Sclerosis, Charcot-Marie-Tooth sensorimotor neuropathies and Giant Axonal Neuropathy. Microfluorometric live imaging techniques have been instrumental in revealing the dynamics of neurofilament assembly and transport and their functions in organizing intracellular organelle networks. The insolubility of neurofilament proteins has limited identifying interactors by conventional biochemical techniques but yeast two-hybrid experiments have revealed new roles for oligomeric, nonfilamentous structures including vesicular trafficking. Although having long half-lives, new evidence points to degradation of subunits by the ubiquitin-proteasome system as a mechanism of normal turnover. Although certain E3-ligases ubiquitinating neurofilament proteins have been identified, the overall process of neurofilament degradation is not well understood. We review these mechanisms of neurofilament homeostasis and abnormalities in motor neuron and peripheral nerve disorders. Much remains to discover about the disruption of processes that leads to their pathological aggregation and accumulation and the relevance to pathogenesis. Understanding these mechanisms is crucial for identifying novel therapeutic strategies.
Collapse
Affiliation(s)
- Benoit J Gentil
- Department of Neurology/Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada,
| | | | | |
Collapse
|
172
|
Arrigo AP, Ducarouge B, Lavial F, Gibert B. Immense Cellular Implications Associated to Small Stress Proteins Expression: Impacts on Human Pathologies. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
173
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
174
|
Stancanelli C, Fabrizi GM, Ferrarini M, Cavallaro T, Taioli F, Di Leo R, Russo M, Gentile L, Toscano A, Vita G, Mazzeo A. Charcot-Marie-Tooth 2F: phenotypic presentation of the Arg136Leu HSP27 mutation in a multigenerational family. Neurol Sci 2014; 36:1003-6. [PMID: 25547330 DOI: 10.1007/s10072-014-2050-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/20/2014] [Indexed: 11/27/2022]
Abstract
Mutations in the small heat-shock protein HSP27 gene are associated with distal hereditary motor neuropathy and with the axonal form of Charcot-Marie-Tooth disease type 2. We present the clinical and electrophysiological data on a multigenerational family with the p.Arg136Leu HSP27 mutation. Atypical features such as deafness and pyramidal signs were present in our cases adding new data to the large spectrum of HSP27-related phenotype.
Collapse
|
175
|
Kim HJ, Lee J, Hong YB, Kim YJ, Lee JH, Nam SH, Choi BO, Chung KW. Ser135Phe mutation in HSPB1 (HSP27) from Charcot–Marie–Tooth disease type 2F families. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0259-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
176
|
Almeida-Souza L, Timmerman V, Janssens S. Microtubule dynamics in the peripheral nervous system: A matter of balance. BIOARCHITECTURE 2014; 1:267-270. [PMID: 22545178 PMCID: PMC3337128 DOI: 10.4161/bioa.1.6.19198] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The special architecture of neurons in the peripheral nervous system, with axons extending for long distances, represents a major challenge for the intracellular transport system. Two recent studies show that mutations in the small heat shock protein HSPB1, which cause an axonal type of Charcot-Marie-Tooth (CMT) neuropathy, affect microtubule dynamics and impede axonal transport. Intriguingly, while at presymptomatic age the neurons in the mutant HSPB1 mouse show a hyperstable microtubule network, at postsymptomatic age, the microtubule network completely lost its stability as reflected by a marked decrease in tubulin acetylation levels. We here propose a model explaining the role of microtubule stabilization and tubulin acetylation in the pathogenesis of HSPB1 mutations.
Collapse
|
177
|
Tamiya G, Makino S, Hayashi M, Abe A, Numakura C, Ueki M, Tanaka A, Ito C, Toshimori K, Ogawa N, Terashima T, Maegawa H, Yanagisawa D, Tooyama I, Tada M, Onodera O, Hayasaka K. A mutation of COX6A1 causes a recessive axonal or mixed form of Charcot-Marie-Tooth disease. Am J Hum Genet 2014; 95:294-300. [PMID: 25152455 DOI: 10.1016/j.ajhg.2014.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is the most common inherited neuropathy characterized by clinical and genetic heterogeneity. Although more than 30 loci harboring CMT-causing mutations have been identified, many other genes still remain to be discovered for many affected individuals. For two consanguineous families with CMT (axonal and mixed phenotypes), a parametric linkage analysis using genome-wide SNP chip identified a 4.3 Mb region on 12q24 showing a maximum multipoint LOD score of 4.23. Subsequent whole-genome sequencing study in one of the probands, followed by mutation screening in the two families, revealed a disease-specific 5 bp deletion (c.247-10_247-6delCACTC) in a splicing element (pyrimidine tract) of intron 2 adjacent to the third exon of cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1), which is a component of mitochondrial respiratory complex IV (cytochrome c oxidase [COX]), within the autozygous linkage region. Functional analysis showed that expression of COX6A1 in peripheral white blood cells from the affected individuals and COX activity in their EB-virus-transformed lymphoblastoid cell lines were significantly reduced. In addition, Cox6a1-null mice showed significantly reduced COX activity and neurogenic muscular atrophy leading to a difficulty in walking. Those data indicated that COX6A1 mutation causes the autosomal-recessive axonal or mixed CMT.
Collapse
|
178
|
Abstract
SIGNIFICANCE Mitochondrial dynamics describes the continuous change in the position, size, and shape of mitochondria within cells. The morphological and functional complexity of neurons, the remarkable length of their processes, and the rapid changes in metabolic requirements arising from their intrinsic excitability render these cells particularly dependent on effective mitochondrial function and positioning. The rules that govern these changes and their functional significance are not fully understood, yet the dysfunction of mitochondrial dynamics has been implicated as a pathogenetic factor in a number of diseases, including disorders of the central and peripheral nervous systems. RECENT ADVANCES In recent years, a number of mutations of genes encoding proteins that play important roles in mitochondrial dynamics and function have been discovered in patients with Charcot-Marie-Tooth (CMT) disease, a hereditary peripheral neuropathy. These findings have directly linked mitochondrial pathology to the pathology of peripheral nerve and have identified certain aspects of mitochondrial dynamics as potential early events in the pathogenesis of CMT. In addition, mitochondrial dysfunction has now been implicated in the pathogenesis of noninherited neuropathies, including diabetic and inflammatory neuropathies. CRITICAL ISSUES The role of mitochondria in peripheral nerve diseases has been mostly examined in vitro, and less so in animal models. FUTURE DIRECTIONS This review examines available evidence for the role of mitochondrial dynamics in the pathogenesis of peripheral neuropathies, their relevance in human diseases, and future challenges for research in this field.
Collapse
Affiliation(s)
- Marija Sajic
- Department of Neuroinflammation, UCL Institute of Neurology , Queen Square, London, United Kingdom
| |
Collapse
|
179
|
Benndorf R, Martin JL, Kosakovsky Pond SL, Wertheim JO. Neuropathy- and myopathy-associated mutations in human small heat shock proteins: Characteristics and evolutionary history of the mutation sites. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 761:15-30. [PMID: 24607769 PMCID: PMC4157968 DOI: 10.1016/j.mrrev.2014.02.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 02/07/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022]
Abstract
Mutations in four of the ten human small heat shock proteins (sHSP) are associated with various forms of motor neuropathies and myopathies. In HspB1, HspB3, and HspB8 all known mutations cause motor neuropathies, whereas in HspB5 they cause myopathies. Several features are common to the majority of these mutations: (i) they are missense mutations, (ii) most associated disease phenotypes exhibit a dominant inheritance pattern and late disease onset, (iii) in the primary protein sequences, the sites of most mutations are located in the conserved α-crystallin domain and the variable C-terminal extensions, and (iv) most human mutation sites are highly conserved among the vertebrate orthologs and have been historically exposed to significant purifying selection. In contrast, a minor fraction of these mutations deviate from these rules: they are (i) frame shifting, nonsense, or elongation mutations, (ii) associated with recessive or early onset disease phenotypes, (iii) positioned in the N-terminal domain of the proteins, and (iv) less conserved among the vertebrates and were historically not subject to a strong selective pressure. In several vertebrate sHSPs (including primate sHSPs), homologous sites differ from the human sequence and occasionally even encode the same amino acid residues that cause the disease in humans. Apparently, a number of these mutations sites are not crucial for the protein function in single species or entire taxa, and single species even seem to have adopted mechanisms that compensate for potentially adverse effects of 'mutant-like' sHSPs. The disease-associated dominant sHSP missense mutations have a number of cellular consequences that are consistent with gain-of-function mechanisms of genetic dominance: dominant-negative effects, the formation of cytotoxic amyloid protein oligomers and precipitates, disruption of cytoskeletal networks, and increased downstream enzymatic activities. Future therapeutic concepts should aim for reducing these adverse effects of mutant sHSPs in patients. Indeed, initial experimental results are encouraging.
Collapse
Affiliation(s)
- Rainer Benndorf
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Cardiovascular Institute, Loyola University Medical Center, Maywood, IL, USA.
| | | | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, University of California, San Diego, CA, USA.
| |
Collapse
|
180
|
Cassereau J, Codron P, Funalot B. Inherited peripheral neuropathies due to mitochondrial disorders. Rev Neurol (Paris) 2014; 170:366-74. [DOI: 10.1016/j.neurol.2013.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/17/2013] [Accepted: 11/26/2013] [Indexed: 01/04/2023]
|
181
|
Abstract
Small heat-shock proteins (sHSPs) are ubiquitous ATP-independent molecular chaperones that play crucial roles in protein quality control in cells. They are able to prevent the aggregation and/or inactivation of various non-native substrate proteins and assist the refolding of these substrates independently or under the help of other ATP-dependent chaperones. Substrate recognition and binding by sHSPs are essential for their chaperone functions. This review focuses on what natural substrate proteins an sHSP protects and how it binds the substrates in cells under fluctuating conditions. It appears that sHSPs of prokaryotes, although being able to bind a wide range of cellular proteins, preferentially protect certain classes of functional proteins, such as translation-related proteins and metabolic enzymes, which may well explain why they could increase the resistance of host cells against various stresses. Mechanistically, the sHSPs of prokaryotes appear to possess numerous multi-type substrate-binding residues and are able to hierarchically activate these residues in a temperature-dependent manner, and thus act as temperature-regulated chaperones. The mechanism of hierarchical activation of substrate-binding residues is also discussed regarding its implication for eukaryotic sHSPs.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
182
|
Pavan S, Musiani D, Torchiaro E, Migliardi G, Gai M, Di Cunto F, Erriquez J, Olivero M, Di Renzo MF. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. Int J Cancer 2014; 134:1289-1299. [DOI: 10.1002/ijc.28464] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The hepatocyte growth factor (HGF) also known as scatter factor activates cancer cell invasion and metastasis. We show that in ovarian cancer cells HGF induced the phosphorylation of the small heat shock protein of 27 kDa (HSP27) by activating the p38MAPK. HSP27 is increased in many cancers at advanced stage including ovarian cancer and associated with cancer resistance to therapy and poor patients' survival. The phosphorylation of HSP27 regulates both its chaperone activity and its control of cytoskeletal stability. We show that HSP27 was necessary for the remodeling of actin filaments induced by HGF and that motility in vitro depended on the p38MAPK‐MK2 axis. In vivo, HSP27 silencing impaired the ability of the highly metastatic, HGF‐secreting ovarian cancer cells to give rise to spontaneous metastases. This was due to defective motility across the vessel wall and reduced growth. Indeed, HSP27 silencing impaired the ability of circulating ovarian cancer cells to home to the lungs and to form experimental hematogenous metastases and the capability of cancer cells to grow as subcutaneous xenografts. Moreover, HSP27 suppression resulted in the sensitization of xenografts to low doses of the chemotherapeutic paclitaxel, likely because HSP27 protected microtubules from bundling caused by the drug. Altogether, these data show that the HSP27 is required for the proinvasive and prometastatic activity of HGF and suggest that HSP27 might be not only a marker of progression of ovarian cancer, but also a suitable target for therapy.
Collapse
Affiliation(s)
- Simona Pavan
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Daniele Musiani
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Erica Torchiaro
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Giorgia Migliardi
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Molecular Pharmacology Institute for Cancer Research at Candiolo Torino Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center University of Torino Torino Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center University of Torino Torino Italy
| | - Jessica Erriquez
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Martina Olivero
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Maria Flavia Di Renzo
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| |
Collapse
|
183
|
Genetics of Charcot-Marie-Tooth (CMT) Disease within the Frame of the Human Genome Project Success. Genes (Basel) 2014; 5:13-32. [PMID: 24705285 PMCID: PMC3978509 DOI: 10.3390/genes5010013] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) neuropathies comprise a group of monogenic disorders affecting the peripheral nervous system. CMT is characterized by a clinically and genetically heterogeneous group of neuropathies, involving all types of Mendelian inheritance patterns. Over 1,000 different mutations have been discovered in 80 disease-associated genes. Genetic research of CMT has pioneered the discovery of genomic disorders and aided in understanding the effects of copy number variation and the mechanisms of genomic rearrangements. CMT genetic study also unraveled common pathomechanisms for peripheral nerve degeneration, elucidated gene networks, and initiated the development of therapeutic approaches. The reference genome, which became available thanks to the Human Genome Project, and the development of next generation sequencing tools, considerably accelerated gene and mutation discoveries. In fact, the first clinical whole genome sequence was reported in a patient with CMT. Here we review the history of CMT gene discoveries, starting with technologies from the early days in human genetics through the high-throughput application of modern DNA analyses. We highlight the most relevant examples of CMT genes and mutation mechanisms, some of which provide promising treatment strategies. Finally, we propose future initiatives to accelerate diagnosis of CMT patients through new ways of sharing large datasets and genetic variants, and at ever diminishing costs.
Collapse
|
184
|
Bartelt-Kirbach B, Golenhofen N. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons. Cell Stress Chaperones 2014; 19:145-53. [PMID: 23959629 PMCID: PMC3857434 DOI: 10.1007/s12192-013-0452-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 01/17/2023] Open
Abstract
Upregulation of small heat-shock proteins (sHsps) in response to cellular stress is one mechanism to increase cell viability.We previously described that cultured rat hippocampal neurons express five of the 11 family members but only upregulate two of them (HspB1 and HspB5) at the protein level after heat stress. Since neurons have to cope with many other pathological conditions, we investigated in this study the expression of all five expressed sHsps on mRNA and protein level after sublethal sodium arsenite and oxidative and hyperosmotic stress. Under all three conditions, HspB1, HspB5, HspB6, and HspB8 but not HspB11 were consistently upregulated but showed differences in the time course of upregulation. The increase of sHsps always occurred earlier on mRNA level compared with protein levels. We conclude from our data that these four upregulated sHsps (HspB1, HspB5, HspB6, HspB8) act together in different proportions in the protection of neurons from various stress conditions.
Collapse
Affiliation(s)
- Britta Bartelt-Kirbach
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nikola Golenhofen
- Institute of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
185
|
Maeda K, Idehara R, Hashiguchi A, Takashima H. A family with distal hereditary motor neuropathy and a K141Q mutation of small heat shock protein HSPB1. Intern Med 2014; 53:1655-8. [PMID: 25088881 DOI: 10.2169/internalmedicine.53.2843] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We herein describe a Japanese family with distal hereditary motor neuropathy carrying a K141Q mutation of small heat shock protein HSPB1. Two patients among them had late onset disease (older than 50 years). The muscles of the distal legs were weak and atrophic. Sensory and autonomic dysfunction were not seen. Even eight years after onset, one patient could still walk without support. A nerve conduction study revealed axonal degeneration of the motor nerves of the legs. A heterozygous K141Q mutation was detected in the affected patients. The late onset and mild clinical phenotype might reflect the mild biochemical alteration of HSP27 induced by the K141Q mutation.
Collapse
Affiliation(s)
- Kengo Maeda
- Department of Neurology, National Hospital Organization Higashi-ohmi General Medical Center, Japan
| | | | | | | |
Collapse
|
186
|
Lee HS, Kim MJ, Ko DS, Jeon EJ, Kim JY, Kang IS. Preimplantation genetic diagnosis for Charcot-Marie-Tooth disease. Clin Exp Reprod Med 2013; 40:163-8. [PMID: 24505562 PMCID: PMC3913895 DOI: 10.5653/cerm.2013.40.4.163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
Objective Preimplantation genetic diagnosis (PGD) is an assisted reproductive technique for couples carrying genetic risks. Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuropathy, with a prevalence rate of 1/2,500. In this study, we report on our experience with PGD cycles performed for CMT types 1A and 2F. Methods Before clinical PGD, we assessed the amplification rate and allele drop-out (ADO) rate of multiplex fluorescent polymerase chain reaction (PCR) followed by fragment analysis or sequencing using single lymphocytes. We performed six cycles of PGD for CMT1A and one cycle for CMT2F. Results Two duplex and two triplex protocols were developed according to the available markers for each CMT1A couple. Depending on the PCR protocols, the amplification rates and ADO rates ranged from 90.0% to 98.3% and 0.0% to 11.1%, respectively. For CMT2F, the amplification rates and ADO rates were 93.3% and 4.8%, respectively. In case of CMT1A, 60 out of 63 embryos (95.2%) were diagnosed and 13 out of 21 unaffected embryos were transferred in five cycles. Two pregnancies were achieved and three babies were delivered without any complications. In the case of CMT2F, a total of eight embryos were analyzed and diagnosed. Seven embryos were diagnosed as unaffected and four embryos were transferred, resulting in a twin pregnancy. Two healthy babies were delivered. Conclusion This is the first report of successful pregnancy and delivery after specific PGD for CMT disease in Korea. Our PGD procedure could provide healthy babies to couples with a high risk of transmitting genetic diseases.
Collapse
Affiliation(s)
- Hyoung-Song Lee
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| | - Min Jee Kim
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| | - Duck Sung Ko
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| | - Eun Jin Jeon
- Laboratory of Reproductive Biology and Infertility, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| | - Jin Young Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| | - Inn Soo Kang
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Kwandong University College of Medicine, Seoul, Korea
| |
Collapse
|
187
|
Fu X, Chang Z, Shi X, Bu D, Wang C. Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins. Protein Sci 2013; 23:229-37. [PMID: 24318917 DOI: 10.1002/pro.2404] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
Small heat shock proteins (sHSPs) are ubiquitous molecular chaperones that prevent the aggregation of various non-native proteins and play crucial roles for protein quality control in cells. It is poorly understood what natural substrate proteins, with respect to structural characteristics, are preferentially bound by sHSPs in cells. Here we compared the structural characteristics for the natural substrate proteins of Escherichia coli IbpB and Deinococcus radiodurans Hsp20.2 with the respective bacterial proteome at multiple levels, mainly by using bioinformatics analysis. Data indicate that both IbpB and Hsp20.2 preferentially bind to substrates of high molecular weight or moderate acidity. Surprisingly, their substrates contain abundant charged residues but not abundant hydrophobic residues, thus strongly indicating that ionic interactions other than hydrophobic interactions also play crucial roles for the substrate recognition and binding of sHSPs. Further, secondary structure prediction analysis indicates that the substrates of low percentage of β-sheets or coils but high percentage of α-helices are un-favored by both IbpB and Hsp20.2. In addition, IbpB preferentially interacts with multi-domain proteins but unfavorably with α + β proteins as revealed by SCOP analysis. Together, our data suggest that bacterial sHSPs, though having broad substrate spectrums, selectively bind to substrates of certain structural features. These structural characteristic elements may substantially participate in the sHSP-substrate interaction and/or increase the aggregation tendency of the substrates, thus making the substrates more preferentially bound by sHSPs.
Collapse
Affiliation(s)
- Xinmiao Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
188
|
Bouhy D, Timmerman V. Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 2013; 74:391-6. [PMID: 23913540 DOI: 10.1002/ana.23987] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/04/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
Charcot-Marie-Tooth (CMT) neuropathies are inherited neuromuscular disorders caused by a length-dependent neurodegeneration of peripheral nerves. More than 900 mutations in 60 different genes are causative of the neuropathy. Despite significant progress in therapeutic strategies, the disease remains incurable. The increasing number of genes linked to the disease, and their considerable clinical and genetic heterogeneity render the development of these strategies particularly challenging. In this context, cellular and animals models provide powerful tools. Efficient motor and sensory tests have been developed to assess the behavioral phenotype in transgenic animal models (rodent and fly). When these models reproduce a phenotype comparable to CMT, they allow therapeutic approaches and the discovery of modifiers and biomarkers. In this review, we describe the most convincing transgenic rodent and fly models of CMT and how they can lead to clinical trial. We also discuss the challenges that the research, the clinic, and the pharmaceutical industry will face in developing efficient and accessible treatment for CMT patients.
Collapse
Affiliation(s)
- Delphine Bouhy
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
189
|
Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro 2013; 5:e00128. [PMID: 24175617 PMCID: PMC3848555 DOI: 10.1042/an20130024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins. In peripheral nerves of neuropathic C22 mice the frequency of cytosolic PMP22 aggregates increases with age, which elicits a response from protein quality control mechanisms. The combined effects of aging and neuropathic genotype exacerbate disease progression leading to nerve defects.
Collapse
|
190
|
Bouhy D, Timmerman V. Modèles animaux dans la maladie de Charcot-Marie-Tooth et applications de la compréhension de la maladie chez l’homme. Rev Neurol (Paris) 2013; 169:971-7. [DOI: 10.1016/j.neurol.2013.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 11/26/2022]
|
191
|
Penttilä S, Jokela M, Huovinen S, Saukkonen AM, Toivanen J, Lindberg C, Baumann P, Udd B. Late-onset spinal motor neuronopathy - a common form of dominant SMA. Neuromuscul Disord 2013; 24:259-68. [PMID: 24360573 DOI: 10.1016/j.nmd.2013.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/14/2022]
Abstract
We previously described two Finnish families with a new autosomal dominant late-onset spinal motor neuronopathy that was mapped to chromosome 22q11.2-q13.2. In the current screening study of 43 lower motor neuron disease patients from Finland and Sweden, we identified 26 new late-onset spinal motor neuronopathy patients sharing the founder haplotype. In addition to the main symptoms and signs: painful cramps, fasciculations, areflexia and slowly evolving muscle weakness, new features such as mild bulbar findings, were identified. The disease is relatively benign in terms of life expectancy and rate of disability progression, and it is therefore noteworthy that three patients were initially misdiagnosed with ALS. Significant recombinants in this new patient cohort restricted the disease locus by 90% to 1.8Mb. Late-onset spinal motor neuronopathy seems not to be very rare, at least not in Finland, with 38 patients identified in a preliminary ascertainment.
Collapse
Affiliation(s)
- Sini Penttilä
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland.
| | - Manu Jokela
- Department of Neurology, Turku University Hospital, Turku, Finland.
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
| | | | - Jari Toivanen
- Department of Neurology, Central Hospital of Northern Karelia, Joensuu, Finland
| | - Christopher Lindberg
- Neuromuscular Center, Department of Neurology, Sahlgrenska Academy at University Gothenburg, Gothenburg, Sweden
| | - Peter Baumann
- Central Hospital of Lapland, Department of Neurology, Rovaniemi, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland; Department of Neurology, Vasa Central Hospital, Vasa, Finland
| |
Collapse
|
192
|
Sun X, Zhou Z, Fink DJ, Mata M. HspB1 silences translation of PDZ-RhoGEF by enhancing miR-20a and miR-128 expression to promote neurite extension. Mol Cell Neurosci 2013; 57:111-9. [PMID: 24141048 DOI: 10.1016/j.mcn.2013.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
HspB1 is a small heat shock protein implicated in neuronal survival and neurite growth; mutations in HspB1 have been identified in hereditary motor neuronopathies and Charcot Marie Tooth Type 2 neuropathies. In cortical neurons we found that expression of HspB1 decreased RhoA activity and RhoA-GTP protein, and reversed the inhibition of neurite extension induced by NogoA. HspB1 decreased PDZ-RhoGEF, a RhoA specific guanine nucleotide exchange factor, while other regulators of RhoA activity were unchanged. The decrease in PDZ-RhoGEF was independent of proteasomal or lysosomal degradation pathways and was not associated with changes in PDZ-RhoGEF mRNA. We sequenced the 3'UTR of rat PDZ-RhoGEF and found binding sites for miRNAs miR-20a, miR-128 and miR-132. Expression of these microRNAs was substantially increased in cortical neurons transfected with HspB1. Co-transfection of HspB1 with specific inhibitors of miR-20a or miR-128 prevented the decrease in PDZ-RhoGEF and blocked the neurite growth promoting effects of HspB1. Using the 3'UTR of PDZ-RhoGEF mRNA in a luciferase reporter construct we observed that HspB1, miR-20a and miR-128 each inhibited luciferase expression. We conclude that HspB1 regulates RhoA activity through modulation of PDZ-RhoGEF levels achieved by translational control through enhanced expression of specific miRNAs (miR-20a and miR-128). Regulation of RhoA activity by translational silencing of PDZ-RhoGEF may be the mechanism through which HspB1 is involved in regulation of neurite growth. As RhoA-GTPase plays a regulatory role in the organization and stability of cytoskeletal networks through its downstream effectors, the results suggest a possible mechanism linking HspB1 mutations and axonal cytoskeletal pathology.
Collapse
Affiliation(s)
- Xiankui Sun
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; GRECC VA Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
193
|
Nicolaou P, Christodoulou K. Advances in the molecular diagnosis of Charcot-Marie-Tooth disease. World J Neurol 2013; 3:42-55. [DOI: 10.5316/wjn.v3.i3.42] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/23/2013] [Accepted: 08/16/2013] [Indexed: 02/06/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy is the most common inherited neuromuscular disorder affecting at least 1 in 2500. CMT disease is pathologically and genetically heterogeneous and is characterized by a variable age of onset, slowly progressive weakness and muscle atrophy, starting in the lower limbs and subsequently affecting the upper extremities. Symptoms are usually slowly progressive, especially for the classic and late-onset phenotypes, but can be rather severe in early-onset forms. CMT is grouped into demyelinating, axonal and intermediate forms, based on electrophysiological and pathological findings. The demyelinating types are characterized by severely reduced motor nerve conduction velocities (MNCVs) and mainly by myelin abnormalities. The axonal types are characterized by normal or slightly reduced MNCVs and mainly axonal abnormalities. The intermediate types are characterized by MNCVs between 25 m/s and 45 m/s and they have features of both demyelination and axonopathy. Inheritance can be autosomal dominant, X-linked, or autosomal recessive. Mutations in more than 30 genes have been associated with the different forms of CMT, leading to major advancements in molecular diagnostics of the disease, as well as in the understanding of pathogenetic mechanisms. This editorial aims to provide an account that is practicable and efficient on the current molecular diagnostic procedures for CMT, in correlation with the clinical, pathological and electrophysiological findings. The most frequent causative mutations of CMT will also be outlined.
Collapse
|
194
|
Wang Z, Hou Y, Guo X, van der Voet M, Boxem M, Dixon JE, Chisholm AD, Jin Y. The EBAX-type Cullin-RING E3 ligase and Hsp90 guard the protein quality of the SAX-3/Robo receptor in developing neurons. Neuron 2013; 79:903-16. [PMID: 24012004 PMCID: PMC3779136 DOI: 10.1016/j.neuron.2013.06.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2013] [Indexed: 12/14/2022]
Abstract
Although protein quality control (PQC) is generally perceived as important for the development of the nervous system, the specific mechanisms of neuronal PQC have remained poorly understood. Here, we report that C. elegans Elongin BC-binding axon regulator (EBAX-1), a conserved BC-box protein, regulates axon guidance through PQC of the SAX-3/Robo receptor. EBAX-1 buffers guidance errors against temperature variations. As a substrate-recognition subunit in the Elongin BC-containing Cullin-RING ubiquitin ligase (CRL), EBAX-1 also binds to DAF-21, a cytosolic Hsp90 chaperone. The EBAX-type CRL and DAF-21 collaboratively regulate SAX-3-mediated axon pathfinding. Biochemical and imaging assays indicate that EBAX-1 specifically recognizes misfolded SAX-3 and promotes its degradation in vitro and in vivo. Importantly, vertebrate EBAX also shows substrate preference toward aberrant Robo3 implicated in horizontal gaze palsy with progressive scoliosis (HGPPS). Together, our findings demonstrate a triage PQC mechanism mediated by the EBAX-type CRL and DAF-21/Hsp90 that maintains the accuracy of neuronal wiring.
Collapse
Affiliation(s)
- Zhiping Wang
- Neurobiology Section, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093
| | - Yanli Hou
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, CA 95064
| | - Xing Guo
- Department of Pharmacology, School of Medicine, UC San Diego, La Jolla, CA 92093
| | | | - Mike Boxem
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Jack E. Dixon
- Department of Pharmacology, School of Medicine, UC San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute
| | - Andrew D. Chisholm
- Neurobiology Section, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, UC San Diego, La Jolla, CA 92093
- Howard Hughes Medical Institute
| |
Collapse
|
195
|
Yang JS, Kim J, Park S, Jeon J, Shin YE, Kim S. Spatial and functional organization of mitochondrial protein network. Sci Rep 2013; 3:1403. [PMID: 23466738 PMCID: PMC3590558 DOI: 10.1038/srep01403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/21/2013] [Indexed: 12/24/2022] Open
Abstract
Characterizing the spatial organization of the human mitochondrial proteome will enhance our understanding of mitochondrial functions at the molecular level and provide key insight into protein-disease associations. However, the sub-organellar location and possible association with mitochondrial diseases are not annotated for most mitochondrial proteins. Here, we characterized the functional and spatial organization of mitochondrial proteins by assessing their position in the Mitochondrial Protein Functional (MPF) network. Network position was assigned to the MPF network and facilitated the determination of sub-organellar location and functional organization of mitochondrial proteins. Moreover, network position successfully identified candidate disease genes of several mitochondrial disorders. Thus, our data support the use of network position as a novel method to explore the molecular function and pathogenesis of mitochondrial proteins.
Collapse
Affiliation(s)
- Jae-Seong Yang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Nam-gu, Pohang, Gyeongbuk, Korea, 790-784
| | | | | | | | | | | |
Collapse
|
196
|
Targeted next-generation sequencing reveals further genetic heterogeneity in axonal Charcot-Marie-Tooth neuropathy and a mutation in HSPB1. Eur J Hum Genet 2013; 22:522-7. [PMID: 23963299 DOI: 10.1038/ejhg.2013.190] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of hereditary peripheral neuropathies. The dominantly inherited axonal CMT2 displays striking genetic heterogeneity, with 17 presently known disease genes. The large number of candidate genes, combined with lack of genotype-phenotype correlations, has made genetic diagnosis in CMT2 time-consuming and costly. In Finland, 25% of dominant CMT2 is explained by either a GDAP1 founder mutation or private MFN2 mutations but the rest of the families have remained without molecular diagnosis. Whole-exome and genome sequencing are powerful techniques to find disease mutations for CMT patients but they require large amounts of sequencing to confidently exclude heterozygous variants in all candidate genes, and they generate a vast amount of irrelevant data for diagnostic needs. Here we tested a targeted next-generation sequencing approach to screen the CMT2 genes. In total, 15 unrelated patients from dominant CMT2 families from Finland, in whom MFN2 and GDAP1 mutations had been excluded, participated in the study. The targeted approach produced sufficient sequence coverage for 95% of the 309 targeted exons, the rest we excluded by Sanger sequencing. Unexpectedly, the screen revealed a disease mutation only in one family, in the HSPB1 gene. Thus, new disease genes underlie CMT2 in the remaining families, indicating further genetic heterogeneity. We conclude that targeted next-generation sequencing is an efficient tool for genetic screening in CMT2 that also aids in the selection of patients for genome-wide approaches.
Collapse
|
197
|
Lambrecht S, Juchtmans N, Elewaut D. Heat-shock proteins in stromal joint tissues: innocent bystanders or disease-initiating proteins? Rheumatology (Oxford) 2013; 53:223-32. [DOI: 10.1093/rheumatology/ket277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
198
|
Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease. Orphanet J Rare Dis 2013; 8:104. [PMID: 23844677 PMCID: PMC3728151 DOI: 10.1186/1750-1172-8-104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/08/2013] [Indexed: 12/17/2022] Open
Abstract
Background Mutations in the Pleckstrin homology domain-containing, family G member 5 (PLEKHG5) gene has been reported in a family harboring an autosomal recessive lower motor neuron disease (LMND). However, the PLEKHG5 mutation has not been described to cause Charcot-Marie-Tooth disease (CMT). Methods To identify the causative mutation in an autosomal recessive intermediate CMT (RI-CMT) family with childhood onset, whole exome sequencing (WES), histopathology, and lower leg MRIs were performed. Expression and activity of each mutant protein were analyzed. Results We identified novel compound heterozygous (p.Thr663Met and p.Gly820Arg) mutations in the PLEKHG5 gene in the present family. The patient revealed clinical manifestations of sensory neuropathy. Fatty replacements in the distal lower leg muscles were more severe than in the thigh muscles. Although the symptoms and signs of this patient harboring slow nerve conduction velocities suggested the possibility of demyelinating neuropathy, a distal sural nerve biopsy was compatible with axonal neuropathy. Immunohistochemical analysis revealed that the patient has a low level of PLEKHG5 in the distal sural nerve and an in vitro assay suggested that the mutant proteins have a defect in activating the NF-κB signaling pathway. Conclusions This study identifies compound heterozygous PLEKHG5 mutations as the cause of RI-CMT. We suggest that PLEKHG5 might play a role in the peripheral motor and sensory nervous system. This study expands the phenotypic spectrum of PLEKHG5 mutations.
Collapse
|
199
|
Okamoto Y, Pehlivan D, Wiszniewski W, Beck CR, Snipes GJ, Lupski JR, Khajavi M. Curcumin facilitates a transitory cellular stress response in Trembler-J mice. Hum Mol Genet 2013; 22:4698-705. [PMID: 23847051 DOI: 10.1093/hmg/ddt318] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that oral administration of curcumin significantly decreases the percentage of apoptotic Schwann cells and partially mitigates the severe neuropathy phenotype of the Trembler-J (Tr-J) mouse model in a dose-dependent manner. Here we compared the gene expression in sciatic nerves of 2-week-old pups and adult Tr-J with the same age groups of wild-type mice and found a significant increase in gene expression for hypoxia, inflammatory response and heat-shock proteins, the latter specifically the Hsp70 family, in Tr-J mice. We also detected an activation of different branches of unfolded protein responses (UPRs) in Tr-J mice. Administering curcumin results in lower expression of UPR markers suggesting it relieves endoplasmic reticulum (ER) cell stress sensors in sciatic nerves of Tr-J mice while the level of heat-shock proteins stays comparable to untreated Tr-J mice. We further tested if Hsp70 levels could influence the severity of the Tr-J neuropathy. Notably, reduced dosage of the Hsp70 strongly potentiates the severity of the Tr-J neuropathy, though the absence of Hsp70 had little effect in wild-type mice. In aggregate, these data provide further insights into the pathological disease mechanisms caused by myelin gene mutations and further support the exploration of curcumin as a therapeutic approach for selected forms of inherited neuropathy and potentially for other genetic diseases due to ER-retained mutants.
Collapse
|
200
|
Rosenfeld GE, Mercer EJ, Mason CE, Evans T. Small heat shock proteins Hspb7 and Hspb12 regulate early steps of cardiac morphogenesis. Dev Biol 2013; 381:389-400. [PMID: 23850773 DOI: 10.1016/j.ydbio.2013.06.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 06/17/2013] [Accepted: 06/24/2013] [Indexed: 01/05/2023]
Abstract
Cardiac morphogenesis is a complex multi-stage process, and the molecular basis for controlling distinct steps remains poorly understood. Because gata4 encodes a key transcriptional regulator of morphogenesis, we profiled transcript changes in cardiomyocytes when Gata4 protein is depleted from developing zebrafish embryos. We discovered that gata4 regulates expression of two small heat shock genes, hspb7 and hspb12, both of which are expressed in the embryonic heart. We show that depletion of Hspb7 or Hspb12 disrupts normal cardiac morphogenesis, at least in part due to defects in ventricular size and shape. We confirmed that gata4 interacts genetically with the hspb7/12 pathway, but surprisingly, we found that hspb7 also has an earlier, gata4-independent function. Depletion perturbs Kupffer's vesicle (KV) morphology leading to a failure in establishing the left-right axis of asymmetry. Targeted depletion of Hspb7 in the yolk syncytial layer is sufficient to disrupt KV morphology and also causes an even earlier block to heart tube formation and a bifid phenotype. Recently, several genome-wide association studies found that HSPB7 SNPs are highly associated with idiopathic cardiomyopathies and heart failure. Therefore, GATA4 and HSPB7 may act alone or together to regulate morphogenesis with relevance to congenital and acquired human heart disease.
Collapse
|