151
|
de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW, Kasmar A, van Rhijn I, Peña-Cruz V, Ruan DT, Altman JD, Rossjohn J, Moody DB. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat Immunol 2014; 15:177-85. [PMID: 24362891 PMCID: PMC3932764 DOI: 10.1038/ni.2790] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
Abstract
T cells autoreactive to the antigen-presenting molecule CD1a are common in human blood and skin, but the search for natural autoantigens has been confounded by background T cell responses to CD1 proteins and self lipids. After capturing CD1a-lipid complexes, we gently eluted ligands while preserving non-ligand-bound CD1a for testing lipids from tissues. CD1a released hundreds of ligands of two types. Inhibitory ligands were ubiquitous membrane lipids with polar head groups, whereas stimulatory compounds were apolar oils. We identified squalene and wax esters, which naturally accumulate in epidermis and sebum, as autoantigens presented by CD1a. The activation of T cells by skin oils suggested that headless mini-antigens nest within CD1a and displace non-antigenic resident lipids with large head groups. Oily autoantigens naturally coat the surface of the skin; thus, this points to a previously unknown mechanism of barrier immunity.
Collapse
Affiliation(s)
| | | | | | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
| | - Richard W. Birkinshaw
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
| | - Anne Kasmar
- Division of Rheumatology, Immunology and Allergy
| | - Ildiko van Rhijn
- Division of Rheumatology, Immunology and Allergy
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Daniel T. Ruan
- Department of Gastrointestinal and General Surgery, Brigham and Women’s Hospital, Harvard Medical School
| | | | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | |
Collapse
|
152
|
Abstract
Over the past 15 years, investigators have shown that T lymphocytes can recognize not only peptides in the context of MHC class I and class II molecules but also foreign and self-lipids in association with the nonclassical MHC class I-like molecules, CD1 proteins. In this review, we describe the most recent events in the field, with particular emphasis on (a) structural and functional aspects of lipid presentation by CD1 molecules, (b) the development of CD1d-restricted invariant natural killer T (iNKT) cells and transcription factors required for their differentiation, (c) the ability of iNKT cells to modulate innate and adaptive immune responses through their cross talk with lymphoid and myeloid cells, and (d) MR1-restricted and group I (CD1a, CD1b, and CD1c)-restricted T cells.
Collapse
Affiliation(s)
- Mariolina Salio
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom;
| | | | | | | |
Collapse
|
153
|
Dowds CM, Kornell SC, Blumberg RS, Zeissig S. Lipid antigens in immunity. Biol Chem 2014; 395:61-81. [PMID: 23999493 PMCID: PMC4128234 DOI: 10.1515/hsz-2013-0220] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Lipids are not only a central part of human metabolism but also play diverse and critical roles in the immune system. As such, they can act as ligands of lipid-activated nuclear receptors, control inflammatory signaling through bioactive lipids such as prostaglandins, leukotrienes, lipoxins, resolvins, and protectins, and modulate immunity as intracellular phospholipid- or sphingolipid-derived signaling mediators. In addition, lipids can serve as antigens and regulate immunity through the activation of lipid-reactive T cells, which is the topic of this review. We will provide an overview of the mechanisms of lipid antigen presentation, the biology of lipid-reactive T cells, and their contribution to immunity.
Collapse
Affiliation(s)
- C. Marie Dowds
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Sabin-Christin Kornell
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham
and Women’s Hospital, Harvard Medical School, 75 Francis Street,
Boston, MA 02115, USA
| | - Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center
Schleswig-Holstein, Schittenhelmstraße 12, D-24105 Kiel,
Germany
| |
Collapse
|
154
|
Zeissig S, Blumberg RS. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol 2013; 25:690-6. [PMID: 24210255 PMCID: PMC3867259 DOI: 10.1016/j.coi.2013.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/09/2013] [Accepted: 09/18/2013] [Indexed: 12/13/2022]
Abstract
Natural Killer T (NKT) cells are a phenotypically and functionally diverse subset of T cells, which recognizes self- and microbial lipids in the context of the atypical MHC class I molecule CD1d. NKT cells exhibit potent effector functions and play critical roles in antimicrobial defense, cancer immunosurveillance and the modulation of immune-mediated disorders. Recent evidence has revealed extensive cross-regulation between the mucosal microbiota and CD1d as well as NKT cells. Microbial exposure at mucosal surfaces, particularly during early postnatal development, regulates NKT cell trafficking and function in the intestine and the lung and determines the susceptibility to NKT cell-mediated inflammatory disorders. Conversely, CD1d controls the composition of the intestinal microbiota; perhaps through the regulation of Paneth cell function. Here, we provide an overview of recent findings on the crosstalk between the microbiota and NKT cells and discuss the implication for mucosal homeostasis and its dysregulation in inflammatory disorders.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
155
|
van de Ven R, Lindenberg JJ, Oosterhoff D, de Gruijl TD. Dendritic Cell Plasticity in Tumor-Conditioned Skin: CD14(+) Cells at the Cross-Roads of Immune Activation and Suppression. Front Immunol 2013; 4:403. [PMID: 24324467 PMCID: PMC3839226 DOI: 10.3389/fimmu.2013.00403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
Tumors abuse myeloid plasticity to re-direct dendritic cell (DC) differentiation from T cell stimulatory subsets to immune-suppressive subsets that can interfere with anti-tumor immunity. Lined by a dense network of easily accessible DC the skin is a preferred site for the delivery of DC-targeted vaccines. Various groups have recently been focusing on functional aspects of DC subsets in the skin and how these may be affected by tumor-derived suppressive factors. IL-6, Prostaglandin-E2, and IL-10 were identified as factors in cultures of primary human tumors responsible for the inhibited development and activation of skin DC as well as monocyte-derived DC. IL-10 was found to be uniquely able to convert fully developed DC to immature macrophage-like cells with functional M2 characteristics in a physiologically highly relevant skin explant model in which the phenotypic and functional traits of “crawl-out” DC were studied. Mostly from mouse studies, the JAK2/STAT3 signaling pathway has emerged as a “master switch” of tumor-induced immune suppression. Our lab has additionally identified p38-MAPK as an important signaling element in human DC suppression, and recently validated it as such in ex vivo cultures of single-cell suspensions from melanoma metastases. Through the identification of molecular mechanisms and signaling events that drive myeloid immune suppression in human tumors, more effective DC-targeted cancer vaccines may be designed.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam , Amsterdam , Netherlands ; Laboratory of Molecular and Tumor Immunology, Robert W. Franz Cancer Research Center at the Earle A. Chiles Research Institute, Providence Cancer Center , Portland, OR , USA
| | | | | | | |
Collapse
|
156
|
Klechevsky E. Human dendritic cells - stars in the skin. Eur J Immunol 2013; 43:3147-55. [PMID: 24222336 DOI: 10.1002/eji.201343790] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/30/2013] [Accepted: 10/17/2013] [Indexed: 12/14/2022]
Abstract
"A properly functioning adaptive immune system signifies the best features of life. It is diverse beyond compare, tolerant without fail, and capable of behaving appropriately with a myriad of infections and other challenges. Dendritic cells (DCs) are required to explain how this remarkable system is energized and directed." This is a quote by one of the greatest immunologists our community has ever known, and the father of dendritic cells, Ralph Steinman. Steinman's discovery of DCs in 1973 and his subsequent research opened a new field of study within immunology: DC biology and in particular the role of DCs in immune regulation in health and disease. Here, I review themes from our work and others on the complex network of dendritic cells in the skin and discuss the significance of skin DCs in understanding aspects of host defense against infections, the pathology of inflammatory skin diseases, and speculate on the future effective immune-based therapies.
Collapse
Affiliation(s)
- Eynav Klechevsky
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
157
|
Collin M, McGovern N, Haniffa M. Human dendritic cell subsets. Immunology 2013; 140:22-30. [PMID: 23621371 PMCID: PMC3809702 DOI: 10.1111/imm.12117] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells are highly adapted to their role of presenting antigen and directing immune responses. Developmental studies indicate that DCs originate independently from monocytes and tissue macrophages. Emerging evidence also suggests that distinct subsets of DCs have intrinsic differences that lead to functional specialisation in the generation of immunity. Comparative studies are now allowing many of these properties to be more fully understood in the context of human immunology.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
158
|
Kasmar AG, Van Rhijn I, Magalhaes KG, Young DC, Cheng TY, Turner MT, Schiefner A, Kalathur RC, Wilson IA, Bhati M, Gras S, Birkinshaw RW, Tan LL, Rossjohn J, Shires J, Jakobsen S, Altman JD, Moody DB. Cutting Edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:4499-503. [PMID: 24089190 PMCID: PMC3845436 DOI: 10.4049/jimmunol.1301660] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human CD1a mediates foreign Ag recognition by a T cell clone, but the nature of possible TCR interactions with CD1a/lipid are unknown. After incubating CD1a with a mycobacterial lipopeptide Ag, dideoxymycobactin (DDM), we identified and measured binding to a recombinant TCR (TRAV3/ TRBV3-1, KD of ≈100 μM). Detection of ternary CD1a/lipid/TCR interactions enabled development of CD1a tetramers and CD1a multimers with carbohydrate backbones (dextramers), which specifically stained T cells using a mechanism that was dependent on the precise stereochemistry of the peptide backbone and was blocked with a soluble TCR. Furthermore, sorting of human T cells from unrelated tuberculosis patients for bright DDM-dextramer staining allowed recovery of T cells that were activated by CD1a and DDM. These studies demonstrate that the mechanism of T cell activation by lipopeptides occurs via ternary interactions of CD1a/Ag/TCR. Furthermore, these studies demonstrate the existence of lipopeptide-specific T cells in humans ex vivo.
Collapse
Affiliation(s)
- Anne G Kasmar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
T cell recognition of non-peptidic antigens in infectious diseases. Indian J Med Res 2013; 138:620-31. [PMID: 24434317 PMCID: PMC3928695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The immune system has evolved to recognize a wide range of antigenic molecules of self and non-self origin. The stimulatory antigens form complexes with antigen-presenting molecules and directly interact with the T cell receptor (TCR). Peptidic antigens associate with major histocompatibility complex (MHC) molecules and therefore, are indicated as MHC-restricted. Non-peptidic antigens do not bind to MHC molecules and are presented by other classes of antigen-presenting molecules. These non-MHC restricted antigens include glycolipid molecules, phosphorylated metabolites of the mevalonate pathway and vitamin B2 precursors. T cells specific for non-peptidic antigens have important roles in host defense against infections, autoimmunity, allergies and tumour immunosurveillance. Hence, understanding the molecular interactions between the antigen presenting cell (APC) and the T cells with non-peptidic specificity is of great relevance. Here, we review current knowledge of this type of T cells, their TCR repertoire, the structural aspects of recognized antigens, the mode of antigen recognition, and their function with special emphasis on their role in infectious diseases.
Collapse
|
160
|
Adams EJ. Lipid presentation by human CD1 molecules and the diverse T cell populations that respond to them. Curr Opin Immunol 2013; 26:1-6. [PMID: 24556395 DOI: 10.1016/j.coi.2013.09.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/17/2013] [Indexed: 01/02/2023]
Abstract
CD1 molecules bind and present lipid-based antigens to T cells. Humans express both Group 1 (CD1a, CD1b and CD1c) and Group 2 (CD1d) CD1 molecules with nonredundant functions in the human immune response. Studies of Group 1 CD1 molecules and the T cells that respond to them have lagged behind Group 2 due to the lack of a suitable model system. However, recent work has thrust the Group 1 CD1s into the limelight, revealing their importance in tissue surveillance and microbial defense. Here I review recent advances in Group 1 CD1 lipid presentation, the T cell populations that respond to them and the role of CD1 molecules in engagement of human γδ T cells.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, GCIS W236, Chicago, IL 60637, United States.
| |
Collapse
|
161
|
Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci 2013; 72:3-8. [PMID: 23746568 DOI: 10.1016/j.jdermsci.2013.04.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/26/2013] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-22 is a cytokine that is involved in the modulation of tissue responses during inflammation. It is produced by immune cell subsets such as T cells, while the expression of its receptor is restricted to cells of non-hematopoietic origin, particularly epithelial cells. In the skin, IL-22 induces keratinocyte proliferation and epidermal hyperplasia, inhibits terminal differentiation of keratinocytes, and promotes the production of antimicrobial proteins. Although IL-22 was initially thought to be produced by T helper (Th)17 cells, IL-22 production can also occur in an apparently unique subset of cells, Th22 cells, which lack the ability to produce IL-17 and interferon-γ. Of note, Th22 cells, which express the skin homing chemokine receptors CCR4 and CCR10, reside in the normal skin and are enriched in the lesional skin of inflammatory skin diseases, indicating the importance of IL-22 in skin homeostasis and pathogenesis of skin diseases. Although a critical role of IL-22 was initially highlighted in psoriasis, a growing body of evidence indicates that this cytokine also plays a role in atopic dermatitis and other inflammatory skin diseases. Moreover, emerging experimental data suggest that IL-22 also participates in the pathophysiology of malignancies of the skin. In this review, recent findings regarding the expression, regulation, and function of the IL-22 pathway in various human skin diseases will be discussed. Considering the strong association between excess activation of the IL-22/Th22 pathway and human skin diseases, targeting this pathway may provide promising new therapeutic approaches.
Collapse
Affiliation(s)
- Hideki Fujita
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
162
|
Lindenberg JJ, Oosterhoff D, Sombroek CC, Lougheed SM, Hooijberg E, Stam AGM, Santegoets SJAM, Tijssen HJ, Buter J, Pinedo HM, van den Eertwegh AJM, Scheper RJ, Koenen HJPM, van de Ven R, de Gruijl TD. IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation. PLoS One 2013; 8:e70237. [PMID: 23875023 PMCID: PMC3715492 DOI: 10.1371/journal.pone.0070237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 06/19/2013] [Indexed: 12/24/2022] Open
Abstract
In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.
Collapse
Affiliation(s)
- Jelle J. Lindenberg
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Dinja Oosterhoff
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Claudia C. Sombroek
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Sinéad M. Lougheed
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Erik Hooijberg
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Anita G. M. Stam
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | | | - Henk J. Tijssen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan Buter
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Herbert M. Pinedo
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | | | - Rik J. Scheper
- Department of Pathology, VU University medical center, Amsterdam, The Netherlands
| | - Hans J. P. M. Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Rieneke van de Ven
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
| | - Tanja D. de Gruijl
- Department of Medical Oncology, VU University medical center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
163
|
Seshadri C, Shenoy M, Wells RD, Hensley-McBain T, Andersen-Nissen E, McElrath MJ, Cheng TY, Moody DB, Hawn TR. Human CD1a deficiency is common and genetically regulated. THE JOURNAL OF IMMUNOLOGY 2013; 191:1586-93. [PMID: 23858036 DOI: 10.4049/jimmunol.1300575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CD1 proteins evolved to present diverse lipid Ags to T cells. In comparison with MHC proteins, CD1 proteins exhibit minimal allelic diversity as a result of nonsynonymous single nucleotide polymorphisms (SNPs). However, it is unknown if common SNPs in gene regulatory regions affect CD1 expression and function. We report surprising diversity in patterns of inducible CD1a expression on human dendritic cells (DCs), spanning the full range from undetectable to high density, a finding not seen with other CD1 isoforms. CD1a-deficient DCs failed to present mycobacterial lipopeptide to T cells but had no defects in endocytosis, cytokine secretion, or expression of costimulatory molecules after LPS treatment. We identified an SNP in the 5' untranslated region (rs366316) that was common and strongly associated with low CD1a surface expression and mRNA levels (p = 0.03 and p = 0.001, respectively). Using a CD1a promoter-luciferase system in combination with mutagenesis studies, we found that the polymorphic allele reduced luciferase expression by 44% compared with the wild-type variant (p < 0.001). Genetic regulation of lipid Ag presentation by varying expression on human DCs provides a mechanism for achieving population level differences in immune responses despite limited structural variation in CD1a proteins.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Mangan BA, Dunne MR, O'Reilly VP, Dunne PJ, Exley MA, O'Shea D, Scotet E, Hogan AE, Doherty DG. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:30-4. [PMID: 23740951 DOI: 10.4049/jimmunol.1300121] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human γδ T cells expressing the Vδ3 TCR make up a minor lymphocyte subset in blood but are enriched in liver and in patients with some chronic viral infections and leukemias. We analyzed the frequencies, phenotypes, restriction elements, and functions of fresh and expanded peripheral blood Vδ3 T cells. Vδ3 T cells accounted for ~0.2% of circulating T cells, included CD4(+), CD8(+), and CD4(-)CD8(-) subsets, and variably expressed CD56, CD161, HLA-DR, and NKG2D but neither NKG2A nor NKG2C. Vδ3 T cells were sorted and expanded by mitogen stimulation in the presence of IL-2. Expanded Vδ3 T cells recognized CD1d but not CD1a, CD1b, or CD1c. Upon activation, they killed CD1d(+) target cells, released Th1, Th2, and Th17 cytokines, and induced maturation of dendritic cells into APCs. Thus, Vδ3 T cells are glycolipid-reactive T cells with distinct Ag specificities but functional similarities to NKT cells.
Collapse
Affiliation(s)
- Bozgana A Mangan
- Department of Immunology, School of Medicine, Trinity College Dublin, Dublin 8, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol 2013; 14:706-13. [PMID: 23727893 PMCID: PMC3723453 DOI: 10.1038/ni.2630] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/29/2013] [Indexed: 02/08/2023]
Abstract
T cell receptors (TCRs) pair in millions of combinations to create complex and personally unique T cell repertoires. Using tetramers to analyze CD1b-reactive TCRs, we detected T cells with highly stereotyped TCR α chains present among genetically unrelated tuberculosis patients. These germline-encoded mycolyl-reactive (GEM) T cells were defined by CD4 expression and rearrangement of TRAV1-2 to TRAJ9 with few N-region additions. TCR analysis by high throughput sequencing, binding and crystallography showed linkage of TCR α sequence motifs to high affinity antigen recognition. Thus, the CD1-reactive TCR repertoire is composed of at least two compartments, high affinity GEM TCRs and more diverse TCRs with low affinity for CD1b-lipid complexes. These data demonstrate high inter-donor conservation of TCRs, which likely results from selection by a non-polymorphic antigen presenting molecule and an immunodominant antigen.
Collapse
|
166
|
Ly D, Kasmar AG, Cheng TY, de Jong A, Huang S, Roy S, Bhatt A, van Summeren RP, Altman JD, Jacobs WR, Adams EJ, Minnaard AJ, Porcelli SA, Moody DB. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. ACTA ACUST UNITED AC 2013; 210:729-41. [PMID: 23530121 PMCID: PMC3620358 DOI: 10.1084/jem.20120624] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
CD1c tetramers loaded with a phospholipid antigen from M. tuberculosis are recognized by human T cells. CD1c is expressed with high density on human dendritic cells (DCs) and B cells, yet its antigen presentation functions are the least well understood among CD1 family members. Using a CD1c-reactive T cell line (DN6) to complete an organism-wide survey of M. tuberculosis lipids, we identified C32 phosphomycoketide (PM) as a previously unknown molecule and a CD1c-presented antigen. CD1c binding and presentation of mycoketide antigens absolutely required the unusual, mycobacteria-specific lipid branching patterns introduced by polyketide synthase 12 (pks12). Unexpectedly, one TCR responded to diversely glycosylated and unglycosylated forms of mycoketide when presented by DCs and B cells. Yet cell-free systems showed that recognition was mediated only by the deglycosylated phosphoantigen. These studies identify antigen processing of a natural bacterial antigen in the human CD1c system, indicating that cells act on glycolipids to generate a highly simplified neoepitope composed of a sugar-free phosphate anion. Using knowledge of this processed antigen, we generated human CD1c tetramers, and demonstrate that CD1c–PM complexes stain T cell receptors (TCRs), providing direct evidence for a ternary interaction among CD1c-lipid-TCR. Furthermore, PM-loaded CD1c tetramers detect fresh human T cells from peripheral blood, demonstrating a polyclonal response to PM antigens in humans ex vivo.
Collapse
Affiliation(s)
- Dalam Ly
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Interleukin-22 (IL-22) has important functions in host defense at mucosal surfaces as well as in tissue repair. It is unique as a cytokine that is produced by immune cells, including T-helper (Th) cell subsets and innate lymphocytes, but acts only on non-hematopoietic stromal cells, in particular epithelial cells, keratinocytes, and hepatocytes. Although IL-22 is beneficial to the host in many infectious and inflammatory disorders, depending on the target tissue it can be pathogenic due to its inherent pro-inflammatory properties, which are further enhanced when IL-22 is released together with other pro-inflammatory cytokines, in particular IL-17. To avoid pathology, IL-22 and IL-17 production have to be controlled tightly and independently. While common factors such as signal transducer and activator of transcription 3 (STAT3) and retinoid orphan receptor γt (RORγt) drive the expression of both cytokines, other factors, such as c-Maf act specifically on IL-22 and enable the separate expression of either cytokine. Here, we discuss the production of IL-22 from various T-cell populations as well as protective versus pathogenic roles of IL-22. Finally, we focus on recent advances in our understanding of the molecular regulation of IL-22 in T cells.
Collapse
Affiliation(s)
- Sascha Rutz
- Department of Immunology, Genentech, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
168
|
Simoni Y, Diana J, Ghazarian L, Beaudoin L, Lehuen A. Therapeutic manipulation of natural killer (NK) T cells in autoimmunity: are we close to reality? Clin Exp Immunol 2013. [PMID: 23199318 DOI: 10.1111/j.1365-2249.2012.04625.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
T cells reactive to lipids and restricted by major histocompatibility complex (MHC) class I-like molecules represent more than 15% of all lymphocytes in human blood. This heterogeneous population of innate cells includes the invariant natural killer T cells (iNK T), type II NK T cells, CD1a,b,c-restricted T cells and mucosal-associated invariant T (MAIT) cells. These populations are implicated in cancer, infection and autoimmunity. In this review, we focus on the role of these cells in autoimmunity. We summarize data obtained in humans and preclinical models of autoimmune diseases such as primary biliary cirrhosis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, psoriasis and atherosclerosis. We also discuss the promise of NK T cell manipulations: restoration of function, specific activation, depletion and the relevance of these treatments to human autoimmune diseases.
Collapse
Affiliation(s)
- Y Simoni
- INSERM, U986, Hospital Cochin/St Vincent de Paul, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
169
|
Abstract
Since their discovery as a distinct T helper (Th) cell lineage, Th17 cells have been extensively investigated both in mice and in humans. These studies have identified factors involved in their differentiation and effector functions and have also revealed a high degree of flexibility that seems to be a characteristic of the Th17-cell lineage. In this review, we discuss recent studies addressing the heterogeneity of human Th17 cells, their differentiation requirements, their migratory capacities, and their role in defense against fungi and extracellular bacteria.
Collapse
Affiliation(s)
- Federica Sallusto
- Institute for Research in Biomedicine, Cellular Immunology, Bellinzona, Switzerland.
| | | | | |
Collapse
|
170
|
Abstract
The advent of immunotherapies for cancer has resulted in robust clinical responses and confirmed that the immune system can significantly inhibit tumor progression. The recent success of adoptive cell therapy against melanoma suggests that endogenous T-cell responses have the potential to control cancer. However, the lack of responses in some patients receiving such therapy indicates a need for a better understanding of the host immune response to solid tumors. In this review, we summarize the current knowledge on the characteristics of adoptively transferred T cells associated with successful anti-melanoma immune responses in humans.
Collapse
Affiliation(s)
- Agnes Fermin Lee
- Dirks/Dougherty Laboratory for Cancer Research; Department of Translational Immunology; John Wayne Cancer Institute at Saint John’s Health Center; Santa Monica, CA USA
| | - Peter A. Sieling
- Dirks/Dougherty Laboratory for Cancer Research; Department of Translational Immunology; John Wayne Cancer Institute at Saint John’s Health Center; Santa Monica, CA USA
| | - Delphine J. Lee
- Dirks/Dougherty Laboratory for Cancer Research; Department of Translational Immunology; John Wayne Cancer Institute at Saint John’s Health Center; Santa Monica, CA USA
| |
Collapse
|
171
|
Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. ANNUAL REVIEW OF PATHOLOGY 2013; 8:477-512. [PMID: 23157335 PMCID: PMC3965671 DOI: 10.1146/annurev-pathol-011110-130318] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The recent discovery of a new CD4+ T cell subset, Th17, has transformed our understanding of the pathogenetic basis of an increasing number of chronic immune-mediated diseases. Particularly in tissues that interface with the microbial environment-such as the intestinal and respiratory tracts and the skin-where most of the Th17 cells in the body reside, dysregulated immunity to self (or the extended self, the diverse microbiota that normally colonize these tissues) can result in chronic inflammatory disease. In this review, we focus on recent advances in the biology of the Th17 pathway and on genome-wide association studies that implicate this immune pathway in human disease involving these tissues.
Collapse
Affiliation(s)
- Casey T. Weaver
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Charles O. Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lynette A. Fouser
- Inflammation & Immunology Research Unit, Pfizer Worldwide R&D, Cambridge, MA 02140
| | - Jay K. Kolls
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
172
|
Adams EJ, Luoma AM. The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 2013; 31:529-61. [PMID: 23298204 DOI: 10.1146/annurev-immunol-032712-095912] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and β2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a β-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.
Collapse
Affiliation(s)
- Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
173
|
Van Rhijn I, Ly D, Moody DB. CD1a, CD1b, and CD1c in immunity against mycobacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:181-97. [PMID: 23468110 DOI: 10.1007/978-1-4614-6111-1_10] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The CD1 system is composed of five types of human CD1 proteins, CD1a, CD1b, CD1c, CD1d, and CD1e, and their mammalian orthologs. Each type of CD1 protein has a distinct antigen binding groove and shows differing patterns of expression within cells and in different tissues. Here we review the molecular mechanisms by which CD1a, CD1b, and CD1c capture distinct classes of self- and mycobacterial antigens. We discuss how CD1-restricted T cells participate in the immune response, emphasizing new evidence for mycobacterial recognition in vivo in human and non-human models.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Division of Rheumatology, Harvard Medical School, Boston, MA, USA.
| | | | | |
Collapse
|
174
|
Penel-Sotirakis K, Simonazzi E, Péguet-Navarro J, Rozières A. Differential capacity of human skin dendritic cells to polarize CD4+ T cells into IL-17, IL-21 and IL-22 producing cells. PLoS One 2012; 7:e45680. [PMID: 23226194 PMCID: PMC3511471 DOI: 10.1371/journal.pone.0045680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 08/24/2012] [Indexed: 11/19/2022] Open
Abstract
Accumulating evidence suggests a contribution of T cell-derived IL-17, IL-21 and IL-22 cytokines in skin immune homeostasis as well as inflammatory disorders. Here, we analyzed whether the cytokine-producing T lymphocytes could be induced by the different subsets of human skin dendritic cells (DCs), i.e., epidermal Langerhans cells (LCs), dermal CD1c(+)CD14(-) and CD14(+) DCs (DDCs). DCs were purified following a 2-day migration from separated epidermal and dermal sheets and co-cultured with allogeneic T cells before cytokine secretion was explored. Results showed that no skin DCs could induce substantial IL-17 production by naïve CD4(+) or CD8(+)T lymphocytes whereas all of them could induce IL-17 production by memory T cells. In contrast, LCs and CD1c(+)CD14(-)DDCs were able to differentiate naïve CD4(+)T lymphocytes into IL-22 and IL-21-secreting cells, LCs being the most efficient in this process. Intracellular cytokine staining showed that the majority of IL-21 or IL-22 secreting CD4(+)T lymphocytes did not co-synthesized IFN-γ, IL-4 or IL-17. IL-21 and IL-22 production were dependent on the B7/CD28 co-stimulatory pathway and ICOS-L expression on skin LCs significantly reduced IL-21 level. Finally, we found that TGF-β strongly down-regulates both IL-21 and IL-22 secretion by allogeneic CD4(+) T cells. These results add new knowledge on the functional specialization of human skin DCs and might suggest new targets in the treatment of inflammatory skin disorders.
Collapse
|
175
|
Seshadri C, Turner MT, Lewinsohn DM, Moody DB, Van Rhijn I. Lipoproteins are major targets of the polyclonal human T cell response to Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2012. [PMID: 23197260 DOI: 10.4049/jimmunol.1201667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most vaccines and basic studies of T cell epitopes in Mycobacterium tuberculosis emphasize water-soluble proteins that are secreted into the extracellular space and presented in the context of MHC class II. Much less is known about the role of Ags retained within the cell wall. We used polyclonal T cells from infected humans to probe for responses to immunodominant Ags in the M. tuberculosis cell wall. We found that the magnitude of response to secreted or cell wall intrinsic compounds was similar among healthy controls, patients with latent tuberculosis, and patients with active tuberculosis. Individual responses to secreted Ags and cell wall extract were strongly correlated (r(2) = 0.495, p = 0.001), suggesting that T cells responding to cell wall and secreted Ags are present at similar frequency. Surprisingly, T cell stimulatory factors intrinsic to the cell wall partition into organic solvents; however, these responses are not explained by CD1-mediated presentation of lipids. Instead, we find that molecules soluble in organic solvents are dependent upon MHC class II and recognized by IFN-γ-secreting CD4(+) T cells. We reasoned that MHC class II-dependent Ags extracting into lipid mixtures might be found among triacylated lipoproteins present in mycobacteria. We used M. tuberculosis lacking prolipoprotein signal peptidase A (lspA), an enzyme required for lipoprotein synthesis, to demonstrate loss of polyclonal T cell responses. Our results demonstrate the use of bacterial genetics to identify lipoproteins as an unexpected and immunodominant class of cell wall-associated Ags targeted by the polyclonal human T cell response to M. tuberculosis.
Collapse
Affiliation(s)
- Chetan Seshadri
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
176
|
Kim CJ, Nazli A, Rojas OL, Chege D, Alidina Z, Huibner S, Mujib S, Benko E, Kovacs C, Shin LYY, Grin A, Kandel G, Loutfy M, Ostrowski M, Gommerman JL, Kaushic C, Kaul R. A role for mucosal IL-22 production and Th22 cells in HIV-associated mucosal immunopathogenesis. Mucosal Immunol 2012; 5:670-80. [PMID: 22854709 DOI: 10.1038/mi.2012.72] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interleukin-22 (IL-22) is a cytokine with epithelial reparative and regenerative properties that is produced by Th22 cells and by other immune cell subsets. Therefore, we explored the hypothesis that disruption of the gut barrier during HIV infection involves dysregulation of these cells in the gastrointestinal mucosa. Sigmoid IL-22-producing T cell and Th22 cells were dramatically depleted during chronic HIV infection, epithelial integrity was compromised, and microbial translocation was increased. These alterations were reversed after long-term antiretroviral therapy. While all mucosal IL-22-producing T-cell subsets were also depleted very early during HIV infection, at these early stages IL-22 production by non-T-cell populations (including NKp44+ cells) was increased and gut epithelial integrity was maintained. Circulating Th22 cells expressed a higher level of the HIV co-receptor/binding molecules CCR5 and α4β7 than CD4+ T-cell subsets in HIV-uninfected participants, but this was not the case after HIV infection. Finally, recombinant IL-22 was protective against HIV and tumor necrosis factor-α-induced gut epithelial damage in a validated in vitro gut epithelial system. We conclude that reduced IL-22 production and Th22 depletion in the gut mucosa are important factors in HIV mucosal immunopathogenesis.
Collapse
MESH Headings
- Anti-HIV Agents/pharmacology
- Anti-HIV Agents/therapeutic use
- Cell Lineage
- Colon, Sigmoid/immunology
- Colon, Sigmoid/pathology
- Colon, Sigmoid/virology
- HIV/physiology
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Infections/pathology
- HIV Infections/virology
- Humans
- Immunity, Mucosal
- Interleukins/deficiency
- Interleukins/immunology
- Interleukins/pharmacology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Intestinal Mucosa/virology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Lymphocyte Count
- Lymphocyte Depletion
- Receptors, CCR5/immunology
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- T-Lymphocytes, Helper-Inducer/virology
- Time Factors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/pharmacology
- Interleukin-22
Collapse
Affiliation(s)
- C J Kim
- Department of Medicine, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Nguyen TKA, Koets AP, Vordermeier M, Jervis PJ, Cox LR, Graham SP, Santema WJ, Moody DB, van Calenbergh S, Zajonc DM, Besra GS, Van Rhijn I. The bovine CD1D gene has an unusual gene structure and is expressed but cannot present α-galactosylceramide with a C26 fatty acid. Int Immunol 2012; 25:91-8. [PMID: 22968995 DOI: 10.1093/intimm/dxs092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although CD1d and NKT cells have been proposed to have highly conserved functions in mammals, data on functions of CD1d and NKT cells in species other than humans and rodents are lacking. Upon stimulation with the CD1d-presented synthetic antigen α-galactosylceramide, human and rodent type I invariant NKT cells release large amounts of cytokines. The two bovine CD1D (boCD1D) genes have structural features that suggest that they cannot be translated into functional proteins expressed on the cell surface. Here we provide evidence that despite an intron-exon structure and signal peptide that are different from all other known CD1 genes, boCD1D can be translated into a protein that is expressed on the cell surface. However, in vivo treatment of cattle (Bos taurus) with 0.1, 1, or 10 µg kg⁻¹ of the most commonly used α-galactosylceramide, which has a C26 fatty acid, did not lead to an increase in body temperature and serum cytokine levels of the animals. This lack of reactivity is not due to a complete inability of boCD1d to present glycosphingolipids because α-galactosylceramide variants with shorter fatty acids could be presented by boCD1d to human NKT cells in vitro. This suggests that the natural ligands of boCD1d are smaller lipids.
Collapse
Affiliation(s)
- Thi Kim Anh Nguyen
- Department of Infectious Diseases and Immunology, Universiteit Utrecht, Yalelaan 1, 3584CL Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Bine S, Haziot A, Malikova I, Pelletier J, Charron D, Boucraut J, Mooney N, Gelin C. Alteration of CD1 expression in multiple sclerosis. Clin Exp Immunol 2012; 169:10-6. [PMID: 22670773 DOI: 10.1111/j.1365-2249.2012.04586.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Studies of multiple sclerosis (MS) have concentrated mainly on antigen presentation of peptides derived from the myelin sheath, while the implication of lipid antigen has been less explored in this pathology. As the extracellular environment regulates expression of the lipid antigen-presenting molecule CD1, we have examined whether sera from patients alters CD1 surface expression in monocyte-derived dendritic cells. We have shown that: (i) CD1 group 1 proteins were highly expressed in the presence of MS sera; (ii) sera from MS patients differentially regulated CD1 group 1 versus CD1 group 2 molecular expression; and (iii) CD1 was expressed strongly in monocytes from MS patients under immunosuppressive treatment. Overall, these results reveal that CD1 expression is modified in MS and provide novel information on the regulation of lipid antigen presentation in myeloid cells.
Collapse
Affiliation(s)
- S Bine
- INSERM, UMR-S, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Mallevaey T, Selvanantham T. Strategy of lipid recognition by invariant natural killer T cells: 'one for all and all for one'. Immunology 2012; 136:273-82. [PMID: 22671023 DOI: 10.1111/j.1365-2567.2012.03580.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are evolutionarily conserved lipid-reactive T cells that bridge innate and adaptive immune responses. Despite a relatively restricted T-cell receptor (TCR) diversity, these cells respond to a variety of structurally distinct foreign (i.e. microbial or synthetic) as well as host-derived (self-) lipid antigens presented by the CD1d molecule. These multi-tasking lymphocytes are among the first responders in immunity, and produce an impressive array of cytokines and chemokines that can tailor the ensuing immune response. Accordingly, iNKT cells play important functions in autoimmune diseases, cancer, infection and inflammation. These properties make iNKT cells appealing targets in immune-based therapies. Yet, much has to be learned on the mechanisms that allow iNKT cells to produce polarized responses. Responses of iNKT cells are influenced by the direct signals perceived by the cells through their TCRs, as well as by indirect co-stimulatory (and potentially co-inhibitory) cues that they receive from antigen-presenting cells or the local milieu. A decade ago, biochemists and immunologists have started to describe synthetic lipid agonists with cytokine skewing potential, paving a new research avenue in the iNKT cell field. Yet how iNKT cells translate various antigenic signals into distinct functional responses has remained obscure. Recent findings have revealed a unique and innate mode of lipid recognition by iNKT cells, and suggest that both the lipid antigen presented and the diversity of the TCR modulate the strength of CD1d-iNKT TCR interactions. In this review, we focus on novel discoveries on lipid recognition by iNKT cells, and how these findings may help us to design effective strategies to steer iNKT cell responses for immune intervention.
Collapse
Affiliation(s)
- Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
180
|
Pei B, Vela JL, Zajonc D, Kronenberg M. Interplay between carbohydrate and lipid in recognition of glycolipid antigens by natural killer T cells. Ann N Y Acad Sci 2012; 1253:68-79. [PMID: 22352829 PMCID: PMC3336017 DOI: 10.1111/j.1749-6632.2011.06435.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural killer T (NKT) cells are a T cell subpopulation that were named originally based on coexpression of receptors found on natural killer (NK) cells, cells of the innate immune system, and by T lymphocytes. The maturation and activation of NKT cells requires presentation of glycolipid antigens by CD1d, a cell surface protein distantly related to the major histocompatibility complex (MHC)-encoded antigen presenting molecules. This specificity distinguishes NKT cells from most CD4(+) and CD8(+) T cells that recognize peptides presented by MHC class I and class II molecules. The rapid secretion of a large amount of both Th1 and Th2 cytokines by activated NKT cells endows them with the ability to play a vital role in the host immune defense against various microbial infections. In this review, we summarize progress on identifying the sources of microbe-derived glycolipid antigens recognized by NKT cells and the biochemical basis for their recognition.
Collapse
Affiliation(s)
- Bo Pei
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Jose Luis Vela
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Dirk Zajonc
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
181
|
|
182
|
Zeissig S, Blumberg RS. Primary immunodeficiency associated with defects in CD1 and CD1-restricted T cells. Ann N Y Acad Sci 2012; 1250:14-24. [PMID: 22276638 DOI: 10.1111/j.1749-6632.2011.06380.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD1 is a family of atypical MHC class I molecules that present various endogenous and exogenous lipid antigens to CD1-restricted T cells. While little is known about the function of CD1a-, CD1b-, and CD1c-restricted lipid-reactive T cells due to their absence in mice, CD1d-restricted natural killer T (NKT) cells have been extensively studied since their description almost 20 years ago. NKT cells, effector memory cells that share characteristics of innate and adaptive lymphocytes, are among the earliest responders in immune reactions and have broad effects on the activation of other immune cell lineages, including NK cells, T cells, and B cells. Accordingly, studies in mice have revealed critical roles of NKT cells in infectious, malignant, and autoimmune diseases. The recent description of primary immunodeficiencies associated with defects in CD1 and CD1-restricted T cells has provided a unique opportunity to study the biological role of lipid antigen presentation in human disease. Intriguingly, these studies revealed that defects in lipid immunity are associated with susceptibility to selected infectious and malignant diseases but not with broad immunodeficiency.
Collapse
Affiliation(s)
- Sebastian Zeissig
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
183
|
Abstract
It is now clear that the epidermis has an active role in local immune responses in the skin. Keratinocytes are involved early in inflammation by providing first-line innate mechanisms and, in addition, can contribute to adaptive immune responses that may be associated with clinical disease. Moreover, keratinocytes are capable of enhancing and shaping the outcome of inflammation in response to stimuli and promoting particular types of immune bias. Through understanding the underlying mechanisms, the role of keratinocytes in disease pathogenesis will be further defined, which is likely to lead to the identification of potential targets for prophylactic or therapeutic intervention.
Collapse
Affiliation(s)
- Danuta Gutowska-Owsiak
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
184
|
Van Belle AB, de Heusch M, Lemaire MM, Hendrickx E, Warnier G, Dunussi-Joannopoulos K, Fouser LA, Renauld JC, Dumoutier L. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:462-9. [PMID: 22131335 DOI: 10.4049/jimmunol.1102224] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psoriasis is a common chronic autoimmune skin disease of unknown cause that involves dysregulated interplay between immune cells and keratinocytes. IL-22 is a cytokine produced by the TH1, TH17, and TH22 subsets that are functionally implicated in the psoriatic pathology. We assessed the role of IL-22 in a mouse model where psoriasiform skin inflammation is triggered by topical application of the TLR7/8 agonist imiquimod. At the macroscopic level, scaly skin lesions induced by daily applications of imiquimod in wild-type mice were almost totally absent in IL-22-deficient mice or in mice treated with a blocking anti-IL-22 Ab. At the microscopic level, IL-22-deficient mice showed a dramatic decrease in the development of pustules and a partial decrease in acanthosis. At the molecular level, the absence or inhibition of IL-22 strongly decreased the expression of chemotactic factors such as CCL3 and CXCL3 and of biomarkers such as S100A8, S100A7, and keratin 14, which reflect the antimicrobial and hyperproliferative responses of keratinocytes. IL-22 also played a major role in neutrophil infiltration after imiquimod treatment. IL-23 was required for IL-22 production, and γδ TCR lymphocytes represented the major source of IL-22 in lymph nodes from imiquimod-treated mice. However, T cells were not absolutely required for IL-22 production because imiquimod-induced IL-22 expression in the skin is still preserved in Rag2(-/-) mice. Taken together, our data show that IL-22 is required for psoriasis-like lesions in the mouse imiquimod model and is produced by both T cells and innate immune cells.
Collapse
MESH Headings
- Adjuvants, Immunologic/adverse effects
- Adjuvants, Immunologic/pharmacology
- Aminoquinolines/adverse effects
- Aminoquinolines/pharmacology
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Chemokine CCL3/genetics
- Chemokine CCL3/immunology
- Chemokine CCL3/metabolism
- Dermatitis/etiology
- Dermatitis/immunology
- Dermatitis/metabolism
- Disease Models, Animal
- Gene Expression Regulation/genetics
- Gene Expression Regulation/immunology
- Imiquimod
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Interleukins/biosynthesis
- Interleukins/genetics
- Interleukins/immunology
- Mice
- Mice, Knockout
- Neutrophil Infiltration/drug effects
- Neutrophil Infiltration/genetics
- Neutrophil Infiltration/immunology
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/pathology
- Psoriasis/chemically induced
- Psoriasis/immunology
- Psoriasis/metabolism
- Psoriasis/pathology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Skin/immunology
- Skin/metabolism
- Skin/pathology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- Interleukin-22
Collapse
|
185
|
Huang S, Cheng TY, Young DC, Layre E, Madigan CA, Shires J, Cerundolo V, Altman JD, Moody DB. Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proc Natl Acad Sci U S A 2011; 108:19335-40. [PMID: 22087000 PMCID: PMC3228429 DOI: 10.1073/pnas.1112969108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Unlike the dominant role of one class II invariant chain peptide (CLIP) in blocking MHC class II, comparative lipidomics analysis shows that human cluster of differentiation (CD) proteins CD1a, CD1b, CD1c, and CD1d bind lipids corresponding to hundreds of diverse accurate mass retention time values. Although most ions were observed in association with several CD1 proteins, ligands binding selectively to one CD1 isoform allowed the study of how differing antigen-binding grooves influence lipid capture. Although the CD1b groove is distinguished by its unusually large volume (2,200 Å(3)) and the T' tunnel, the average mass of compounds eluted from CD1b was similar to that of lipids from CD1 proteins with smaller grooves. Elution of small ligands from the large CD1b groove might be explained if two small lipids bind simultaneously in the groove. Crystal structures indicate that all CD1 proteins can capture one antigen with its hydrophilic head group exposed for T-cell recognition, but CD1b structures show scaffold lipids seated below the antigen. We found that ligands selectively associated with CD1b lacked the hydrophilic head group that is generally needed for antigen recognition but interferes with scaffold function. Furthermore, we identified the scaffolds as deoxyceramides and diacylglycerols and directly demonstrate a function in augmenting presentation of a small glycolipid antigen to T cells. Thus, unlike MHC class II, CD1 proteins capture highly diverse ligands in the secretory pathway. CD1b has a mechanism for presenting either two small or one large lipid, allowing presentation of antigens with an unusually broad range of chain lengths.
Collapse
Affiliation(s)
- Shouxiong Huang
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Tan-Yun Cheng
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - David C. Young
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Emilie Layre
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Cressida A. Madigan
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - John Shires
- Emory Vaccine Center, Emory School of Medicine, Atlanta, GA 30322; and
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - John D. Altman
- Emory Vaccine Center, Emory School of Medicine, Atlanta, GA 30322; and
| | - D. Branch Moody
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
186
|
Kobayashi C, Shiina T, Tokioka A, Hattori Y, Komori T, Kobayashi-Miura M, Takizawa T, Takahara K, Inaba K, Inoko H, Takeya M, Dranoff G, Sugita M. GM-CSF-independent CD1a expression in epidermal Langerhans cells: evidence from human CD1A genome-transgenic mice. J Invest Dermatol 2011; 132:241-4. [PMID: 21900947 DOI: 10.1038/jid.2011.280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
187
|
Haig NA, Guan Z, Li D, McMichael A, Raetz CRH, Xu XN. Identification of self-lipids presented by CD1c and CD1d proteins. J Biol Chem 2011; 286:37692-701. [PMID: 21900247 DOI: 10.1074/jbc.m111.267948] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The CD1 family consists of five proteins that are related to the peptide-presenting MHC class I family. T cells can recognize the presentation of both foreign and self-derived lipids on four CD1 family members. The identities of the self-lipids capable of stimulating autoreactive T cell responses remain elusive or controversial. Here, we employed mass spectrometry to analyze the lipid content of highly purified CD1c and CD1d protein samples. We report the identification of 11 novel self-lipids presented by CD1c and nine by CD1d. Rigorous controls provide strong evidence that the identified lipids were specifically loaded into the lipid-binding site of the CD1 molecules. The diverse but distinct population of lipids identified from each CD1 family member implies each present a different subset of self-lipids, and the enrichment of particular motifs indicates that the lipids that are presented by CD1 family members could be predicted. Finally, our results imply the CD1 system surveys the endoplasmic reticulum, Golgi apparatus, and/or secretory compartments, in addition to its well characterized surveillance of the endocytic and lysosomal compartments.
Collapse
Affiliation(s)
- Neil A Haig
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | | | | | | | | |
Collapse
|
188
|
Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br J Dermatol 2011; 165:492-8. [PMID: 21564072 DOI: 10.1111/j.1365-2133.2011.10400.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The identification of filaggrin mutations has contributed towards our understanding of hereditary factors associated with epidermal dysfunction observed in individuals with atopic eczema (AE). However, factors that predispose to acquired filaggrin modulation are not well understood. Interleukin (IL)-22 is upregulated in lesional AE tissue, but its effects on filaggrin expression and genes associated with epidermal function have not yet been comprehensively addressed. OBJECTIVES To investigate the effects of IL-22 on expression of filaggrin and genes encoding proteins relevant to epidermal function. METHODS Microarray analysis was performed on IL-22-stimulated HaCaT keratinocytes. Filaggrin protein level was assessed by an intracellular enzyme-linked immunosorbent assay (ELISA) and Western blot in HaCaT cells and the findings were validated in primary keratinocytes. RESULTS Exposure to IL-22 cytokine resulted in a downregulation of profilaggrin mRNA expression in HaCaT keratinocytes. The expression of genes involved in enzymatic processing of profilaggrin as well as the generation of natural moisturizing factor was also altered. Furthermore, there was an upregulation of many transcripts encoding proteins of the S100 family. Profilaggrin/filaggrin downregulation was detected by intracellular ELISA and Western blot in HaCaT cells. The relevance to the primary setting was confirmed in primary keratinocytes by Western blot. CONCLUSIONS IL-22 downregulates profilaggrin/filaggrin expression in keratinocytes at both mRNA and protein levels and affects genes relevant to epidermal function. This novel pathway may have relevance to the pathogenesis and treatment of atopic and other skin disease.
Collapse
Affiliation(s)
- D Gutowska-Owsiak
- MRC Human Immunology Unit, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
189
|
Autoreactive CD1b-restricted T cells: a new innate-like T-cell population that contributes to immunity against infection. Blood 2011; 118:3870-8. [PMID: 21860021 DOI: 10.1182/blood-2011-03-341941] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Group 1 CD1 (CD1a, -b, and -c) presents self and foreign lipid antigens to multiple T-cell subsets in humans. However, in the absence of a suitable animal model, the specific functions and developmental requirements of these T cells remain unknown. To study group 1 CD1-restricted T cells in vivo, we generated double transgenic mice (HJ1Tg/hCD1Tg) that express group 1 CD1 molecules in a similar pattern to that observed in humans (hCD1Tg) as well as a TCR derived from a CD1b-autoreactive T-cell line (HJ1Tg). Using this model, we found that similar to CD1d-restricted NKT cells, HJ1 T cells exhibit an activated phenotype (CD44(hi)CD69(+)CD122(+)) and a subset of HJ1 T cells expresses NK1.1 and is selected by CD1b-expressing hematopoietic cells. HJ1 T cells secrete proinflammatory cytokines in response to stimulation with CD1b-expressing dendritic cells derived from humans as well as hCD1Tg mice, suggesting that they recognize species conserved self-lipid antigen(s). Importantly, this basal autoreactivity is enhanced by TLR-mediated signaling and HJ1 T cells can be activated and confer protection against Listeria infection. Taken together, our data indicate that CD1b-autoreactive T cells, unlike mycobacterial lipid antigen-specific T cells, are innate-like T cells that may contribute to early anti-microbial host defense.
Collapse
|
190
|
Kasmar AG, van Rhijn I, Cheng TY, Turner M, Seshadri C, Schiefner A, Kalathur RC, Annand JW, de Jong A, Shires J, Leon L, Brenner M, Wilson IA, Altman JD, Moody DB. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. ACTA ACUST UNITED AC 2011; 208:1741-7. [PMID: 21807869 PMCID: PMC3171094 DOI: 10.1084/jem.20110665] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucose monomycolate–loaded CD1b tetramers identify a subset of CD4+ T cells in patients with Mycobacterium tuberculosis infection. Microbial lipids activate T cells by binding directly to CD1 and T cell receptors (TCRs) or by indirect effects on antigen-presenting cells involving induction of lipid autoantigens, CD1 transcription, or cytokine release. To distinguish among direct and indirect mechanisms, we developed fluorescent human CD1b tetramers and measured T cell staining. CD1b tetramer staining of T cells requires glucose monomycolate (GMM) antigens, is specific for TCR structure, and is blocked by a recombinant clonotypic TCR comprised of TRAV17 and TRBV4-1, proving that CD1b–glycolipid complexes bind the TCR. GMM-loaded tetramers brightly stain a small subpopulation of blood-derived cells from humans infected with Mycobacterium tuberculosis, providing direct detection of a CD1b-reactive T cell repertoire. Polyclonal T cells from patients sorted with tetramers are activated by GMM antigens presented by CD1b. Whereas prior studies emphasized CD8+ and CD4−CD8− CD1b-restricted clones, CD1b tetramer-based studies show that nearly all cells express the CD4 co-receptor. These findings prove a cognate mechanism whereby CD1b–glycolipid complexes bind to TCRs. CD1b tetramers detect a natural CD1b-restricted T cell repertoire ex vivo with unexpected features, opening a new investigative path to study the human CD1 system.
Collapse
Affiliation(s)
- Anne G Kasmar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Lockridge JL, Chen X, Zhou Y, Rajesh D, Roenneburg DA, Hegde S, Gerdts S, Cheng TY, Anderson RJ, Painter GF, Moody DB, Burlingham WJ, Gumperz JE. Analysis of the CD1 antigen presenting system in humanized SCID mice. PLoS One 2011; 6:e21701. [PMID: 21738769 PMCID: PMC3128084 DOI: 10.1371/journal.pone.0021701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/05/2011] [Indexed: 11/18/2022] Open
Abstract
CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune activation has been implicated in a wide range of immune responses, however, our understanding of the role of this pathway in human disease remains limited because of species differences between humans and other mammals: whereas humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34(+) hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed by human thymocytes, and CD1a(+) cells with a dendritic morphology were present in the thymic medulla. CD1(+) cells were also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-γ producing cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and injection of the glycolipid antigen α-GalCer resulted in rapid elevation of human IFN-γ and IL-4 levels in the blood indicating that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study the role of CD1-related immune activation in infections to human-specific pathogens.
Collapse
Affiliation(s)
- Jennifer L. Lockridge
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Xiuxu Chen
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ying Zhou
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Deepika Rajesh
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Drew A. Roenneburg
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Subramanya Hegde
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Sarah Gerdts
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Tan-Yun Cheng
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Regan J. Anderson
- Carbohydrate Chemistry Team, Industrial Research Ltd, Lower Hutt, New Zealand
| | - Gavin F. Painter
- Carbohydrate Chemistry Team, Industrial Research Ltd, Lower Hutt, New Zealand
| | - D. Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - William J. Burlingham
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jenny E. Gumperz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
192
|
Vukmanovic-Stejic M, Rustin MHA, Nikolich-Zugich J, Akbar AN. Immune responses in the skin in old age. Curr Opin Immunol 2011; 23:525-31. [PMID: 21703840 DOI: 10.1016/j.coi.2011.05.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 01/05/2023]
Abstract
A marked increase in the susceptibility to cutaneous infections and malignancies has been observed in older humans indicating that cutaneous immunity becomes defective with age. In this review we will focus on recent developments in the understanding of age-related changes in immune function of the skin with a particular emphasis on how alterations in the interaction between cells involved in innate and adaptive immunity leads to decreased cutaneous antigen-specific T cell immunosurveillance.
Collapse
Affiliation(s)
- Milica Vukmanovic-Stejic
- Division of Infection and Immunity, Department of Immunology, University College London, London W1T 4JF, United Kingdom
| | | | | | | |
Collapse
|
193
|
Constantinides MG, Picard D, Savage AK, Bendelac A. A naive-like population of human CD1d-restricted T cells expressing intermediate levels of promyelocytic leukemia zinc finger. THE JOURNAL OF IMMUNOLOGY 2011; 187:309-15. [PMID: 21632718 DOI: 10.4049/jimmunol.1100761] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rare CD1d-α-galactosylceramide-specific T cells that do not express the invariant Vα24 chain of human NKT cells were recently identified after expansion in vitro with the lipid Ag, but their phenotype and frequency in vivo and lineage relationship with NKT cells could not be elucidated. By using a CD1d tetramer-based method to enrich these cells from fresh peripheral blood, we demonstrated their naive-like CD62L(high)CD45RO(-)CD4(+) phenotype and relatively high frequency of ∼10(-5) in several healthy individuals. Notably, these cells expressed the NKT lineage-specific transcription promyelocytic leukemia zinc finger (PLZF), indicating a developmental relationship with NKT cells and ruling out the possibility that they were conventional MHC-restricted T cells cross-reacting against CD1d-α-galactosylceramide. Although PLZF is known to direct the effector program of NKT cells, we show in this study that the naive-like cells expressed it at a significantly lower amount than NKT cells. Further, we present mouse studies demonstrating a sharp PLZF expression threshold requirement for induction of the effector phenotype. These findings directly demonstrate in vivo the existence of naive-like CD1d-restricted human T cells marked by intermediate levels of PLZF.
Collapse
Affiliation(s)
- Michael G Constantinides
- Committee on Immunology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
194
|
Sonnenberg GF, Fouser LA, Artis D. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011; 12:383-90. [PMID: 21502992 DOI: 10.1038/ni.2025] [Citation(s) in RCA: 795] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance of barrier function at exposed surfaces of the mammalian body is essential for limiting exposure to environmental stimuli, preventing systemic dissemination of commensal and pathogenic microbes and retaining normal homeostasis of the entire body. Indeed, dysregulated barrier function is associated with many infectious and inflammatory diseases, including psoriasis, influenza, inflammatory bowel disease and human immunodeficiency virus, which collectively afflict millions of people worldwide. Studies have shown that interleukin 22 (IL-22) is expressed at barrier surfaces and that its expression is dysregulated in certain human diseases, which suggests a critical role in the maintenance of normal barrier homeostasis. Consistent with that, studies of mouse model systems have identified a critical role for signaling by IL-22 through its receptor (IL-22R) in the promotion of antimicrobial immunity, inflammation and tissue repair at barrier surfaces. In this review we will discuss how the expression of IL-22 and IL-22R is regulated, the functions of the IL-22-IL-22R pathway in regulating immunity, inflammation and tissue homeostasis, and the therapeutic potential of targeting this pathway in human disease.
Collapse
Affiliation(s)
- Gregory F Sonnenberg
- Department of Microbiology and Institute for Immunology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
195
|
Quantitative events determine the differentiation and function of helper T cells. Nat Immunol 2011; 12:288-94. [DOI: 10.1038/ni.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
196
|
Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A, Sallusto F. Dissecting the human immunologic memory for pathogens. Immunol Rev 2011; 240:40-51. [DOI: 10.1111/j.1600-065x.2010.01000.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
197
|
Young MH, Gapin L. Group 1 CD1-restricted T cells take center stage. Eur J Immunol 2011; 41:592-4. [PMID: 21341260 DOI: 10.1002/eji.201141408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 01/10/2011] [Accepted: 01/21/2011] [Indexed: 11/10/2022]
Abstract
The recognition of lipid antigens by T cells is a complex and fascinating phenomenon. The MHC-like molecules of the CD1 family have evolved to present a wide variety of both self and foreign lipids for recognition by T-cell receptors. While much progress has been made in our understanding of the NKT cells that recognize lipids presented by CD1d molecules, our knowledge of the T-cell populations directed at the related group 1 CD1 molecules, i.e. CD1a, CD1b and CD1c, has lagged behind. In this issue of the European Journal of Immunology, a study identifies a surprisingly large portion of human peripheral blood T cells as being autoreactive to the group 1 CD1 proteins. This work and other recent developments highlight the presence of a substantial number of unconventional T cells as part of our normal T-cell repertoire. This interesting finding is discussed in details in this commentary.
Collapse
Affiliation(s)
- Mary H Young
- Integrated Department of immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | |
Collapse
|
198
|
de Lalla C, Lepore M, Piccolo FM, Rinaldi A, Scelfo A, Garavaglia C, Mori L, De Libero G, Dellabona P, Casorati G. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur J Immunol 2011; 41:602-10. [PMID: 21246542 DOI: 10.1002/eji.201041211] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/08/2022]
Abstract
CD1 molecules present lipid antigens to T cells. An intriguing subset of human T cells recognize CD1-expressing cells without deliberately added lipids. Frequency, subset distribution, clonal composition, naïve-to-memory dynamic transition of these CD1 self-reactive T cells remain largely unknown. By screening libraries of T-cell clones, generated from CD4(+) or CD4(-) CD8(-) double negative (DN) T cells sorted from the same donors, and by limiting dilution analysis, we find that the frequency of CD1 self-reactive T cells is unexpectedly high in both T-cell subsets, in the range of 1/10-1/300 circulating T cells. These T cells predominantly recognize CD1a and CD1c and express diverse TCRs. Frequency comparisons of T-cell clones from sorted naïve and memory compartments of umbilical cord and adult blood show that CD1 self-reactive T cells are naïve at birth and undergo an age-dependent increase in the memory compartment, suggesting a naïve/memory adaptive-like population dynamics. CD1 self-reactive clones exhibit mostly Th1 and Th0 functional activities, depending on the subset and on the CD1 isotype restriction. These findings unveil the unanticipated relevance of self-lipid T-cell response in humans and clarify the basic parameters of the lipid-specific T-cell physiology.
Collapse
Affiliation(s)
- Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, DIBIT, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
CD4(+) T helper (T(H)) cells play a critical role in orchestrating a pleiotropy of immune activities against a large variety of pathogens. It is generally thought that this is achieved through the acquisition of highly specialized functions after activation followed by the differentiation into various functional subsets. The differentiation process of naive precursor T(H) cells into defined effector subsets is controlled by cells of the innate immune system and their complex array of effector molecules such as secreted cytokines and membrane bound costimulatory molecules. These provide a unique quantitative or qualitative signal initiating T(H) development, which is subsequently reinforced via T cell-mediated feedback signals and selective survival and proliferative cues, ultimately resulting in the predominance of a particular T cell subset. In recent years, the number of defined T(H)cell subsets has expanded and the once rigid division of labor among them has been blurred with reports of plasticity among the subsets. In this chapter, we summarize and speculate on the current knowledge of the differentiation requirements of T(H) cell lineages, with particular focus on the T(H)17 subset.
Collapse
|
200
|
Yang GB, Lei N, Zong CM, Duan JZ, Xing H, Shao Y. Elevated frequency of CD1c+ myeloid dendritic cells in the peripheral blood mononuclear cells of simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) repeatedly infected Chinese rhesus macaques. Cell Immunol 2011; 271:36-43. [DOI: 10.1016/j.cellimm.2011.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/11/2011] [Accepted: 05/31/2011] [Indexed: 11/27/2022]
|