151
|
Chen B, Yan Y, Yang Y, Cao G, Wang X, Wang Y, Wan F, Yin Q, Wang Z, Li Y, Wang L, Xu B, You F, Zhang Q, Wang Y. A pyroptosis nanotuner for cancer therapy. NATURE NANOTECHNOLOGY 2022; 17:788-798. [PMID: 35606443 DOI: 10.1038/s41565-022-01125-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2022] [Indexed: 05/28/2023]
Abstract
Pyroptosis is a gasdermin-mediated programmed necrosis that occurs via membrane perforation and that can be exploited for biomedical applications in cancer therapy. However, inducing specific pyroptotic cancer cell death while sparing normal cells is challenging. Here, we report an acid-activatable nanophotosensitizer library that can be used to spatiotemporally target distinct stages of endosomal maturation, enabling tunable cellular pyroptosis. Specific activation of phospholipase C signalling transduction in early endosomes triggers gasdermin-E-mediated pyroptosis, which is dramatically reduced when acid-activatable nanophotosensitizers are transported into late endosomes/lysosomes. This nanotuner platform induces pyroptotic cell death with up to 40-fold tunability in various gasdermin-E-positive human cancers, resulting in enhanced anti-tumour efficacy and minimized systemic side effects. This study offers new insights into how to engineer nanomedicines with tunable pyroptosis activity through specific targeting of distinct endocytic signalling for biomedical applications.
Collapse
Affiliation(s)
- Binlong Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ye Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guang Cao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiao Wang
- Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumour Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yunfei Li
- Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumour Systems Biology, Peking University Health Science Center, Beijing, China
| | - Letong Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, Beijing Key Laboratory of Tumour Systems Biology, Peking University Health Science Center, Beijing, China.
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
152
|
Omura G, Honma Y, Matsumoto Y, Shinozaki T, Itoyama M, Eguchi K, Sakai T, Yokoyama K, Watanabe T, Ohara A, Kato K, Yoshimoto S. Transnasal photoimmunotherapy with cetuximab sarotalocan sodium: Outcomes on the local recurrence of nasopharyngeal squamous cell carcinoma. Auris Nasus Larynx 2022:S0385-8146(22)00167-5. [PMID: 35779979 DOI: 10.1016/j.anl.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/24/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022]
Abstract
Photoimmunotherapy for head and neck cancer (HNC-PIT) is a newly developed locoregional treatment targeting the epidermal growth factor. This treatment consists in administering cetuximab sarotalocan sodium that conjugates cetuximab with the dye IRdye700DX, which is activated by near-infrared ray illumination at 690 nm. HNC-PIT has been conditionally approved in Japan in September 2020 for the treatment of unresectable locally advanced or unresectable locoregionally recurrent HNC. However, its outcomes on the local recurrence of the nasopharyngeal squamous cell carcinoma (NPSCC) remain undetermined. In this report, we assessed the effects of HNC-PIT assisted by transnasal endoscopy on the local recurrence of NPSCC. A 77-year-old male presented with a local recurrence of NPSCC. The initial diagnosis revealed a squamous cell carcinoma, T2N2M0 stage III, positive for Epstein-Barr virus-encoded small RNA by in situ hybridization, which was treated with concurrent chemoradiotherapy (CRT). However, local recurrence was detected 14 months after CRT. We performed HNC-PIT under transnasal endoscopy. Seven months have passed since the HNC-PIT treatment, and the patient is alive without delayed adverse events and evidence of recurrence. Local recurrence of NPSCC, which is difficult to treat with minimally invasive surgery, is considered a potential candidate for HNC-PIT.
Collapse
Affiliation(s)
- Go Omura
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan.
| | - Yoshitaka Honma
- Department of Head and Neck and Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshifumi Matsumoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Takeshi Shinozaki
- Department of Head and Neck Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Mai Itoyama
- Department of Head and Neck and Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kohtaro Eguchi
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Toshihiko Sakai
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuki Yokoyama
- Department of Head and Neck and Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takane Watanabe
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Akihiro Ohara
- Department of Head and Neck and Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Head and Neck and Esophageal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
153
|
Direct Utilization of Near-Infrared Light for Photooxidation with a Metal-Free Photocatalyst. Molecules 2022; 27:molecules27134047. [PMID: 35807299 PMCID: PMC9268673 DOI: 10.3390/molecules27134047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Near-infrared (NIR) light-triggered photoredox catalysis is highly desirable because NIR light occupies almost 50% of solar energy and possesses excellent penetrating power in various media. Herein we utilize a metal-free boron dipyrromethene (BODIPY) derivative as the photocatalyst to achieve NIR light (720 nm LED)–driven oxidation of benzylamine derivatives, sulfides, and aryl boronic acids. Compared to blue light–driven photooxidation using Ru(bpy)3Cl2 as a photocatalyst, NIR light–driven photooxidation exhibited solvent independence and superior performance in large-volume (20 mL) reaction, presumably thanks to the neutral structure of a BODIPY photocatalyst and the deeper penetration depth of NIR light. We further demonstrate the application of this metal-free NIR photooxidation to prodrug activation and combination with Cu-catalysis for cross coupling reaction, exhibiting the potential of metal-free NIR photooxidation as a toolbox for organic synthesis and drug development.
Collapse
|
154
|
Fukushima H, Kato T, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Kondo E, Choyke PL, Kobayashi H. Intercellular adhesion molecule-1 (ICAM-1)-targeted near-infrared photoimmunotherapy of triple-negative breast cancer. Cancer Sci 2022; 113:3180-3192. [PMID: 35723065 PMCID: PMC9459244 DOI: 10.1111/cas.15466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and conventional chemotherapy and molecular-targeted therapies show limited efficacy. Near-infrared photoimmunotherapy (NIR-PIT) is a new anti-cancer treatment that selectively damages the cell membrane of cancer cells based on NIR light-induced photochemical reactions of the antibody-photoabsorber (IRDye700Dx) conjugate and the cell membrane. TNBC is known to express several adhesion molecules on the cell surface providing a potential new target for therapy. Here, we investigated the therapeutic efficacy of Intercellular adhesion molecule-1 (ICAM-1)-targeted NIR-PIT using xenograft mouse models subcutaneously inoculated with two human ICAM-1-expressing TNBC cell lines MDAMB468-luc and MDAMB231 cells. In vitro ICAM-1-targeted NIR-PIT damaged both cell types in a light dose-dependent manner. In vivo ICAM-1-targeted NIR-PIT in both models showed early histological signs of cancer cell damage such as cytoplasmic vacuolation. Even among the cancer cells that appeared to be morphologically intact within 2 hours post treatment, abnormal distribution of the actin cytoskeleton and a significant decrease in Ki-67 positivity were observed, indicating widespread cellular injury reflected in cytoplasmic degeneration. Such damage to cancer cells by NIR-PIT significantly inhibited subsequent tumor growth and improved survival. This study suggests that ICAM-1-targeted NIR-PIT may have potential clinical application in the treatment of TNBC.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Takuya Kato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hiroaki Wakiyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hideyuki Furumoto
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Shuhei Okuyama
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku Niigata city 951-8510, Japan.,Division of Tumor Pathology, Near InfraRed PhotoImmunoTherapy Research Institute, Kansai Medical University, 2-5-1, Shinmachi, Hirakata, 573-1010, Japan
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
155
|
Miao J, Huo Y, Yao G, Feng Y, Weng J, Zhao W, Guo W. Heavy Atom‐Free, Mitochondria‐Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real‐Time In‐Situ Therapeutic Monitoring. Angew Chem Int Ed Engl 2022; 61:e202201815. [DOI: 10.1002/anie.202201815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Guangxiao Yao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yu Feng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Jiajin Weng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Guo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| |
Collapse
|
156
|
Fukushima H, Turkbey B, Pinto PA, Furusawa A, Choyke PL, Kobayashi H. Near-Infrared Photoimmunotherapy (NIR-PIT) in Urologic Cancers. Cancers (Basel) 2022; 14:2996. [PMID: 35740662 PMCID: PMC9221010 DOI: 10.3390/cancers14122996] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a novel molecularly-targeted therapy that selectively kills cancer cells by systemically injecting an antibody-photoabsorber conjugate (APC) that binds to cancer cells, followed by the application of NIR light that drives photochemical transformations of the APC. APCs are synthesized by selecting a monoclonal antibody that binds to a receptor on a cancer cell and conjugating it to IRDye700DX silica-phthalocyanine dye. Approximately 24 h after APC administration, NIR light is delivered to the tumor, resulting in nearly-immediate necrotic cell death of cancer cells while causing no harm to normal tissues. In addition, NIR-PIT induces a strong immunologic effect, activating anti-cancer immunity that can be further boosted when combined with either immune checkpoint inhibitors or immune suppressive cell-targeted (e.g., regulatory T cells) NIR-PIT. Currently, a global phase III study of NIR-PIT in recurrent head and neck squamous cell carcinoma is ongoing. The first APC and NIR laser systems were approved for clinical use in September 2020 in Japan. In the near future, the clinical applications of NIR-PIT will expand to other cancers, including urologic cancers. In this review, we provide an overview of NIR-PIT and its possible applications in urologic cancers.
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Baris Turkbey
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter A. Pinto
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA;
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Peter L. Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute (NIH), Bethesda, MD 20892, USA; (H.F.); (B.T.); (A.F.); (P.L.C.)
| |
Collapse
|
157
|
Yang Y, Huang J, Wei W, Zeng Q, Li X, Xing D, Zhou B, Zhang T. Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy. Nat Commun 2022; 13:3149. [PMID: 35672303 PMCID: PMC9174188 DOI: 10.1038/s41467-022-30713-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/06/2022] [Indexed: 12/23/2022] Open
Abstract
Phototheranostics based on upconversion nanoparticles (UCNPs) offer the integration of imaging diagnostics and phototherapeutics. However, the programmable control of the photoactivation of imaging and therapy with minimum side effects is challenging due to the lack of ideal switchable UCNPs agents. Here we demonstrate a facile strategy to switch the near infrared emission at 800 nm from rationally designed UCNPs by modulating the irradiation laser into pulse output. We further synthesize a theranostic nanoagent by combining with a photosensitizer and a photoabsorbing agent assembled on the UCNPs. The orthogonal activation of in vivo photoacoustic imaging and photodynamic therapy can be achieved by altering the excitation modes from pulse to continuous-wave output upon a single 980 nm laser. No obvious harmful effects during photoexcitation was identified, suggesting their use for long-term imaging-guidance and phototherapy. This work provides an approach to the orthogonal activation of imaging diagnostics and photodynamic therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Jinshu Huang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Wei Wei
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Qin Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Bo Zhou
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China.
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangzhou Key Laboratory of Spectral Analysis & Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
158
|
Hwang J, An EK, Zhang W, Kim HJ, Eom Y, Jin JO. Dual-functional alginate and collagen–based injectable hydrogel for the treatment of cancer and its metastasis. J Nanobiotechnology 2022; 20:245. [PMID: 35643505 PMCID: PMC9148466 DOI: 10.1186/s12951-022-01458-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/08/2022] [Indexed: 12/19/2022] Open
Abstract
Background Immunotherapies have been gaining attention for the prevention of cancer recurrence and metastasis. Cancer immunotherapy can induce memory cells to target cancer-specific antigens and, thus, selectively kill cancer cells. However, there are difficulties in inducing cancer antigen–specific immunity due to limited knowledge regarding cancer antigens. In this study, we synthesized a dual-functional hydrogel to induce antigen generation and immune activation. Results To elicit a cancer self-antigen–specific immune response, we synthesized an alginate-collagen–based injectable hydrogel, called thermally responsive hydrogel (pTRG), which was incorporated with indocyanine green and the immune stimulator polyinosinic:polycytidylic acid (poly I:C). pTRG was evaluated for its anticancer and anti-metastatic effects against CT-26 carcinoma and 4T1 breast tumor in mice by combining photothermal therapy (PTT) and immunotherapy. Near-infrared (NIR) irradiation promoted temperature elevation in pTRG, consequently exerting a therapeutic effect on mouse tumors. Lung metastasis was prevented in cured CT-26 tumor-injected mice following pTRG treatment via cancer antigen–specific T cell immunity. Moreover, pTRG successfully eliminated the original tumor in 4T1 tumor-bearing mice via PTT and protected them from lung metastasis. To further evaluate the carrier function of TRGs, different types of immunotherapeutic molecules were incorporated into TRGs, which led to the effective elimination of the first CT-26 tumor and the prevention of lung metastasis. Conclusions Our data demonstrate that TRG is a efficient material not only for treating primary tumors but also for preventing metastasis and recurrence.
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01458-x.
Collapse
|
159
|
Shao F, Pan Z, Long Y, Zhu Z, Wang K, Ji H, Zhu K, Song W, Song Y, Song X, Gai Y, Liu Q, Qin C, Jiang D, Zhu J, Lan X. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J Nanobiotechnology 2022; 20:243. [PMID: 35614462 PMCID: PMC9131648 DOI: 10.1186/s12951-022-01444-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is more prone to distant metastasis and visceral recurrence in comparison to other breast cancer subtypes, and is related to dismal prognosis. Nevertheless, TNBC has an undesirable response to targeted therapies. Therefore, to tackle the huge challenges in the diagnosis and treatment of TNBC, Nectin-4 was selected as a theranostic target because it was recently found to be highly expressed in TNBC. We developed anti-Nectin-4 monoclonal antibody (mAbNectin-4)-based theranostic pair, 99mTc-HYNIC-mAbNectin-4 and mAbNectin-4-ICG. 99mTc-HYNIC-mAbNectin-4 was applied to conduct immuno-single photon emission computed tomography (SPECT) for TNBC diagnosis and classification, and mAbNectin-4-ICG to mediate photothermal therapy (PTT) for relieving TNBC tumor growth. METHODS Nectin-4 expression levels of breast cancer cells (MDA-MB-468: TNBC cells; and MCF-7, non-TNBC cells) were proved by western blot, flow cytometry, and immunofluorescence imagning. Cell uptake assays, SPECT imaging, and biodistribution were performed to evaluate Nectin-4 targeting of 99mTc-HYNIC-mAbNectin-4. A photothermal agent (PTA) mAbNectin-4-ICG was generated and characterized. In vitro photothermal therapy (PTT) mediated by mAbNectin-4-ICG was conducted under an 808 nm laser. Fluorescence (FL) imaging was performed for mAbNectin-4-ICG mapping in vivo. In vivo PTT treatment effects on TNBC tumors and corresponding systematic toxicity were evaluated. RESULTS Nectin-4 is overexpressed in MDA-MB-468 TNBC cells, which could specifically uptake 99mTc-HYNIC-mAbNectin-4 with high targeting in vitro. The corresponding immunoSPECT imaging demonstrated exceptional performance in TNBC diagnosis and molecular classification. mAbNectin-4-ICG exhibited favourable biocompatibility, photothermal effects, and Nectin-4 targeting. FL imaging mapped biodistribution of mAbNectin-4-ICG with excellent tumor-targeting and retention in vivo. Moreover, mAbNectin-4-ICG-mediated PTT provided advanced TNBC tumor destruction efficiency with low systematic toxicity. CONCLUSION mAbNectin-4-based radioimmunoimaging provides visualization tools for the stratification and diagnosis for TNBC, and the corresponding mAbNectin-4-mediated PTT shows a powerful anti-tumor effect. Our findings demonstrate that this Nectin-4 targeting strategy offers a simple theranostic platform for TNBC.
Collapse
Affiliation(s)
- Fuqiang Shao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, 643000, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Zhidi Pan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Kun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Hao Ji
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Ke Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Wenyu Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yangmeihui Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Qingyao Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
- Jecho Biopharmaceuticals Co., Ltd., Tianjin, 300467, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy , the Ministry of Education , Wuhan, 430022, China.
| |
Collapse
|
160
|
Pan X, Gao A, Lin Z. Fluorescence imaging of tumor immune contexture in immune checkpoint blockade therapy. Int Immunopharmacol 2022; 106:108617. [DOI: 10.1016/j.intimp.2022.108617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
|
161
|
Miao J, Huo Y, Yao G, Feng Y, Weng J, Zhao W, Guo W. Heavy Atom‐Free, Mitochondria‐Targeted, and Activatable Photosensitizers for Photodynamic Therapy with Real‐Time In‐Situ Therapeutic Monitoring. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Junfeng Miao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yingying Huo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Guangxiao Yao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Yu Feng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Jiajin Weng
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Zhao
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| | - Wei Guo
- School of Chemistry and Chemical Engineering Shanxi University Taiyuan 030006 China
| |
Collapse
|
162
|
Peng Z, Lv X, Huang S. Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy. Cancer Control 2022. [PMCID: PMC9016614 DOI: 10.1177/10732748221088825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, the incidence of cancer has been increasing worldwide. Conventional cancer treatments include surgery, chemotherapy, and radiation, which mostly kill tumor cells at the expense of normal and immune cells. Although immunotherapy is an accurate, rapid, efficient tumor immune treatment, it causes serious adverse reactions, such as cytokine release syndrome (CRS) and neurotoxicity. Therefore, there is an urgent need to develop an effective and nontoxic procedure for immunotherapy. The clinical combination of phototherapy and immunoadjuvant therapy can induce immunogenic cell death and enhance antigen presentation synergy. It also causes a systemic antitumor immune response to manage residual tumors and distant metastases. Photoimmunotherapy (PIT) is a tumor treatment combining phototherapy with immunotherapy based on injecting a conjugate photosensitizer (IR700) and a monoclonal antibody (mAb) to target an expressed antigen on the tumor surface. This combination can enhance the immune response ability, thus having a good effect on the treatment of residual tumor and metastatic cancer. In this review, we summarize the recent progress in photoimmunotherapy, including photoimmunoconjugate (PIC), the activation mechanism of immunogenic cell death (ICD), the combination therapy model, opportunities and prospects. Specifically, we aim to provide a promising clinical therapy for solid tumor clinical transformation.
Collapse
Affiliation(s)
- Zheng Peng
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Xiaolan Lv
- Department of Laboratory Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liu Zhou, China
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
163
|
Furumoto H, Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Endoscopic Applications of Near-Infrared Photoimmunotherapy (NIR-PIT) in Cancers of the Digestive and Respiratory Tracts. Biomedicines 2022; 10:846. [PMID: 35453596 PMCID: PMC9027987 DOI: 10.3390/biomedicines10040846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and promising therapy that specifically destroys target cells by irradiating antibody-photo-absorber conjugates (APCs) with NIR light. APCs bind to target molecules on the cell surface, and when exposed to NIR light, cause disruption of the cell membrane due to the ligand release reaction and dye aggregation. This leads to rapid cell swelling, blebbing, and rupture, which leads to immunogenic cell death (ICD). ICD activates host antitumor immunity, which assists in killing still viable cancer cells in the treated lesion but is also capable of producing responses in untreated lesions. In September 2020, an APC and laser system were conditionally approved for clinical use in unresectable advanced head and neck cancer in Japan, and are now routine in appropriate patients. However, most tumors have been relatively accessible in the oral cavity or neck. Endoscopes offer the opportunity to deliver light deeper within hollow organs of the body. In recent years, the application of endoscopic therapy as an alternative to surgery for the treatment of cancer has expanded, providing significant benefits to inoperable patients. In this review, we will discuss the potential applications of endoscopic NIR-PIT, especially in thoracic and gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (H.F.); (T.K.); (H.W.); (A.F.); (P.L.C.)
| |
Collapse
|
164
|
Dubey N, Chandra S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
165
|
Zhan Q, Wu C, Ding H, Huang Y, Jiang Z, Liao N, Wang K, Li Y. Emerging Trends in Photodynamic Therapy for Head and Neck Cancer: A 10-Year Bibliometric Analysis Based on CiteSpace. Photodiagnosis Photodyn Ther 2022; 38:102860. [DOI: 10.1016/j.pdpdt.2022.102860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/10/2023]
|
166
|
Takakura H, Matsuhiro S, Kobayashi M, Goto Y, Harada M, Taketsugu T, Ogawa M. Axial-ligand-cleavable silicon phthalocyanines triggered by near-infrared light toward design of photosensitizers for photoimmunotherapy. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
167
|
Usama SM, Marker SC, Hernandez Vargas S, AghaAmiri S, Ghosh SC, Ikoma N, Tran Cao HS, Schnermann MJ, Azhdarinia A. Targeted Dual-Modal PET/SPECT-NIR Imaging: From Building Blocks and Construction Strategies to Applications. Cancers (Basel) 2022; 14:1619. [PMID: 35406390 PMCID: PMC8996983 DOI: 10.3390/cancers14071619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Molecular imaging is an emerging non-invasive method to qualitatively and quantitively visualize and characterize biological processes. Among the imaging modalities, PET/SPECT and near-infrared (NIR) imaging provide synergistic properties that result in deep tissue penetration and up to cell-level resolution. Dual-modal PET/SPECT-NIR agents are commonly combined with a targeting ligand (e.g., antibody or small molecule) to engage biomolecules overexpressed in cancer, thereby enabling selective multimodal visualization of primary and metastatic tumors. The use of such agents for (i) preoperative patient selection and surgical planning and (ii) intraoperative FGS could improve surgical workflow and patient outcomes. However, the development of targeted dual-modal agents is a chemical challenge and a topic of ongoing research. In this review, we define key design considerations of targeted dual-modal imaging from a topological perspective, list targeted dual-modal probes disclosed in the last decade, review recent progress in the field of NIR fluorescent probe development, and highlight future directions in this rapidly developing field.
Collapse
Affiliation(s)
- Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Sierra C. Marker
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Sukhen C. Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| | - Naruhiko Ikoma
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Hop S. Tran Cao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (N.I.); (H.S.T.C.)
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; (S.M.U.); (S.C.M.)
| | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; (S.H.V.); (S.A.); (S.C.G.)
| |
Collapse
|
168
|
Mussini A, Uriati E, Bianchini P, Diaspro A, Cavanna L, Abbruzzetti S, Viappiani C. Targeted photoimmunotherapy for cancer. Biomol Concepts 2022; 13:126-147. [PMID: 35304984 DOI: 10.1515/bmc-2022-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinically approved procedure that can exert a curative action against malignant cells. The treatment implies the administration of a photoactive molecular species that, upon absorption of visible or near infrared light, sensitizes the formation of reactive oxygen species. These species are cytotoxic and lead to tumor cell death, damage vasculature, and induce inflammation. Clinical investigations demonstrated that PDT is curative and does not compromise other treatment options. One of the major limitations of the original method was the low selectivity of the photoactive compounds for malignant over healthy tissues. The development of conjugates with antibodies has endowed photosensitizing molecules with targeting capability, so that the compounds are delivered with unprecedented precision to the site of action. Given their fluorescence emission capability, these supramolecular species are intrinsically theranostic agents.
Collapse
Affiliation(s)
- Andrea Mussini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Eleonora Uriati
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy.,Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Nanoscopy, Istituto Italiano di Tecnologia, Genova, Italy.,DIFILAB, Dipartimento di Fisica, Università Degli Studi di Genova, Genova, Italy
| | - Luigi Cavanna
- Dipartimento di Oncologia-Ematologia, Azienda USL di Piacenza, Piacenza, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università Degli Studi di Parma, Parma, Italy
| |
Collapse
|
169
|
Poly(styrene-co-maleic Acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J Pers Med 2022; 12:jpm12030493. [PMID: 35330492 PMCID: PMC8951206 DOI: 10.3390/jpm12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery.
Collapse
|
170
|
Meng Z, Zhang Y, Zhou X, Ji J, Liu Z. Nanovaccines with cell-derived components for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114107. [PMID: 34995678 DOI: 10.1016/j.addr.2021.114107] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/16/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022]
Abstract
Cancer nanovaccines as one of immunotherapeutic approaches are able to attack tumors by stimulating tumor-specific immunological responses. However, there still exist multiple challenges to be tackled for cancer nanovaccines to evoke potent antitumor immunity. Particularly, the administration of exogenous materials may cause the off-target immunotherapy responses. In recent years, biomimetic nanovaccines by using cell lysates, cell-derived nanovesicles, or extracted cell membranes as the functional components have received extensive attention. Such nanovaccines based on cell-derived components would show many unique advantages including inherent biocompatibility and the ability to trigger immune responses against a range of tumor-associated antigens. In this review article, we will introduce the recent research progresses of those cell-derived biomimetic nanovaccines for cancer immunotherapy, and discuss the perspectives and challenges associated with the future clinical translation of these emerging vaccine platforms.
Collapse
|
171
|
Wang R, Kim KH, Yoo J, Li X, Kwon N, Jeon YH, Shin SK, Han SS, Lee DS, Yoon J. A Nanostructured Phthalocyanine/Albumin Supramolecular Assembly for Fluorescence Turn-On Imaging and Photodynamic Immunotherapy. ACS NANO 2022; 16:3045-3058. [PMID: 35089696 DOI: 10.1021/acsnano.1c10565] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Smart phototheranostic nanomaterials are of significant interest for high-quality imaging and targeted therapy in the precision medicine field. Herein, a nanoscale photosensitizer (NanoPcM) is constructed through the self-assembly of morpholine-substituted silicon phthalocyanine (PcM) and albumin. NanoPcM displays a turn-on fluorescence depending on the acid-induced abolition of the photoinduced electron transfer effect (change in molecular structure) and disassembly of the nanostructure (change in supramolecular structure), which enables low-background and tumor-targeted fluorescence imaging. In addition, its efficient type I photoreaction endows NanoPcM with a superior immunogenic photodynamic therapy (PDT) effect against solid tumors. The combination of NanoPcM-based PDT and αPD-1-based immunotherapy can efficiently inhibit tumor growth, reduce spontaneous lung metastasis, and trigger abscopal effects. This study should provide a perspective for the future design of nanomaterials as promising phototheranostics for cancer imaging and therapy.
Collapse
Affiliation(s)
- Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kyu-Hwan Kim
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis for Energy and the Environment, Fujian Provincial Key Laboratory for Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun-Hui Jeon
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Suk-Kyung Shin
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, College of Medicine, Wide River Institute of Immunology, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
172
|
Shinohara M, Ashikaga Y, Xu W, Kim S, Fukaminato T, Niidome T, Kurihara S. Photochemical OFF/ON Cytotoxicity Switching by Using a Photochromic Surfactant with Visible Light Irradiation. ACS OMEGA 2022; 7:6093-6098. [PMID: 35224371 PMCID: PMC8867810 DOI: 10.1021/acsomega.1c06473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/28/2022] [Indexed: 05/27/2023]
Abstract
Photochemical switching of cytotoxicity by using spiropyran compounds with pyridinium and alkyl groups was investigated. The spiropyran compound, SP6, with a hexyl group as the alkyl group displayed negative photochromism, in which the hydrophilic open merocyanine form (MC form) was stable and isomerized to the hydrophobic closed spiro form (SP form) by visible light irradiation. Both MC and SP forms exhibited amphiphilicity because of the hydrophobic hexyl and hydrophilic pyridinium groups introduced. Cytotoxicity toward HeLa cells was observed for both MC and SP forms of SP6 at concentrations higher than the critical aggregation concentration of the isomers CACMC and CACSP (CACMC > CACSP), respectively. In contrast, cytotoxicity by SP6 was activated by visible light irradiation at concentrations between CACMC and CACSP; thus, photochemical switching of cytotoxicity from the OFF to ON state was achieved. Cytotoxicity was revealed to be caused by disruption of the cell membrane. The results provide an important step in developing novel next-generation photochemotherapy drugs.
Collapse
|
173
|
Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022; 58:2247-2258. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Combinational photoimmunotherapy (PIT) is considered to be an ideal strategy for the treatment of highly recurrent and metastatic cancer, because it can ablate the primary tumor and provide in situ an autologous tumor vaccine to induce the host immune response, ultimately achieving the goal of controlling tumor growth and distal metastasis. Significant efforts have been devoted to enhancing the immune response caused by phototherapy-eliminated tumors. Recently, supramolecular PIT nanoagents based on precise peptide self-assembly design have been employed to improve the efficacy of photoimmunotherapy by utilizing the stability, targeting capability and flexibility of drugs, increasing tumor immunogenicity and realizing the synergistic amplification of immune effects through multiple pathways and collaborative strategy. This review summarizes peptide-based supramolecular PIT nanoagents for phototherapy-synergized cancer immunotherapy and its progress in enhancing the effect of photoimmunotherapy, especially focusing on the design of peptide-based PIT nanoagents, the progress of bioactive peptides combined photoimmunotherapy, and the synergistic immune-response mechanism.
Collapse
Affiliation(s)
- Yamei Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics & Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China.,Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China.
| |
Collapse
|
174
|
Takashima K, Koga Y, Anzai T, Migita K, Yamaguchi T, Ishikawa A, Sakashita S, Yasunaga M, Yano T. Evaluation of Fluorescence Intensity and Antitumor Effect Using Real-Time Imaging in Photoimmunotherapy. Pharmaceuticals (Basel) 2022; 15:223. [PMID: 35215338 PMCID: PMC8880675 DOI: 10.3390/ph15020223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Photoimmunotherapy (PIT) is a promising tumor-selective treatment method that uses light-absorbing dye-conjugated antibodies and light irradiation. It has been reported that IR700 fluorescence changes with light irradiation. The purpose of this study was to investigate the fluorescence intensity and antitumor effect of PIT using real-time fluorescence observation of tumors and predict the required irradiation dose. The near-infrared camera system LIGHTVISION was used to image IR700 during PIT treatment. IR700 showed a sharp decrease in fluorescence intensity in the early stage of treatment and almost reached a plateau at an irradiation dose of 40 J/cm. Cetuximab-PIT for A431 xenografts was performed at multiple doses from 0-100 J/cm. A significant antitumor effect was observed at 40 J/cm compared to no irradiation, and there was no significant difference between 40 J/cm and 100 J/cm. These results suggest that the rate of decay of the tumor fluorescence intensity correlates with the antitumor effect by real-time fluorescence imaging during PIT. In addition, when the fluorescence intensity of the tumor plateaued in real-time fluorescence imaging, it was assumed that the laser dose was necessary for treatment.
Collapse
Affiliation(s)
- Kenji Takashima
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- NEXT Medical Device Innovation Center, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshikatsu Koga
- Department of Strategic Programs, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan;
| | - Takahiro Anzai
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (T.A.); (M.Y.)
| | - Kayo Migita
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Toru Yamaguchi
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Akihiro Ishikawa
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- Shimadzu Corporation, Kyoto 604-8511, Japan
| | - Shingo Sakashita
- Division of Developmental Pathology, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan;
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan; (T.A.); (M.Y.)
| | - Tomonori Yano
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (K.T.); (K.M.); (T.Y.); (A.I.)
- NEXT Medical Device Innovation Center, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| |
Collapse
|
175
|
Thankarajan E, Tuchinsky H, Aviel-Ronen S, Bazylevich A, Gellerman G, Patsenker L. Antibody guided activatable NIR photosensitizing system for fluorescently monitored photodynamic therapy with reduced side effects. J Control Release 2022; 343:506-517. [PMID: 35150812 DOI: 10.1016/j.jconrel.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/04/2023]
Abstract
Photodynamic therapy (PDT) utilizing an organic dye (photosensitizer) capable of killing cancer cells in the body upon light irradiation is one of the promising non-invasive treatment modalities for many cancers. A known drawback of PDT is a side-effect caused by existing photosensitizers to organs due to insufficient specificity and accidental light exposure of a patient during the delivery of the photosensitizer in the bloodstream. To overcome this issue, we developed a novel antibody guided, activatable photosensitizing system, Ab-mI2XCy-Ac, where the trastuzumab (Ab) is linked to the non-active (not phototoxic and not fluorescent) dye, mI2XCy-Ac, that contains the hydroxyl group protected by acetyl (Ac). This targeting, non-photo-active conjugate was shown to be safely (without detectable side-effects) delivered to the targeted tumor, where it is activated by the esterase-mediated acetyl group cleavage and effectively treats the tumor upon NIR light irradiation. It was demonstrated in the Her2 positive BT-474 tumor mouse model that the treatment efficacy of the activatable photosensitizing system is about the same as for the permanently active photosensitizer, Ab-mI2XCy, while the side-effects are noticeably reduced. In addition, this activatable system enables fluorescence monitoring of the photosensitizer activation events.
Collapse
Affiliation(s)
- Ebaston Thankarajan
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Helena Tuchinsky
- Department of Molecular Biology, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel; Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Andrii Bazylevich
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel
| | - Leonid Patsenker
- Department of Chemical Sciences, the Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel.
| |
Collapse
|
176
|
Suzuki H, Kaneko MK, Kato Y. Roles of Podoplanin in Malignant Progression of Tumor. Cells 2022; 11:575. [PMID: 35159384 PMCID: PMC8834262 DOI: 10.3390/cells11030575] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN) is a cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic vascular systems. PDPN is overexpressed in several tumors and is involved in their malignancy. PDPN induces platelet aggregation through binding to platelet receptor C-type lectin-like receptor 2. Furthermore, PDPN modulates signal transductions that regulate cell proliferation, differentiation, migration, invasion, epithelial-to-mesenchymal transition, and stemness, all of which are crucial for the malignant progression of tumor. In the tumor microenvironment (TME), PDPN expression is upregulated in the tumor stroma, including cancer-associated fibroblasts (CAFs) and immune cells. CAFs play significant roles in the extracellular matrix remodeling and the development of immunosuppressive TME. Additionally, PDPN functions as a co-inhibitory molecule on T cells, indicating its involvement with immune evasion. In this review, we describe the mechanistic basis and diverse roles of PDPN in the malignant progression of tumors and discuss the possibility of the clinical application of PDPN-targeted cancer therapy, including cancer-specific monoclonal antibodies, and chimeric antigen receptor T technologies.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
177
|
Nakamura K, Asanuma K, Okamoto T, Yoshida K, Matsuyama Y, Kita K, Hagi T, Nakamura T, Sudo A. GPR64, Screened from Ewing Sarcoma Cells, Is a Potential Target for Antibody-Based Therapy for Various Sarcomas. Cancers (Basel) 2022; 14:cancers14030814. [PMID: 35159080 PMCID: PMC8834492 DOI: 10.3390/cancers14030814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary New strategies for immunotherapy have led to an increased interest in tumor-specific antigens on the cell surface in the field of oncology. Identifying markers in sarcomas is difficult because their tumor mutation burden is less than that of carcinomas. We assumed that a target protein may be acceptable as a therapeutic target, even if it is only expressed in the epididymis along with the tumor, because the epididymis has special barriers, known as the blood–epididymis barrier (BEB). We identified GPR64 as a therapeutic target for Ewing sarcoma via next-generation RNA-sequencing. GPR64 is located on the apical membranes of efferent ductules and separated from antibodies by the BEB. This study revealed, for the first time, that anti-GPR64 antibodies accumulate in various sarcomas and avoid targeting GPR64 in the epididymis in vivo. Furthermore, GPR64 is widely expressed in various sarcomas and is, therefore, a potential antibody-based therapeutic target for sarcomas. Abstract Ewing sarcoma is an aggressive and the second most common bone tumor in adolescent and young adult patients. The 5-year survival rate is 60–70% for localized disease but 30% for patients with metastases. Here, we aimed to identify a therapeutic target for Ewing sarcoma and evaluate antibody-based therapeutic agents using in vitro and in vivo models. We identified G protein-coupled receptor 64 (GPR64) as a therapeutic target for Ewing sarcoma via next-generation RNA-sequencing. GPR64v205 mRNA was expressed in HTB166, A673, MG63, 143B, HS-Sy II, and HT1080 cell lines as well as in Ewing sarcoma, undifferentiated pleomorphic sarcoma, leiomyosarcoma, dedifferentiated liposarcoma, and synovial sarcoma tissues. GPR64 expression was observed in 62.5% of sarcoma cases and was overexpressed in 33.9% cases. GPR64-specific monoclonal antibodies were tested as near-infrared probes for in vivo imaging using subcutaneous tumor mouse xenografts. Fluorescence intensity was stronger for the AF700-labeled anti-GPR64 antibody than that for the AF700-labeled isotype control antibody. GPR64 was detected in engrafted tumors of A673, 143B, HT1080, and the epididymis but not in other resected tissues. The anti-GPR64 antibody showed excellent binding to GPR64-positive tumors but not to healthy tissues. This antibody has potential for drug delivery in the antibody-based treatment of sarcomas.
Collapse
Affiliation(s)
- Koichi Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
- Correspondence: ; Tel.: +81-59-231-5022
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan;
| | - Keisuke Yoshida
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| | - Yumi Matsuyama
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| | - Kouji Kita
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| | - Tomohito Hagi
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan; (K.N.); (K.Y.); (Y.M.); (K.K.); (T.H.); (T.N.); (A.S.)
| |
Collapse
|
178
|
Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103645. [PMID: 34914854 PMCID: PMC8811829 DOI: 10.1002/advs.202103645] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Indexed: 05/05/2023]
Abstract
Bacteriophages, also known as phages, are specific antagonists against bacteria. T7 phage has drawn massive attention in precision medicine owing to its distinctive advantages, such as short replication cycle, ease in displaying peptides and proteins, high stability and cloning efficiency, facile manipulation, and convenient storage. By introducing foreign gene into phage DNA, T7 phage can present foreign peptides or proteins site-specifically on its capsid, enabling it to become a nanoparticle that can be genetically engineered to screen and display a peptide or protein capable of recognizing a specific target with high affinity. This review critically introduces the biomedical use of T7 phage, ranging from the detection of serological biomarkers and bacterial pathogens, recognition of cells or tissues with high affinity, design of gene vectors or vaccines, to targeted therapy of different challenging diseases (e.g., bacterial infection, cancer, neurodegenerative disease, inflammatory disease, and foot-mouth disease). It also discusses perspectives and challenges in exploring T7 phage, including the understanding of its interactions with human body, assembly into scaffolds for tissue regeneration, integration with genome editing, and theranostic use in clinics. As a genetically modifiable biological nanoparticle, T7 phage holds promise as biomedical imaging probes, therapeutic agents, drug and gene carriers, and detection tools.
Collapse
Affiliation(s)
- Hui Yue
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Yan Li
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource ResearchCollege of Animal ScienceZhejiang UniversityYuhangtang Road 866HangzhouZhejiang310058P. R. China
| | - Chuanbin Mao
- School of Materials Science and EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
- Department of Chemistry and BiochemistryStephenson Life Science Research CenterInstitute for Biomedical Engineering, Science and TechnologyUniversity of Oklahoma101 Stephenson ParkwayNormanOklahoma73019‐5251USA
| |
Collapse
|
179
|
Ishida M. Synthesis of Near-Infrared Light-responsive Dyes Based on N-Confused Porphyrinoids. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masatoshi Ishida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University
| |
Collapse
|
180
|
|
181
|
Activity control of pH-responsive photosensitizer bis(6-quinolinoxy)P(V)tetrakis(4-chlorophenyl)porphyrin through intramolecular electron transfer. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
182
|
Ulfo L, Costantini PE, Di Giosia M, Danielli A, Calvaresi M. EGFR-Targeted Photodynamic Therapy. Pharmaceutics 2022; 14:241. [PMID: 35213974 PMCID: PMC8879084 DOI: 10.3390/pharmaceutics14020241] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a pivotal role in the proliferation and metastatization of cancer cells. Aberrancies in the expression and activation of EGFR are hallmarks of many human malignancies. As such, EGFR-targeted therapies hold significant potential for the cure of cancers. In recent years, photodynamic therapy (PDT) has gained increased interest as a non-invasive cancer treatment. In PDT, a photosensitizer is excited by light to produce reactive oxygen species, resulting in local cytotoxicity. One of the critical aspects of PDT is to selectively transport enough photosensitizers to the tumors environment. Accordingly, an increasing number of strategies have been devised to foster EGFR-targeted PDT. Herein, we review the recent nanobiotechnological advancements that combine the promise of PDT with EGFR-targeted molecular cancer therapy. We recapitulate the chemistry of the sensitizers and their modes of action in PDT, and summarize the advantages and pitfalls of different targeting moieties, highlighting future perspectives for EGFR-targeted photodynamic treatment of cancer.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Di Giosia
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 3, 40126 Bologna, Italy; (L.U.); (P.E.C.)
| | - Matteo Calvaresi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum—Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy;
| |
Collapse
|
183
|
Ulfo L, Cantelli A, Petrosino A, Costantini PE, Nigro M, Starinieri F, Turrini E, Zadran SK, Zuccheri G, Saporetti R, Di Giosia M, Danielli A, Calvaresi M. Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. NANOSCALE 2022; 14:632-641. [PMID: 34792088 DOI: 10.1039/d1nr06053h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum-Università di Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
184
|
Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022; 51:1336-1376. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry is a powerful tool to site-specifically activate drugs in living systems. Bioorthogonal reactions between a pair of biologically reactive groups can rapidly and specifically take place in a mild physiological milieu without perturbing inherent biochemical processes. Attributed to their high selectivity and efficiency, bioorthogonal reactions can significantly decrease background signals in bioimaging. Compared with metal-catalyzed bioorthogonal click reactions, metal-free click reactions are more biocompatible without the metal catalyst-induced cytotoxicity. Although a great number of bioorthogonal chemistry-based strategies have been reported for cancer theranostics, a comprehensive review is scarce to highlight the advantages of these strategies. In this review, recent progress in cancer theranostics guided by metal-free bioorthogonal click chemistry will be depicted in detail. The elaborate design as well as the advantages of bioorthogonal chemistry in tumor theranostics are summarized and future prospects in this emerging field are emphasized.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
185
|
Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy. Cancer Immunol Immunother 2022; 71:1877-1887. [PMID: 35013765 PMCID: PMC9271517 DOI: 10.1007/s00262-021-03124-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/26/2021] [Indexed: 11/27/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cell-specific cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. Intravenously injected APC binds the target cells, and subsequent NIR light exposure induces immunogenic cell death only in targeted cells. Panitumumab and cetuximab are antibodies that target human epidermal growth factor receptor (hEGFR) and are suitable for NIR-PIT. In athymic nude mouse models, panitumumab-based NIR-PIT showed superior therapeutic efficacy compared to cetuximab-based NIR-PIT because of the longer half-life of panitumumab-IR700 (pan-IR700) compared with cetuximab-IR700 (cet-IR700). Two light exposures on two consecutive days have also been shown to induce superior effects compared to a single light exposure in the athymic nude mouse model. However, the optimal regimen has not been assessed in immunocompetent mice. In this study, we compared panitumumab and cetuximab in APCs for NIR-PIT, and single and double light exposures using a newly established hEGFR-expressing cancer cell line derived from immunocompetent C57BL/6 mice (mEERL-hEGFR cell line). Fluorescence imaging showed that the decline of pan-IR700 was slower than cet-IR700 confirming a longer clearance time. Among all the combinations tested, mice receiving pan-IR700 and double light exposure showed the greatest tumor growth inhibition. This group was also shown to activate CD8+ T lymphocytes in lymph nodes and accumulate CD8+ T lymphocytes to a greater extent within the tumor compared with the control group. These results showed that APCs with longer half-life and double light exposure lead to superior outcomes in cancer cell-targeted NIR-PIT in an immunocompetent mouse model.
Collapse
|
186
|
Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022; 60:12. [PMID: 34981814 PMCID: PMC8759346 DOI: 10.3892/ijo.2022.5302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Monoclonal antibody technology plays a vital role in biomedical and immunotherapy, which greatly promotes the study of the structure and function of genes and proteins. To date, monoclonal antibodies have gone through four stages: murine monoclonal antibody, chimeric monoclonal antibody, humanised monoclonal antibody and fully human monoclonal antibody; thousands of monoclonal antibodies have been used in the fields of biology and medicine, playing a special role in the pathogenesis, diagnosis and treatment of disease. In this review, we compare the advantages and disadvantages of hybridoma technology, phage display technology, ribosome display technology, transgenic mouse technology, single B cell monoclonal antibody generation technologies, and forecast the promising applications of these technologies in clinical medicine, disease diagnosis and tumour treatment.
Collapse
Affiliation(s)
- Jiachen Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianing Ding
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
187
|
Kercher EM, Spring BQ. Photodynamic Treatments for Disseminated Cancer Metastases Using Fiber-Optic Technologies. Methods Mol Biol 2022; 2451:185-201. [PMID: 35505019 DOI: 10.1007/978-1-0716-2099-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.
Collapse
Affiliation(s)
- Eric M Kercher
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA
- Nanomedicine Science and Technology Center, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Bryan Q Spring
- Translational Biophotonics Cluster, Northeastern University, Boston, MA, USA.
- Department of Physics, Northeastern University, Boston, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
188
|
Okada R, Furusawa A, Choyke PL, Kobayashi H. Quantitative Assessment of the Efficacy of Near-Infrared Photoimmunotherapy with Bioluminescence Imaging. Methods Mol Biol 2022; 2525:3-13. [PMID: 35836056 DOI: 10.1007/978-1-0716-2473-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cell-specific cancer therapy in which antibody-photoabsorber conjugates (APCs) are activated by NIR light to induce rapid immunogenic cell death with minimal off-target effects. In preclinical settings, bioluminescence imaging (BLI) is useful to quantitatively assess the efficacy of NIR-PIT for both in vitro and in vivo experiments, especially in the early phase of testing. Here, we describe the detailed methods of the experiments for NIR-PIT and evaluation of its efficacy using BLI.
Collapse
Affiliation(s)
- Ryuhei Okada
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
189
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
190
|
Takakura H. [Research on Photoimmunotherapy Based on Photochemical Property of Molecules]. YAKUGAKU ZASSHI 2022; 142:1313-1319. [PMID: 36450507 DOI: 10.1248/yakushi.22-00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Photoimmunotherapy (PIT) is a new cancer therapy that uses near-infrared (NIR) light and a conjugate of an antibody and a photosensitizer (IR700). Since both NIR light and the conjugate are not toxic for human, PIT has attracted attention as a promising cancer therapy with less side effects. However, there is no photosensitizer for PIT other than IR700. To improve the therapeutic effect, more light-sensitive dye is needed. To this end, we have studied the cytotoxic mechanism of PIT, showing that the hydrophilic axial ligand cleavage of IR700 by NIR light irradiation is important for the cytotoxicity. Herein, I focused on the triplet state (T1) of IR700 because the light-induced axial ligand cleavage reaction is thought to occur via the T1. First, the quantum yield of intersystem crossing, which is the transition efficiency from the excited singlet state (S1) to T1, was determined by analysis of the T1 kinetics using fluorescence correlation spectroscopy (FCS). Also, I examined whether the cytotoxicity of IR700 can be changed in the presence of a triplet quencher. The findings obtained here will be important information for the design of a new photosensitizer for PIT in the future.
Collapse
Affiliation(s)
- Hideo Takakura
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University
| |
Collapse
|
191
|
Zhang X, Nakajima T, Mizoi K, Tsushima Y, Ogihara T. Imaging modalities for monitoring acute therapeutic effects after near-infrared photoimmunotherapy in vivo. JOURNAL OF BIOPHOTONICS 2022; 15:e202100266. [PMID: 34783185 DOI: 10.1002/jbio.202100266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) induces immediate cell death after irradiation with near-infrared (NIR) light. Acute therapeutic effects caused by NIR-PIT before the change of tumor size is essential to be monitored by imaging modalities. We summarized and compared the imaging modalities for evaluating acute therapeutic effects after NIR-PIT, and aimed to provide a better understanding of advantages and disadvantages of each modality for evaluation in clinical applications. Fluorescence imaging and fluorescence lifetime, with high resolution, remains high accumulation of fluorescence dyes in the normal organs. High resolution and noninvasiveness are the major advantages of magnetic resonance imaging, while 18 F-fluorodeoxyglucose positron emission tomography provides information about the glucose metabolism. Optical coherence tomography provided more information about the blood vessels. Thus, all of the imaging modalities play an important role in evaluating acute therapeutic effects after NIR-PIT. Clinicians should choose suitable modality according to specific purpose and conditions in clinical application.
Collapse
Affiliation(s)
- Xieyi Zhang
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Research Program for Diagnostic and Molecular Imaging, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Takuo Ogihara
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| |
Collapse
|
192
|
Chen M, Lin Z, Yao G, Hong X, Xue X, Chen L. A Novel NIR Fluorescent Nanoprobe Targeting HER2-Positive Breast Cancer: Tra-TTR-A. Bioinorg Chem Appl 2021; 2021:2495958. [PMID: 35003236 PMCID: PMC8739169 DOI: 10.1155/2021/2495958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
TTRE, a photosensitizer molecule, has excellent biofluorescence imaging performance and effective antitumor properties for breast cancer. However, its application in breast cancer treatment is limited due to poor tumor selectivity and lack of targeting ability. In this study, TTRE and trastuzumab were combined to synthesize Tra-TTR-A, a novel near-infrared fluorescent nanoprobe for HER2 positive breast cancer. The targeting and antitumor abilities of Tra-TTR-A in breast cancer were also investigated. Like TTRE, Tra-TTR-A has a stable structure with remarkable optical properties and in vivo imaging capacity. However, Tra-TTR-A not only inhibits tumor growth by generating reactive oxygen species but also kills tumor cells by trastuzumab. In this study, Tra-TTR-A, a new type of near-infrared fluorescent nanoprobe that targets HER2-positive breast cancer, was successfully synthesized. Tra-TTR-A could be used in in vivo imaging, targeted photodynamic therapy, and diagnosis and treatment for breast cancer.
Collapse
Affiliation(s)
- Meijuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhousheng Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xi Hong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolei Xue
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
193
|
Zhu H, Li Z, Ye E, Leong DT. Oxygenic Enrichment in Hybrid Ruthenium Sulfide Nanoclusters for an Optimized Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60351-60361. [PMID: 34874695 DOI: 10.1021/acsami.1c17608] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Transition-metal dichalcogenide (TMD)-based nanomaterials have been extensively explored for the photonic therapy. To the best of our knowledge, near-infrared (NIR) light is a requirement for the photothermal therapy (PTT) to achieve the feature of deep-tissue penetration, whereas no obvious absorption peaks existing in the NIR region for existing TMD nanomaterials limit their therapeutic efficacy. As one category of TMD nanomaterials, ruthenium sulfide-based nanomaterials have been less exploited in biomedical applications including tumor therapy so far. Here, we develop a facile biomineralization-assisted bottom-up strategy to synthesize oxygenic hybrid ruthenium sulfide nanoclusters (RuSx NCs) by regulating the oxygen amounts and sulfur defects for the optimized PTT. By regulating the increasing initial molar ratios of Ru to S, RuSx NCs with small sizes were endowed with increasing oxygen contents and sulfur defects, leading to the photothermal conversion efficiency (PCE) increasing from 32.8 to 41.9%, which were higher than that of most small-sized inorganic photothermal nanoagents. In contrast to commercial indocyanine green, these RuSx NCs exhibited higher photostability under NIR laser irradiation. The high PCE and superior photostability allowed RuSx NCs to effectively and completely ablate cancer cells. Thus, the proposed defect engineering strategy endows RuSx NCs with an excellent photothermal effect for the PTT of tumors of living mice, which also proves the potential of further exploring the properties of RuSx NCs for future biomedical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
194
|
Guan C, Zhu X, Feng C. DNA Nanodevice-Based Drug Delivery Systems. Biomolecules 2021; 11:1855. [PMID: 34944499 PMCID: PMC8699395 DOI: 10.3390/biom11121855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
DNA, a natural biological material, has become an ideal choice for biomedical applications, mainly owing to its good biocompatibility, ease of synthesis, modifiability, and especially programmability. In recent years, with the deepening of the understanding of the physical and chemical properties of DNA and the continuous advancement of DNA synthesis and modification technology, the biomedical applications based on DNA materials have been upgraded to version 2.0: through elaborate design and fabrication of smart-responsive DNA nanodevices, they can respond to external or internal physical or chemical stimuli so as to smartly perform certain specific functions. For tumor treatment, this advancement provides a new way to solve the problems of precise targeting, controllable release, and controllable elimination of drugs to a certain extent. Here, we review the progress of related fields over the past decade, and provide prospects for possible future development directions.
Collapse
Affiliation(s)
- Chaoyang Guan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
195
|
Turner MA, Lwin TM, Amirfakhri S, Nishino H, Hoffman RM, Yazaki PJ, Bouvet M. The Use of Fluorescent Anti-CEA Antibodies to Label, Resect and Treat Cancers: A Review. Biomolecules 2021; 11:1819. [PMID: 34944463 PMCID: PMC8699160 DOI: 10.3390/biom11121819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
A major barrier to the diagnosis and effective treatment of solid-tumor cancers is the difficulty in detection and visualization of tumor margins in primary and metastatic disease. The use of fluorescence can augment the surgeon's ability to detect cancer and aid in its resection. Several cancer types express carcinoembryonic antigen (CEA) including colorectal, pancreatic and gastric cancer. Antibodies to CEA have been developed and tagged with near-infrared fluorescent dyes. This review article surveyed the use of CEA antibodies conjugated to fluorescent probes for in vivo studies since 1990. PubMed and Google Scholar databases were queried, and 900 titles and abstracts were screened. Fifty-nine entries were identified as possibly meeting inclusion/exclusion criteria and were reviewed in full. Forty articles were included in the review and their citations were screened for additional entries. A total of 44 articles were included in the final review. The use of fluorescent anti-CEA antibodies has been shown to improve detection and resection of tumors in both murine models and clinically. The cumulative results indicate that fluorescent-conjugated anti-CEA antibodies have important potential to improve cancer diagnosis and surgery. In an emerging technology, anti-CEA fluorescent antibodies have also been successfully used for photoimmunotherapy treatment for cancer.
Collapse
Affiliation(s)
- Michael A. Turner
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | | | - Siamak Amirfakhri
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Hiroto Nishino
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert M. Hoffman
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
- AntiCancer Inc., San Diego, CA 92111, USA
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Michael Bouvet
- VA San Diego Healthcare System, La Jolla, CA 92161, USA; (M.A.T.); (S.A.); (H.N.); (R.M.H.)
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
196
|
Abadi B, Yazdanpanah N, Nokhodchi A, Rezaei N. Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: State of the art and future perspectives. Adv Drug Deliv Rev 2021; 179:114035. [PMID: 34740765 DOI: 10.1016/j.addr.2021.114035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiform (GBM) is considered as the most lethal tumor among CNS malignancies. Although immunotherapy has achieved remarkable advances in cancer treatment, it has not shown satisfactory results in GBM patients. Biomaterial science, along with nanobiotechnology, is able to optimize the efficiency of immunotherapy in these patients. They can be employed to provide the specific activation of immune cells in tumor tissue and combinational therapy as well as preventing systemic adverse effects resulting from hyperactivation of immune responses and off-targeting effect. Advance biomaterials in this field are classified into targeting nanocarriers and localized delivery systems. This review will offer an overview of immunotherapy strategies for glioblastoma and advance delivery systems for immunotherapeutics that may have a high potential in glioblastoma treatment.
Collapse
|
197
|
Wang Z, Xu FJ, Yu B. Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Front Bioeng Biotechnol 2021; 9:783354. [PMID: 34805129 PMCID: PMC8599151 DOI: 10.3389/fbioe.2021.783354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted tremendous attention in the antitumor and antimicrobial areas. To enhance the water solubility of photosensitizers and facilitate their accumulation in the tumor/infection site, polymeric materials are frequently explored as delivery systems, which are expected to show target and controllable activation of photosensitizers. This review introduces the smart polymeric delivery systems for the PDT of tumor and bacterial infections. In particular, strategies that are tumor/bacteria targeted or activatable by the tumor/bacteria microenvironment such as enzyme/pH/reactive oxygen species (ROS) are summarized. The similarities and differences of polymeric delivery systems in antitumor and antimicrobial PDT are compared. Finally, the potential challenges and perspectives of those polymeric delivery systems are discussed.
Collapse
Affiliation(s)
- Zhijia Wang
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Fu-Jian Xu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| | - Bingran Yu
- Laboratory of Biomedical Materials and Key Lab of Biomedical Materials of Natural Macromolecules Beijing University of Chemical Technology, Ministry of Education, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
198
|
Nakajima K, Miyazaki F, Terada K, Takakura H, Suzuki M, Ogawa M. Comparison of low-molecular-weight ligand and whole antibody in prostate-specific membrane antigen targeted near-infrared photoimmunotherapy. Int J Pharm 2021; 609:121135. [PMID: 34571072 DOI: 10.1016/j.ijpharm.2021.121135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/23/2021] [Indexed: 12/28/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a cancer phototherapy that uses antibody-IR700 conjugate (Ab-IR700) and NIR light. Ab-IR700 forms aggregates on the plasma membranes of targeted cancer cells after light exposure, inducing lethal physical damage within the membrane. Low-molecular-weight (LMW) ligands are candidate targeting moieties instead of antibodies, but whether LMW-IR700 conjugates induce cell death by aggregation, the same mechanism as Ab-IR700, is unknown. Thus, we investigated differences in cytotoxicity and mechanisms between LMW-IR700 and Ab-IR700 targeting prostate-specific membrane antigen (PSMA). Both conjugates decreased cell viability to the same degree after light irradiation, but different morphological changes were observed in PSMA-positive LNCaP cells by microscopy. Cell swelling and bleb formation were induced by Ab-IR700, but only swelling was observed in cells treated with LMW-IR700, suggesting the cells were damaged via different cytotoxic mechanisms. However, LMW-IR700 induced bleb formation, a hallmark of NIR-PIT with Ab-IR700, when singlet oxygen was quenched or LMW-IR700 was localized only on the plasma membrane. Moreover, the water-soluble axial ligands of LMW-IR700 were cleaved, consistent with previous reports on Ab-IR700. Thus, the main cytotoxic mechanisms of Ab-IR700 and LMW-IR700 differ, although LMW-IR700 on the plasma membrane can cause aggregation-mediated cytotoxicity as well as Ab-IR700.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Fuka Miyazaki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuki Terada
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hideo Takakura
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Motofumi Suzuki
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
199
|
Inanami O, Hiraoka W, Goto Y, Takakura H, Ogawa M. EPR Characterisation of Phthalocyanine Radical Anions in Near‐Infrared Photocleavage of the Hydrophilic Axial Ligand of a Photoimmunotherapeutic Reagent, IR700. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Osamu Inanami
- Faculty of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Wakako Hiraoka
- Department of Physics School of Science and Technology Meiji University Kawasaki 214-8571 Japan
| | - Yuto Goto
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Hideo Takakura
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| | - Mikako Ogawa
- Faculty of Pharmaceutical Sciences Hokkaido University Sapporo 060-0812 Japan
| |
Collapse
|
200
|
Yamaguchi H, On J, Morita T, Suzuki T, Okada Y, Ono J, Evdokiou A. Combination of Near-Infrared Photoimmunotherapy Using Trastuzumab and Small Protein Mimetic for HER2-Positive Breast Cancer. Int J Mol Sci 2021; 22:ijms222212213. [PMID: 34830099 PMCID: PMC8618566 DOI: 10.3390/ijms222212213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a promising cancer therapy based on a monoclonal antibody conjugated to a photosensitizer (IR700Dye) that is activated by near-infrared light irradiation. We previously reported on the use of NIR-PIT with a small protein mimetic, the Affibody molecule (6–7 kDa), instead of a monoclonal antibody. In this study, we investigated a combination of NIR-PIT for HER2-positive breast cancer cells (SK-BR3, MDA-MB361, and JIMT1) with HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate. HER2 Affibody and trastuzumab target different epitopes of the HER2 protein and do not compete. In vitro, the combination of NIR-PIT using both HER2 Affibody-IR700Dye conjugate and trastuzumab-IR700Dye conjugate induced necrotic cell death of HER2-positive breast cancer cells without damage to HER2-negative breast cancer cells (MCF7). It was more efficient than NIR-PIT using either the HER2 Affibody-IR700Dye conjugate alone or the trastuzumab-IR700Dye conjugate alone. Additionally, this combination of NIR-PIT was significantly effective against HER2 low-expressing cancer cells, trastuzumab-resistant cells (JIMT1), and brain metastatic cells of breast cancer (MDA-MB361). Furthermore, in vivo imaging exhibited the strong fluorescence intensity of both HER2 Affibody-IR700Dye conjugates and trastuzumab-Alexa488 conjugates in HER2-positive tumor, indicating that both HER2 Affibody and trastuzumab specifically bind to HER2-positive tumors without competing with each other. In conclusion, the combination of NIR-PIT using both HER2 Affibody and trastuzumab expands the targeting scope of NIR-PIT for HER2-positive breast cancer.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (H.Y.); (T.M.)
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, SA 5011, Australia
| | - Jotaro On
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8122, Japan;
| | - Takao Morita
- Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (H.Y.); (T.M.)
| | - Takamasa Suzuki
- Faculty of Engineering, Niigata University, Niigata 950-2181, Japan;
| | - Yasuo Okada
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (Y.O.); (J.O.)
| | - Junya Ono
- Department of Pathology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan; (Y.O.); (J.O.)
| | - Andreas Evdokiou
- Discipline of Surgery, Breast Cancer Research Unit, Basil Hetzel Institute, University of Adelaide, Adelaide, SA 5011, Australia
- Correspondence: ; Tel.: +61-8-8222-7451
| |
Collapse
|