151
|
Rivas MA, Meydan C, Chin CR, Challman MF, Kim D, Bhinder B, Kloetgen A, Viny AD, Teater MR, McNally DR, Doane AS, Béguelin W, Fernández MTC, Shen H, Wang X, Levine RL, Chen Z, Tsirigos A, Elemento O, Mason CE, Melnick AM. Smc3 dosage regulates B cell transit through germinal centers and restricts their malignant transformation. Nat Immunol 2021; 22:240-253. [PMID: 33432228 PMCID: PMC7855695 DOI: 10.1038/s41590-020-00827-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 10/25/2020] [Indexed: 01/28/2023]
Abstract
During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Cell Cycle Proteins/deficiency
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Chondroitin Sulfate Proteoglycans/deficiency
- Chondroitin Sulfate Proteoglycans/genetics
- Chondroitin Sulfate Proteoglycans/metabolism
- Chromosomal Proteins, Non-Histone/deficiency
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dioxygenases
- Gene Deletion
- Gene Dosage
- Gene Expression Regulation, Neoplastic
- Germinal Center/immunology
- Germinal Center/metabolism
- Germinal Center/pathology
- Haploinsufficiency
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Immunity, Humoral
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Signal Transduction
- Cohesins
- Mice
Collapse
Affiliation(s)
- Martín A Rivas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matt F Challman
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daleum Kim
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bhavneet Bhinder
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Aaron D Viny
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matt R Teater
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dylan R McNally
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ashley S Doane
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Hao Shen
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiang Wang
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ross L Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Institute for Computational Medicine, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari M Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
152
|
Huang YH, Cai K, Xu PP, Wang L, Huang CX, Fang Y, Cheng S, Sun XJ, Liu F, Huang JY, Ji MM, Zhao WL. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther 2021; 6:10. [PMID: 33431788 PMCID: PMC7801454 DOI: 10.1038/s41392-020-00437-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic alterations play an important role in tumor progression of diffuse large B-cell lymphoma (DLBCL). However, the biological relevance of epigenetic gene mutations on tumor microenvironment remains to be determined. The core set of genes relating to histone methylation (KMT2D, KMT2C, EZH2), histone acetylation (CREBBP, EP300), DNA methylation (TET2), and chromatin remodeling (ARID1A) were detected in the training cohort of 316 patients by whole-genome/exome sequencing (WGS/WES) and in the validation cohort of 303 patients with newly diagnosed DLBCL by targeted sequencing. Their correlation with peripheral blood immune cells and clinical outcomes were assessed. Underlying mechanisms on tumor microenvironment were investigated both in vitro and in vivo. Among all 619 DLBCL patients, somatic mutations in KMT2D (19.5%) were most frequently observed, followed by mutations in ARID1A (8.7%), CREBBP (8.4%), KMT2C (8.2%), TET2 (7.8%), EP300 (6.8%), and EZH2 (2.9%). Among them, CREBBP/EP300 mutations were significantly associated with decreased peripheral blood absolute lymphocyte-to-monocyte ratios, as well as inferior progression-free and overall survival. In B-lymphoma cells, the mutation or knockdown of CREBBP or EP300 inhibited H3K27 acetylation, downregulated FBXW7 expression, activated the NOTCH pathway, and downstream CCL2/CSF1 expression, resulting in tumor-associated macrophage polarization to M2 phenotype and tumor cell proliferation. In B-lymphoma murine models, xenografted tumors bearing CREBBP/EP300 mutation presented lower H3K27 acetylation, higher M2 macrophage recruitment, and more rapid tumor growth than those with CREBBP/EP300 wild-type control via FBXW7-NOTCH-CCL2/CSF1 axis. Our work thus contributed to the understanding of aberrant histone acetylation regulation on tumor microenvironment as an alternative mechanism of tumor progression in DLBCL.
Collapse
Affiliation(s)
- Yao-Hui Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Xin Huang
- Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin-Yan Huang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Meng Ji
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
153
|
Aslam MA, Alemdehy MF, Kwesi-Maliepaard EM, Muhaimin FI, Caganova M, Pardieck IN, van den Brand T, van Welsem T, de Rink I, Song JY, de Wit E, Arens R, Jacobs H, van Leeuwen F. Histone methyltransferase DOT1L controls state-specific identity during B cell differentiation. EMBO Rep 2021; 22:e51184. [PMID: 33410591 PMCID: PMC7857439 DOI: 10.15252/embr.202051184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Differentiation of naïve peripheral B cells into terminally differentiated plasma cells is characterized by epigenetic alterations, yet the epigenetic mechanisms that control B‐cell fate remain unclear. Here, we identified a role for the histone H3K79 methyltransferase DOT1L in controlling B‐cell differentiation. Mouse B cells lacking Dot1L failed to establish germinal centers (GC) and normal humoral immune responses in vivo. In vitro, activated B cells in which Dot1L was deleted showed aberrant differentiation and prematurely acquired plasma cell characteristics. Similar results were obtained when DOT1L was chemically inhibited in mature B cells in vitro. Mechanistically, combined epigenomics and transcriptomics analysis revealed that DOT1L promotes expression of a pro‐proliferative, pro‐GC program. In addition, DOT1L indirectly supports the repression of an anti‐proliferative plasma cell differentiation program by maintaining the repression of Polycomb Repressor Complex 2 (PRC2) targets. Our findings show that DOT1L is a key modulator of the core transcriptional and epigenetic landscape in B cells, establishing an epigenetic barrier that warrants B‐cell naivety and GC B‐cell differentiation.
Collapse
Affiliation(s)
- Muhammad Assad Aslam
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Mir Farshid Alemdehy
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Iris N Pardieck
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van den Brand
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tibor van Welsem
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Iris de Rink
- Genome Core Facility, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Gene Regulation, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ramon Arens
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
154
|
Isshiki Y, Melnick A. Epigenetic Mechanisms of Therapy Resistance in Diffuse Large B Cell Lymphoma (DLBCL). Curr Cancer Drug Targets 2021; 21:274-282. [PMID: 33413063 PMCID: PMC10591517 DOI: 10.2174/1568009620666210106122750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin B cell lymphoma (NHL), and manifests highly heterogeneous genetic/phenotypic characteristics as well as variable responses to conventional immunochemotherapy. Genetic profiling of DLBCL patients has revealed highly recurrent mutations of epigenetic regulator genes such as CREBBP, KMT2D, EZH2 and TET2. These mutations drive malignant transformation through aberrant epigenetic programming of B-cells and may influence clinical outcomes. These and other chromatin modifier genes also play critical roles in normal B-cells, as they undergo the various phenotypic transitions characteristic of the humoral immune response. Many of these functions have to do with impairing immune surveillance and may critically mediate resistance to immunotherapies. In this review, we describe how epigenetic dysfunction induces lymphomagenesis and discuss ways of implementing precision epigenetic therapies to reverse these immune resistant phenotypes.
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/pharmacology
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mutation
- Neoplasm Proteins/classification
- Neoplasm Proteins/genetics
Collapse
Affiliation(s)
- Yusuke Isshiki
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Ari Melnick
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
155
|
Kerdivel G, Boeva V. Chromatin Immunoprecipitation Followed by Next-Generation Sequencing (ChIP-Seq) Analysis in Ewing Sarcoma. Methods Mol Biol 2021; 2226:265-284. [PMID: 33326109 DOI: 10.1007/978-1-0716-1020-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ChIP-seq is the method of choice for profiling protein-DNA interactions, and notably for characterizing the landscape of transcription factor binding and histone modifications. This technique has been widely used to study numerous aspects of tumor biology and led to the development of several promising cancer therapies. In Ewing sarcoma research, ChIP-seq provided important insights into the mechanism of action of the major oncogenic fusion protein EWSR1-FLI1 and related epigenetic and transcriptional changes. In this chapter, we provide a detailed pipeline to analyze ChIP-seq experiments from the preprocessing of raw data to tertiary analysis of detected binding sites. We also advise on best practice to prepare tumor samples prior to sequencing.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, Paris, France.
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, Paris Descartes University, Paris, France. .,Department of Computer Science, ETH Zurich, Institute for Machine Learning, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Zürich, Switzerland.
| |
Collapse
|
156
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
157
|
Comparison of gene mutation spectra in younger and older Chinese acute myeloid leukemia patients and its prognostic value. Gene 2020; 770:145344. [PMID: 33333221 DOI: 10.1016/j.gene.2020.145344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/01/2020] [Accepted: 12/01/2020] [Indexed: 11/21/2022]
Abstract
Differences in the gene mutation spectra of younger and older Chinese adult AML patients and the prognostic significance of these differentially presented gene mutations are rarely reported. One hundred and thirteen newly diagnosed Chinese adults with AML, divided into groups of younger and older patients, were enrolled in this study. Bone marrow samples from the patients were analyzed using targeted next-generation sequencing with a panel of 141 genes. Ninety-eight mutated genes were detected and the top 10 mutated genes were KMT2D, FLT3, FAT1, ASXL1, NRAS, DNMT3A, RELN, TET2, JAK2, and KRAS. The top five functional groups were the tyrosine kinase pathway, transcription factors, DNA methylation, chromatin modifiers, and the JAK-STAT signaling pathway. Younger patients exhibited higher incidences of KMT2D (33.8% vs 10.4%, P = 0.004) and KRAS (15.4% vs 2.1%, P = 0.042) mutations than older patients; whereas, older patients harbored more SRSF2 (20.8% vs 0%, P = 0.002), transcription factor (85.4% vs 67.7%, P = 0.031), DNA methylation (58.3% vs 36.9%, P = 0.024), and RNA splicing (31.3% vs 12.3%, P = 0.013) mutations than younger patients. Moreover, patients with SRSF2 mutations exhibited a lower rate of overall survival (P < 0.001) and relapse-free survival (P < 0.001) than patients carrying wild-type SRSF2. In conclusion, rarely reported KMT2D, FAT1, and RELN mutations were detected at high frequencies in our cohort. The gene mutation spectrum of older patients was different to that of younger patients. Moreover, older patients harbored more SRSF2 mutations, which predicted lower rates of overall and relapse-free survival.
Collapse
|
158
|
Stem cell characteristics promote aggressiveness of diffuse large B-cell lymphoma. Sci Rep 2020; 10:21342. [PMID: 33288848 PMCID: PMC7721882 DOI: 10.1038/s41598-020-78508-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/24/2020] [Indexed: 11/09/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) may present initially in bone marrow, liver and spleen without any lymphadenopathy (referred to as BLS-type DLBCL), which is aggressive and frequently associated with hemophagocytic syndrome. Its tumorigenesis and molecular mechanisms warrant clarification. By gene microarray profiling with bioinformatics analysis, we found higher expression of the stem cell markers HOXA9 and NANOG, as well as BMP8B, CCR6 and S100A8 in BLS-type than conventional DLBCL. We further validated expression of these markers in a large cohort of DLBCL including BLS-type cases and found that expression of HOXA9 and NANOG correlated with inferior outcome and poor prognostic parameters. Functional studies with gene-overexpressed and gene-silenced DLBCL cell lines showed that expression of NANOG and HOXA9 promoted cell viability and inhibited apoptosis through suppression of G2 arrest in vitro and enhanced tumor formation and hepatosplenic infiltration in a tail-vein-injected mouse model. Additionally, HOXA9-transfected tumor cells showed significantly increased soft-agar clonogenic ability and tumor sphere formation. Interestingly, B cells with higher CCR6 expression revealed a higher chemotactic migration for CCL20. Taken together, our findings support the concept that tumor or precursor cells of BLS-type DLBCL are attracted by chemotaxis and home to the bone marrow, where the microenvironment promotes the expression of stem cell characteristics and aggressiveness of tumor cells.
Collapse
|
159
|
Bakhshi TJ, Georgel PT. Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J 2020; 10:123. [PMID: 33277464 PMCID: PMC7718920 DOI: 10.1038/s41408-020-00389-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma and is notorious for its heterogeneity, aggressive nature, and the frequent development of resistance and/or relapse after treatment with standard chemotherapy. To address these problems, a strong emphasis has been placed on researching the molecular origins and mechanisms of DLBCL to develop effective treatments. One of the major insights produced by such research is that DLBCL almost always stems from genetic damage that occurs during the germinal center (GC) reaction, which is required for the production of high-affinity antibodies. Indeed, there is significant overlap between the mechanisms that govern the GC reaction and those that drive the progression of DLBCL. A second important insight is that some of the most frequent genetic mutations that occur in DLBCL are those related to chromatin and epigenetics, especially those related to proteins that “write” histone post-translational modifications (PTMs). Mutation or deletion of these epigenetic writers often renders cells unable to epigenetically “switch on” critical gene sets that are required to exit the GC reaction, differentiate, repair DNA, and other essential cellular functions. Failure to activate these genes locks cells into a genotoxic state that is conducive to oncogenesis and/or relapse.
Collapse
Affiliation(s)
- Tanner J Bakhshi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Philippe T Georgel
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA. .,Department of Biological Sciences, Cell Differentiation and Development Center, Byrd Biotechnology Science Center, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
160
|
Leeman-Neill RJ, Soderquist CR, Montanari F, Raciti P, Park D, Radeski D, Mansukhani MM, Murty VV, Hsiao S, Alobeid B, Bhagat G. Phenogenomic heterogeneity of post-transplant plasmablastic lymphomas. Haematologica 2020; 107:201-210. [PMID: 33297669 PMCID: PMC8719101 DOI: 10.3324/haematol.2020.267294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/14/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is a rare and clinically aggressive neoplasm that typically occurs in immunocompromised individuals, including those infected with human immunodeficiency virus (HIV) and solid organ allograft recipients. Most prior studies have focused on delineating the clinico-pathological features and genetic attributes of HIVrelated PBL, in which MYC deregulation, Epstein-Barr virus (EBV) infection and, more recently, mutations in JAK/STAT, MAP kinase, and NOTCH pathway genes have been implicated in disease pathogenesis. The phenotypic spectrum of post-transplant (PT)-PBL is not well characterized and data on underlying genetic alterations are limited. This led us to perform comprehensive histopathological and immunophenotypic evaluation and targeted sequencing of 18 samples from 11 patients (8 males, 3 females; age range, 12-76 years) with PT-PBL; eight de novo and three preceded by other types of post-transplant lymphoproliferative disorders. Post-transplant PBL displayed morphological and immunophenotypic heterogeneity and some features overlapped those of plasmablastic myeloma. Six (55%) cases were EBV positive and five (45%) showed MYC rearrangement by fluorescence in situ hybridization. Recurrent mutations in epigenetic regulators (KMT2/MLL family, TET2) and DNA damage repair and response (TP53, mismatch repair genes, FANCA, ATRX), MAP kinase (KRAS, NRAS, HRAS, BRAF), JAK/STAT (STAT3, STAT6, SOCS1), NOTCH (NOTCH1, NOTCH3, SPEN), and immune surveillance (FAS, CD58) pathway genes were observed, with the mutational profiles of EBV+ and EBV– cases exhibiting both similarities and differences. Clinical outcomes also varied, with survival ranging from 0-15.9 years after diagnosis. Besides uncovering the biological heterogeneity of PT-PBL, our study highlights similarities and distinctions between PT-PBL and PBL occurring in other settings and reveals potentially targetable oncogenic pathways in subsets of the disease.
Collapse
Affiliation(s)
| | | | - Francesca Montanari
- Division of Hematology/Oncology, Columbia University Irving Medical Center, NY Presbyterian Hospital, New York, NY
| | | | | | - Dejan Radeski
- Department of Haematology, Sir Charles Gairdner Hospital, Perth
| | | | - Vundavalli V Murty
- Department of Medicine, Division of Cytogenetics, Columbia University Irving Medical Center, NY Presbyterian Hospital, New York, NY
| | | | | | | |
Collapse
|
161
|
Abstract
Although we are just beginning to understand the mechanisms that regulate the epigenome, aberrant epigenetic programming has already emerged as a hallmark of hematologic malignancies including acute myeloid leukemia (AML) and B-cell lymphomas. Although these diseases arise from the hematopoietic system, the epigenetic mechanisms that drive these malignancies are quite different. Yet, in all of these tumors, somatic mutations in transcription factors and epigenetic modifiers are the most commonly mutated set of genes and result in multilayered disruption of the epigenome. Myeloid and lymphoid neoplasms generally manifest epigenetic allele diversity, which contributes to tumor cell population fitness regardless of the underlying genetics. Epigenetic therapies are emerging as one of the most promising new approaches for these patients. However, effective targeting of the epigenome must consider the need to restore the various layers of epigenetic marks, appropriate biological end points, and specificity of therapeutic agents to truly realize the potential of this modality.
Collapse
Affiliation(s)
- Cihangir Duy
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wendy Béguelin
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
162
|
Kealy L, Di Pietro A, Hailes L, Scheer S, Dalit L, Groom JR, Zaph C, Good-Jacobson KL. The Histone Methyltransferase DOT1L Is Essential for Humoral Immune Responses. Cell Rep 2020; 33:108504. [PMID: 33326791 DOI: 10.1016/j.celrep.2020.108504] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/02/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Histone modifiers are essential for the ability of immune cells to reprogram their gene expression during differentiation. The recruitment of the histone methyltransferase DOT1L (disruptor of telomeric silencing 1-like) induces oncogenic gene expression in a subset of B cell leukemias. Despite its importance, its role in the humoral immune system is unclear. Here, we demonstrate that DOT1L is a critical regulator of B cell biology. B cell development is defective in Dot1lf/fMb1Cre/+ mice, culminating in a reduction of peripheral mature B cells. Upon immunization or influenza infection of Dot1lf/fCd23Cre/+ mice, class-switched antibody-secreting cells are significantly attenuated and germinal centers fail to form. Consequently, DOT1L is essential for B cell memory formation. Transcriptome, pathway, and histological analyses identified a role for DOT1L in reprogramming gene expression for appropriate localization of B cells during the initial stage of the response. Together, these results demonstrate an essential role for DOT1L in generating an effective humoral immune response.
Collapse
Affiliation(s)
- Liam Kealy
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lauren Hailes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sebastian Scheer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lennard Dalit
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Colby Zaph
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
163
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
164
|
Germline variants of DNA repair genes in early onset mantle cell lymphoma. Oncogene 2020; 40:551-563. [PMID: 33191405 DOI: 10.1038/s41388-020-01542-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Although somatic mutations of DNA repair genes are frequent in mantle cell lymphoma (MCL), our understanding of their germline defects is limited. In a Chinese family with maternal Lynch syndrome and paternal B cell non-Hodgkin lymphoma, one sibling developed both Lynch syndrome and MCL. Lynch syndrome is caused by heterozygous mutations in mismatch repair (MMR) genes. To understand the genetic predispositions in the family, we performed exome sequencing and analyses of affected individuals and their tumor samples. A novel germline indel, MLH1 Gly101fsX1, was identified as the cause of Lynch syndrome, and unstable microsatellite loci and mutational signatures as evidence of defective MMR were revealed in the MCL sample. Furthermore, we included additional 15 MCL patients with early onset, and found by exome sequencing that 11 patients carried heterozygous germline variants of 20 DNA repair genes, including MSH2 in MMR. In the MCL with MSH2 Arg359fsX16, unstable microsatellite loci and defective MMR signatures were also found. In addition, five patients also had heterozygous germline variants of genes involved in B cell functions. Thus, our study found germline variants of genes in single-strand break repair, double-strand break repair, and Fanconi anemia pathway in early onset MCL; and for the first time we identified germline defects of MMR in two MCLs.
Collapse
|
165
|
MLL4-associated condensates counterbalance Polycomb-mediated nuclear mechanical stress in Kabuki syndrome. Nat Genet 2020; 52:1397-1411. [PMID: 33169020 PMCID: PMC7610431 DOI: 10.1038/s41588-020-00724-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
The genetic elements required to tune gene expression are partitioned in active and repressive nuclear condensates. Chromatin compartments include transcriptional clusters whose dynamic establishment and functioning depend on multivalent interactions occurring among transcription factors, cofactors and basal transcriptional machinery. However, how chromatin players contribute to the assembly of transcriptional condensates is poorly understood. By interrogating the effect of KMT2D (also known as MLL4) haploinsufficiency in Kabuki syndrome, we found that mixed lineage leukemia 4 (MLL4) contributes to the assembly of transcriptional condensates through liquid-liquid phase separation. MLL4 loss of function impaired Polycomb-dependent chromatin compartmentalization, altering the nuclear architecture. By releasing the nuclear mechanical stress through inhibition of the mechanosensor ATR, we re-established the mechanosignaling of mesenchymal stem cells and their commitment towards chondrocytes both in vitro and in vivo. This study supports the notion that, in Kabuki syndrome, the haploinsufficiency of MLL4 causes an altered functional partitioning of chromatin, which determines the architecture and mechanical properties of the nucleus.
Collapse
|
166
|
Zhang P, Zhang M. Epigenetic alterations and advancement of treatment in peripheral T-cell lymphoma. Clin Epigenetics 2020; 12:169. [PMID: 33160401 PMCID: PMC7648940 DOI: 10.1186/s13148-020-00962-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of clinically aggressive diseases associated with poor prognosis. Except for ALK + anaplastic large-cell lymphoma (ALCL), most peripheral T-cell lymphomas are highly malignant and have an aggressive disease course and poor clinical outcomes, with a poor remission rate and frequent relapse after first-line treatment. Aberrant epigenetic alterations play an important role in the pathogenesis and development of specific types of peripheral T-cell lymphoma, including the regulation of the expression of genes and signal transduction. The most common epigenetic alterations are DNA methylation and histone modification. Histone modification alters the level of gene expression by regulating the acetylation status of lysine residues on the promoter surrounding histones, often leading to the silencing of tumour suppressor genes or the overexpression of proto-oncogenes in lymphoma. DNA methylation refers to CpG islands, generally leading to tumour suppressor gene transcriptional silencing. Genetic studies have also shown that some recurrent mutations in genes involved in the epigenetic machinery, including TET2, IDH2-R172, DNMT3A, RHOA, CD28, IDH2, TET2, MLL2, KMT2A, KDM6A, CREBBP, and EP300, have been observed in cases of PTCL. The aberrant expression of miRNAs has also gradually become a diagnostic biomarker. These provide a reasonable molecular mechanism for epigenetic modifying drugs in the treatment of PTCL. As epigenetic drugs implicated in lymphoma have been continually reported in recent years, many new ideas for the diagnosis, treatment, and prognosis of PTCL originate from epigenetics in recent years. Novel epigenetic-targeted drugs have shown good tolerance and therapeutic effects in the treatment of peripheral T-cell lymphoma as monotherapy or combination therapy. NCCN Clinical Practice Guidelines also recommended epigenetic drugs for PTCL subtypes as second-line therapy. Epigenetic mechanisms provide new directions and therapeutic strategies for the research and treatment of peripheral T-cell lymphoma. Therefore, this paper mainly reviews the epigenetic changes in the pathogenesis of peripheral T-cell lymphoma and the advancement of epigenetic-targeted drugs in the treatment of peripheral T-cell lymphoma (PTCL).
Collapse
Affiliation(s)
- Ping Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China. .,Academy of Medical Sciences of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
167
|
Flümann R, Rehkämper T, Nieper P, Pfeiffer P, Holzem A, Klein S, Bhatia S, Kochanek M, Kisis I, Pelzer BW, Ahlert H, Hauer J, da Palma Guerreiro A, Ryan JA, Reimann M, Riabinska A, Wiederstein J, Krüger M, Deckert M, Altmüller J, Klatt AR, Frenzel LP, Pasqualucci L, Béguelin W, Melnick AM, Sander S, Montesinos-Rongen M, Brunn A, Lohneis P, Büttner R, Kashkar H, Borkhardt A, Letai A, Persigehl T, Peifer M, Schmitt CA, Reinhardt HC, Knittel G. An Autochthonous Mouse Model of Myd88- and BCL2-Driven Diffuse Large B-cell Lymphoma Reveals Actionable Molecular Vulnerabilities. Blood Cancer Discov 2020; 2:70-91. [PMID: 33447829 DOI: 10.1158/2643-3230.bcd-19-0059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on gene expression profiles, diffuse large B cell lymphoma (DLBCL) is sub-divided into germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Two of the most common genomic aberrations in ABC-DLBCL are mutations in MYD88, as well as BCL2 copy number gains. Here, we employ immune phenotyping, RNA-Seq and whole exome sequencing to characterize a Myd88 and Bcl2-driven mouse model of ABC-DLBCL. We show that this model resembles features of human ABC-DLBCL. We further demonstrate an actionable dependence of our murine ABC-DLBCL model on BCL2. This BCL2 dependence was also detectable in human ABC-DLBCL cell lines. Moreover, human ABC-DLBCLs displayed increased PD-L1 expression, compared to GCB-DLBCL. In vivo experiments in our ABC-DLBCL model showed that combined venetoclax and RMP1-14 significantly increased the overall survival of lymphoma bearing animals, indicating that this combination may be a viable option for selected human ABC-DLBCL cases harboring MYD88 and BCL2 aberrations.
Collapse
Affiliation(s)
- Ruth Flümann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim Rehkämper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pascal Nieper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pauline Pfeiffer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alessandra Holzem
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sebastian Klein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Sanil Bhatia
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Moritz Kochanek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ilmars Kisis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benedikt W Pelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heinz Ahlert
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Alexandra da Palma Guerreiro
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jeremy A Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Maurice Reimann
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Virchow Campus, Berlin, Germany
| | - Arina Riabinska
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Janica Wiederstein
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martina Deckert
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Andreas R Klatt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Clinical Chemistry, Cologne, Germany
| | - Lukas P Frenzel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Laura Pasqualucci
- Department of Pathology and Cell Biology, Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Sandrine Sander
- Adaptive Immunity and Lymphoma Group, German Cancer Research Center/National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Manuel Montesinos-Rongen
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Anna Brunn
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Philipp Lohneis
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Reinhard Büttner
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Hamid Kashkar
- Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Arndt Borkhardt
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Thorsten Persigehl
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology and Interventional Radiology, Cologne, Germany
| | - Martin Peifer
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Department of Translational Genomics, Cologne, Germany
| | - Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Virchow Campus, Berlin, Germany.,Kepler Universitätsklinikum, Medical Department of Hematology and Oncology, Johannes Kepler University, Linz, Austria
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Gero Knittel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
168
|
Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, Batlevi CL, Campbell P, Ribrag V, Damaj GL, Dickinson M, Jurczak W, Kazmierczak M, Opat S, Radford J, Schmitt A, Yang J, Whalen J, Agarwal S, Adib D, Salles G. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol 2020. [PMID: 33035457 DOI: 10.1016/s1470-2045(20)3044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Activating mutations of EZH2, an epigenetic regulator, are present in approximately 20% of patients with follicular lymphoma. We investigated the activity and safety of tazemetostat, a first-in-class, oral EZH2 inhibitor, in patients with follicular lymphoma. METHODS This study was an open-label, single-arm, phase 2 trial done at 38 clinics or hospitals in France, the UK, Australia, Canada, Poland, Italy, Ukraine, Germany, and the USA. Eligible patients were adults (≥18 years) with histologically confirmed follicular lymphoma (grade 1, 2, 3a, or 3b) that had relapsed or was refractory to two or more systemic therapies, had an Eastern Cooperative Oncology Group performance status of 0-2, and had sufficient tumour tissue for central testing of EZH2 mutation status. Patients were categorised by EZH2 status: mutant (EZH2mut) or wild-type (EZH2WT). Patients received 800 mg of tazemetostat orally twice per day in continuous 28-day cycles. The primary endpoint was objective response rate based on the 2007 International Working Group criteria for non-Hodgkin lymphoma, assessed by an independent radiology committee. Activity and safety analyses were done in patients who received one dose or more of tazemetostat. This study is registered with ClinicalTrials.gov, NCT01897571, and follow-up is ongoing. FINDINGS Between July 9, 2015, and May 24, 2019, 99 patients (45 in the EZH2mut cohort and 54 in the EZH2WT cohort) were enrolled in the study. At data cutoff for the analysis (Aug 9, 2019), the median follow-up was 22·0 months (IQR 12·0-26·7) for the EZH2mut cohort and 35·9 months (24·9-40·5) for the EZH2WT cohort. The objective response rate was 69% (95% CI 53-82; 31 of 45 patients) in the EZH2mut cohort and 35% (23-49; 19 of 54 patients) in the EZH2WT cohort. Median duration of response was 10·9 months (95% CI 7·2-not estimable [NE]) in the EZH2mut cohort and 13·0 months (5·6-NE) in the EZH2WT cohort; median progression-free survival was 13·8 months (10·7-22·0) and 11·1 months (3·7-14·6). Among all 99 patients, treatment-related grade 3 or worse adverse events included thrombocytopenia (three [3%]), neutropenia (three [3%]), and anaemia (two [2%]). Serious treatment-related adverse events were reported in four (4%) of 99 patients. There were no treatment-related deaths. INTERPRETATION Tazemetostat monotherapy showed clinically meaningful, durable responses and was generally well tolerated in heavily pretreated patients with relapsed or refractory follicular lymphoma. Tazemetostat is a novel treatment for patients with follicular lymphoma. FUNDING Epizyme.
Collapse
MESH Headings
- Adult
- Aged
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Benzamides/administration & dosage
- Benzamides/adverse effects
- Biphenyl Compounds
- Enhancer of Zeste Homolog 2 Protein/genetics
- Female
- Humans
- Lymphoma, Follicular/drug therapy
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Male
- Middle Aged
- Morpholines
- Mutation/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Progression-Free Survival
- Pyridones/administration & dosage
- Pyridones/adverse effects
- Treatment Outcome
Collapse
Affiliation(s)
- Franck Morschhauser
- Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU de Lille, Université de Lille, Lille, France.
| | - Hervé Tilly
- Department of Hematology and INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital & Imperial College Healthcare NHS Trust, London, UK
| | - Pamela McKay
- Department of Hematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Tycel Phillips
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sarit Assouline
- Division of Hematology, Jewish General Hospital, Montreal, QC, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Connie Lee Batlevi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Campbell
- Department of Clinical Haematology, Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
| | - Vincent Ribrag
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Gandhi Laurent Damaj
- Hematology Institute, Hematologie Clinique, University Hospital School of Medicine, Caen, France
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Wojciech Jurczak
- Department of Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Stephen Opat
- Haematology Department, Monash University, Melbourne, VIC, Australia
| | - John Radford
- Department of Medical Oncology, University of Manchester, Manchester, UK; NIHR Manchester Clinical Research Facility, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Anna Schmitt
- Department of Hematology, Institut Bergonié, Bordeaux, France
| | - Jay Yang
- Clinical Development, Epizyme, Cambridge, MA, USA
| | | | | | - Deyaa Adib
- Clinical Development, Epizyme, Cambridge, MA, USA
| | - Gilles Salles
- Department of Hematology, Lyon-Sud Hospital, University of Lyon, Pierre-Bénite, France
| |
Collapse
|
169
|
Rickels R, Wang L, Iwanaszko M, Ozark PA, Morgan MA, Piunti A, Khalatyan N, Soliman SHA, Rendleman EJ, Savas JN, Smith ER, Shilatifard A. A small UTX stabilization domain of Trr is conserved within mammalian MLL3-4/COMPASS and is sufficient to rescue loss of viability in null animals. Genes Dev 2020; 34:1493-1502. [PMID: 33033055 PMCID: PMC7608747 DOI: 10.1101/gad.339762.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
Catalytic-inactivating mutations within the Drosophila enhancer H3K4 mono-methyltransferase Trr and its mammalian homologs, MLL3/4, cause only minor changes in gene expression compared with whole-gene deletions for these COMPASS members. To identify essential histone methyltransferase-independent functions of Trr, we screened to identify a minimal Trr domain sufficient to rescue Trr-null lethality and demonstrate that this domain binds and stabilizes Utx in vivo. Using the homologous MLL3/MLL4 human sequences, we mapped a short ∼80-amino-acid UTX stabilization domain (USD) that promotes UTX stability in the absence of the rest of MLL3/4. Nuclear UTX stability is enhanced when the USD is fused with the MLL4 HMG-box. Thus, COMPASS-dependent UTX stabilization is an essential noncatalytic function of Trr/MLL3/MLL4, suggesting that stabilizing UTX could be a therapeutic strategy for cancers with MLL3/4 loss-of-function mutations.
Collapse
Affiliation(s)
- Ryan Rickels
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Patrick A Ozark
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Shimaa H A Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Emily J Rendleman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Edwin R Smith
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| |
Collapse
|
170
|
Zhang MC, Fang Y, Wang L, Cheng S, Fu D, He Y, Zhao Y, Wang CF, Jiang XF, Song Q, Xu PP, Zhao WL. Clinical efficacy and molecular biomarkers in a phase II study of tucidinostat plus R-CHOP in elderly patients with newly diagnosed diffuse large B-cell lymphoma. Clin Epigenetics 2020; 12:160. [PMID: 33097085 PMCID: PMC7585299 DOI: 10.1186/s13148-020-00948-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Elderly patients with diffuse large B-cell lymphoma (DLBCL) present with poor clinical outcome and intolerance to intensive chemotherapy. Histone deacetylase inhibitors (HDACIs) show anti-lymphoma activities and can be applied to treat DLBCL. This study aimed to evaluate efficacy and safety of oral HDACI tucidinostat (formerly known as chidamide) plus R-CHOP (CR-CHOP) in elderly patients with newly diagnosed DLBCL (International Prognostic Index ≥ 2). RESULTS Among 49 patients, the complete response rate was 86%, with overall response rate achieving 94%. The 2-year progression survival (PFS) and overall survival (OS) rates were 68% (95% CI 52-79) and 83% (95% CI 68-91). Comparing with historical control (NCT01852435), the 2-year PFS and OS rates of double-expressor lymphoma phenotype (DEL) were improved, and negative prognostic effect of histone acetyltransferases CREBBP/EP300 mutations was also mitigated by CR-CHOP. Grade 3-4 neutropenia was reported in 171, grade 3-4 thrombocytopenia in 27, and grade 3 anemia in 11 of 283 cycles. No grade 4 non-hematological adverse event was reported. CONCLUSION CR-CHOP is effective and safe in elderly patients with newly diagnosed DLBCL. Relevance of DEL phenotype and molecular biomarkers on CR-CHOP response warrants further investigation in DLBCL. Trial registration ClinicalTrial.gov, NCT02753647. Registered on April 28, 2016.
Collapse
Affiliation(s)
- Mu-Chen Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Fu Wang
- Department of Pathology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu-Feng Jiang
- Department of Nuclear Medicine, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Song
- Department of Radiology, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng-Peng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine At Shanghai, Ruijin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant Et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
171
|
Morschhauser F, Tilly H, Chaidos A, McKay P, Phillips T, Assouline S, Batlevi CL, Campbell P, Ribrag V, Damaj GL, Dickinson M, Jurczak W, Kazmierczak M, Opat S, Radford J, Schmitt A, Yang J, Whalen J, Agarwal S, Adib D, Salles G. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol 2020; 21:1433-1442. [PMID: 33035457 DOI: 10.1016/s1470-2045(20)30441-1] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Activating mutations of EZH2, an epigenetic regulator, are present in approximately 20% of patients with follicular lymphoma. We investigated the activity and safety of tazemetostat, a first-in-class, oral EZH2 inhibitor, in patients with follicular lymphoma. METHODS This study was an open-label, single-arm, phase 2 trial done at 38 clinics or hospitals in France, the UK, Australia, Canada, Poland, Italy, Ukraine, Germany, and the USA. Eligible patients were adults (≥18 years) with histologically confirmed follicular lymphoma (grade 1, 2, 3a, or 3b) that had relapsed or was refractory to two or more systemic therapies, had an Eastern Cooperative Oncology Group performance status of 0-2, and had sufficient tumour tissue for central testing of EZH2 mutation status. Patients were categorised by EZH2 status: mutant (EZH2mut) or wild-type (EZH2WT). Patients received 800 mg of tazemetostat orally twice per day in continuous 28-day cycles. The primary endpoint was objective response rate based on the 2007 International Working Group criteria for non-Hodgkin lymphoma, assessed by an independent radiology committee. Activity and safety analyses were done in patients who received one dose or more of tazemetostat. This study is registered with ClinicalTrials.gov, NCT01897571, and follow-up is ongoing. FINDINGS Between July 9, 2015, and May 24, 2019, 99 patients (45 in the EZH2mut cohort and 54 in the EZH2WT cohort) were enrolled in the study. At data cutoff for the analysis (Aug 9, 2019), the median follow-up was 22·0 months (IQR 12·0-26·7) for the EZH2mut cohort and 35·9 months (24·9-40·5) for the EZH2WT cohort. The objective response rate was 69% (95% CI 53-82; 31 of 45 patients) in the EZH2mut cohort and 35% (23-49; 19 of 54 patients) in the EZH2WT cohort. Median duration of response was 10·9 months (95% CI 7·2-not estimable [NE]) in the EZH2mut cohort and 13·0 months (5·6-NE) in the EZH2WT cohort; median progression-free survival was 13·8 months (10·7-22·0) and 11·1 months (3·7-14·6). Among all 99 patients, treatment-related grade 3 or worse adverse events included thrombocytopenia (three [3%]), neutropenia (three [3%]), and anaemia (two [2%]). Serious treatment-related adverse events were reported in four (4%) of 99 patients. There were no treatment-related deaths. INTERPRETATION Tazemetostat monotherapy showed clinically meaningful, durable responses and was generally well tolerated in heavily pretreated patients with relapsed or refractory follicular lymphoma. Tazemetostat is a novel treatment for patients with follicular lymphoma. FUNDING Epizyme.
Collapse
Affiliation(s)
- Franck Morschhauser
- Groupe de Recherche sur les formes Injectables et les Technologies Associées, CHU de Lille, Université de Lille, Lille, France.
| | - Hervé Tilly
- Department of Hematology and INSERM U1245, Centre Henri Becquerel and Rouen University, Rouen, France
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, Hammersmith Hospital & Imperial College Healthcare NHS Trust, London, UK
| | - Pamela McKay
- Department of Hematology, Beatson West of Scotland Cancer Centre, Glasgow, UK
| | - Tycel Phillips
- Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Sarit Assouline
- Division of Hematology, Jewish General Hospital, Montreal, QC, Canada; Department of Oncology, McGill University, Montreal, QC, Canada
| | - Connie Lee Batlevi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip Campbell
- Department of Clinical Haematology, Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
| | - Vincent Ribrag
- Hematology Department, Gustave Roussy, Villejuif, France
| | - Gandhi Laurent Damaj
- Hematology Institute, Hematologie Clinique, University Hospital School of Medicine, Caen, France
| | - Michael Dickinson
- Department of Clinical Haematology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Wojciech Jurczak
- Department of Hematology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Maciej Kazmierczak
- Department of Hematology and Bone Marrow Transplantation, Poznań University of Medical Sciences, Poznań, Poland
| | - Stephen Opat
- Haematology Department, Monash University, Melbourne, VIC, Australia
| | - John Radford
- Department of Medical Oncology, University of Manchester, Manchester, UK; NIHR Manchester Clinical Research Facility, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Anna Schmitt
- Department of Hematology, Institut Bergonié, Bordeaux, France
| | - Jay Yang
- Clinical Development, Epizyme, Cambridge, MA, USA
| | | | | | - Deyaa Adib
- Clinical Development, Epizyme, Cambridge, MA, USA
| | - Gilles Salles
- Department of Hematology, Lyon-Sud Hospital, University of Lyon, Pierre-Bénite, France
| |
Collapse
|
172
|
Maitituoheti M, Keung EZ, Tang M, Yan L, Alam H, Han G, Singh AK, Raman AT, Terranova C, Sarkar S, Orouji E, Amin SB, Sharma S, Williams M, Samant NS, Dhamdhere M, Zheng N, Shah T, Shah A, Axelrad JB, Anvar NE, Lin YH, Jiang S, Chang EQ, Ingram DR, Wang WL, Lazar A, Lee MG, Muller F, Wang L, Ying H, Rai K. Enhancer Reprogramming Confers Dependence on Glycolysis and IGF Signaling in KMT2D Mutant Melanoma. Cell Rep 2020; 33:108293. [PMID: 33086062 PMCID: PMC7649750 DOI: 10.1016/j.celrep.2020.108293] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
Histone methyltransferase KMT2D harbors frequent loss-of-function somatic point mutations in several tumor types, including melanoma. Here, we identify KMT2D as a potent tumor suppressor in melanoma through an in vivo epigenome-focused pooled RNAi screen and confirm the finding by using a genetically engineered mouse model (GEMM) based on conditional and melanocyte-specific deletion of KMT2D. KMT2D-deficient tumors show substantial reprogramming of key metabolic pathways, including glycolysis. KMT2D deficiency aberrantly upregulates glycolysis enzymes, intermediate metabolites, and glucose consumption rates. Mechanistically, KMT2D loss causes genome-wide reduction of H3K4me1-marked active enhancer chromatin states. Enhancer loss and subsequent repression of IGFBP5 activates IGF1R-AKT to increase glycolysis in KMT2D-deficient cells. Pharmacological inhibition of glycolysis and insulin growth factor (IGF) signaling reduce proliferation and tumorigenesis preferentially in KMT2D-deficient cells. We conclude that KMT2D loss promotes tumorigenesis by facilitating an increased use of the glycolysis pathway for enhanced biomass needs via enhancer reprogramming, thus presenting an opportunity for therapeutic intervention through glycolysis or IGF pathway inhibitors.
Collapse
Affiliation(s)
- Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Z Keung
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Liang Yan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hunain Alam
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anand K Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sneha Sharma
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura Williams
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha S Samant
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayura Dhamdhere
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Norman Zheng
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tara Shah
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amiksha Shah
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacob B Axelrad
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nazanin E Anvar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward Q Chang
- Institute for Applied Cancer Science, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Davis R Ingram
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Lazar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florian Muller
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX, USA; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
173
|
Abstract
The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.
Collapse
|
174
|
Human MYD88L265P is insufficient by itself to drive neoplastic transformation in mature mouse B cells. Blood Adv 2020; 3:3360-3374. [PMID: 31698464 DOI: 10.1182/bloodadvances.2019000588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022] Open
Abstract
MYD88 L265P is the most common mutation in lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) and one of the most frequent in poor-prognosis subtypes of diffuse large B-cell lymphoma (DLBCL). Although inhibition of the mutated MYD88 pathway has an adverse impact on LPL/WM and DLBCL cell survival, its role in lymphoma initiation remains to be clarified. We show that in mice, human MYD88L265P promotes development of a non-clonal, low-grade B-cell lymphoproliferative disorder with several clinicopathologic features that resemble human LPL/WM, including expansion of lymphoplasmacytoid cells, increased serum immunoglobulin M (IgM) concentration, rouleaux formation, increased number of mast cells in the bone marrow, and proinflammatory signaling that progresses sporadically to clonal, high-grade DLBCL. Murine findings regarding differences in the pattern of MYD88 staining and immune infiltrates in the bone marrows of MYD88 wild-type (MYD88WT) and MYD88L265P mice are recapitulated in the human setting, which provides insight into LPL/WM pathogenesis. Furthermore, histologic transformation to DLBCL is associated with acquisition of secondary genetic lesions frequently seen in de novo human DLBCL as well as LPL/WM-transformed cases. These findings indicate that, although the MYD88L265P mutation might be indispensable for the LPL/WM phenotype, it is insufficient by itself to drive malignant transformation in B cells and relies on other, potentially targetable cooperating genetic events for full development of lymphoma.
Collapse
|
175
|
Abstract
Sequence analyses highlight a massive peptide sharing between immunoreactive Epstein-Barr virus (EBV) epitopes and human proteins that—when mutated, deficient or improperly functioning—associate with tumorigenesis, diabetes, lupus, multiple sclerosis, rheumatoid arthritis, and immunodeficiencies, among others. Peptide commonality appears to be the molecular platform capable of linking EBV infection to the vast EBV-associated diseasome via cross-reactivity and questions the hypothesis of the “negative selection” of self-reactive lymphocytes. Of utmost importance, this study warns that using entire antigens in anti-EBV immunotherapies can associate with autoimmune manifestations and further supports the concept of peptide uniqueness for designing safe and effective anti-EBV immunotherapies.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Hashomer, Israel.,I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Sechenov University, Moscow, Russia
| |
Collapse
|
176
|
Genetic heterogeneity and prognostic impact of recurrent ANK2 and TP53 mutations in mantle cell lymphoma: a multi-centre cohort study. Sci Rep 2020; 10:13359. [PMID: 32770099 PMCID: PMC7414214 DOI: 10.1038/s41598-020-70310-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular features of mantle cell lymphoma (MCL), including its increased incidence, and complex therapies have not been investigated in detail, particularly in East Asian populations. In this study, we performed targeted panel sequencing (TPS) and whole-exome sequencing (WES) to investigate the genetic alterations in Korean MCL patients. We obtained a total of 53 samples from MCL patients from five Korean university hospitals between 2009 and 2016. We identified the recurrently mutated genes such as SYNE1, ATM, KMT2D, CARD11, ANK2, KMT2C, and TP53, which included some known drivers of MCL. The mutational profiles of our cohort indicated genetic heterogeneity. The significantly enriched pathways were mainly involved in gene expression, cell cycle, and programmed cell death. Multivariate analysis revealed that ANK2 mutations impacted the unfavourable overall survival (hazard ratio [HR] 3.126; P = 0.032). Furthermore, TP53 mutations were related to worse progression-free survival (HR 7.813; P = 0.043). Among the recurrently mutated genes with more than 15.0% frequency, discrepancies were found in only 5 genes from 4 patients, suggesting comparability of the TPS to WES in practical laboratory settings. We provide the unbiased genetic landscape that might contribute to MCL pathogenesis and recurrent genes conferring unfavourable outcomes.
Collapse
|
177
|
Abstract
Histologic transformation of follicular lymphoma remains the leading cause of follicular lymphoma-related mortality in the rituximab era. Both the diverse timing of transformation and heterogeneity in associated genomic events suggest that histologic transformation may itself comprise distinct disease entities. Successive indolent and transformation episodes occur by divergent clonal evolution from an inferred common progenitor cell, representing a potential therapeutic target. Existing biological knowledge largely pre-dates anti-CD20 therapy, and further prospective validation is essential. Inclusion of transformation cases in clinical trials incorporating biomarker discovery, and an integrated understanding of the genetic and microenvironmental factors underpinning transformation, may unearth renewed clinical opportunities.
Collapse
Affiliation(s)
- Emil A Kumar
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jude Fitzgibbon
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. https://twitter.com/fitzgi02
| |
Collapse
|
178
|
Antunes ETB, Ottersbach K. The MLL/SET family and haematopoiesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194579. [PMID: 32389825 PMCID: PMC7294230 DOI: 10.1016/j.bbagrm.2020.194579] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/08/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
As demonstrated through early work in Drosophila, members of the MLL/SET family play essential roles during embryonic development through their participation in large protein complexes that are central to epigenetic regulation of gene expression. One of its members, MLL1, has additionally received a lot of attention as it is a potent oncogenic driver in different types of leukaemia when aberrantly fused to a large variety of partners as a result of chromosomal translocations. Its exclusive association with cancers of the haematopoietic system has prompted a large number of investigations into the role of MLL/SET proteins in haematopoiesis, a summary of which was attempted in this review. Interestingly, MLL-rearranged leukaemias are particularly prominent in infant and paediatric leukaemia, which commonly initiate in utero. This, together with the known function of MLL/SET proteins in embryonic development, has focussed research efforts in recent years on understanding the role of this protein family in developmental haematopoiesis and how this may be subverted by MLL oncofusions in infant leukaemia. A detailed understanding of these prenatal events is essential for the development of new treatments that improve the survival specifically of this very young patient group.
Collapse
Affiliation(s)
- Eric T B Antunes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
179
|
Abstract
PURPOSE OF REVIEW Emerging evidence has shown that epigenetic derangements might drive and promote tumorigenesis in various types of malignancies and is prevalent in both B cell and T cell lymphomas. The purpose of this review is to explain how the epigenetic derangements result in a chromatin-remodeled state in lymphoma and contribute to the biology and clinical features of these tumors. RECENT FINDINGS Studies have explored on the functional role of epigenetic derangements in chromatin remodeling and lymphomagenesis. For example, the haploinsufficiency of CREBBP facilitates malignant transformation in mice and directly implicates the importance to re-establish the physiologic acetylation level. New findings identified 4 prominent DLBCL subtypes, including EZB-GC-DLBCL subtype that enriched in mutations of CREBBP, EP300, KMT2D, and SWI/SNF complex genes. EZB subtype has a worse prognosis than other GCB-tumors. Moreover, the action of the histone modifiers as well as chromatin-remodeling factors (e.g., SWI/SNF complex) cooperates to influence the chromatin state resulting in transcription repression. Drugs that alter the epigenetic landscape have been approved in T cell lymphoma. In line with this finding, epigenetic lesions in histone modifiers have recently been uncovered in this disease, further confirming the vulnerability to the therapies targeting epigenetic derangements. Modulating the chromatin state by epigenetic-modifying agents provides precision-medicine opportunities to patients with lymphomas that depend on this biology.
Collapse
Affiliation(s)
- Yuxuan Liu
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Yulissa Gonzalez
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Jennifer E Amengual
- Division of Hematology and Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA.
| |
Collapse
|
180
|
Moubadder L, McCullough LE, Flowers CR, Koff JL. Linking Environmental Exposures to Molecular Pathogenesis in Non-Hodgkin Lymphoma Subtypes. Cancer Epidemiol Biomarkers Prev 2020; 29:1844-1855. [PMID: 32727723 DOI: 10.1158/1055-9965.epi-20-0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
Non-Hodgkin lymphoma comprises a heterogeneous group of hematologic malignancies, with about 60 subtypes that arise via various pathogenetic mechanisms. Although establishing etiology for specific NHL subtypes has been historically difficult given their relative rarity, environmental exposures have been repeatedly implicated as risk factors across many subtypes. Large-scale epidemiologic investigations have pinpointed chemical exposures in particular, but causality has not been established, and the exact biologic mechanisms underpinning these associations are unclear. Here we review chemical exposures that have been associated with development of NHL subtypes and discuss their biologic plausibility based on current research.
Collapse
Affiliation(s)
- Leah Moubadder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean L Koff
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| |
Collapse
|
181
|
Lopez G, Lazzeri G, Rappa A, Isimbaldi G, Cribiù FM, Guerini-Rocco E, Ferrero S, Vaira V, Di Fonzo A. Comprehensive Genomic Analysis Reveals the Prognostic Role of LRRK2 Copy-Number Variations in Human Malignancies. Genes (Basel) 2020; 11:genes11080846. [PMID: 32722212 PMCID: PMC7465025 DOI: 10.3390/genes11080846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Genetic alterations of leucine-rich repeat kinase 2 (LRRK2), one of the most important contributors to familial Parkinson’s disease (PD), have been hypothesized to play a role in cancer development due to demographical and preclinical data. Here, we sought to define the prevalence and prognostic significance of LRRK2 somatic mutations across all types of human malignancies by querying the publicly available online genomic database cBioPortal. Ninety-six different studies with 14,041 cases were included in the analysis, and 761/14,041 (5.4%) showed genetic alterations in LRRK2. Among these, 585 (76.9%) were point mutations, indels or fusions, 168 (22.1%) were copy number variations (CNVs), and 8 (1.0%) showed both types of alterations. One case showed the somatic mutation R1441C. A significant difference in terms of overall survival (OS) was noted between cases harboring somatic LRRK2 whole deletions, amplifications, and CNV-unaltered cases (median OS: 20.09, 57.40, and 106.57 months, respectively; p = 0.0008). These results suggest that both LRRK2 amplifications and whole gene deletions could play a role in cancer development, paving the way for future research in terms of potential treatment with LRRK2 small molecule inhibitors for LRRK2-amplified cases.
Collapse
Affiliation(s)
- Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
- School of Pathology, University of Milan, 20122 Milan, Italy
- Correspondence:
| | - Giulia Lazzeri
- Neurology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.L.); (A.D.F.)
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- School of Neurology, University of Milan, 20122 Milan, Italy
| | - Alessandra Rappa
- European Institute of Oncology (IEO), 20141 Milan, Italy; (A.R.); (E.G.-R.)
| | - Giuseppe Isimbaldi
- Unit of Surgical Pathology and Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy;
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
| | - Elena Guerini-Rocco
- European Institute of Oncology (IEO), 20141 Milan, Italy; (A.R.); (E.G.-R.)
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
- Department of Biomedical, Surgical, and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Valentina Vaira
- Pathology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.M.C.); (S.F.); (V.V.)
| | - Alessio Di Fonzo
- Neurology Unit, Fondazione IRCCS Ca’ Granda–Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.L.); (A.D.F.)
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
182
|
Rushton CK, Arthur SE, Alcaide M, Cheung M, Jiang A, Coyle KM, Cleary KLS, Thomas N, Hilton LK, Michaud N, Daigle S, Davidson J, Bushell K, Yu S, Rys RN, Jain M, Shepherd L, Marra MA, Kuruvilla J, Crump M, Mann K, Assouline S, Connors JM, Steidl C, Cragg MS, Scott DW, Johnson NA, Morin RD. Genetic and evolutionary patterns of treatment resistance in relapsed B-cell lymphoma. Blood Adv 2020; 4:2886-2898. [PMID: 32589730 PMCID: PMC7362366 DOI: 10.1182/bloodadvances.2020001696] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/14/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) patients are typically treated with immunochemotherapy containing rituximab (rituximab, cyclophosphamide, hydroxydaunorubicin-vincristine (Oncovin), and prednisone [R-CHOP]); however, prognosis is extremely poor if R-CHOP fails. To identify genetic mechanisms contributing to primary or acquired R-CHOP resistance, we performed target-panel sequencing of 135 relapsed/refractory DLBCLs (rrDLBCLs), primarily comprising circulating tumor DNA from patients on clinical trials. Comparison with a metacohort of 1670 diagnostic DLBCLs identified 6 genes significantly enriched for mutations upon relapse. TP53 and KMT2D were mutated in the majority of rrDLBCLs, and these mutations remained clonally persistent throughout treatment in paired diagnostic-relapse samples, suggesting a role in primary treatment resistance. Nonsense and missense mutations affecting MS4A1, which encodes CD20, are exceedingly rare in diagnostic samples but show recurrent patterns of clonal expansion following rituximab-based therapy. MS4A1 missense mutations within the transmembrane domains lead to loss of CD20 in vitro, and patient tumors harboring these mutations lacked CD20 protein expression. In a time series from a patient treated with multiple rounds of therapy, tumor heterogeneity and minor MS4A1-harboring subclones contributed to rapid disease recurrence, with MS4A1 mutations as founding events for these subclones. TP53 and KMT2D mutation status, in combination with other prognostic factors, may be used to identify high-risk patients prior to R-CHOP for posttreatment monitoring. Using liquid biopsies, we show the potential to identify tumors with loss of CD20 surface expression stemming from MS4A1 mutations. Implementation of noninvasive assays to detect such features of acquired treatment resistance may allow timely transition to more effective treatment regimens.
Collapse
Affiliation(s)
- Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Sarah E Arthur
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Miguel Alcaide
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Matthew Cheung
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | - Krysta M Coyle
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kirstie L S Cleary
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nicole Thomas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | | | - Jordan Davidson
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kevin Bushell
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Stephen Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | | | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL
| | - Lois Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Marco A Marra
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - John Kuruvilla
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Michael Crump
- Princess Margaret Cancer Centre, Toronto, ON, Canada; and
| | - Koren Mann
- Lady Davis Institute for Medical Research
- Jewish General Hospital, Montreal, QC, Canada
| | | | | | | | - Mark S Cragg
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC, Canada
| | | | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
183
|
Ennishi D, Hsi ED, Steidl C, Scott DW. Toward a New Molecular Taxonomy of Diffuse Large B-cell Lymphoma. Cancer Discov 2020; 10:1267-1281. [DOI: 10.1158/2159-8290.cd-20-0174] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
|
184
|
Cai Z, Zhang L, Cao M, Wang Y, Wang F, Bian W, Zhai S, Wang X. Generation of a Murine Model for c-MYC and BCL2 Co-expression B Cell Lymphomas. Front Oncol 2020; 10:1007. [PMID: 32695674 PMCID: PMC7338593 DOI: 10.3389/fonc.2020.01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most frequent lymphoma in adults, and is characterized as clinically and biologically heterogeneous lymphomas with diverse response to therapy and variation in clinical behavior. It's well-established that c-MYC and BCL2 play important roles in normal B-cell differentiation and tumorigenesis. B cell lymphoma with dual expression of c-MYC and BCL2 (double-expressor lymphoma, DEL) accounts for approximately one-third of DLBCL cases. DEL patients have poor outcomes after chemoimmunotherapy or autologous stem-cell transplantation. Lack of a genetic mouse tool for DEL hinders us from understanding the lymphogenesis mechanism and developing therapeutic strategies. Here, we investigated whether ectopic expression of c-MYC and BCL2 in different stages of B cells could lead to lymphoma and generate a mouse model for DEL. We observed that Co-expression of c-MYC and BCL2 in germinal center (GC) B cells, or pan-B cells could induce B cell lymphomas. The tumor-bearing mice have enlarged lymphoid organs, and B cells massively infiltrate into non-lymphoid organs including lung, liver and kidney. The tumor-bearing mice also manifested significantly shorter lifespan than the controls. In addition, adoptive transfer of Co-expression B cells leads to B cell lymphoma and host mice death. This model will provide us a tool to further explore the pathogenesis and treatment approaches for DEL.
Collapse
Affiliation(s)
- Zhenming Cai
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Le Zhang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China.,Analysis Center, Nanjing Medical University, Nanjing, China
| | - Min Cao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Analysis Center, Nanjing Medical University, Nanjing, China
| | - Weiqi Bian
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Sulan Zhai
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
185
|
Abstract
New treatment strategies in follicular lymphoma (FL) are driven by a deeper understanding of microenvironmental cues supporting lymphomagenesis, chemoresistance, and immuno-escape. These immune-mediated signaling pathways contribute to initial learnings and clinical successes with lenalidomide, the first, oral, non-chemotherapeutic immunomodulatory drug, combined with anti-CD20 antibodies. This combination of lenalidomide with rituximab showed similar efficacy to chemoimmunotherapy (CIT) in first-line patients requiring therapy, and is approved in relapsed/refractory FL. We review the biology supporting the rationale for adequate inhibitory receptor/ligand pathways targeting the tissue immune microenvironment of FL cells, and potential immunomodulating combinations to replace CIT in the near future.
Collapse
Affiliation(s)
- Loic Ysebaert
- Service d'Hematologie, Institut Universitaire du Cancer de Toulouse-Oncopole, Center for Cancer Research of Toulouse (CRCT), Inserm UMR1037, IUC-Toulouse-Oncopole, 1 Avenue Irene Joliot-Curie, Toulouse 31059, France
| | - Franck Morschhauser
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche Sur les Formes Injectables et les Technologies Associees, Lille F-59000, France.
| |
Collapse
|
186
|
Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 2020; 135:360-370. [PMID: 31774495 DOI: 10.1182/blood.2019001904] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
The oncogenic events involved in breast implant-associated anaplastic large cell lymphoma (BI-ALCL) remain elusive. To clarify this point, we have characterized the genomic landscape of 34 BI-ALCLs (15 tumor and 19 in situ subtypes) collected from 54 BI-ALCL patients diagnosed through the French Lymphopath network. Whole-exome sequencing (n = 22, with paired tumor/germline DNA) and/or targeted deep sequencing (n = 24) showed recurrent mutations of epigenetic modifiers in 74% of cases, involving notably KMT2C (26%), KMT2D (9%), CHD2 (15%), and CREBBP (15%). KMT2D and KMT2C mutations correlated with a loss of H3K4 mono- and trimethylation by immunohistochemistry. Twenty cases (59%) showed mutations in ≥1 member of the JAK/STAT pathway, including STAT3 (38%), JAK1 (18%), and STAT5B (3%), and in negative regulators, including SOCS3 (6%), SOCS1 (3%), and PTPN1 (3%). These mutations were more frequent in tumor-type samples than in situ samples (P = .038). All BI-ALCLs expressed pSTAT3, regardless of the mutational status of genes in the JAK/STAT pathway. Mutations in the EOMES gene (12%) involved in lymphocyte development, PI3K-AKT/mTOR (6%), and loss-of-function mutations in TP53 (12%) were also identified. Copy-number aberration (CNA) analysis identified recurrent alterations, including gains on chromosomes 2, 9p, 12p, and 21 and losses on 4q, 8p, 15, 16, and 20. Regions of CNA encompassed genes involved in the JAK/STAT pathway and epigenetic regulators. Our results show that the BI-ALCL genomic landscape is characterized by not only JAK/STAT activating mutations but also loss-of-function alterations of epigenetic modifiers.
Collapse
|
187
|
Parsa S, Ortega-Molina A, Ying HY, Jiang M, Teater M, Wang J, Zhao C, Reznik E, Pasion JP, Kuo D, Mohan P, Wang S, Camarillo JM, Thomas PM, Jain N, Garcia-Bermudez J, Cho BK, Tam W, Kelleher NL, Socci N, Dogan A, De Stanchina E, Ciriello G, Green MR, Li S, Birsoy K, Melnick AM, Wendel HG. The serine hydroxymethyltransferase-2 (SHMT2) initiates lymphoma development through epigenetic tumor suppressor silencing. ACTA ACUST UNITED AC 2020; 1:653-664. [PMID: 33569544 DOI: 10.1038/s43018-020-0080-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer cells adapt their metabolic activities to support growth and proliferation. However, increased activity of metabolic enzymes is not usually considered an initiating event in the malignant process. Here, we investigate the possible role of the enzyme serine hydroxymethyltransferase-2 (SHMT2) in lymphoma initiation. SHMT2 localizes to the most frequent region of copy number gains at chromosome 12q14.1 in lymphoma. Elevated expression of SHMT2 cooperates with BCL2 in lymphoma development; loss or inhibition of SHMT2 impairs lymphoma cell survival. SHMT2 catalyzes the conversion of serine to glycine and produces an activated one-carbon unit that can be used to support S-adenosyl methionine synthesis. SHMT2 induces changes in DNA and histone methylation patterns leading to promoter silencing of previously uncharacterized mutational genes, such as SASH1 and PTPRM. Together, our findings reveal that amplification of SHMT2 in cooperation with BCL2 is sufficient in the initiation of lymphomagenesis through epigenetic tumor suppressor silencing.
Collapse
Affiliation(s)
- Sara Parsa
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ana Ortega-Molina
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hsia-Yuan Ying
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Man Jiang
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Matt Teater
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jiahui Wang
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Chunying Zhao
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Joyce P Pasion
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - David Kuo
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Prathibha Mohan
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Shenqiu Wang
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Paul M Thomas
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Neeraj Jain
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York, NY, USA
| | - Byoung-Kyu Cho
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Wayne Tam
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Nicholas Socci
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Hematopathology Service, Departments of Pathology and Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elisa De Stanchina
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michael R Green
- Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sheng Li
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York, NY, USA
| | - Ari M Melnick
- Department of Medicine and Weill Cornell Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Hans-Guido Wendel
- Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
188
|
Qiu Z, Holder KN, Lin AP, Myers J, Jiang S, Gorena KM, Kinney MC, Aguiar RCT. Generation and characterization of the Eµ-Irf8 mouse model. Cancer Genet 2020; 245:6-16. [PMID: 32535543 DOI: 10.1016/j.cancergen.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
In mature B-cell malignancies, chromosomal translocations often juxtapose an oncogenic locus to the regulatory regions of the immunoglobulin genes. These genomic rearrangements can associate with specific clinical/pathological sub-entities and inform diagnosis and treatment decisions. Recently, we characterized the t(14;16)(q32;q24) in diffuse large B-cell lymphoma (DLBCL), and showed that it targets the transcription factor IRF8, which is also somatically mutated in ~10% of DLBCLs. IRF8 regulates innate and adaptive immune responses mediated by myeloid/monocytic and lymphoid cells. While the role of IRF8 in human myeloid/dendritic-cell disorders is well established, less is known of its contribution to the pathogenesis of mature B-cell malignancies. To address this knowledge gap, we generated the Eµ-Irf8 mouse model, which mimics the IRF8 deregulation associated with t(14;16) of DLBCL. Eµ-Irf8 mice develop normally and display peripheral blood cell parameters within normal range. However, Eµ-Irf8 mice accumulate pre-pro-B-cells and transitional B-cells in the bone marrow and spleen, respectively, suggesting that the physiological role of Irf8 in B-cell development is amplified. Notably, in Eµ-Irf8 mice, the lymphomagenic Irf8 targets Aicda and Bcl6 are overexpressed in mature B-cells. Yet, the incidence of B-cell lymphomas is not increased in the Eµ-Irf8 model, even though their estimated survival probability is significantly lower than that of WT controls. Together, these observations suggest that the penetrance on the Irf8-driven phenotype may be incomplete and that introduction of second genetic hit, a common strategy in mouse models of lymphoma, may be necessary to uncover the pro-lymphoma phenotype of the Eµ-Irf8 mice.
Collapse
Affiliation(s)
- Zhijun Qiu
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Kenneth N Holder
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - An-Ping Lin
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jamie Myers
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Shoulei Jiang
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Karla M Gorena
- Office of the Vice President for Research, Flow Cytometry Facility, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Marsha C Kinney
- Department of Pathology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ricardo C T Aguiar
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA.
| |
Collapse
|
189
|
Mechanisms of B Cell Receptor Activation and Responses to B Cell Receptor Inhibitors in B Cell Malignancies. Cancers (Basel) 2020; 12:cancers12061396. [PMID: 32481736 PMCID: PMC7352865 DOI: 10.3390/cancers12061396] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The B cell receptor (BCR) pathway has been identified as a potential therapeutic target in a number of common B cell malignancies, including chronic lymphocytic leukemia, diffuse large B cell lymphoma, Burkitt lymphoma, follicular lymphoma, mantle cell lymphoma, marginal zone B cell lymphoma, and Waldenstrom's macroglobulinemia. This finding has resulted in the development of numerous drugs that target this pathway, including various inhibitors of the kinases BTK, PI3K, and SYK. Several of these drugs have been approved in recent years for clinical use, resulting in a profound change in the way these diseases are currently being treated. However, the response rates and durability of responses vary largely across the different disease entities, suggesting a different proportion of patients with an activated BCR pathway and different mechanisms of BCR pathway activation. Indeed, several antigen-dependent and antigen-independent mechanisms have recently been described and shown to result in the activation of distinct downstream signaling pathways. The purpose of this review is to provide an overview of the mechanisms responsible for the activation of the BCR pathway in different B cell malignancies and to correlate these mechanisms with clinical responses to treatment with BCR inhibitors.
Collapse
|
190
|
Abstract
Although outcomes for follicular lymphoma (FL) continue to improve, it remains incurable for the majority of patients. Through next generation sequencing (NGS) studies, we now recognize that the genomic landscape of FL is skewed toward highly recurrent mutations in genes that encode epigenetic regulators co-occurring with the pathognomonic t(14;18) translocation. Adopting these technologies to study longitudinal and spatially-derived lymphomas has provided unique insights into the tumoral heterogeneity, clonal evolution of the disease and supports the existence of a tumor-repopulating population, considered the Achilles' heel of this lymphoma. An in-depth understanding of the genomics and its contribution to the disease pathogenesis is identifying new biomarkers and therapeutic targets that can be translated into clinical practice and, in the not too distant future, enable us to start considering precision-based approaches to the management of FL.
Collapse
Affiliation(s)
- Lucy Pickard
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giuseppe Palladino
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
191
|
Toska E, Castel P, Chhangawala S, Arruabarrena-Aristorena A, Chan C, Hristidis VC, Cocco E, Sallaku M, Xu G, Park J, Minuesa G, Shifman SG, Socci ND, Koche R, Leslie CS, Scaltriti M, Baselga J. PI3K Inhibition Activates SGK1 via a Feedback Loop to Promote Chromatin-Based Regulation of ER-Dependent Gene Expression. Cell Rep 2020; 27:294-306.e5. [PMID: 30943409 DOI: 10.1016/j.celrep.2019.02.111] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/18/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022] Open
Abstract
The PI3K pathway integrates extracellular stimuli to phosphorylate effectors such as AKT and serum-and-glucocorticoid-regulated kinase (SGK1). We have previously reported that the PI3K pathway regulates estrogen receptor (ER)-dependent transcription in breast cancer through the phosphorylation of the lysine methyltransferase KMT2D by AKT. Here, we show that PI3Kα inhibition, via a negative-feedback loop, activates SGK1 to promote chromatin-based regulation of ER-dependent transcription. PI3K/AKT inhibitors activate ER, which promotes SGK1 transcription through direct binding to its promoter. Elevated SGK1, in turn, phosphorylates KMT2D, suppressing its function, leading to a loss of methylation of lysine 4 on histone H3 (H3K4) and a repressive chromatin state at ER loci to attenuate ER activity. Thus, SGK1 regulates the chromatin landscape and ER-dependent transcription via the direct phosphorylation of KMT2D. These findings reveal an ER-SGK1-KMT2D signaling circuit aimed to attenuate ER response through a role for SGK1 to program chromatin and ER transcriptional output.
Collapse
Affiliation(s)
- Eneda Toska
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| | - Pau Castel
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA 94158, USA
| | - Sagar Chhangawala
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Amaia Arruabarrena-Aristorena
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Carmen Chan
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Vasilis C Hristidis
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Emiliano Cocco
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Mirna Sallaku
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Guotai Xu
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Jane Park
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gerard Minuesa
- Molecular Pharmacology Program, Memorial Sloan Kettering Institute, New York, NY 10065, USA
| | - Sophie G Shifman
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Nicholas D Socci
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard Koche
- Center of Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - José Baselga
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Research & Development Oncology, AstraZeneca Pharmaceuticals, Gaithersburg, MD 20878, USA.
| |
Collapse
|
192
|
Saffie R, Zhou N, Rolland D, Önder Ö, Basrur V, Campbell S, Wellen KE, Elenitoba-Johnson KSJ, Capell BC, Busino L. FBXW7 Triggers Degradation of KMT2D to Favor Growth of Diffuse Large B-cell Lymphoma Cells. Cancer Res 2020; 80:2498-2511. [PMID: 32350066 DOI: 10.1158/0008-5472.can-19-2247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Mature B-cell neoplasms are the fifth most common neoplasm. Due to significant heterogeneity at the clinical and genetic levels, current therapies for these cancers fail to provide long-term cures. The clinical success of proteasome inhibition for the treatment of multiple myeloma and B-cell lymphomas has made the ubiquitin pathway an important emerging therapeutic target. In this study, we assessed the role of the E3 ligase FBXW7 in mature B-cell neoplasms. FBXW7 targeted the frequently inactivated tumor suppressor KMT2D for protein degradation, subsequently regulating gene expression signatures related to oxidative phosphorylation (OxPhos). Loss of FBXW7 inhibited diffuse large B-cell lymphoma cell growth and further sensitized cells to OxPhos inhibition. These data elucidate a novel mechanism of regulation of KMT2D levels by the ubiquitin pathway and uncover a role of FBXW7 in regulating oxidative phosphorylation in B-cell malignancies. SIGNIFICANCE: These findings characterize FBXW7 as a prosurvival factor in B-cell lymphoma via degradation of the chromatin modifier KMT2D.
Collapse
Affiliation(s)
- Rizwan Saffie
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nan Zhou
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Delphine Rolland
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Özlem Önder
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Venkatesha Basrur
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, Michigan
| | - Sydney Campbell
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathryn E Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian C Capell
- Penn Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Luca Busino
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
193
|
Li W, Ma N, Yuwen T, Yu B, Zhou Y, Yao Y, Li Q, Chen X, Wan J, Zhang Y, Zhang W. Comprehensive analysis of circRNA expression profiles and circRNA-associated competing endogenous RNA networks in the development of mouse thymus. J Cell Mol Med 2020; 24:6340-6349. [PMID: 32307889 PMCID: PMC7294154 DOI: 10.1111/jcmm.15276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/13/2022] Open
Abstract
The thymus plays an irreplaceable role as a primary lymphoid organ. However, the complicate processes of its development and involution are incompletely understood. Accumulating evidence indicates that non-coding RNAs play key roles in the regulation of biological development. At present, the studies of the circRNA profiles and of circRNA-associated competing endogenous RNAs (ceRNAs) in the thymus are still scarce. Here, deep-RNA sequencing was used to study the biological mechanisms underlying the development process (from 2-week-old to 6-week-old) and the recession process (from 6-week-old to 3-month-old) of the mouse thymus. It was found that 196 circRNAs, 233 miRNAs and 3807 mRNAs were significantly dysregulated. The circRNA-associated ceRNA networks were constructed in the mouse thymus, which were mainly involved in early embryonic development and the proliferation and division of T cells. Taken together, these results elucidated the regulatory roles of ceRNAs in the development and involution processes of the mouse thymus.
Collapse
Affiliation(s)
- Wenting Li
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Ting Yuwen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yao Zhou
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Yufei Yao
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Qi Li
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China
| | - Xiaofan Chen
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhang
- Hainan Provincial Key Laboratory for human reproductive medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Department of Reproductive Medicine, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Hainan, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Hainan, China
| | - Wei Zhang
- Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
194
|
Alam H, Tang M, Maitituoheti M, Dhar SS, Kumar M, Han CY, Ambati CR, Amin SB, Gu B, Chen TY, Lin YH, Chen J, Muller FL, Putluri N, Flores ER, DeMayo FJ, Baseler L, Rai K, Lee MG. KMT2D Deficiency Impairs Super-Enhancers to Confer a Glycolytic Vulnerability in Lung Cancer. Cancer Cell 2020; 37:599-617.e7. [PMID: 32243837 PMCID: PMC7178078 DOI: 10.1016/j.ccell.2020.03.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 11/08/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022]
Abstract
Epigenetic modifiers frequently harbor loss-of-function mutations in lung cancer, but their tumor-suppressive roles are poorly characterized. Histone methyltransferase KMT2D (a COMPASS-like enzyme, also called MLL4) is among the most highly inactivated epigenetic modifiers in lung cancer. Here, we show that lung-specific loss of Kmt2d promotes lung tumorigenesis in mice and upregulates pro-tumorigenic programs, including glycolysis. Pharmacological inhibition of glycolysis preferentially impedes tumorigenicity of human lung cancer cells bearing KMT2D-inactivating mutations. Mechanistically, Kmt2d loss widely impairs epigenomic signals for super-enhancers/enhancers, including the super-enhancer for the circadian rhythm repressor Per2. Loss of Kmt2d decreases expression of PER2, which regulates multiple glycolytic genes. These findings indicate that KMT2D is a lung tumor suppressor and that KMT2D deficiency confers a therapeutic vulnerability to glycolytic inhibitors.
Collapse
Affiliation(s)
- Hunain Alam
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ming Tang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA
| | - Shilpa S Dhar
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Manish Kumar
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chae Young Han
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chandrashekar R Ambati
- Advanced Technology Core and Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samir B Amin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA
| | - Bingnan Gu
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Tsai-Yu Chen
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Yu-Hsi Lin
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florian L Muller
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA
| | - Nagireddy Putluri
- Advanced Technology Core and Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elsa R Flores
- Department of Molecular Oncology and Cancer Biology and Evolution Program, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, The National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Laura Baseler
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1901 East Road, Houston, TX 77054, USA.
| | - Min Gyu Lee
- Department of Molecular & Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
195
|
Drug Resistance in Non-Hodgkin Lymphomas. Int J Mol Sci 2020; 21:ijms21062081. [PMID: 32197371 PMCID: PMC7139754 DOI: 10.3390/ijms21062081] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are lymphoid tumors that arise by a complex process of malignant transformation of mature lymphocytes during various stages of differentiation. The WHO classification of NHL recognizes more than 90 nosological units with peculiar pathophysiology and prognosis. Since the end of the 20th century, our increasing knowledge of the molecular biology of lymphoma subtypes led to the identification of novel druggable targets and subsequent testing and clinical approval of novel anti-lymphoma agents, which translated into significant improvement of patients’ outcome. Despite immense progress, our effort to control or even eradicate malignant lymphoma clones has been frequently hampered by the development of drug resistance with ensuing unmet medical need to cope with relapsed or treatment-refractory disease. A better understanding of the molecular mechanisms that underlie inherent or acquired drug resistance might lead to the design of more effective front-line treatment algorithms based on reliable predictive markers or personalized salvage therapy, tailored to overcome resistant clones, by targeting weak spots of lymphoma cells resistant to previous line(s) of therapy. This review focuses on the history and recent advances in our understanding of molecular mechanisms of resistance to genotoxic and targeted agents used in clinical practice for the therapy of NHL.
Collapse
|
196
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
197
|
Pilarowski GO, Cazares T, Zhang L, Benjamin JS, Liu K, Jagannathan S, Mousa N, Kasten J, Barski A, Lindsley AW, Bjornsson HT. Abnormal Peyer patch development and B-cell gut homing drive IgA deficiency in Kabuki syndrome. J Allergy Clin Immunol 2020; 145:982-992. [DOI: 10.1016/j.jaci.2019.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/05/2019] [Accepted: 11/14/2019] [Indexed: 01/17/2023]
|
198
|
Küçük C, Wang J, Xiang Y, You H. Epigenetic aberrations in natural killer/T-cell lymphoma: diagnostic, prognostic and therapeutic implications. Ther Adv Med Oncol 2020; 12:1758835919900856. [PMID: 32127923 PMCID: PMC7036507 DOI: 10.1177/1758835919900856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an aggressive malignancy that usually presents in the upper aerodigestive tract. This malignancy shows substantial geographic variability in incidence, and is characterized by Epstein-Barr virus (EBV) infections. Epigenetic aberrations may dysregulate the expression of genes involved in different hallmarks of cancer. A growing body of evidence underscores the importance of epigenetic aberrations in the pathogenesis of NKTCL. Promoter hypermethylation is a common epigenetic mechanism for the inactivation of tumour suppressor genes. Several epigenetically silenced tumour suppressor candidates (e.g. PRDM1, BIM) were identified in this aggressive cancer using locus-specific and genome-wide promoter methylation analyses. Importantly, genes involved in epigenetic modifications were identified to be mutated (e.g. KMT2D) or methylated (e.g. TET2) in NKTCL patients, which may contribute to pathogenesis through global alterations in chromatin states. Cancer-associated microRNAs, some of which are expressed by EBV, and long noncoding RNAs have been observed to be dysregulated in NKTCL. This review focuses on studies investigating epigenetic aberrations in NKTCL to bolster our overall understanding of the role of these abnormalities in disease pathobiology. We also discuss the potential of these epigenetic aberrations to improve diagnosis and prognosis as well as reveal novel targets of therapy for NKTCL.
Collapse
Affiliation(s)
- Can Küçük
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Junli Wang
- Department of Reproduction and Genetics, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Ying Xiang
- Division of Hematology and Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Hua You
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Heng-Zhi-Gang Road, Yue Xiu District, Guangzhou 510095, China
| |
Collapse
|
199
|
Ou A, Sumrall A, Phuphanich S, Spetzler D, Gatalica Z, Xiu J, Michelhaugh S, Brenner A, Pandey M, Kesari S, Korn WM, Mittal S, Westin J, Heimberger AB. Primary CNS lymphoma commonly expresses immune response biomarkers. Neurooncol Adv 2020; 2:vdaa018. [PMID: 32201861 PMCID: PMC7067145 DOI: 10.1093/noajnl/vdaa018] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is rare and there is limited genomic and immunological information available. Incidental clinical and radiographic responses have been reported in PCNSL patients treated with immune checkpoint inhibitors. Materials and Methods To genetically characterize and ascertain if the majority of PCNSL patients may potentially benefit from immune checkpoint inhibitors, we profiled 48 subjects with PCNSL from 2013 to 2018 with (1) next-generation sequencing to detect mutations, gene amplifications, and microsatellite instability (MSI); (2) RNA sequencing to detect gene fusions; and (3) immunohistochemistry to ascertain PD-1 and PD-L1 expression. Tumor mutational burden (TMB) was calculated using somatic nonsynonymous missense mutations. Results High PD-L1 expression (>5% staining) was seen in 18 patients (37.5%), and intermediate expression (1-5% staining) was noted in 14 patients (29.2%). Sixteen patients (33.3%) lacked PD-L1 expression. PD-1 expression (>1 cell/high-power field) was seen in 12/14 tumors (85.7%), uncorrelated with PD-L1 expression. TMB of greater than or equal to 5 mutations per megabase (mt/Mb) occurred in 41/42 tumors, with 19% (n = 8) exhibiting high TMB (≥17 mt/Mb), 71.4% (n = 30) exhibiting intermediate TMB (7-16 mt/Mb), and 9.5% (n = 4) exhibiting low TMB (≤6 mt/Mb). No samples had MSI. Twenty-six genes showed mutations, most frequently in MYD88 (34/42, 81%), CD79B (23/42, 55%), and PIM1 (23/42, 55%). Among 7 cases tested with RNA sequencing, an ETV6-IGH fusion was found. Overall, 18/48 samples expressed high PD-L1 and 38/42 samples expressed intermediate to high TMB. Conclusions Based on TMB biomarker expression, over 90% of PCNSL patients may benefit from the use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Alexander Ou
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | - Sharon Michelhaugh
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia, USA
| | - Andrew Brenner
- University of Texas at San Antonio, San Antonio, Texas, USA
| | - Manjari Pandey
- Department of Medical Oncology, West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Santa Monica, California, USA
| | - W Michael Korn
- Caris Life Sciences, Phoenix, Arizona, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Sandeep Mittal
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine and Carilion Clinic, Roanoke, Virginia, USA
| | - Jason Westin
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
200
|
IGLV3-21*01 is an inherited risk factor for CLL through the acquisition of a single-point mutation enabling autonomous BCR signaling. Proc Natl Acad Sci U S A 2020; 117:4320-4327. [PMID: 32047037 PMCID: PMC7049113 DOI: 10.1073/pnas.1913810117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CLL is characterized by autonomous B cell receptor (BCR) signaling. CLL subsets are empirically defined by sequence similarities of the BCR heavy chain. However, in the unfavorable subset 2, an acquired mutation (termed R110) in the light chain stimulates autonomous BCR signaling. This study demonstrates that the oncogenic R110 mutation dictates the unfavorable prognosis and is not restricted to the conventional subset 2. Interestingly, carriers of a particular light-chain allele (IGLV3-21*01) are predisposed to develop CLL because this allele enables autonomous BCR signaling by R110 as a single-point mutation. Monoclonal antibodies permit convenient screening for R110-expressing CLL, showing that it is the largest immunologically defined CLL subset and an example of functional rather than empirical CLL subclassification. The prognosis of chronic lymphocytic leukemia (CLL) depends on different markers, including cytogenetic aberrations, oncogenic mutations, and mutational status of the immunoglobulin (Ig) heavy-chain variable (IGHV) gene. The number of IGHV mutations distinguishes mutated (M) CLL with a markedly superior prognosis from unmutated (UM) CLL cases. In addition, B cell antigen receptor (BCR) stereotypes as defined by IGHV usage and complementarity-determining regions (CDRs) classify ∼30% of CLL cases into prognostically important subsets. Subset 2 expresses a BCR with the combination of IGHV3-21–derived heavy chains (HCs) with IGLV3-21–derived light chains (LCs), and is associated with an unfavorable prognosis. Importantly, the subset 2 LC carries a single-point mutation, termed R110, at the junction between the variable and constant LC regions. By analyzing 4 independent clinical cohorts through BCR sequencing and by immunophenotyping with antibodies specifically recognizing wild-type IGLV3-21 and R110-mutated IGLV3-21 (IGLV3-21R110), we show that IGLV3-21R110–expressing CLL represents a distinct subset with poor prognosis independent of IGHV mutations. Compared with other alleles, only IGLV3-21*01 facilitates effective homotypic BCR–BCR interaction that results in autonomous, oncogenic BCR signaling after acquiring R110 as a single-point mutation. Presumably, this mutation acts as a standalone driver that transforms IGLV3-21*01–expressing B cells to develop CLL. Thus, we propose to expand the conventional definition of CLL subset 2 to subset 2L by including all IGLV3-21R110–expressing CLL cases regardless of IGHV mutational status. Moreover, the generation of monoclonal antibodies recognizing IGLV3-21 or mutated IGLV3-21R110 facilitates the recognition of B cells carrying this mutation in CLL patients or healthy donors.
Collapse
|