151
|
Reed DR, Sen JM, Pierce EJ, Elsarrag RZ, K Keng M. Gilteritinib: An FMS-like tyrosine kinase 3/AXL tyrosine kinase inhibitor for the treatment of relapsed or refractory acute myeloid leukemia patients. J Oncol Pharm Pract 2020; 26:1200-1212. [PMID: 32338136 DOI: 10.1177/1078155220918006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acute myeloid leukemia has recently undergone a significant transition into identifying and successfully inhibiting driver mutations leading to disease. One of the most common mutations in acute myeloid leukemia involves the protein FMS-like tyrosine kinase 3 (FLT3), which leads to ligand-independent activation of intracellular signaling cascades leading to the survival and proliferation of the acute leukemia blast cell. Preclinical studies have demonstrated the presence of two dominant types of mutations of this protein: internal tandem duplication and tyrosine kinase domain mutations. Successful inhibition of this protein has proven to be challenging. While FLT3 has been shown to be successfully inhibited and shown to improve overall survival in the frontline therapy of acute myeloid leukemia in combination with cytarabine and anthracycline, relapsed and refractory (R/R) patients have not been shown to be a successful population until recently. A phase III trial (ADMIRAL trial) demonstrated significant overall survival benefit in patients receiving gilteritinib compared to patients receiving salvage chemotherapy. This review will provide an overview of the preclinical, clinical, and practical use of gilteritinib in the treatment of patients with relapsed and refractory acute myeloid leukemia with FLT3 mutation.
Collapse
Affiliation(s)
- Daniel R Reed
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Jeremy M Sen
- Department of Pharmacy Services, University of Virginia, Charlottesville, USA
| | - Eric J Pierce
- Department of Medicine, University of Virginia, Charlottesville, USA
| | - Ramey Z Elsarrag
- School of Medicine, University of Virginia, Charlottesville, USA
| | - Michael K Keng
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| |
Collapse
|
152
|
Kattner AS, Holler E, Herr W, Reichle A, Wolff D, Heudobler D. Successful Treatment of Early Relapsed High-Risk AML After Allogeneic Hematopoietic Stem Cell Transplantation With Biomodulatory Therapy. Front Oncol 2020; 10:443. [PMID: 32391254 PMCID: PMC7190808 DOI: 10.3389/fonc.2020.00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Early relapse of acute myeloid leukemia (AML) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an often unsuccessful therapeutic challenge. Since treatment options are few and efficacy is low, new approaches such as de novo allo-HSCT, targeted therapies and biomodulatory drugs have been developed, albeit prognosis is very poor. In this manuscript we present an unusual case of a patient with high-risk AML with an unbalanced jumping translocation and FLT3-TKD (low) mutation who presented with early relapse (FLT3 negative) after allo-HSCT, refractory to one cycle of azacytidine and discontinuation of immunosuppression (IS). As salvage therapy, the patient received a biomodulatory therapy consisting of low-dose azacytidine 75 mg/day (given s.c. d1-7 of 28), pioglitazone 45 mg/day orally, and all-trans-retinoic acid (ATRA) 45 mg/m2/day orally achieving a complete remission after two cycles of therapy. Even after cessation of treatment after 5 cycles, the patient remained in complete remission with full chimerism in peripheral blood and bone marrow for another 7 months. In conclusion, we report about an unusual case of long-lasting complete remission of early relapsed high-risk AML after allo-HSCT treated with azacytidine, pioglitazone and ATRA after standard of care treatment with HMA and discontinuation of IS failed.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Internal Oncology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
153
|
Dissecting the biology of allogeneic HSCT to enhance the GvT effect whilst minimizing GvHD. Nat Rev Clin Oncol 2020; 17:475-492. [PMID: 32313224 DOI: 10.1038/s41571-020-0356-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) was the first successful therapy for patients with haematological malignancies, predominantly owing to graft-versus-tumour (GvT) effects. Dramatic methodological changes, designed to expand eligibility for allo-HSCT to older patients and/or those with comorbidities, have led to the use of reduced-intensity conditioning regimens, in parallel with more aggressive immunosuppression to better control graft-versus-host disease (GvHD). Consequently, disease relapse has become the major cause of death following allo-HSCT. Hence, the prevention and treatment of relapse has come to the forefront and remains an unmet medical need. Despite >60 years of preclinical and clinical studies, the immunological requirements necessary to achieve GvT effects without promoting GvHD have not been fully established. Herein, we review learnings from preclinical modelling and clinical studies relating to the GvT effect, focusing on mechanisms of relapse and on immunomodulatory strategies that are being developed to overcome disease recurrence after both allo-HSCT and autologous HSCT. Emphasis is placed on discussing current knowledge and approaches predicated on the use of cell therapies, cytokines to augment immune responses and dual-purpose antibody therapies or other pharmacological agents that can control GvHD whilst simultaneously targeting cancer cells.
Collapse
|
154
|
Hamarsheh S, Osswald L, Saller BS, Unger S, De Feo D, Vinnakota JM, Konantz M, Uhl FM, Becker H, Lübbert M, Shoumariyeh K, Schürch C, Andrieux G, Venhoff N, Schmitt-Graeff A, Duquesne S, Pfeifer D, Cooper MA, Lengerke C, Boerries M, Duyster J, Niemeyer CM, Erlacher M, Blazar BR, Becher B, Groß O, Brummer T, Zeiser R. Oncogenic Kras G12D causes myeloproliferation via NLRP3 inflammasome activation. Nat Commun 2020; 11:1659. [PMID: 32246016 PMCID: PMC7125138 DOI: 10.1038/s41467-020-15497-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/11/2020] [Indexed: 12/03/2022] Open
Abstract
Oncogenic Ras mutations occur in various leukemias. It was unclear if, besides the direct transforming effect via constant RAS/MEK/ERK signaling, an inflammation-related effect of KRAS contributes to the disease. Here, we identify a functional link between oncogenic KrasG12D and NLRP3 inflammasome activation in murine and human cells. Mice expressing active KrasG12D in the hematopoietic system developed myeloproliferation and cytopenia, which is reversed in KrasG12D mice lacking NLRP3 in the hematopoietic system. Therapeutic IL-1-receptor blockade or NLRP3-inhibition reduces myeloproliferation and improves hematopoiesis. Mechanistically, KrasG12D-RAC1 activation induces reactive oxygen species (ROS) production causing NLRP3 inflammasome-activation. In agreement with our observations in mice, patient-derived myeloid leukemia cells exhibit KRAS/RAC1/ROS/NLRP3/IL-1β axis activity. Our findings indicate that oncogenic KRAS not only act via its canonical oncogenic driver function, but also enhances the activation of the pro-inflammatory RAC1/ROS/NLRP3/IL-1β axis. This paves the way for a therapeutic approach based on immune modulation via NLRP3 blockade in KRAS-mutant myeloid malignancies.
Collapse
Affiliation(s)
- Shaima'a Hamarsheh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lena Osswald
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Benedikt S Saller
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Donatella De Feo
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Janaki Manoja Vinnakota
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Franziska M Uhl
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Heiko Becker
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Venhoff
- Clinic for Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Sandra Duquesne
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dietmar Pfeifer
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
| | - Charlotte M Niemeyer
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Burkard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Olaf Groß
- Institute of Neuropathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Tilman Brummer
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Comprehensive Cancer Centre Freiburg (CCCF), University of Freiburg, Freiburg, Germany.
- Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
155
|
Abstract
In spite of the recent approval of new promising targeted therapies, the clinical outcome of patients with acute myeloid leukemia (AML) remains suboptimal, prompting the search for additional and synergistic therapeutic rationales. It is increasingly evident that the bone marrow immune environment of AML patients is profoundly altered, contributing to the severity of the disease but also providing several windows of opportunity to prompt or rewire a proficient antitumor immune surveillance. In this Review, we present current evidence on immune defects in AML, discuss the challenges with selective targeting of AML cells, and summarize the clinical results and immunologic insights from studies that are testing the latest immunotherapy approaches to specifically target AML cells (antibodies, cellular therapies) or more broadly reactivate antileukemia immunity (vaccines, checkpoint blockade). Given the complex interactions between AML cells and the many components of their environment, it is reasonable to surmise that the future of immunotherapy in AML lies in the rational combination of complementary immunotherapeutic strategies with chemotherapeutics or other oncogenic pathway inhibitors. Identifying reliable biomarkers of response to improve patient selection and avoid toxicities will be critical in this process.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Ivana Gojo
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
156
|
Durable remission of post-transplant relapsed FLT3-ITD AML in response to gilteritinib administration after a second transplant from the same donor. Int J Hematol 2020; 112:249-253. [PMID: 32185622 DOI: 10.1007/s12185-020-02858-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023]
Abstract
Patients with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) acute myeloid leukemia (AML) respond to conventional induction chemotherapy, with remission rates similar to those seen in other subtypes; however, they are much more likely to relapse and relapse is rapid. For this reason, eligible patients receive consolidation therapy with early allogenic transplantation, but the recurrence rate remains high, even after transplantation. Moreover, the optimal therapy for patients with FLT3-ITD AML who relapse after allogeneic hematopoietic stem cell transplantation remains unclear. Here, we report a case in which graft-versus-leukemia (GVL) effects were induced by gilteritinib administration after a second transplant from the same donor, resulting in sustained remission of early FLT3-ITD AML relapse after allogeneic transplantation. Several studies suggest that the benefits of FLT3 tyrosine kinase inhibitors (FLT3-TKI) after allogeneic transplantation are attributable to GVL induction, as well as direct effects on FLT3 mutation-positive leukemia cells. With this in mind, we induced lymphodepletion using L-PAM to further enhance GVL induction by donor lymphocytes and FLT3-TKI. We believe that enhancement of GVL induction by lymphodepletion should be considered before FLT3-TKI use, if the prognosis is very poor, such as in patients with recurrence following allogeneic transplantation.
Collapse
|
157
|
Rovatti PE, Gambacorta V, Lorentino F, Ciceri F, Vago L. Mechanisms of Leukemia Immune Evasion and Their Role in Relapse After Haploidentical Hematopoietic Cell Transplantation. Front Immunol 2020; 11:147. [PMID: 32158444 PMCID: PMC7052328 DOI: 10.3389/fimmu.2020.00147] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023] Open
Abstract
Over the last decade, the development of multiple strategies to allow the safe transfer from the donor to the patient of high numbers of partially HLA-incompatible T cells has dramatically reduced the toxicities of haploidentical hematopoietic cell transplantation (haplo-HCT), but this was not accompanied by a similar positive impact on the incidence of post-transplantation relapse. In the present review, we will elaborate on how the unique interplay between HLA-mismatched immune system and malignancy that characterizes haplo-HCT may impact relapse biology, shaping the selection of disease variants that are resistant to the “graft-vs.-leukemia” effect. In particular, we will present current knowledge on genomic loss of HLA, a relapse modality first described in haplo-HCT and accounting for a significant proportion of relapses in this setting, and discuss other more recently identified mechanisms of post-transplantation immune evasion and relapse, including the transcriptional downregulation of HLA class II molecules and the enforcement of inhibitory checkpoints between T cells and leukemia. Ultimately, we will review the available treatment options for patients who relapse after haplo-HCT and discuss on how a deeper insight into relapse immunobiology might inform the rational and personalized selection of therapies to improve the largely unsatisfactory clinical outcome of relapsing patients.
Collapse
Affiliation(s)
- Pier Edoardo Rovatti
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Gambacorta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
158
|
Lam SS, Leung AY. Overcoming Resistance to FLT3 Inhibitors in the Treatment of FLT3-Mutated AML. Int J Mol Sci 2020; 21:E1537. [PMID: 32102366 PMCID: PMC7073218 DOI: 10.3390/ijms21041537] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023] Open
Abstract
Acute myeloid leukaemia (AML) carrying internal tandem duplication (ITD) of Fms-Like Tyrosine kinase 3 (FLT3) gene is associated with high risk of relapse and poor clinical outcome upon treatment with conventional chemotherapy. FLT3 inhibitors have been approved for the treatment of this AML subtype but leukaemia relapse remains to be a major cause of treatment failure. Mechanisms of drug resistance have been proposed, including evolution of resistant leukaemic clones; adaptive cellular mechanisms and a protective leukaemic microenvironment. These models have provided important leads that may inform design of clinical trials. Clinically, FLT3 inhibitors in combination with conventional chemotherapy as induction treatment for fit patients; with low-intensity treatment as salvage treatment or induction for unfit patients as well as maintenance treatment with FLT3 inhibitors post HSCT hold promise to improve survival in this AML subtype.
Collapse
Affiliation(s)
| | - Anskar Y.H. Leung
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
159
|
Hunter BD, Chen YB. Current Approaches to Transplantation for FLT3-ITD AML. Curr Hematol Malig Rep 2020; 15:1-8. [DOI: 10.1007/s11899-020-00558-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
160
|
Sami SA, Darwish NHE, Barile ANM, Mousa SA. Current and Future Molecular Targets for Acute Myeloid Leukemia Therapy. Curr Treat Options Oncol 2020; 21:3. [PMID: 31933183 DOI: 10.1007/s11864-019-0694-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Acute myeloid leukemia (AML) disease prognosis is poor and there is a high risk of chemo-resistant relapse for both young and old patients. Thus, there is a demand for alternative and target-specific drugs to improve the 5-year survival rate. Current treatment mainstays include chemotherapy, or mutation-specific targeting molecules including FLT3 inhibitors, IDH inhibitors, and monoclonal antibodies. Efforts to devise new, targeted therapy have included recent advances in methods for high-throughput genomic screening and the availability of computer-assisted techniques for the design of novel agents predicted to specifically inhibit mutant molecules involved in leukemogenesis. Crosstalk between the leukemia cells and the bone marrow microenvironment through cell surface molecules, such as the integrins αvβ3 and αvβ5, might influence drug response and AML progression. This review article focuses on current AML treatment options, new AML targeted therapies, the role of integrins in AML progression, and a potential therapeutic agent-integrin αvβ3 antagonist.
Collapse
Affiliation(s)
- Shaheedul A Sami
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Noureldien H E Darwish
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.,Hematology Unit, Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Amanda N M Barile
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY, USA.
| |
Collapse
|
161
|
How I treat acute myeloid leukemia in the era of new drugs. Blood 2020; 135:85-96. [DOI: 10.1182/blood.2019001239] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
AbstractThe acute myeloid leukemia (AML) treatment landscape has changed substantially since 2017. New targeted drugs have emerged, including venetoclax to target B-cell lymphoma 2, midostaurin and gilteritinib to target FLT3, and ivosidenib and enasidenib to target mutant isocitrate dehydrogenase 1 and 2, respectively. Other additions include reapproval of gemtuzumab ozogomycin to target CD33, glasdegib to target the hedgehog pathway, and a liposomal formulation of daunorubicin and cytarabine (CPX-351). Genomically heterogeneous AML has a tendency to evolve, particularly under selective treatment pressure. For decades, treatment decisions have largely centered around chemotherapy drug intensity. Physicians now have access to an increasing number of drugs with novel mechanisms of action and distinctive side-effect profiles. Key issues faced by hematologists in this era of new drugs include (1) the timely identification of actionable mutations at diagnosis and at relapse; (2) deciding which drug to use among several therapeutic options; and (3) increasing awareness of how to anticipate, mitigate, and manage common complications associated with these new agents. This article will use 3 case presentations to discuss some of the new treatment challenges encountered in AML management, with the goal of providing practical guidance to aid the practicing physician.
Collapse
|
162
|
Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia 2020; 34:682-696. [PMID: 31919472 DOI: 10.1038/s41375-019-0694-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022]
Abstract
The FMS-like tyrosine kinase 3 (FLT3) gene is mutated in approximately one third of patients with acute myeloid leukemia (AML), either by internal tandem duplications (FLT3-ITD), or by a point mutation mainly involving the tyrosine kinase domain (FLT3-TKD). Patients with FLT3-ITD have a high risk of relapse and low cure rates. Several FLT3 tyrosine kinase inhibitors have been developed in the last few years with variable kinase inhibitory properties, pharmacokinetics, and toxicity profiles. FLT3 inhibitors are divided into first generation multi-kinase inhibitors (such as sorafenib, lestaurtinib, midostaurin) and next generation inhibitors (such as quizartinib, crenolanib, gilteritinib) based on their potency and specificity of FLT3 inhibition. These diverse FLT3 inhibitors have been evaluated in myriad clinical trials as monotherapy or in combination with conventional chemotherapy or hypomethylating agents and in various settings, including front-line, relapsed or refractory disease, and maintenance therapy after consolidation chemotherapy or allogeneic stem cell transplantation. In this practical question-and-answer-based review, the main issues faced by the leukemia specialists on the use of FLT3 inhibitors in AML are addressed.
Collapse
Affiliation(s)
- Ahmad I Antar
- Department of Hematology and Oncology, Hammoud Hospital University Medical Center, Saida, Lebanon
| | - Zaher K Otrock
- Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Wayne State University, Detroit, MI, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamad Mohty
- Service d'hématologie clinique et thérapie cellulaire, Hôpital Saint-Antoine, INSERM UMRs 938 and université Sorbonne, Paris, France
| | - Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
163
|
Loke J, Malladi R, Moss P, Craddock C. The role of allogeneic stem cell transplantation in the management of acute myeloid leukaemia: a triumph of hope and experience. Br J Haematol 2020; 188:129-146. [PMID: 31823351 PMCID: PMC6972492 DOI: 10.1111/bjh.16355] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Acute myeloid leukaemia (AML) is the commonest indication for allogeneic stem cell transplantation (allo-SCT) worldwide. The accumulated experience of allografting in AML over the last four decades has provided critical insights into both the contribution of the conditioning regimen and the graft-versus-leukaemia effect to the curative potential of the most common form of immunotherapy utilised in standard clinical practice. Coupled with advances in donor availability and transplant technologies, this has resulted in allo-SCT becoming an important treatment modality for the majority of adults with high-risk AML. At the same time, advances in genomic classification, coupled with progress in the accurate quantification of measurable residual disease, have increased the precision with which allo-mandatory patients can be identified, whilst simultaneously permitting accurate identification of those patients who can be spared the toxicity of an allograft. Despite this progress, disease recurrence still remains a major cause of transplant failure and AML has served as a paradigm for the development of strategies to reduce the risk of relapse - notably the novel concept of post-transplant maintenance, utilising pharmacological or cellular therapies.
Collapse
Affiliation(s)
- Justin Loke
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| | - Ram Malladi
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| | - Paul Moss
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| | - Charles Craddock
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
- University of BirminghamBirminghamUK
| |
Collapse
|
164
|
Boelens JJ, Hosszu KK, Nierkens S. Immune Monitoring After Allogeneic Hematopoietic Cell Transplantation: Toward Practical Guidelines and Standardization. Front Pediatr 2020; 8:454. [PMID: 32974239 PMCID: PMC7472532 DOI: 10.3389/fped.2020.00454] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic cell transplantation (HCT) is often a last resort, but potentially curative treatment option for children suffering from hematological malignancies and a variety of non-malignant disorders, such as bone marrow failure, inborn metabolic disease or immune deficiencies. Although efficacy and safety of the HCT procedure has increased significantly over the last decades, the majority of the patients still suffer from severe acute toxicity, viral reactivation, acute or chronic graft-versus-host disease (GvHD) and/or, in case of malignant disease, relapses. Factors influencing HCT outcomes are numerous and versatile. For example, there is variation in the selected graft sources, type of infused cell subsets, cell doses, and the protocols used for conditioning, as well as immune suppression and treatment of adverse events. Moreover, recent pharmacokinetic studies show that medications used in the conditioning regimen (e.g., busulphan, fludarabine, anti-thymocyte globulin) should be dosed patient-specific to achieve optimal exposure in every individual patient. Due to this multitude of variables and site-specific policies/preferences, harmonization between HCT centers is still difficult to achieve. Literature shows that adequate immune recovery post-HCT limits both relapse and non-relapse mortality (death due to viral reactivations and GvHD). Monitoring immune parameters post-HCT may facilitate a timely prediction of outcome. The use of standardized assays to measure immune parameters would facilitate a fast comparison between different strategies tested in different centers or between different clinical trials. We here discuss immune cell markers that may contribute to clinical decision making and may be worth to standardize in multicenter collaborations for future trials.
Collapse
Affiliation(s)
- Jaap Jan Boelens
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Kinga K Hosszu
- Stem Cell Transplantation and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology and UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
165
|
Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci 2019; 111:312-322. [PMID: 31821677 PMCID: PMC7004512 DOI: 10.1111/cas.14274] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that plays an important role in hematopoietic cell survival, proliferation and differentiation. The most clinically important point is that mutation of the FLT3 gene is the most frequent genetic alteration and a poor prognostic factor in acute myeloid leukemia (AML) patients. There are two major types of FLT3 mutations: internal tandem duplication mutations in the juxtamembrane domain (FLT3-ITD) and point mutations or deletion in the tyrosine kinase domain (FLT3-TKD). Both mutant FLT3 molecules are activated through ligand-independent dimerization and trans-phosphorylation. Mutant FLT3 induces the activation of multiple intracellular signaling pathways, mainly STAT5, MAPK and AKT signals, leading to cell proliferation and anti-apoptosis. Because high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation cannot sufficiently improve the prognosis, clinical development of FLT3 kinase inhibitors expected. Although several FLT3 inhibitors have been developed, it takes more than 20 years from the first identification of FLT3 mutations until FLT3 inhibitors become clinically available for AML patients with FLT3 mutations. To date, three FLT3 inhibitors have been clinically approved as monotherapy or combination therapy with conventional chemotherapeutic agents in Japan and/or Europe and United states. However, several mechanisms of resistance to FLT3 inhibitors have already become apparent during their clinical trials. The resistance mechanisms are complex and emerging resistant clones are heterogenous. Further basic and clinical studies are required to establish the best therapeutic strategy for AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Kawashima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
166
|
Bernasconi P, Borsani O. Immune Escape after Hematopoietic Stem Cell Transplantation (HSCT): From Mechanisms to Novel Therapies. Cancers (Basel) 2019; 12:cancers12010069. [PMID: 31881776 PMCID: PMC7016529 DOI: 10.3390/cancers12010069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. Recent advances in understanding its molecular basis have opened the way to new therapeutic strategies, including targeted therapies. However, despite an improvement in prognosis it has been documented in recent years (especially in younger patients) that allogenic hematopoietic stem cell transplantation (allo-HSCT) remains the only curative treatment in AML and the first therapeutic option for high-risk patients. After allo-HSCT, relapse is still a major complication, and is observed in about 50% of patients. Current evidence suggests that relapse is not due to clonal evolution, but instead to the ability of the AML cell population to escape immune control by a variety of mechanisms including the altered expression of HLA-molecules, production of anti-inflammatory cytokines, relevant metabolic changes and expression of immune checkpoint (ICP) inhibitors capable of “switching-off” the immune response against leukemic cells. Here, we review the main mechanisms of immune escape and identify potential strategies to overcome these mechanisms.
Collapse
Affiliation(s)
- Paolo Bernasconi
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Hematology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Oscar Borsani
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-340-656-3988
| |
Collapse
|
167
|
Vago L. Clonal evolution and immune evasion in posttransplantation relapses. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:610-616. [PMID: 31808847 PMCID: PMC6913457 DOI: 10.1182/hematology.2019000005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite the considerable improvements witnessed over the last few decades in the feasibility and safety of allogeneic hematopoietic cell transplantation (allo-HCT) for hematological malignancies, disease relapse continues to represent a frequent occurrence, with largely unsatisfactory salvage options. Recent studies have shed new light on the biology of posttransplantation relapses, demonstrating that they can frequently be explained using an evolutionary perspective: The changes in disease clonal structure and immunogenicity that are often documented at relapse may in fact represent the end results of a process of selection, allowing the outgrowth of variants that are more capable of resisting the therapeutic control of allo-HCT. This review provides an overview of the mechanisms forming the basis of relapse, including clonal evolution, gain of tropism for privileged sites, genomic and nongenomic changes in the HLA asset, and enforcement of immune checkpoints. Finally, this review discusses how these mechanisms may combine in complex patterns and how understanding and untangling these interactions may provide key knowledge for the selection of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, and
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
168
|
Knorr DA, Goldberg AD, Stein EM, Tallman MS. Immunotherapy for acute myeloid leukemia: from allogeneic stem cell transplant to novel therapeutics. Leuk Lymphoma 2019; 60:3350-3362. [PMID: 31335250 PMCID: PMC6928392 DOI: 10.1080/10428194.2019.1639167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/20/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
Abstract
Immunotherapy in the form of allogeneic stem cell transplantation (SCT) plays an instrumental role in the treatment of acute myeloid leukemia (AML), with non-transplant modalities of immunotherapy including checkpoint blockade now being actively explored. Here, we provide an overview of the graft versus leukemia (GVL) effect in AML as a window into understanding the prospects of AML immunotherapy. We explore the roles of various cell types in orchestrating anti-leukemic immunity, as well as those contributing to the unique immune suppressive state of myeloid diseases. We discuss specific approaches to engage the immune system, while noting the challenges of the AML antigen landscape and the barriers to immune modulation. We review the potential for immunomodulatory agents in combination with cellular therapies, donor lymphocyte infusion, and following SCT. Finally, to address the challenge of minimal residual disease (MRD) following chemotherapy, we propose combination epigenetic and immunotherapy for the eradication of MRD.
Collapse
Affiliation(s)
- David A. Knorr
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Aaron D. Goldberg
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eytan M. Stein
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin S. Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
169
|
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-SCT) is the most established and commonly used cellular immunotherapy in cancer care. It is the most potent anti-leukemic therapy in patients with acute myeloid leukemia (AML) and is routinely used with curative intent in patients with intermediate and poor risk disease. Donor T cells, and possibly other immune cells, eliminate residual leukemia cells after prior (radio)chemotherapy. This immune-mediated response is known as graft-versus-leukemia (GvL). Donor alloimmune responses can also be directed against healthy tissues, which is known as graft-versus-host disease (GvHD). GvHD and GvL often co-occur and, therefore, a major barrier to exploiting the full immunotherapeutic benefit of donor immune cells against patient leukemia is the immunosuppression required to treat GvHD. However, curative responses to allo-SCT and GvHD do not always occur together, suggesting that these two immune responses could be de-coupled in some patients. To make further progress in successfully promoting GvL without GvHD, we must transform our limited understanding of the cellular and molecular basis of GvL and GvHD. Specifically, in most patients we do not understand the antigenic basis of immune responses in GvL and GvHD. Identification of antigens important for GvL but not GvHD, and vice versa, could impact on donor selection, allow us to track GvL immune responses and begin to specifically harness and strengthen anti-leukemic immune responses against patient AML cells, whilst minimizing the toxicity of GvHD.
Collapse
Affiliation(s)
- Connor Sweeney
- MRC Molecular Haematology Unit, Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
170
|
Mendez LM, Posey RR, Pandolfi PP. The Interplay Between the Genetic and Immune Landscapes of AML: Mechanisms and Implications for Risk Stratification and Therapy. Front Oncol 2019; 9:1162. [PMID: 31781488 PMCID: PMC6856667 DOI: 10.3389/fonc.2019.01162] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
AML holds a unique place in the history of immunotherapy by virtue of being among the first malignancies in which durable remissions were achieved with "adoptive immunotherapy," now known as allogeneic stem cell transplantation. The successful deployment of unselected adoptive cell therapy established AML as a disease responsive to immunomodulation. Classification systems for AML have been refined and expanded over the years in an effort to capture the variability of this heterogeneous disease and risk-stratify patients. Current systems increasingly incorporate information about cytogenetic alterations and genetic mutations. The advent of next generation sequencing technology has enabled the comprehensive identification of recurrent genetic mutations, many with predictive power. Recurrent genetic mutations found in AML have been intensely studied from a cell intrinsic perspective leading to the genesis of multiple, recently approved targeted therapies including IDH1/2-mutant inhibitors and FLT3-ITD/-TKD inhibitors. However, there is a paucity of data on the effects of these targeted agents on the leukemia microenvironment, including the immune system. Recently, the phenomenal success of checkpoint inhibitors and CAR-T cells has re-ignited interest in understanding the mechanisms leading to immune dysregulation and suppression in leukemia, with the objective of harnessing the power of the immune system via novel immunotherapeutics. A paradigm has emerged that places crosstalk with the immune system at the crux of any effective therapy. Ongoing research will reveal how AML genetics inform the composition of the immune microenvironment paving the way for personalized immunotherapy.
Collapse
Affiliation(s)
- Lourdes M. Mendez
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Ryan R. Posey
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Pandolfi
- Department of Medicine and Pathology, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
171
|
Impact of FLT3-ITD allele ratio and ITD length on therapeutic outcome in cytogenetically normal AML patients without NPM1 mutation. Bone Marrow Transplant 2019; 55:740-748. [DOI: 10.1038/s41409-019-0721-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
|
172
|
Zeiser R. Advances in understanding the pathogenesis of graft-versus-host disease. Br J Haematol 2019; 187:563-572. [PMID: 31588560 DOI: 10.1111/bjh.16190] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023]
Abstract
Acute graft-versus-host disease (GVHD) remains a major complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT). The emergence of different immuno-prophylaxis strategies, such as post-transplant cyclophosphamide or anti-thymocyteglobulin has reduced the incidence of acute GVHD in recent years. The biology of the acute GVHD we observe in the clinic may change due to the use of novel immuno-stimulatory agents, including immune checkpoint inhibitors or anti-neoplastic immune-modifiers, like lenalidomide, given before or after allo-HSCT. Here we discuss the recent advances in our understanding of acute GVHD with a focus on early events of the disease, including tissue damaging factors, innate immune cells, costimulatory pathways, immune cell signalling, immuno-regulatory cell types, biomarkers of GVHD and regenerative approaches. New insight in the pathogenesis of acute GVHD has revealed the role of pro-inflammatory intracellular signalling, defects in intestinal tissue regeneration and anti-bacterial defence, as well as a reduced diversity of the microbiome, which will be the basis for the development of novel therapies.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Freiburg University Medical Centre, Freiburg, Germany
| |
Collapse
|
173
|
Pratz KW, Rudek MA, Smith BD, Karp J, Gojo I, Dezern A, Jones RJ, Greer J, Gocke C, Baer MR, Duong VH, Rosner G, Zahurak M, Wright JJ, Emadi A, Levis M. A Prospective Study of Peritransplant Sorafenib for Patients with FLT3-ITD Acute Myeloid Leukemia Undergoing Allogeneic Transplantation. Biol Blood Marrow Transplant 2019; 26:300-306. [PMID: 31550496 DOI: 10.1016/j.bbmt.2019.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
FLT3-ITD-mutated acute myeloid leukemia (AML) remains a therapeutic challenge. FLT3 inhibition in the setting of minimal residual disease and a new immune system via allogeneic transplantation offers a promise of improved survival for these patients. We performed a prospective study of patients with FLT3-ITD AML undergoing allogeneic transplant that was conducted to evaluate the safety, tolerability, and outcome of sorafenib administered peritransplant. Sorafenib dosing was individualized, starting at 200 mg twice a day (BID), and titrated based on tolerability or toxicities until a tolerable dose was identified. Forty-four patients, with a median age of 52 years, undergoing allogeneic transplant were started on sorafenib in the peritransplant period (21 pretransplant). The median duration of post-transplant follow-up was 27.6 months (range, 5.2 to 60.4). Overall survival was 76% at both 24 and 36 months. Event-free survival at 24 and 36 months was 74% and 64%, respectively. Ten patients died in the post-transplant period, with 6 deaths due to relapsed leukemia and 4 from transplant-associated toxicity. Tolerable doses ranged from 200 mg every other day to 400 mg BID with similar exposure. Correlative studies evaluating FLT3 inhibition via a plasma inhibitory activity assay showed consistent inhibition of FLT3 at all tolerability-determined dosing levels. Sorafenib is well tolerated in the peritransplant setting irrespective of the conditioning intensity or the donor source. Our findings indicate that sorafenib dosing can be individualized in the post-transplantation setting according to patient tolerability. This approach results in effective in vivo FLT3 inhibition and yields encouraging survival results.
Collapse
Affiliation(s)
- Keith W Pratz
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland.
| | - Michelle A Rudek
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - B Douglas Smith
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Judith Karp
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Ivana Gojo
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Amy Dezern
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Richard J Jones
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Jackie Greer
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Christopher Gocke
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Vu H Duong
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Gary Rosner
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Marianna Zahurak
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - John J Wright
- IDB/CTEP/NCI, National Cancer Institute, Rockville, Maryland
| | - Ashkan Emadi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Mark Levis
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | | |
Collapse
|
174
|
Shang Y, Zhou F. Current Advances in Immunotherapy for Acute Leukemia: An Overview of Antibody, Chimeric Antigen Receptor, Immune Checkpoint, and Natural Killer. Front Oncol 2019; 9:917. [PMID: 31616632 PMCID: PMC6763689 DOI: 10.3389/fonc.2019.00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, due to the application of hematopoietic stem cell transplantation and small molecule inhibitor, the survival of acute leukemia is prolonged. However, the 5 year survival rate remains low due to a high incidence of relapse. Immunotherapy is expected to improve the prognosis of patients with relapsed or refractory hematological malignancies because it does not rely on the cytotoxic mechanisms of conventional therapy. In this paper, the advances of immunotherapy in acute leukemia are reviewed from the aspects of Antibody including Unconjugated antibodies, Antibody-drug conjugate and Bispecific antibody, Chimeric Antigen Receptor (CARs), Immune checkpoint, Natural killer cells. The immunological features, mechanisms and limitation in clinic will be described.
Collapse
Affiliation(s)
- Yufeng Shang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
175
|
Kamel AM, Elsharkawy NM, Abdelfattah EK, Abdelfattah R, Samra MA, Wallace P, Mahmoud HK. IL12 and IFNγ secretion by donor mononuclear cells in response to host antigens may predict acute GVHD after HSCT. Immunobiology 2019; 224:659-665. [DOI: 10.1016/j.imbio.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
|
176
|
Liu X, Yue Z, Cao Y, Taylor L, Zhang Q, Choi SW, Hanash S, Ito S, Chen JY, Wu H, Paczesny S. Graft-Versus-Host Disease-Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology. JCO Precis Oncol 2019; 3. [PMID: 31406955 PMCID: PMC6690359 DOI: 10.1200/po.18.00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE As a tumor immunotherapy, allogeneic hematopoietic cell transplantation with subsequent donor lymphocyte injection (DLI) aims to induce the graft-versus-tumor (GVT) effect but often also leads to acute graft-versus-host disease (GVHD). Plasma tests that can predict the likelihood of GVT without GVHD are still needed. PATIENTS AND METHODS We first used an intact-protein analysis system to profile the plasma proteome post-DLI of patients who experienced GVT and acute GVHD for comparison with the proteome of patients who experienced GVT without GVHD in a training set. Our novel six-step systems biology analysis involved removing common proteins and GVHD-specific proteins, creating a protein-protein interaction network, calculating relevance and penalty scores, and visualizing candidate biomarkers in gene networks. We then performed a second proteomics experiment in a validation set of patients who experienced GVT without acute GVHD after DLI for comparison with the proteome of patients before DLI. We next combined the two experiments to define a biologically relevant signature of GVT without GVHD. An independent experiment with single-cell profiling in tumor antigen–activated T cells from a patient with post–hematopoietic cell transplantation relapse was performed. RESULTS The approach provided a list of 46 proteins in the training set, and 30 proteins in the validation set were associated with GVT without GVHD. The combination of the two experiments defined a unique 61-protein signature of GVT without GVHD. Finally, the single-cell profiling in activated T cells found 43 of the 61 genes. Novel markers, such as RPL23, ILF2, CD58, and CRTAM, were identified and could be extended to other antitumoral responses. CONCLUSION Our multiomic analysis provides, to our knowledge, the first human plasma signature for GVT without GVHD. Risk stratification on the basis of this signature would allow for customized treatment plans.
Collapse
Affiliation(s)
- Xiaowen Liu
- Indiana University School of Informatics and Computing, Indianapolis, IN.,Indiana University School of Medicine, Indianapolis, IN
| | - Zongliang Yue
- University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Yimou Cao
- Indiana University School of Informatics and Computing, Indianapolis, IN
| | - Lauren Taylor
- Indiana University School of Medicine, Indianapolis, IN
| | - Qing Zhang
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | - Sawa Ito
- National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Jake Y Chen
- University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Huanmei Wu
- Indiana University School of Informatics and Computing, Indianapolis, IN
| | | |
Collapse
|
177
|
Kalathil SG, Hutson A, Barbi J, Iyer R, Thanavala Y. Augmentation of IFN-γ+ CD8+ T cell responses correlates with survival of HCC patients on sorafenib therapy. JCI Insight 2019; 4:130116. [PMID: 31391334 DOI: 10.1172/jci.insight.130116] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDSorafenib has been shown to reduce the extent of immunosuppression in patients with hepatocellular carcinoma (HCC). The rationale of this investigation was to identify biomarkers that can predict treatment efficacy of sorafenib in HCC patients and to unravel the mechanism by which sorafenib impedes immune suppression mediated by distinct immunosuppressive cell subsets.METHODSWith informed consent, blood samples were collected from 30 patients with advanced HCC, at baseline and 2 time points after initiation of sorafenib treatment. The frequency of PD-1+ T cells, ERK2 phosphorylation on flt-3+ Tregs and MDSCs, and T effector cell function were quantified by using flow cytometry.RESULTSElevated levels of CD8+Ki67+ T cells producing IFN-γ were associated with improved progression-free survival and overall survival (OS). High frequencies of these T cells were correlated with significantly reduced risk of death over time. Patients with an increased pretreatment T effector/Treg ratio showed significant improvement in OS. ERK+flt-3+ Tregs and MDSCs were significantly decreased after sorafenib therapy. Increased numbers of baseline flt-3+p-ERK+ MDSCs were associated with survival benefit of patients.CONCLUSIONA high baseline CD4+ T effector/Treg ratio is a potential biomarker of prognostic significance in HCC. CD8+Ki67+ T cells producing IFN-γ are a key biomarker of response to sorafenib therapy resulting in survival benefit. The immune modulation resulted from sorafenib-mediated blockade of signaling through the VEGF/VEGFR/flt-3 pathway, affecting ERK phosphorylation. These insights may help identify patients who likely would benefit from VEGFR antagonism and inform efforts to improve the efficacy of sorafenib in combination with immunotherapy.TRIAL REGISTRATIONNCT02072486.FUNDINGNational Comprehensive Cancer Network Oncology Research Program from general research support provided by Bayer US LLC (NCCNSORA0002), National Cancer Institute grant P30CA016056, and pilot funds from Roswell Park Alliance Foundation.
Collapse
Affiliation(s)
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, and
| | | | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | |
Collapse
|
178
|
Targeting Leukemia Stem Cell-Niche Dynamics: A New Challenge in AML Treatment. JOURNAL OF ONCOLOGY 2019; 2019:8323592. [PMID: 31485227 PMCID: PMC6702816 DOI: 10.1155/2019/8323592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023]
Abstract
One of the most urgent needs in AML is to improve the disease cure rate as relapse still occurs in 60–80% of patients. Recent evidence suggests that dismal clinical outcomes may be improved by a better definition of the tight interaction between the AML cell population and the bone marrow (BM) microenvironment (“the niche”); the latter has been progressively highlighted to have an active role in the disease process. It has now been well established that the leukemic population may misinterpret niche-derived signals and remodel the niche, providing a shelter to AML cells and protecting them from the cytotoxic effects of chemoradiotherapy. Novel imaging technological advances and preclinical disease models have revealed that, due to the finite number of BM niches, leukemic stem cells (LSCs) and normal hematopoietic stem cells (HSCs) compete for the same functional areas. Thus, the removal of LSCs from the BM niche and the promotion of normal HSC engraftment should be the primary goals in antileukemic research. In addition, it is now becoming increasingly clear that AML-niche dynamics are disease stage specific. In AML, the niche has been linked to disease pathogenesis in the preleukemic stage, the niche becomes permissive once leukemic cells are established, and the niche is transformed into a self-reinforcing structure at a later disease stage. These concepts have been fostered by the demonstration that, in unrelated AML types, endosteal vessel loss occurs as a primary AML-induced niche alteration, and additional AML-induced alterations of the niche and normal hematopoiesis evolve focally and in parallel. Obviously, this endosteal vessel loss plays a fundamental role in AML pathogenesis by causing excessive vascular permeability, hypoxia, altered perfusion, and reduced drug delivery. Each of these alterations may be effectively targeted by various therapeutic procedures, but preservation of endosteal vessel integrity might be the best option for any future antileukemic treatment.
Collapse
|
179
|
Kobbe G, Schroeder T, Rautenberg C, Kaivers J, Gattermann N, Haas R, Germing U. Molecular genetics in allogeneic blood stem cell transplantation for myelodysplastic syndromes. Expert Rev Hematol 2019; 12:821-831. [DOI: 10.1080/17474086.2019.1645004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Guido Kobbe
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Thomas Schroeder
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christina Rautenberg
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Jennifer Kaivers
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Norbert Gattermann
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Departments of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
180
|
Targeting Tyrosine Kinases in Acute Myeloid Leukemia: Why, Who and How? Int J Mol Sci 2019; 20:ijms20143429. [PMID: 31336846 PMCID: PMC6679203 DOI: 10.3390/ijms20143429] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy carrying a heterogeneous molecular panel of mutations participating in the blockade of differentiation and the increased proliferation of myeloid hematopoietic stem and progenitor cells. The historical "3 + 7" treatment (cytarabine and daunorubicin) is currently challenged by new therapeutic strategies, including drugs depending on the molecular landscape of AML. This panel of mutations makes it possible to combine some of these new treatments with conventional chemotherapy. For example, the FLT3 receptor is overexpressed or mutated in 80% or 30% of AML, respectively. Such anomalies have led to the development of targeted therapies using tyrosine kinase inhibitors (TKIs). In this review, we document the history of TKI targeting, FLT3 and several other tyrosine kinases involved in dysregulated signaling pathways.
Collapse
|
181
|
Tallis E, Borthakur G. Novel treatments for relapsed/refractory acute myeloid leukemia with FLT3 mutations. Expert Rev Hematol 2019; 12:621-640. [PMID: 31232619 DOI: 10.1080/17474086.2019.1635882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Mutations in the gene encoding for the FMS-like tyrosine kinase 3 (FLT3) are present in about 30% of adults with AML and are associated with shorter disease-free and overall survival after initial therapy. Prognosis of relapsed/refractory AML with FLT3 mutations is even more dismal with median overall survival of a few months only. Areas covered: This review will cover current and emerging treatments for relapsed/refractory AML with FLT3 mutations, preclinical rationale and clinical trials with new encouraging data for this particularly challenging population. The authors discuss mechanisms of resistance to FLT3 inhibitors and how these insights serve to identify current and future treatments. As allogeneic stem cell transplant in the first remission is the preferred therapy for newly diagnosed AML patients with FLT3 mutations, the authors discuss the role of maintenance after SCT for the prevention of relapse. Expert opinion: Relapsed/refractory AML with FLT3 mutations remains a therapeutic challenge with currently available treatments. However, the evolution of targeted therapies with next-generation FLT3 inhibitors and their combinations with chemotherapy is showing much promise. Moreover, growing understanding of the pathways of resistance to treatment has led to the identification of various targeted therapies currently being explored, which in time will improve outcomes.
Collapse
Affiliation(s)
- Eran Tallis
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
182
|
Clinical considerations for the use of FLT3 inhibitors in acute myeloid leukemia. Crit Rev Oncol Hematol 2019; 141:125-138. [PMID: 31279288 DOI: 10.1016/j.critrevonc.2019.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Internal tandem duplications and tyrosine kinase mutations in the fms-like tyrosine kinase 3 (FLT3) receptor can occur in acute myeloid leukemia (AML) and portend a poor prognosis. Midostaurin, a multikinase inhibitor that targets FLT3, demonstrated a survival benefit in FLT3-mutated AML in combination with front-line chemotherapy. Despite this advancement, the use of FLT3 inhibitors in clinical practice is complicated by significant drug-drug interactions and uncertainty about optimal timing, duration, and sequencing of therapy. As monotherapy, the utility of FLT3 inhibitors was initially limited by incomplete and transient clinical responses and the development of acquired resistance. This led to the development of more potent and selective FLT3 inhibitors designed to overcome common resistance mechanisms. One of these second generation FLT3 inhibitors, gilteritinib, is now FDA-approved for the treatment of relapsed or refractory AML. Now that multiple FLT3 inhibitors are commercially available, it is important to further delineate the role of these agents in the AML population. This review aims to provide a comprehensive overview of the role of FLT3 inhibitors in AML and apply the current literature to clinical practice.
Collapse
|
183
|
Poubel CP, Mansur MB, Boroni M, Emerenciano M. FLT3 overexpression in acute leukaemias: New insights into the search for molecular mechanisms. Biochim Biophys Acta Rev Cancer 2019; 1872:80-88. [PMID: 31201827 DOI: 10.1016/j.bbcan.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
Abstract
FLT3 overexpression is a recurrent event in various acute leukaemia subtypes. This transcriptional deregulation is important to define the prognostic risk for many patients. Of note, the molecular mechanisms leading to this gene upregulation are unknown for a substantial number of cases. In this Mini-Review, we highlight the role of FLT3 overexpression in acute leukaemia and discuss emerging mechanisms accounting for this upregulation. The benefits of using targeted therapy are also addressed in the overexpression context, posing other therapeutic possibilities based on state-of-the-art knowledge that could be considered for future research.
Collapse
Affiliation(s)
- Caroline Pires Poubel
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil; Bioinformatics and Computational Biology Lab, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Marcela B Mansur
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Mariana Boroni
- Bioinformatics and Computational Biology Lab, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil
| | - Mariana Emerenciano
- Division of Clinical Research, Research Centre, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti 37, Rio de Janeiro, RJ 20231050, Brazil.
| |
Collapse
|
184
|
Tian T, Li J, Li Y, Lu YX, Tang YL, Wang H, Zheng F, Shi D, Long Q, Chen M, Garcia-Manero G, Hu Y, Qin L, Deng W. Melatonin enhances sorafenib-induced cytotoxicity in FLT3-ITD acute myeloid leukemia cells by redox modification. Am J Cancer Res 2019; 9:3768-3779. [PMID: 31281512 PMCID: PMC6587355 DOI: 10.7150/thno.34327] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) with an internal tandem duplication in Fms-related tyrosine kinase 3 (FLT3-ITD) is identified as a subgroup with poor outcome and intrinsic resistance to chemotherapy and therefore urgent need for development of novel therapeutic strategies. Methods: The antitumor effects of melatonin alone or combined with sorafenib were evaluated via flow cytometry and immunoblotting assays in FLT-ITD AML cells. Also, the ex vivo and in vivo models were used to test the synergistic effects of melatonin and sorafenib against leukemia with FLT3/ITD mutation. Results: Our study shows for the first time that melatonin inhibits proliferation and induces apoptosis in FLT3/ITD-positive leukemia cells. Mechanistically, melatonin preferentially causes overproduction of reactive oxygen species (ROS) and ultimately massive cell death in FLT3-ITD AML cells. Moreover, melatonin significantly enhances the cytotoxicity induced by the FLT3 tyrosine kinase inhibitor sorafenib in AML cells with FLT3/ITD through redox modification. Importantly, combination of melatonin and sorafenib exhibited highly synergistic therapeutic activity in MV4-11 xenografts and a murine model bearing FLT3/ITD leukemia. Conclusion: This study indicates that melatonin, alone or in combination with sorafenib, has potential to improve the therapeutic outcome of AML patients with FLT3-ITD mutation that merits further investigation.
Collapse
|
185
|
Mitani Y, Hiwatari M, Seki M, Hangai M, Takita J. Successful treatment of acute myeloid leukemia co-expressing NUP98/NSD1 and FLT3/ITD with preemptive donor lymphocyte infusions. Int J Hematol 2019; 110:512-516. [PMID: 31134509 DOI: 10.1007/s12185-019-02665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/11/2019] [Accepted: 05/14/2019] [Indexed: 12/17/2022]
Abstract
Patients with acute myeloid leukemia (AML) co-expressing NUP98/NSD1 and FLT3/ITD have a dismal prognosis despite undergoing hematopoietic stem cell transplantation (HSCT). There are a few studies on successful treatment of relapsed AML co-expressing NUP98/NSD1 and FLT3/ITD. We report a refractory case of molecular relapse of AML co-expressing NUP98/NSD1 and FLT3/ITD post-matched sibling HSCT. Donor lymphocyte infusion (DLI) at an early stage of post-transplantation resulted in complete molecular remission for 29 months with durable chronic graft-versus-host disease. Our case suggests the clinical efficacy of preemptive DLI following minimal residual disease analysis for the treatment of refractory AML.
Collapse
Affiliation(s)
- Yuichi Mitani
- Department of Pediatrics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsuteru Hiwatari
- Department of Pediatrics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Masafumi Seki
- Department of Pediatrics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mayumi Hangai
- Department of Pediatrics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Junko Takita
- Department of Pediatrics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Pediatrics, Kyoto University, Kyoto, Japan
| |
Collapse
|
186
|
Fasslrinner F, Arndt C, Koristka S, Feldmann A, Altmann H, von Bonin M, Schmitz M, Bornhäuser M, Bachmann M. Midostaurin abrogates CD33-directed UniCAR and CD33-CD3 bispecific antibody therapy in acute myeloid leukaemia. Br J Haematol 2019; 186:735-740. [PMID: 31119728 DOI: 10.1111/bjh.15975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 01/05/2023]
Abstract
Combinatory therapeutic approaches of different targeted therapies in acute myeloid leukaemia are currently under preclinical/early clinical investigation. To enhance anti-tumour effects, we combined the tyrosine kinase inhibitor (TKI) midostaurin and T-cell mediated immunotherapy directed against CD33. Clinically relevant concentrations of midostaurin abrogated T-cell mediated cytotoxicity both after activation with bispecific antibodies and chimeric antigen receptor T cells. This information is of relevance for clinicians exploring T-cell mediated immunotherapy in early clinical trials. Given the profound inhibition of T-cell functionality and anti-tumour activity, we recommend specific FLT3 TKIs for further clinical testing of combinatory approaches with T-cell based immunotherapy.
Collapse
Affiliation(s)
- Frederick Fasslrinner
- Medical Clinic and Polyclinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Heidi Altmann
- Medical Clinic and Polyclinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Polyclinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Centre (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Medical Faculty 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,Centre for Regenerative Therapies Dresden, 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,University Cancer Centre (UCC), 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Centre (DKFZ), Heidelberg, Germany
| | - Martin Bornhäuser
- Medical Clinic and Polyclinic I, University Hospital 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,Centre for Regenerative Therapies Dresden, 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,University Cancer Centre (UCC), 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Centre (DKFZ), Heidelberg, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Centre for Regenerative Therapies Dresden, 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,University Cancer Centre (UCC), 'Carl Gustav Carus', TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
187
|
Sorafenib Therapy Is Associated with Improved Outcomes for FMS-like Tyrosine Kinase 3 Internal Tandem Duplication Acute Myeloid Leukemia Relapsing after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1674-1681. [PMID: 31009704 DOI: 10.1016/j.bbmt.2019.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/23/2019] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
The optimal therapy for patients with acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) who relapse after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains unclear. In this study we retrospectively evaluated the efficacy of sorafenib combined with other therapeutic strategies as salvage therapy for these patients. Eighty-three AML patients with FLT3-ITD relapsing after allo-HSCT were enrolled in this study. Fifty-three patients received salvage therapy containing sorafenib and 30 patients did not. Salvage therapy containing sorafenib was superior to that without sorafenib with respect to complete remission rates, overall survival (OS), and progression-free survival (PFS) (66.0% versus 30.0%, 46.8% versus 20.0%, and 44.9% versus 16.7%, respectively; P = .002, P = .003, and P = .001). Further subgroup analysis revealed that the OS and PFS of patients who received sorafenib combined with chemotherapy followed by donor lymphocyte infusion (DLI) were superior to those receiving other therapeutic regimens, including sorafenib combined with chemotherapy, chemotherapy followed by DLI, and monochemotherapy (P = .003, P < .001). Multivariate analysis revealed that salvage therapy including sorafenib was the only protective factor for longer OS (P = .035; hazard ratio [HR], .526); salvage therapy including sorafenib and DLI were the protective factors for longer PFS (P = .011, HR, .423; P = .019, HR, .508). Our data suggest that sorafenib therapy is associated with improved outcomes for FLT3-ITD AML relapsing after allo-HSCT, and whether sorafenib combined with chemotherapy followed by DLI reveals an optimal efficacy merits further study.
Collapse
|
188
|
Tiong IS, Wei AH. New drugs creating new challenges in acute myeloid leukemia. Genes Chromosomes Cancer 2019; 58:903-914. [PMID: 30861214 DOI: 10.1002/gcc.22750] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/31/2022] Open
Abstract
The therapeutic landscape is rapidly changing, with eight new drugs approved by the Food and Drug Administration within the last 2 years, including midostaurin and gilteritinib for FLT3 mutant newly diagnosed and relapsed/refractory (R/R) acute myeloid leukemia (AML), respectively; CPX-351 (liposomal cytarabine and daunorubicin) for therapy-related AML and AML with myelodysplasia-related changes; gemtuzumab ozogamicin (anti-CD33 monoclonal antibody conjugated with calicheamicin) for newly diagnosed and R/R CD33-positive AML; enasidenib and ivosidenib for IDH2 and IDH1 mutant R/R AML, respectively. Novel therapies have also emerged for newly diagnosed AML in adults who are age 75 years or older, or who have comorbidities that preclude the use of intensive induction chemotherapy. These include venetoclax (BCL-2 inhibitor) in combination with hypomethylating agents (azacitidine or decitabine) or low-dose cytarabine (LDAC), and glasdegib (sonic hedgehog pathway inhibitor) in combination with LDAC. This flurry of new drug approvals has markedly altered the treatment landscape in AML and provided new opportunities, as well as new challenges for treating clinicians. This review will focus on how these drugs might shape clinical practice and the hurdles likely to be faced by new therapies seeking entry into this dynamic and rapidly changing therapeutic landscape.
Collapse
Affiliation(s)
- Ing S Tiong
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Andrew H Wei
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
189
|
Biology-Driven Approaches to Prevent and Treat Relapse of Myeloid Neoplasia after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:e128-e140. [DOI: 10.1016/j.bbmt.2019.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022]
|
190
|
McMahon CM, Luger SM. Maintenance therapy in acute myeloid leukemia: What is the future? Semin Hematol 2019; 56:102-109. [DOI: 10.1053/j.seminhematol.2018.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023]
|
191
|
Schuler E, Boughoufala S, Rautenberg C, Nachtkamp K, Dienst A, Fenk R, Haas R, Kondakci M, Germing U, Schroeder T, Kobbe G. Relapse patterns and treatment strategies in patients receiving allogeneic hematopoietic stem cell transplantation for myeloid malignancies. Ann Hematol 2019; 98:1225-1235. [DOI: 10.1007/s00277-019-03670-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/11/2019] [Indexed: 11/29/2022]
|
192
|
Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, Barcella M, Spinelli O, Greco R, Crucitti L, Cieri N, Noviello M, Manfredi F, Montaldo E, Ostuni R, Naldini MM, Gentner B, Waterhouse M, Zeiser R, Finke J, Hanoun M, Beelen DW, Gojo I, Luznik L, Onozawa M, Teshima T, Devillier R, Blaise D, Halkes CJM, Griffioen M, Carrabba MG, Bernardi M, Peccatori J, Barlassina C, Stupka E, Lazarevic D, Tonon G, Rambaldi A, Cittaro D, Bonini C, Fleischhauer K, Ciceri F, Vago L. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med 2019; 25:603-611. [PMID: 30911134 DOI: 10.1038/s41591-019-0400-z] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 02/15/2019] [Indexed: 01/17/2023]
Abstract
Transplantation of hematopoietic cells from a healthy individual (allogeneic hematopoietic cell transplantation (allo-HCT)) demonstrates that adoptive immunotherapy can cure blood cancers: still, post-transplantation relapses remain frequent. To explain their drivers, we analyzed the genomic and gene expression profiles of acute myeloid leukemia (AML) blasts purified from patients at serial time-points during their disease history. We identified a transcriptional signature specific for post-transplantation relapses and highly enriched in immune-related processes, including T cell costimulation and antigen presentation. In two independent patient cohorts we confirmed the deregulation of multiple costimulatory ligands on AML blasts at post-transplantation relapse (PD-L1, B7-H3, CD80, PVRL2), mirrored by concomitant changes in circulating donor T cells. Likewise, we documented the frequent loss of surface expression of HLA-DR, -DQ and -DP on leukemia cells, due to downregulation of the HLA class II regulator CIITA. We show that loss of HLA class II expression and upregulation of inhibitory checkpoint molecules represent alternative modalities to abolish AML recognition from donor-derived T cells, and can be counteracted by interferon-γ or checkpoint blockade, respectively. Our results demonstrate that the deregulation of pathways involved in T cell-mediated allorecognition is a distinctive feature and driver of AML relapses after allo-HCT, which can be rapidly translated into personalized therapies.
Collapse
Affiliation(s)
- Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Laura Zito
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Valentina Gambacorta
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Unit of Senescence in Stem Cell Aging, Differentiation and Cancer, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giacomo Oliveira
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gabriele Bucci
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matteo Barcella
- Genomic and Bioinformatics Unit, Department of Health Sciences, University of Milano, Milano, Italy
| | - Orietta Spinelli
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lara Crucitti
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy.,University of Milano, Milano, Italy
| | - Nicoletta Cieri
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy.,University of Milano, Milano, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Montaldo
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Renato Ostuni
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matteo M Naldini
- Translational Stem Cell and Leukemia Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Bernhard Gentner
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Translational Stem Cell and Leukemia Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Miguel Waterhouse
- Department of Hematology, Oncology and Stem Cell Transplantation, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Jurgen Finke
- Department of Hematology, Oncology and Stem Cell Transplantation, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Maher Hanoun
- Department of Bone Marrow Transplantation, Universitätsklinikum Essen, Essen, Germany
| | - Dietrich W Beelen
- Department of Bone Marrow Transplantation, Universitätsklinikum Essen, Essen, Germany
| | - Ivana Gojo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leo Luznik
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Graduate School of Medicine, Sapporo, Japan
| | - Raynier Devillier
- Department of Haematology, Institut Paoli Calmettes, Marseille, France
| | - Didier Blaise
- Department of Haematology, Institut Paoli Calmettes, Marseille, France
| | | | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Bernardi
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Barlassina
- Genomic and Bioinformatics Unit, Department of Health Sciences, University of Milano, Milano, Italy
| | - Elia Stupka
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giovanni Tonon
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy.,Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,San Raffaele Vita-Salute University, Milano, Italy
| | - Katharina Fleischhauer
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy.,Institute for Experimental Cellular Therapy, Universitätsklinikum Essen, Essen, Germany
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy.,San Raffaele Vita-Salute University, Milano, Italy
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Division of Immunology, Transplantation and Infectious Disease, IRCCS San Raffaele Scientific Institute, Milano, Italy. .,Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
193
|
Bazarbachi A, Labopin M, Battipaglia G, Djabali A, Forcade E, Arcese W, Socié G, Blaise D, Halter J, Gerull S, Cornelissen JJ, Chevallier P, Maertens J, Schaap N, El-Cheikh J, Esteve J, Nagler A, Mohty M. Allogeneic Stem Cell Transplantation for FLT3-Mutated Acute Myeloid Leukemia: In vivo T-Cell Depletion and Posttransplant Sorafenib Maintenance Improve Survival. A Retrospective Acute Leukemia Working Party-European Society for Blood and Marrow Transplant Study. Clin Hematol Int 2019; 1:58-74. [PMID: 34595412 PMCID: PMC8432385 DOI: 10.2991/chi.d.190310.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) with FLT3-mutation carries a poor prognosis, and allogeneic stem cell transplantation (allo-SCT) is recommended at first complete remission (CR1). We assessed 462 adults (median age 50 years) with FLT3-mutated AML allografted between 2010 and 2015 from a matched related (40%), unrelated (49%), or haploidentical donor (11%). The median follow-up of alive patients was 39 months. Day-100 acute graft versus host disease (GVHD) grades II–IV and III–IV were encountered in 26% and 9%, whereas the 2-year incidence of chronic and extensive chronic GVHD were 34% and 16%, respectively. The 2-year incidences of relapse and nonrelapse mortality were 34% and 15%, respectively. The 2-year leukemia-free survival, overall survival (OS), and GVHD relapse-free survival (GRFS) were 51%, 59%, and 38%, respectively. In multivariate analysis, NPM1-mutation, transplantation in CR1, in vivo T-cell depletion, and posttransplant sorafenib improved OS, whereas more than one induction (late CR1) negatively affected OS. Similarly, NPM1-mutation, a haploidentical donor, T-cell depletion, and sorafenib maintenance improved GRFS, whereas late CR1 or persistent disease negatively affected it. In conclusion, FLT3-mutated AML remains a challenge even following allo-SCT. In vivo T-cell depletion and posttransplant sorafenib significantly improve OS and GRFS, and may be considered as standard of care.
Collapse
Affiliation(s)
- Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.,Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | | | - Giorgia Battipaglia
- Department of hematology and cellular therapy Hopital Saint Antoine, Paris, France.,Department of hematology and cellular therapy, Hopital Saint Antoine, Université Pierre & Marie Curie, INSERM, UMRs 938, Paris, France
| | | | - Edouard Forcade
- Department of Hematology, CHU Bordeaux Hôpital Haut-leveque, Pessac, France
| | - William Arcese
- Department of Stem cell transplant, Tor Vergata University of Rome, Rome, Italy
| | - Gerard Socié
- Department of Hematology-bone marrow transplant, Hopital Saint Louis, Paris, France
| | - Didier Blaise
- Department of Hematology, programme de Transplantation & Therapie Cellulaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli Calmettes, Marseille, France
| | - Joerg Halter
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - Sabine Gerull
- Department of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jan J Cornelissen
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Johan Maertens
- Department of Hematology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Nicolaas Schaap
- Department of Hematology, Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Jean El-Cheikh
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jordi Esteve
- Hematology Department, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Arnon Nagler
- Department of Hematology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Mohamad Mohty
- Department of hematology and cellular therapy Hopital Saint Antoine, Paris, France.,Department of hematology and cellular therapy, Hopital Saint Antoine, Université Pierre & Marie Curie, INSERM, UMRs 938, Paris, France
| |
Collapse
|
194
|
Cioccio J, Claxton D. Therapy of acute myeloid leukemia: therapeutic targeting of tyrosine kinases. Expert Opin Investig Drugs 2019; 28:337-349. [DOI: 10.1080/13543784.2019.1584610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Joseph Cioccio
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| | - David Claxton
- Department of Medicine, Penn State Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
195
|
Bazarbachi A, Labopin M, Battipaglia G, Djabali A, Passweg J, Socié G, Forcade E, Blaise D, Chevallier P, Orvain C, Cornelissen JJ, Arcese W, Chantepie S, Hashaishi K, El Cheikh J, Medinger M, Esteve J, Nagler A, Mohty M. Sorafenib improves survival of FLT3-mutated acute myeloid leukemia in relapse after allogeneic stem cell transplantation: a report of the EBMT Acute Leukemia Working Party. Haematologica 2019; 104:e398-e401. [PMID: 30792203 DOI: 10.3324/haematol.2018.211615] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ali Bazarbachi
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon .,Department of Cell Biology, Anatomy and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Myriam Labopin
- Acute Leukemia Working Party of EBMT, Paris, France.,Hematology Department, Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, Paris, France.,Hôpital Saint Antoine, Université Pierre and Marie Curie, INSERM, UMRs 938, Paris, France
| | - Giorgia Battipaglia
- Hematology Department, Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, Paris, France.,Hematology Department, Federico II University of Naples, Naples, Italy
| | - Azedine Djabali
- Acute Leukemia Working Party of EBMT, Paris, France.,Hematology Department, Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, Paris, France
| | | | - Gerard Socié
- Hôpital Saint Louis, Department of Hematology - BMT, Paris, France
| | | | - Didier Blaise
- Programme de Transplantation and Therapie Cellulaire, Centre de Recherche en Cancérologie de Marseille, Institut Paoli Calmettes, Marseille, France
| | | | | | | | - William Arcese
- Tor Vergata University of Rome, Stem Cell Transplant Unit, Policlinico Universitario Tor Vergata, Rome, Italy
| | | | | | - Jean El Cheikh
- Bone Marrow Transplantation Program, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Jordi Esteve
- Acute Leukemia Working Party of EBMT, Paris, France.,Hematology Department, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Arnon Nagler
- Acute Leukemia Working Party of EBMT, Paris, France.,Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Mohamad Mohty
- Acute Leukemia Working Party of EBMT, Paris, France.,Hematology Department, Hôpital Saint Antoine, Service d'Hématologie et Thérapie Cellulaire, Paris, France.,Hôpital Saint Antoine, Université Pierre and Marie Curie, INSERM, UMRs 938, Paris, France
| |
Collapse
|
196
|
Prestipino A, Zeiser R. Clinical implications of tumor-intrinsic mechanisms regulating PD-L1. Sci Transl Med 2019; 11:11/478/eaav4810. [DOI: 10.1126/scitranslmed.aav4810] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Treatment with immune checkpoint inhibitors targeting programmed death receptor-1 (PD-1) or programmed death ligand-1 (PD-L1) is effective in many cancer types. Tumors harboring specific mutations modulate antitumor immune responses through the PD-1/PD-L1 axis, and this should be taken into account when designing rational combinatory treatments.
Collapse
|
197
|
Rautenberg C, Germing U, Haas R, Kobbe G, Schroeder T. Relapse of Acute Myeloid Leukemia after Allogeneic Stem Cell Transplantation: Prevention, Detection, and Treatment. Int J Mol Sci 2019; 20:E228. [PMID: 30626126 PMCID: PMC6337734 DOI: 10.3390/ijms20010228] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and prognostically heterogeneous hematopoietic stem cell disease that may be cured in eligible patients with intensive chemotherapy and/or allogeneic stem cell transplantation (allo-SCT). Tremendous advances in sequencing technologies have revealed a large amount of molecular information which has markedly improved our understanding of the underlying pathophysiology and enables a better classification and risk estimation. Furthermore, with the approval of the FMS-like tyrosine kinase 3 (FLT3) inhibitor Midostaurin a first targeted therapy has been introduced into the first-line therapy of younger patients with FLT3-mutated AML and several other small molecules targeting molecular alterations such as isocitrate dehydrogenase (IDH) mutations or the anti-apoptotic b-cell lymphoma 2 (BCL-2) protein are currently under investigation. Despite these advances, many patients will have to undergo allo-SCT during the course of disease and depending on disease and risk status up to half of them will finally relapse after transplant. Here we review the current knowledge about the molecular landscape of AML and how this can be employed to prevent, detect and treat relapse of AML after allo-SCT.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/prevention & control
- Leukemia, Myeloid, Acute/therapy
- Mutation/genetics
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/drug therapy
- Recurrence
- Transplantation, Homologous
Collapse
Affiliation(s)
- Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| |
Collapse
|
198
|
Chang YJ, Zhao XY, Huang XJ. Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease. Front Immunol 2018; 9:3041. [PMID: 30619371 PMCID: PMC6308132 DOI: 10.3389/fimmu.2018.03041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
Allogeneic stem cell transplantation (allo-SCT) is a curable method for the treatment of hematological malignancies. In the past two decades, the establishment of haploidentical transplant modalities make “everyone has a donor” become a reality. However, graft-versus-host disease (GVHD) and relapse remain the major two causes of death either in the human leukocyte antigen (HLA)-matched transplant or haploidentical transplant settings, both of which restrict the improvement of transplant outcomes. Preclinical mice model showed that both donor-derived T cells and natural killer (NK) cells play important role in the pathogenesis of GVHD and the effects of graft-versus-leukemia (GVL). Hence, understanding the immune mechanisms of GVHD and GVL would provide potential strategies for the control of leukemia relapse without aggravating GVHD. The purpose of the current review is to summarize the biology of GVHD and GVL responses in preclinical models and to discuss potential novel therapeutic strategies to reduce the relapse rate after allo-SCT. We will also review the approaches, including optimal donor selection and, conditioning regimens, donor lymphocyte infusion, BCR/ABL-specific CTL, and chimeric antigen receptor-modified T cells, which have been successfully used in the clinic to enhance and preserve anti-leukemia activity, especially GVL effects, without aggravating GVHD or alleviate GVHD.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital & Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
199
|
Mechanisms of immune escape after allogeneic hematopoietic cell transplantation. Blood 2018; 133:1290-1297. [PMID: 30578254 DOI: 10.1182/blood-2018-10-846824] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/15/2018] [Indexed: 02/04/2023] Open
Abstract
Relapse of the original disease is a major cause of death after allogeneic hematopoietic cell transplantation for acute leukemias. There is growing evidence that relapses may be explained not only by resistance to chemotherapy but also by the escape of tumor cells from the control of the allogeneic immune response. Mechanisms of immune evasion can involve abrogation of leukemia cell recognition due to loss of HLA genes, immunosuppression by immune-checkpoint ligand expression, production of anti-inflammatory factors, release of metabolically active enzymes, loss of proinflammatory cytokine production, and acquisition of novel driver mutations that promote leukemia outgrowth. These mechanisms, and therapeutic targeting of immune escape, will be discussed. We divide the evidence in support of immune-escape mechanisms into animal studies, human laboratory studies, and human clinical experience. A better understanding of the molecular pathways connected to immune escape and relapse may help to improve our therapeutic armamentarium against acute myeloid leukemia relapse.
Collapse
|
200
|
Abstract
FLT3 mutations are one of the most common findings in acute myeloid leukemia (AML). FLT3 inhibitors have been in active clinical development. Midostaurin as the first-in-class FLT3 inhibitor has been approved for treatment of patients with FLT3-mutated AML. In this review, we summarized the preclinical and clinical studies on new FLT3 inhibitors, including sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, midostaurin, gilteritinib, crenolanib, cabozantinib, Sel24-B489, G-749, AMG 925, TTT-3002, and FF-10101. New generation FLT3 inhibitors and combination therapies may overcome resistance to first-generation agents.
Collapse
Affiliation(s)
- Mei Wu
- Department of Hematology, The People’s Hospital of Bozhou, Bozhou, 236800 China
| | - Chuntuan Li
- Department of Hematology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, 362000 China
| | - Xiongpeng Zhu
- Department of Hematology, First Hospital of Quanzhou affiliated to Fujian Medical University, Quanzhou, 362000 China
| |
Collapse
|