151
|
Haas SJP, Wree A. Dopaminergic differentiation of the Nurr1-expressing immortalized mesencephalic cell line CSM14.1 in vitro. J Anat 2002; 201:61-9. [PMID: 12171477 PMCID: PMC1570893 DOI: 10.1046/j.1469-7580.2002.00072.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of neural stem cells as grafts is a potential treatment for Parkinson's disease, but the potential of stem cells to differentiate into dopaminergic neurones requires investigation. The present study examined the in vitro differentiation of the temperature-sensitive immortalized mesencephalic progenitor cell line CSM14.1 under defined conditions. Cells were derived from the mesencephalic region of a 14-day-old rat embryo, retrovirally immortalized with the Large T antigen and cultured at 33 degrees C in DMEM containing 10% fetal calf serum (FCS). For differentiation, the temperature was elevated at 39 degrees C and FCS was reduced (1%). Using histology, immunocytochemical detection of the stem cell marker Nestin and the neuronal marker MAP5 and, in addition, Western blotting to determine the presence of neurone-specific enolase and the neurone nuclei antigen we demonstrated a differentiation of these cells into neuronal cells accompanied by a decrease in Nestin production. In Western blots, we detected the orphan nuclear receptor Nurr1 in these cells. This was followed by a time-dependent up-regulation of the enzymes tyrosine hydroxylase and aldehyde dehydrogenase 2 characteristic of mature dopaminergic neurones. Our in vitro model of dopaminergic cell differentiation corroborates recent in vivo observations in the developing rodent brain.
Collapse
|
152
|
Lee JH, Webb GC, Allen RDM, Moran C. Characterizing and mapping porcine endogenous retroviruses in Westran pigs. J Virol 2002; 76:5548-56. [PMID: 11991983 PMCID: PMC137029 DOI: 10.1128/jvi.76.11.5548-5556.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since porcine endogenous retroviruses (PERVs) can infect cultured human cells, they are a potential hazard to xenotransplantation. For this reason, endogenous retroviruses from the Westran (Westmead Hospital transplantation) inbred line of pigs were analyzed by using consensus primers for the type A and type B viruses to amplify 1.8-kb envelope gene fragments. After preliminary analysis with restriction enzymes KpnI and MboI, 31 clones were sequenced. Between types A and B, five recombinant clones were identified. Fifty-five percent of clones (17 of 31) had premature stop codons within the envelope protein-encoding region. Endogenous retroviruses in Westran pigs were physically mapped by fluorescence in situ hybridization (FISH) using PERV-A and PERV-B envelope clones as probes to identify at least 32 integration sites (19 PERV-A sites and 13 PERV-B sites). The chromosomal sites of integration in the Westran strain are quite different from those in the European Large White pig. The recombinant clones suggest that defective PERVs could become infective through recombination and further that PERVs might recombine with human endogenous retroviruses in xenotransplants.
Collapse
Affiliation(s)
- Jun-Heon Lee
- Centre for Advanced Technologies in Animal Genetics and Reproduction, Faculty of Veterinary Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | |
Collapse
|
153
|
Riaz SS, Jauniaux E, Stern GM, Bradford HF. The controlled conversion of human neural progenitor cells derived from foetal ventral mesencephalon into dopaminergic neurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 136:27-34. [PMID: 12036514 DOI: 10.1016/s0165-3806(02)00310-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expansion and differentiation of neural progenitor cells in vitro provides an approach to study the development and differentiation of neurons. The ventral mesencephalic area of the brain is an important source of neural progenitor cells and the differentiated neural progenitor cell has paramount potential for use in transplant therapies such as those used in the treatment of neurodegenerative diseases. Here, the controlled conversion of human foetal progenitor cells derived from ventral mesencephalon into dopaminergic neurons is reported. The immunoreactivity to tyrosine hydroxylase (TH) and levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), secreted into culture medium, were used to assess dopaminergic neuronal phenotype. Expansion of the neural progenitor cells for 3 weeks in the presence of basic fibroblast growth factor (2 ng/ml) followed by its withdrawal resulted in approximately 60% of cells staining positive for TH, when challenged in concert with brain-derived neurotrophic factor (50 ng/ml), DA (10 microM) and forskolin (10 microM) for a further 3 weeks. A corresponding 41-fold increase in DA and DOPAC was measured in the incubation medium by HPLC. Therefore, the successful conversion of human foetal progenitor cells in vitro resulting in the desired dopaminergic neuronal phenotype, could provide a solution to the problem of limited availability of human foetuses for clinical surgical transplantation therapies, which are currently in progress for the treatment of neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Samina S Riaz
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, South Kensington, London, SW7 2AY, UK.
| | | | | | | |
Collapse
|
154
|
Abstract
A decade ago, therapeutic strategies to remyelinate the CNS in diseases such as multiple sclerosis had much experimental appeal, but translation of laboratory success into clinical treatments appeared to be a long way off. Within the past 12 months, however, the first patients with multiple sclerosis have received intracerebral implants of autologous myelinating cells. Here we review the clinical and biological problems presented by multiple sclerosis disease processes, and the background to the development of myelin-repair strategies. We attempt to highlight those areas where difficulties have yet to be resolved, and draw on various experimental findings to speculate on how remyelinating therapies are likely to develop in the foreseeable future.
Collapse
|
155
|
Melchior B, Rémy S, Nerrière-Daguin V, Heslan JM, Soulillou JP, Brachet P. Temporal analysis of cytokine gene expression during infiltration of porcine neuronal grafts implanted into the rat brain. J Neurosci Res 2002; 68:284-92. [PMID: 12111858 DOI: 10.1002/jnr.10216] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A large array of evidence supports the involvement of infiltrating T lymphocytes in the rejection process of intracerebral neuronal xenografts. Little is known, however, about the molecular mechanisms that drive the recruitment of this cell type. In the present work, we used real-time RT-PCR methodology to investigate the kinetics of cytokine gene expression during the infiltration of fetal porcine neurons (PNEU) implanted into the striatum of LEW.1A rats. T lymphocyte infiltration was followed by measuring the intracerebral levels of transcripts encoding the beta chain of the T cell receptor. These transcripts remained barely detectable until the fourth week (28 days) postimplantation, when a sudden accumulation occurred. Their kinetics, which support previous immunohistochemical observations, indicate that alphabetaT lymphocyte recruitment occurs rapidly after a delay of several weeks in this experimental model. Infiltration of PNEU grafts by T lymphocytes was accompanied by a concomitant, dramatic augmentation of transcripts coding for monocyte chemotactic protein-1 and RANTES (for regulated on activation, normal T cell expressed and secreted), two chemokines targeting this cell type, among others. Likewise, a sudden accumulation of transcripts of proinflammatory lymphokines [interleukin (IL)-1alpha, tumor necrosis factor-alpha, IL-6] as well as Th1 cytokines (IL-2, interferon-gamma) was also detected. In contrast, IL-4, -10, and -13 mRNA remained barely detectable at the different time points. No significant changes were noticed for IL-12 or transforming growth factor-beta transcripts. These data support the concept that T lymphocyte infiltration of PNEU grafts is actively promoted by a local production of chemokines and proinflammatory lymphokines and is based on a Th1 polarization.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Antigens, Neoplasm
- Antigens, Surface
- Avian Proteins
- Basigin
- Blood Proteins
- Brain Tissue Transplantation/adverse effects
- Brain Tissue Transplantation/methods
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokine CCL5/metabolism
- Chemotaxis, Leukocyte/immunology
- Cytokines/genetics
- Fetus
- Gene Expression Regulation/immunology
- Graft Rejection/immunology
- Graft Rejection/metabolism
- Graft Rejection/physiopathology
- Immunohistochemistry
- Interferon-gamma/metabolism
- Interleukin-2 Receptor alpha Subunit
- Interleukins/metabolism
- Kinetics
- Male
- Membrane Glycoproteins/metabolism
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Interleukin/metabolism
- Swine
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- Transforming Growth Factor beta/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Benoît Melchior
- Institut National de la Santé et de la Recherche Médicale, Unité 437, Centre Hospitalier Universitaire, Nantes, France
| | | | | | | | | | | |
Collapse
|
156
|
|
157
|
Kumar G, Tuch BE, Deng YM, Rawlinson WD. Limiting potential infectious risks of transplanting insulin-producing pig cells into humans. Pathology 2002; 34:178-84. [PMID: 12009102 DOI: 10.1080/003130201201118007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AIMS Prior to commencing a study of grafting foetal/neonatal pig islet-like cell clusters into type I diabetic human subjects, the microbiological risks of transplanting porcine pancreatic tissue were assessed. METHODS An exclusion list for screening donor animals and graft tissue in Australia was compiled following evaluation of the disease risks posed by 121 organisms, including 36 bacteria, 12 fungi, four mycoplasma, 31 parasites and 38 viruses. The list of evaluated agents was derived from the literature, interviews with veterinarians and physicians, and a survey of laboratories. RESULTS The exclusion list contains 35 organisms (including 20 bacteria, four fungi, one mycoplasma, one parasite and nine viruses) that are zoonotic, pathogens of immunocompromised hosts (including human allograft recipients), pathogens resistant to antibiotics or potentially able to recombine with the human genome. These 35 agents can be detected by culture (e.g., Actinomyces), serological testing (e.g., influenza viruses) or nucleic acid amplification (e.g., Mycobacteria). CONCLUSIONS It is recommended that: (i) source pigs designated for use in human xenotransplantation trials should be tested regularly for the 35 organisms; (ii) the mothers of donor foetal/neonatal pigs and, when possible, the foetal/ neonatal pigs themselves should be tested immediately prior to the grafting of tissue into humans; and (iii) the exclusion list be modified for designated source pig herds in countries other than Australia.
Collapse
Affiliation(s)
- Ganesh Kumar
- Diabetes Transplant Unit, Prince of Wales Hospital, Randwick, NSW, Australia
| | | | | | | |
Collapse
|
158
|
Harrower TP, Richards A, Cruz G, Copeman L, Dunnett SB, Barker RA. Alpha Gal is widely expressed in embryonic porcine stem cells and neural tissue. Neuroreport 2002; 13:481-5. [PMID: 11930166 DOI: 10.1097/00001756-200203250-00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fetal porcine neural xenografts are an alternative to human fetal tissue for cell based treatments of a number of neurodegenerative conditions but are currently limited by host immunological rejection. The expression of a major immunological epitope, Galalpha1-3Galbeta1-4GlcNAcbeta-R (alphaGal) was determined on stem cells and primary cells derived from E26 porcine fetal brains. alphaGal was detected on the majority of neural stem cells and cells from primary cell suspensions. The expression of this epitope paralleled the binding of human IgG and IgM to the cells, a binding that was significantly reduced with anti-alphaGal depleted human serum. This study demonstrates that alphaGal expression is extensive in embryonic porcine neural cells and will be of relevance to any clinical trials using this tissue.
Collapse
Affiliation(s)
- T P Harrower
- Cambridge Centre for Brain Repair, Forvie Site, Robinson Way, Cambridge CB2 2PY, UK
| | | | | | | | | | | |
Collapse
|
159
|
Abstract
The number of patients in need of an organ transplant is increasing, while the number of satisfactory sources of organs has declined in many countries [101]. The resulting shortage of human organs has spurred an urgent effort to investigate alternative therapies, including the use of animal organs, tissues and cells (i.e., xenotransplantation). Advances in genetic engineering have provided essential tools for the development of practical solutions to human disease. The area of xenotransplantation is no exception. In fact, the use of genetic therapies is especially attractive in the transplant setting as it offers an opportunity to manipulate the donor tissue rather than the recipient. This review will describe the obstacles in the clinical application of xenotransplantation and how genetic engineering might be used to address them.
Collapse
Affiliation(s)
- Brenda M Ogle
- Transplantation Biology, Mayo Clinic, Medical Sciences Building 2-66, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
160
|
|
161
|
Affiliation(s)
- Roger A Barker
- Cambridge Centre for Brain Repair, and Department of Neurology, University of Cambridge, Forvie Site, Cambridge, United Kingdom.
| |
Collapse
|
162
|
|
163
|
Abstract
The limited availability of donor organs restricts the number of kidney transplantations performed per year. One novel solution to this shortage envisions 'growing' new kidneys in situ via xenotransplantation of renal primordia. To be successful, such an approach would require the following criteria to be met: that transplants are 'grown' in a location that renders their subsequent excretory function possible; that developed transplants have normal morphology and function; that transplanted metanephroi become well integrated into the host, in terms of inducing a state of immune tolerance and being vascularized by host vessels; and that source material for metanephros transplants is easy to access. This review summarizes recent work addressing these issues.
Collapse
|
164
|
Larsson LC, Corbascio M, Widner H, Pearson TC, Larsen CP, Ekberg H. Simultaneous inhibition of B7 and LFA-1 signaling prevents rejection of discordant neural xenografts in mice lacking CD40L. Xenotransplantation 2002; 9:68-76. [PMID: 12005106 DOI: 10.1034/j.1399-3089.2002.1o010.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transplantation of embryonic human neural tissue can restore dopamine neurotransmission and improve neurological function in patients with Parkinson's disease. Logistical and ethical factors limit the availability of human embryonic allogeneic tissue. Embryonic xenogeneic neural tissue from porcine donors is an alternative form of donor tissue, but effective immunomodulatory techniques are warranted for neural xenotransplantation to become clinically feasible. We transplanted embryonic porcine ventral mesencephalic tissue into the brains of adult untreated C57BL/6 mice, untreated CD40L-/-mice and CD40L-/-mice that received injections of anti-LFA-1, CTLA41g or both compounds. Double-treated CD40L-/-mice had large grafts with high numbers of dopaminergic neurons 4 wk after transplantation. The grafts were completely devoid of lymphocytes, macrophages and activated microglia. Untreated C57BL/6 mice had rejected their grafts. Untreated CD40L-/-mice and CD40L-/-mice treated with monotherapy of anti-LFA-1 or CTLA41g had smaller grafts and more microglial and lymphocytic infiltration than double-treated CD40L-/-mice. We conclude that immunomodulation with concomitant inhibition of LFA-1 and B7 signaling in the perioperative period in CD40L-/-mice prevented the rejection of discordant neural xenografts. The treatment most likely reduced antigen presenting capacity and interfered with the costimulatory signaling needed for T cell activation to occur.
Collapse
Affiliation(s)
- Lena C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | | | | | |
Collapse
|
165
|
Alemdar AY, Baker KA, Sadi D, McAlister VC, Mendez I. Liposomal tacrolimus administered systemically and within the donor cell suspension improves xenograft survival in hemiparkinsonian rats. Exp Neurol 2001; 172:416-24. [PMID: 11716565 DOI: 10.1006/exnr.2001.7801] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most widely used immunosuppressant in neural transplantation is cyclosporine- A (CsA). However, CsA has significant toxic effects when administered systemically. Tacrolimus (FK506), is a more potent immunosuppressant than CsA and can be prepared in lipid micelles (LTAC). This liposomal preparation allows for the administration of tacrolimus to the site of transplantation, possibly reducing the systemic side effects of immunosuppression. In this study we investigated the ability of LTAC to promote graft survival in hemiparkinsonian rats implanted with fetal mouse xenografts when LTAC is administered systemically to the host, when added to the donor cell suspension, or in combination. Rats with unilateral 6-hydroxydopamine lesions were transplanted with 800,000 fetal mouse ventral mesencephalic (VM) cells and were randomly divided into four groups. Group 1 was not immunosuppressed; Group 2 received daily systemic injections of LTAC; Group 3 received LTAC within the cell suspensions of mouse VM cells; and Group 4 received LTAC in the cell suspensions along with daily systemic administration of LTAC. Transplanted rats were assessed for rotational behavior 3 and 6 weeks posttransplantation. Cell survival was assessed using tyrosine hydroxylase (TH) immunohistochemistry. A significant reduction in rotational scores was observed only in the group of animals receiving the combination of LTAC-treated donor cells and systemic LTAC administration. This functional improvement correlated with a significantly greater survival of TH-immunoreactive cells in this group of animals. The other groups had poor cell survival and no significant functional improvement. We conclude that a combination of systemic immunosuppression and treatment of the cell suspension with LTAC may be a superior strategy to optimize xenograft survival. This strategy may have important implications for clinical neural transplantation.
Collapse
Affiliation(s)
- A Y Alemdar
- Neural Transplantation Laboratory, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|
166
|
|
167
|
Larsson LC, Frielingsdorf H, Mirza B, Hansson SJ, Anderson P, Czech KA, Strandberg M, Widner H. Porcine neural xenografts in rats and mice: donor tissue development and characteristics of rejection. Exp Neurol 2001; 172:100-14. [PMID: 11681844 DOI: 10.1006/exnr.2001.7738] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Embryonic ventral mesencephalic tissue from the pig is a potential alternative donor tissue for neural transplantation to Parkinson's disease patients. For stable graft survival, the host immune response has to be prevented. This study was performed in order to analyze the mechanisms and dynamics of neural xenograft rejection, as well as neurobiological properties of the donor tissue. Adult normal mice and rats, and cyclosporin A-treated rats, received intrastriatal transplants of dissociated embryonic ventral mesencephalic pig tissue that was 27 or 29 embryonic days of age (E27 and E29). The animals were perfused at 2, 4, 6, and 12 weeks after grafting and the brains were processed for immunohistochemistry of dopaminergic (tyrosine hydroxylase positive) neurons, CD4(+) and CD8(+) lymphocytes, natural killer cells, macrophages, microglia, and astrocytes. Thirty-five rats received daily injections of BrdU for 5 consecutive days at different time points after transplantation and were perfused at 6 weeks. These animals were analyzed for proliferation of cells in the donor tissue, both in healthy and in rejecting grafts. No tyrosine hydroxylase-positive cells proliferated after grafting. Our results demonstrated that E27 was superior to E29 donor tissue for neurobiological reasons. Cyclosporin A immunosuppression was protective only during the first weeks and failed to protect the grafts in a long-term perspective. Grafts in mice were invariably rejected between 2 and 4 weeks after transplantation, while occasional grafts in untreated rats survived up to 12 weeks without signs of an ongoing rejection process. CD8(+) lymphocytes and microglia cells are most likely important effector cells in the late, cyclosporin A-resistant rejection process.
Collapse
Affiliation(s)
- L C Larsson
- Section for Neuronal Survival, Department of Physiological Sciences, Wallenburg Neuroscience Center, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Abstract
Exciting new technologies, such as cellular transplantation, organogenesis and xenotransplantation, are thought to be promising approaches for the treatment of human disease. The feasibility of applying these technologies, however, might be limited by biological and immunological hurdles. Here, we consider whether, and how, xenotransplantation and various other technologies might be applied in future efforts to replace or supplement the function of human organs and tissues.
Collapse
Affiliation(s)
- M Cascalho
- Department of Surgery and Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
169
|
Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220:640-6. [PMID: 11526261 DOI: 10.1148/radiol.2202001804] [Citation(s) in RCA: 1020] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine if focused ultrasound beams can be used to locally open the blood-brain barrier without damage to surrounding brain tissue and if magnetic resonance (MR) imaging can be used to monitor this procedure. MATERIALS AND METHODS The brains of 18 rabbits were sonicated (pulsed sonication) in four to six locations, with temporal peak acoustic power ranging from 0.2 to 11.5 W. Prior to each sonication, a bolus of ultrasonographic (US) contrast agent was injected into the ear vein of the rabbit. A series of fast or spoiled gradient-echo MR images were obtained during the sonications to monitor the temperature elevation and potential tissue changes. Contrast material-enhanced MR images obtained minutes after sonications and repeated 1-48 hours later were used to depict blood-brain barrier opening. Whole brain histologic evaluation was performed. RESULTS Opening of the blood-brain barrier was confirmed with detection of MR imaging contrast agent at the targeted locations. The lowest power levels used produced blood-brain barrier opening without damage to the surrounding neurons. Contrast enhancement correlated with the focal signal intensity changes in the magnitude fast spoiled gradient-echo MR images. CONCLUSION The blood-brain barrier can be consistently opened with focused ultrasound exposures in the presence of a US contrast agent. MR imaging signal intensity changes may be useful in the detection of blood-brain barrier opening during sonication.
Collapse
Affiliation(s)
- K Hynynen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
170
|
Mang R, Maas J, Chen X, Goudsmit J, van der Kuyl AC. Identification of a novel type C porcine endogenous retrovirus: evidence that copy number of endogenous retroviruses increases during host inbreeding. J Gen Virol 2001; 82:1829-1834. [PMID: 11457988 DOI: 10.1099/0022-1317-82-8-1829] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Different classes of porcine endogenous retroviruses (PERVs), which have the potential to infect humans during xenotransplantation, have been isolated from the pig genome. Because vertebrate genomes may contain numerous endogenous retrovirus sequences, the pig genome was examined for additional endogenous retroviruses, resulting in the isolation of a novel, complete endogenous retrovirus genome, designated PERV-E. The gag, pol and env genes of PERV-E are closely related to those of human endogenous retrovirus (HERV) 4-1, which belongs to the HERV-E family. Results of studies to determine the presence and copy number of PERVs demonstrated that PERV-E and PERV-A/B-like proviruses were present in all genomes tested, but that PERV-C was not found in two of the species examined, including wild boar. Multiple copies of PERVs could be found in each pig genome. Among all of the pig genomes tested, the wild boar genome had the lowest copy number of all PERVs, suggesting that the number of integrations of complete endogenous retroviruses is increased by inbreeding.
Collapse
Affiliation(s)
- Rui Mang
- Amsterdam Institute of Viral Genomics, Amsterdam, The Netherlands2
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands1
| | - Jolanda Maas
- Amsterdam Institute of Viral Genomics, Amsterdam, The Netherlands2
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands1
| | - Xianghong Chen
- Amsterdam Institute of Viral Genomics, Amsterdam, The Netherlands2
| | - Jaap Goudsmit
- Amsterdam Institute of Viral Genomics, Amsterdam, The Netherlands2
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands1
| | - Antoinette C van der Kuyl
- Amsterdam Institute of Viral Genomics, Amsterdam, The Netherlands2
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands1
| |
Collapse
|
171
|
Hagell P, Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001; 60:741-52. [PMID: 11487048 DOI: 10.1093/jnen/60.8.741] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrastriatal transplantation of embryonic dopaminergic neurons is currently explored as a restorative cell therapy for Parkinson disease (PD). Clinical results have varied, probably due to differences in transplantation methodology and patient selection. In this review, we assess clinical trials and autopsy findings in grafted PD patients and suggest that a minimum number of surviving dopaminergic neurons is required for a favorable outcome. Restoration of [18F]-fluorodopa uptake in the putamen to about 50% of the normal mean seems necessary for moderate to marked clinical benefit to occur. Some studies indicate that this may require mesencephalic tissue from 3-5 human embryos implanted into each hemisphere. The volume, density and pattern of fiber outgrowth and reinnervation, as well as functional integration and dopamine release. are postulated as additional important factors for an optimal clinical outcome. For neural transplantation to become a feasible therapeutic alternative in PD, graft survival must be increased and the need for multiple donors of human embryonic tissue substantially decreased or alternate sources of donor tissue developed. Donor cells derived from alternative sources should demonstrate features comparable to those associated with successful implantation of human embryonic tissue before clinical trials are considered.
Collapse
Affiliation(s)
- P Hagell
- Department of Clinical Neuroscience, University Hospital, Lund University, Sweden
| | | |
Collapse
|
172
|
Isacson O, Costantini L, Schumacher JM, Cicchetti F, Chung S, Kim KS. Cell implantation therapies for Parkinson's disease using neural stem, transgenic or xenogeneic donor cells. Parkinsonism Relat Disord 2001; 7:205-212. [PMID: 11331188 DOI: 10.1016/s1353-8020(00)00059-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new therapeutic neurological and neurosurgical methodology involves cell implantation into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. Furthermore, the disease process does not appear to negatively affect the transplanted cells, although the patient's endogenous DA system degeneration continues. However, the optimal cells for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an entire degenerated nigro-striatal system, cannot be reliably obtained or generated in sufficient numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources of analogous DA cells have shown great utility in animal models and some promise in early pilot studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal allo- or xenogeneic dopamine neurons and glia, is currently complemented by research on potential stem cell derived DA neurons. Understanding the cell biological principles and developing methodology necessary to generate functional DA progenitors is currently our focus for obtaining DA cells in sufficient quantities for the unmet cell transplantation need for patients with PD and related disorders.
Collapse
Affiliation(s)
- O Isacson
- Neuroregeneration Laboratory, Harvard Medical School/McLean Hospital, 02478, Belmont, MA, USA
| | | | | | | | | | | |
Collapse
|
173
|
Lund RD, Kwan AS, Keegan DJ, Sauvé Y, Coffey PJ, Lawrence JM. Cell transplantation as a treatment for retinal disease. Prog Retin Eye Res 2001; 20:415-49. [PMID: 11390255 DOI: 10.1016/s1350-9462(01)00003-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been shown that photoreceptor degeneration can be limited in experimental animals by transplantation of fresh RPE to the subretinal space. There is also evidence that retinal cell transplants can be used to reconstruct retinal circuitry in dystrophic animals. Here we describe and review recent developments that highlight the necessary steps that should be taken prior to embarking on clinical trials in humans.
Collapse
Affiliation(s)
- R D Lund
- Institute of Ophthalmology, Bath Street, EC1V 9EL, London, UK
| | | | | | | | | | | |
Collapse
|
174
|
Wennberg L, Czech KA, Larsson LC, Mirza B, Bennet W, Song Z, Widner H. Effects of immunosuppressive treatment on host responses against intracerebral porcine neural tissue xenografts in rats. Transplantation 2001; 71:1797-806. [PMID: 11455261 DOI: 10.1097/00007890-200106270-00016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Embryonic xenogeneic neural tissue is an alternative for transplantation in Parkinson's disease, but immune responses limit the application. The aims of this study were to enhance the in vitro viability rates by donor tissue pretreatment; to compare the efficacy of cyclosporine A (CsA) and tacrolimus (FK) in inhibiting xenograft rejection in rats; to evaluate additional inductive therapy with prednisolone (PRE) or mycophenolate mofetil (MMF). METHODS Tirilazad (a lipid peroxidase inhibitor) or FK and acYVAD-cmk (a caspase inhibitor), were added to embryonic porcine ventral mesencephalic tissue and viability was assessed in vitro. Tirilazad-treated tissue was grafted to the striatum of rats that were either left untreated or immunosuppressed with FK (1 mg/kg) or CsA (15 mg/kg) alone or in combination with a 2-week PRE (20 mg/kg) or MMF (40 mg/kg) induction course. Xenograft survival and host responses were determined using immunohistochemistry. RESULTS Pretreatment with tirilazad enhanced tissue survival in vitro. After transplantation into untreated controls, there was no graft survival at twelve weeks. Neural cell counts were significantly improved in immunosuppressed recipients, but there were no differences between the treatment groups. Additional inductive treatment reduced the infiltration with CD4+ and CD8+ cells, and macrophage infiltration was reduced compared with animals given CsA or FK alone. CONCLUSION Pretreatment of the donor tissue with free-radical scavengers reduces cell loss caused by tissue trauma. Porcine neural tissue xenografts survive significantly better in animals immunosuppressed with either FK or CsA. Additional inductive treatment with PRE or MMF reduced the infiltration of host cells into the xenografts.
Collapse
Affiliation(s)
- L Wennberg
- Department of Transplantation Surgery, Karolinska Institute, B56, Huddinge University Hospital, 141 86 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
175
|
Barker RA, Rosser AE. Neural transplantation therapies for Parkinson's and Huntington's diseases. Drug Discov Today 2001; 6:575-582. [PMID: 11377225 DOI: 10.1016/s1359-6446(01)01775-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Parkinson's and Huntington's diseases are progressive neurodegenerative disorders of the central nervous system for which symptomatic but not curative therapies are available. Therapeutic strategies have been developed to try and repair the brain in these conditions, including the use of grafts of foetal neural tissue. Here, we consider the merits of this approach and discuss the extent to which neural transplantation has successfully been translated into clinical studies for these diseases.
Collapse
Affiliation(s)
- R A. Barker
- Cambridge Centre for Brain Repair and Department of Neurology, Addenbrooke's Hospital, CB2 2PY, Cambridge, UK
| | | |
Collapse
|
176
|
Abstract
The results of the first double-blind placebo-controlled trial using grafts of embryonic tissue to treat Parkinson's disease have aroused widespread interest and debate about the future of cell replacement therapies. What are the key issues that need to be resolved and the directions in which this technology is likely to develop?
Collapse
|
177
|
Takeuchi H, Yoshikawa M, Kanda S, Nonaka M, Nishimura F, Yamada T, Ishizaka S, Sakaki T. Implantation of xenografts into parkinsonian rat brain after portal venous administration of xenogeneic donor spleen cells. J Neurosurg 2001; 94:775-81. [PMID: 11354409 DOI: 10.3171/jns.2001.94.5.0775] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. The purpose of the present study was to examine the effect of pretransplantation portal venous immunization with ultraviolet B (UVB)—treated donor spleen cells on neural xenograft transplantation.
Methods. Cells from a murine catecholaminergic cell line derived from the B6/D2 F1 mouse, CATH.a, were used as a xenograft. Thirty hemiparkinsonian rats were divided into three different treatment groups. Group 1 received saline in the dopamine-denervated striatum; Group 2 received xenograft cells; and Group 3 received portal venous administration of UVB-irradiated B6/D2 F1 splenocytes 7 days before receiving xenograft cells. Xenograft function was determined by reviewing apomorphine-induced rotation at 2-week intervals, and xenograft survival was examined at 4 and 12 weeks after transplantation by immunohistochemical staining for murine tyrosine hydroxylase (THase). Rotational behavior was improved in both xenograft-transplanted groups (Groups 2 and 3); however, the animals in Group 3 displayed a significantly reduced rotational behavior compared with Group 2. In Group 2, many inflammatory cells and a few THase-positive cells were found at the graft sites 4 weeks after transplantation. In Group 3, however, a large number of THase-positive cells were found with few inflammatory cells. The THase-positive cells disappeared in the Group 2 rats at 12 weeks, but remained in Group 3 animals. In Group 3 rats proliferation of spleen cells in a mixed lymphocyte reaction was suppressed in a donor-specific fashion.
Conclusions. This work demonstrates improved neural xenograft survival and function by pretransplantation portal venous immunization with UVB-irradiated xenogeneic donor splenocytes. On the basis of these findings, the authors suggest the possibility of creating donor-specific immunological tolerance in the brain by administration of xenogeneic donor lymphocytes via the portal vein.
Collapse
Affiliation(s)
- H Takeuchi
- Department of Neurosurgery and Parasitology, Nara Medical University, Kashihara, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Jain M, DerSimonian H, Brenner DA, Ngoy S, Teller P, Edge AS, Zawadzka A, Wetzel K, Sawyer DB, Colucci WS, Apstein CS, Liao R. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 2001; 103:1920-7. [PMID: 11294813 DOI: 10.1161/01.cir.103.14.1920] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial infarction (MI) promotes deleterious remodeling of the myocardium, resulting in ventricular dilation and pump dysfunction. We examined whether supplementing infarcted myocardium with skeletal myoblasts would (1) result in viable myoblast implants, (2) attenuate deleterious remodeling, and (3) enhance in vivo and ex vivo contractile performance. METHODS AND RESULTS Experimental MI was induced by 1-hour coronary ligation followed by reperfusion in adult male Lewis rats. One week after MI, 10(6) myoblasts were injected directly into the infarct region. Three groups of animals were studied at 3 and 6 weeks after cell therapy: noninfarcted control (control), MI plus sham injection (MI), and MI plus cell injection (MI+cell). In vivo cardiac function was assessed by maximum exercise capacity testing and ex vivo function was determined by pressure-volume curves obtained from isolated, red cell-perfused, balloon-in-left ventricle (LV) hearts. MI and MI+cell hearts had indistinguishable infarct sizes of approximately 30% of the LV. At 3 and 6 weeks after cell therapy, 92% (13 of 14) of MI+cell hearts showed evidence of myoblast graft survival. MI+cell hearts exhibited attenuation of global ventricular dilation and reduced septum-to-free wall diameter compared with MI hearts not receiving cell therapy. Furthermore, cell therapy improved both post-MI in vivo exercise capacity and ex vivo LV systolic pressures. CONCLUSIONS Implanted skeletal myoblasts form viable grafts in infarcted myocardium, resulting in enhanced post-MI exercise capacity and contractile function and attenuated ventricular dilation. These data illustrate that syngeneic myoblast implantation after MI improves both in vivo and ex vivo indexes of global ventricular dysfunction and deleterious remodeling and suggests that cellular implantation may be beneficial after MI.
Collapse
Affiliation(s)
- M Jain
- Cardiac Muscle Research Laboratory, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Hormigo A, McCarthy M, Nothias JM, Hasegawa K, Huang W, Friedlander DR, Fischer I, Fishell G, Grumet M. Radial glial cell line C6-R integrates preferentially in adult white matter and facilitates migration of coimplanted neurons in vivo. Exp Neurol 2001; 168:310-22. [PMID: 11259119 DOI: 10.1006/exnr.2000.7620] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C6-R is a cell line derived from C6 glioma cells that exhibits key properties of radial glia including the ability to support neuronal migration in culture. To explore its potential use in promoting neuronal migration in vivo, we analyzed the behavior of C6-R cells in the intact and injured adult rat CNS. At 6-11 days postimplantation at the splenium of the corpus callosum, green fluorescent protein-labeled C6-R cells were observed primarily in either the corpus callosum or the hippocampus in the brain, and in the spinal cord they migrated more extensively in the white matter than in the grey matter. To determine whether C6-R cells retain their ability to promote neuronal migration in vivo, they were coinjected with labeled neurons into adult brain. When rat embryonic neurons were coimplanted with C6-R cells, the neurons and C6-R cells comigrated through a much larger volume than neurons alone or neurons coimplanted with fibroblasts. In brains preinjured with ibotenic acid, C6-R cells as well as coimplanted neurons distributed widely within the lesion site and migrated into adjacent brain tissue, while transplants with neurons alone were restricted primarily to the lesion site. The results suggest that radial glial cell lines can serve as a scaffold for neuronal migration that may facilitate development of experimental models for neural transplantation and regeneration.
Collapse
Affiliation(s)
- A Hormigo
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, 604 Allison Road, Piscataway, New Jersey 08854-8082, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Abstract
Transplanted human fetal dopamine neurons can reinnervate the striatum in patients with Parkinson's disease (PD). Recent findings using positron emission tomography indicate that the grafts are functionally integrated and restore dopamine release in the patient's striatum. The grafts can exhibit long-term survival without immunological rejection and despite an ongoing disease process and continuous antiparkinsonian drug treatment. In the most successful cases, patients have been able to withdraw L-dopa treatment after transplantation and resume an independent life. About two-thirds of grafted patients have shown clinically useful, partial recovery of motor function. The major obstacle for the further development of this cell replacement strategy is that large amounts of human fetal mesencephalic tissue are needed for therapeutic effects. Stem cells hold promise as a virtually unlimited source of self-renewing progenitors for transplantation. The possibility to generate dopamine neurons from such cells is now being explored using different approaches. However, so far the generated neurons have survived poorly after transplantation in animals.
Collapse
Affiliation(s)
- O Lindvall
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, Lund, Sweden.
| | | |
Collapse
|
181
|
Abstract
This review summarizes the clinical history and rationale for xenotransplantation; recent progress in understanding the physiologic, immunologic, and infectious obstacles to the procedure's success; and some of the strategies being pursued to overcome these obstacles. The problems of xenotransplantation are complex, and a combination of approaches is required. The earliest and most striking immunologic obstacle, that of hyperacute rejection, appears to be the closest to being solved. This phenomenon depends on the binding of natural antibody to the vascular endothelium, fixation of complement by that antibody, and finally, activation of the endothelium and initiation of coagulation. Therefore, these three pathways have been targeted as sites for intervention in the process. The mechanisms responsible for the next immunologic barrier, that of delayed xenograft/acute vascular rejection, remain to be fully elucidated. They probably also involve multiple pathways, including antibody and/or immune cell binding and endothelial cell activation. The final immunologic barrier, that of the cellular immune response, involves mechanisms that are similar to those involved in allograft rejection. However, the strength of the cellular immune response to xenografts is so great that it is unlikely to be controlled by the types of nonspecific immunosuppression used routinely to prevent allograft rejection. For this reason, it may be essential to induce specific immunologic unresponsiveness to at least some of the most antigenic xenogeneic molecules.
Collapse
Affiliation(s)
- H Auchincloss
- Transplant Unit, Massachusetts General Hospital, Boston 02114, USA
| | | |
Collapse
|
182
|
Affiliation(s)
- E B Pedersen
- Department of Anatomy and Neurobiology, University of Southern Denmark, Odense University, DK-5000 Odense C, Denmark
| | | |
Collapse
|
183
|
Lindvall O, Hagell P. Clinical observations after neural transplantation in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:299-320. [PMID: 11142032 DOI: 10.1016/s0079-6123(00)27014-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- O Lindvall
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
184
|
Gates MA, Fricker-Gates RA, Macklis JD. Reconstruction of cortical circuitry. PROGRESS IN BRAIN RESEARCH 2001; 127:115-56. [PMID: 11142025 DOI: 10.1016/s0079-6123(00)27008-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- M A Gates
- Division of Neuroscience, Children's Hospital, Department of Neuroscience and Neurology, Harvard Medical School, 354 Enders Building, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
185
|
Castilho RF, Hansson O, Brundin P. Improving the survival of grafted embryonic dopamine neurons in rodent models of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:203-31. [PMID: 11142029 DOI: 10.1016/s0079-6123(00)27011-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- R F Castilho
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Department of Physiological Sciences, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | | | | |
Collapse
|
186
|
Costantini LC, Cole D, Chaturvedi P, Isacson O. Immunophilin ligands can prevent progressive dopaminergic degeneration in animal models of Parkinson's disease. Eur J Neurosci 2001; 13:1085-92. [PMID: 11285005 DOI: 10.1046/j.0953-816x.2001.01473.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slowing or halting the progressive dopaminergic (DA) degeneration in Parkinson's disease (PD) would delay the onset and development of motor symptoms, prolong the efficacy of pharmacotherapies and decrease drug-induced side-effects. We tested the potential of two orally administered novel immunophilin ligands to protect against DA degeneration in two animal models of PD. First, in an MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model, we compared an immunophilin ligand (V-10,367) documented to bind the immunophilin FKBP12 with V-13,661, which does not bind FKBP12. Both molecules could prevent the loss of striatal DA innervation in a dose-dependent fashion during 10 days of oral administration. Second, to determine whether an immunophilin ligand can protect against progressive and slow DA degeneration typical of PD, an intrastriatal 6-hydroxydopamine-infusion rat model was utilized. Oral treatment with the FKBP12-binding immunophilin ligand began on the day of lesion and continued for 21 days. At this time point, post mortem analyses revealed that the treatment had prevented the progressive loss of DA innervation within the striatum and loss of DA neurons within the substantia nigra, related to functional outcome as measured by rotational behaviour. Notably, DA fibres extending into the area of striatal DA denervation were observed only in rats treated with the immunophilin ligand, indicating neuroprotection or sprouting of spared DA fibres. This is the first demonstration that immunophilin ligands can prevent a slow and progressive DA axonal degeneration and neuronal death in vivo. The effects of orally administered structurally related immunophilin ligands in acute and progressive models of DA degeneration are consistent with the idea that these compounds may have therapeutic value in PD.
Collapse
Affiliation(s)
- L C Costantini
- Neuroregeneration Laboratory, 115 Mill Street, Harvard Medical School/McLean Hospital, Belmont, MA 02178, USA
| | | | | | | |
Collapse
|
187
|
Affiliation(s)
- D Grant
- Departments of Immunology, Medicine, and Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
188
|
McLaren FH, Svendsen CN, Van der Meide P, Joly E. Analysis of neural stem cells by flow cytometry: cellular differentiation modifies patterns of MHC expression. J Neuroimmunol 2001; 112:35-46. [PMID: 11108931 DOI: 10.1016/s0165-5728(00)00410-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neural stem cells are currently considered very hopeful candidates for cell replacement therapy in neurodegenerative pathologies such as Parkinson's disease. Here we show that different cell types derived from neurospheres amplified in vitro can be identified by FACS analysis relying solely on physical parameters (FSC/SSC) or autofluorescence. Additionally, after treatment with a panel of inflammatory cytokines, neurospheres and their differentiated progeny were shown to express MHC antigens which could potentially cause transplant rejection. Astrocytes expressed the highest levels of MHC. Hence removing such cells prior to transplantation could potentially optimise transplant survival.
Collapse
Affiliation(s)
- F H McLaren
- Laboratory of Functional Immunogenetics, Molecular Immunology Programme, Babraham Institute, Babraham, CB2 4AT, Cambridge, UK
| | | | | | | |
Collapse
|
189
|
Abstract
Xenotransplantation, the transplantation of living organs, tissues, or cells from one species to another, is viewed as a potential solution to the existing shortage of human organs for transplantation. While whole-organ xenotransplantation is still in the preclinical stage, cellular xenotransplantation and extracorporeal perfusion applications are showing promise in early clinical trials. Advances in immunosuppressive therapy, gene engineering, and cloning of animals bring a broader array of xenotransplantation protocols closer to clinical trials. Despite several potential advantages over allotransplantation, xenotransplantation encompasses a number of problems. Immunologic rejection remains the primary hindrance. The potential to introduce infections across species barriers, another major concern, is the main focus of this review. Nonhuman primates are unlikely to be a main source for xenotransplantation products despite their phylogenetic proximity to humans. Genetically engineered pigs, bred under special conditions, are currently envisaged as the major source. Thus far, there has been no evidence for human infections caused by pig xenotransplantation products. However, the existence of xenotropic endogenous retroviruses and the clinical evidence of long-lasting porcine cell microchimerism indicate the potential for xenogeneic infections. Thus, further trials should continue under regulatory oversight, with close clinical and laboratory monitoring for potential xenogeneic infections.
Collapse
Affiliation(s)
- R S Boneva
- HIV/AIDS and Retrovirology Branch, Division of AIDS, STD and TB Laboratory Research, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
190
|
Duan WM, Westerman M, Flores T, Low WC. Survival of intrastriatal xenografts of ventral mesencephalic dopamine neurons from MHC-deficient mice to adult rats. Exp Neurol 2001; 167:108-17. [PMID: 11161598 DOI: 10.1006/exnr.2000.7537] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies of neural xenografts have used immunosuppressive agents to prevent graft rejection. In the present study we have examined the survival of mouse dopamine neurons lacking either MHC class I or MHC class II molecules transplanted into rat brains and the host immune and inflammatory responses against the xenografts. Survival of neural grafts was immunocytochemically determined at 4 days, 2 weeks, and 6 weeks after transplantation by counting tyrosine hydroxylase (TH)-positive cells in the graft areas. In addition, the host immune and inflammatory responses against neural xenografts were evaluated by semiquantitatively rating MHC class I and class II antigen expression, accumulation of macrophages and activated microglia, and infiltration of CD4- and CD8-positive T-lymphocytes. For the negative controls, the mean number of TH-positive cells in rats that received wild-type mouse tissue progressively decreased at various time periods following transplantation. In contrast, intrastriatal grafting of either MHC class I or MHC class II antigen-depleted neural xenografts resulted in a prolonged survival and were comparable to cyclosporin A-treated rats that had received wild-type mouse tissue. These results indicate that genetically modified donor tissue lacking MHC molecules can be used to prevent neural xenograft rejection.
Collapse
Affiliation(s)
- W M Duan
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
191
|
Qari SH, Magre S, García-Lerma JG, Hussain AI, Takeuchi Y, Patience C, Weiss RA, Heneine W. Susceptibility of the porcine endogenous retrovirus to reverse transcriptase and protease inhibitors. J Virol 2001; 75:1048-53. [PMID: 11134319 PMCID: PMC114002 DOI: 10.1128/jvi.75.2.1048-1053.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine xenografts may offer a solution to the shortage of human donor allografts. However, all pigs contain the porcine endogenous retrovirus (PERV), raising concerns regarding the transmission of PERV and the possible development of disease in xenotransplant recipients. We evaluated 11 antiretroviral drugs licensed for human immunodeficiency virus type 1 (HIV-1) therapy for their activities against PERV to assess their potential for clinical use. Fifty and 90% inhibitory concentrations (IC(50)s and IC(90)s, respectively) of five nucleoside reverse transcriptase inhibitors (RTIs) were determined enzymatically for PERV and for wild-type (WT) and RTI-resistant HIV-1 reference isolates. In a comparison of IC(50)s, the susceptibilities of PERV RT to lamivudine, stavudine, didanosine, zalcitabine, and zidovudine were reduced >20-fold, 26-fold, 6-fold, 4-fold, and 3-fold, respectively, compared to those of WT HIV-1. PERV was also resistant to nevirapine. Tissue culture-based, single-round infection assays using replication-competent virus confirmed the relative sensitivity of PERV to zidovudine and its resistance to all other RTIs. A Gag polyprotein-processing inhibition assay was developed and used to assess the activities of protease inhibitors against PERV. No inhibition of PERV protease was seen with saquinavir, ritonavir, indinavir, nelfinavir, or amprenavir at concentrations >200-fold the IC(50)s for WT HIV-1. Thus, following screening of many antiretroviral agents, our findings support only the potential clinical use of zidovudine.
Collapse
Affiliation(s)
- S H Qari
- HIV and Retrovirology Branch, Division of AIDS, STD, and TB Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
The major problem in the field of renal transplantation is currently the shortage of available kidneys. However, the use of animals as a source of kidneys, i.e., xenotransplantation, is increasingly being viewed as a potential solution to this problem. One preeminent hurdle to xenotransplantation is the immune response of the recipient against the graft; other hurdles include the physiologic limitations of the transplant, infection, and ethical considerations. This review summarizes what is currently known regarding the obstacles to xenotransplantation and some potential solutions to those problems.
Collapse
Affiliation(s)
- Benjamin Samstein
- Department of Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
193
|
Dinsmore JH, Manhart C, Raineri R, Jacoby DB, Moore A. No evidence for infection of human cells with porcine endogenous retrovirus (PERV) after exposure to porcine fetal neuronal cells. Transplantation 2000; 70:1382-9. [PMID: 11087157 DOI: 10.1097/00007890-200011150-00020] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent demonstration of human cell infection in vitro with porcine endogenous retrovirus (PERV) has raised safety concerns for new therapies that involve transplantation of pig cells or organs to humans. To assess better the specific risk that may be associated with the transplantation of fetal pig neuronal cells to the central nervous system of patients suffering from intractable neurologic disorders (Parkinson's disease, Huntington's disease, and epilepsy), we have performed studies to determine whether there is evidence for in vivo or in vitro transmission of PERV from fetal pig neuronal cells to human cells. METHODS Ventral mesencephalon (VM) and lateral ganglionic eminence cells were isolated from fetal pigs and transplanted into patients with neurological conditions as part of clinical studies. Blood samples taken from patients at various time points posttransplant were tested for evidence of PERV. In vitro studies to test for PERV infection of human cells after cocultivation with either fetal porcine ventral mesencephalon or porcine fetal lateral ganglionic eminence cells were also performed. RESULTS We found no evidence of PERV provirus integration in the DNA from PBMC of 24 neuronal transplant recipients. In addition, no PERV was released from cultured fetal porcine neuronal cultures, and there was no transfer of PERV from fetal pig neuronal cells to human cells in vitro. CONCLUSIONS Our results demonstrate by both examination of transplant patient blood samples and in vitro studies that there is no evidence for transmission of PERV from porcine fetal neural cells to human cells.
Collapse
|
194
|
Deng YM, Tuch BE, Rawlinson WD. Transmission of porcine endogenous retroviruses in severe combined immunodeficient mice xenotransplanted with fetal porcine pancreatic cells. Transplantation 2000; 70:1010-6. [PMID: 11045635 DOI: 10.1097/00007890-200010150-00004] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Xenotransplantation using pig organs or tissues may alleviate the human donor organ shortage. However, one concern is the potential transmission of pig pathogens to humans, especially pig endogenous retroviruses (PERV), which infect human cell lines in vitro. In this report, the cross-species in vivo transmission of PERV by xenotransplantation was studied using a severe combined immunodeficient (SCID) mouse model. METHODS Twenty-one SCID mice were transplanted with fetal pig pancreatic cells and left for periods from three to 41 weeks before being killed. DNA and RNA were extracted from liver, spleen, and brain of these mice, and examined for PERV using nested polymerase chain reaction (PCR) and reverse transcriptase-PCR. The pig mitochondrial cytochrome oxidase II subunit gene (COII) was also amplified to monitor the presence of pig cell microchimerism in xenotransplanted tissues, and a housekeeping gene was included to monitor the DNA quality and quantity. RESULTS Examination of 39 DNA samples from tissues of the 21 xenografted mice identified two mouse tissues (M4-liver and M19-spleen) that were positive for PERV but negative for COII. A total of 23 (59%) of the mouse tissues were positive for both PERV and COII, 6 (16%) were negative for both, and 8 (20%) were positive for COII only. PCR and direct sequencing of the PCR products identified three PERV variants, which were different from the PERV sequence detected by PCR direct sequencing from the pig donor cells. CONCLUSIONS The PERV+/COII- results from M4-liver and M19-spleen indicated the presence of PERV transmission from pig to mouse tissue. The PERV variants detected in the mouse tissues indicated that different PERVs were transmissible from the pig to mouse tissue during xenotransplantation. The negative reverse transcriptase-PCR results for PERV from three mouse samples including M4-liver and M19-spleen suggest there was no active PERV transcription in the mouse tissues, although this would need to be studied further.
Collapse
Affiliation(s)
- Y M Deng
- Department of Endocrinology, SEALS, Prince of Wales Hospital, Sydney, NSW, Australia
| | | | | |
Collapse
|
195
|
|
196
|
|
197
|
Abstract
This review paper will provide an overview of the advent of neural transplantation therapy and the milestones achieved over the last 20 years for its use in treating Parkinson's disease. A discussion of technical factors that influence the outcome of neural transplantation is presented, with emphasis given on three sections dealing with immunosuppressants, alternative grafts and trophic factors which have recently been the focus of basic research and development of early phase clinical trials. Some views on the clinical assessment of transplanted Parkinson's disease patients are given at the end of the paper, with a synopsis highlighting the importance of basic research in advancing the potential clinical benefits of neural transplantation therapy in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- C V Borlongan
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
198
|
Zhang Z, Bédard E, Luo Y, Wang H, Deng S, Kelvin D, Zhong R. Animal models in xenotransplantation. Expert Opin Investig Drugs 2000; 9:2051-68. [PMID: 11060792 DOI: 10.1517/13543784.9.9.2051] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The severe shortage of donor organs has provided a strong impetus to push the investigation into the use of animal organs for humans. Xenotransplantation will not only benefit patients, but also represents a unique and potentially profitable business opportunity. However, there are many barriers to successful clinical xenotransplantation, including immunological barriers, physiological incompatibility, zoonosis and ethical concerns. This overview will focus on currently available animal models used in attempts to break through the immunological barriers to xenotransplantation. There are many advantages to using small animal, namely rodent, models in xenotransplantation research. For example, the use of the mouse model allows the use of knockout mice and careful dissection of rejection mechanisms at the molecular level. The following models can be used to study hyperacute rejection (HAR): guinea-pig-to-rat, mouse-to-rabbit, guinea-pig-to-mouse, rat-to-presensitised mouse and rat-to-alpha-Gal knockout mouse. The hamster-to-rat, mouse-to-rat and rat-to-mouse models are commonly used to study acute vascular rejection. Large animal models are complex and expensive, but they are more relevant to clinical xenotransplantation. Based on experiments using transgenic pig-to-primate models, HAR can be overcome. However, acute vascular rejection remains a major barrier at the present time. A pig cartilage-to-monkey model has been developed to study chronic rejection. Other novel models such as pig venous segment-to-monkey model and rat-to-primate model may represent viable options to study immunological barriers following xenotransplantation. Like many other medical breakthroughs, animal research will continue to make enormous contributions towards the eventual success of xenotransplantation.
Collapse
Affiliation(s)
- Z Zhang
- London Health Sciences Center, University Campus, 339 Windermere Road, London, Ontario, N6A 5A5, Canada.
| | | | | | | | | | | | | |
Collapse
|
199
|
Imaizumi T, Lankford KL, Burton WV, Fodor WL, Kocsis JD. Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nat Biotechnol 2000; 18:949-53. [PMID: 10973214 PMCID: PMC2605371 DOI: 10.1038/79432] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here we describe transplantation of olfactory ensheathing cells (OECs) or Schwann cells derived from transgenic pigs expressing the human complement inhibitory protein, CD59 (hCD59), into transected dorsal column lesions of the spinal cord of the immunosuppressed rat to induce axonal regeneration. Non-transplanted lesion-controlled rats exhibited no impulse conduction across the transection site, whereas in animals receiving transgenic pig OECs or Schwann cells impulse conduction was restored across and beyond the lesion site for more than a centimeter. Cell labeling indicated that the donor cells migrated into the denervated host tract. Conduction velocity measurements showed that the regenerated axons conducted impulses faster than normal axons. By morphological analysis, the axons seemed thickly myelinated with a peripheral pattern of myelin expected from the donor cell type. These results indicate that xenotranplantation of myelin-forming cells from pigs genetically altered to reduce the hyperacute response in humans are able to induce elongative axonal regeneration and remyelination and restore impulse conduction across the transected spinal cord.
Collapse
Affiliation(s)
- T Imaizumi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
200
|
Abstract
A dysfunctional central nervous system (CNS) resulting from neurological disorders and diseases impacts all of humanity. The outcome presents a staggering health care issue with a tremendous potential for developing interventive therapies. The delivery of therapeutic molecules to the CNS has been hampered by the presence of the blood-brain barrier (BBB). To circumvent this barrier, putative therapeutic molecules have been delivered to the CNS by such methods as pumps/osmotic pumps, osmotic opening of the BBB, sustained polymer release systems and cell delivery via site-specific transplantation of cells. This review presents an overview of some of the CNS delivery technologies with special emphasis on transplantation of cells with and without the use of polymer encapsulation technology.
Collapse
Affiliation(s)
- M S Shoichet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, 200 College Street, Toronto, M55 3E5, Ontario, Canada.
| | | |
Collapse
|