151
|
Nakayama R, Arikawa K, Bhawal UK. The epigenetic regulation of CXCL14 plays a role in the pathobiology of oral cancers. J Cancer 2017; 8:3014-3027. [PMID: 28928893 PMCID: PMC5604453 DOI: 10.7150/jca.21169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Chemokines selectively attract and activate leukocytes and play roles in a variety of homeostatic and disease processes. Explore the biological properties of CXCL14 seems complicated due to unknown functional characteristics of CXCL14 in cancer. Methods: To study the multistep process of oral cancer development, we analyzed oral samples spanning normalcy, dysplasia and cancer from multiple perspectives, revealing a cascade of progressive changes. Results: CXCL14 protein was expressed in the cytoplasm adjacent to tumors. T classification (P<0.001), clinical stage (P=0.0013) and nodal metastasis (P=0.0035) were significantly associated with CXCL14 in relationships between CXCL14 expression levels and tumor and patient characteristics. Compared with non-tumor tissue, expression of the epidermal growth factor receptor (EGFR) gene was increased in dysplasia and was further sustained in cancer. Our data show an inverse relationship between CXCL14 and EGFR expression levels in tumor cells indicating that CXCL14 expression is beneficial for tumor suppression. To explore epigenetic regulation and the impact of CXCL14 on oral cancer, analysis of CpG islands methylation in the CXCL14 promoter region indicated that the abnormal hypermethylation of that promoter region in tumor cells and tissues is one of the mechanisms causing the reduced expression. Restoration of CXCL14 expression was induced by treatment with 5-aza-2'-deoxycytidine. Using in vivo mouse models, we demonstrate that the restoration of CXCL14 expression in irradiation-induced oral carcinoma cells induces the expression of Late Cornified Envelope (LCE) genes. Conclusions: Our data suggest that LCE genes are a novel target of CXCL14 and are likely to have a tumor suppressor function through the modulation of CXCL14 expression. In conclusion, CXCL14 might play a pivotal role in the pathobiology of oral cancer, probably by regulating DNA methylation and leukocyte migration. The level of CXCL14 expression may be a valuable adjuvant parameter to predict the prognosis of patients with oral carcinoma and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Ryuji Nakayama
- Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Kazumune Arikawa
- Department of Preventive and Public Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan.,Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| | - Ujjal K Bhawal
- Research Institute of Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan.,Department of Oral Health, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.,Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakae-cho Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
152
|
Wang Q, Wang P, Zhou H, Hu Y, Xie C, Gao F, Ma N, Hou H, Zhang H, Li L. 5-Azacytidine specifically inhibits the NIH-3T3 PCD process induced by TNF-alpha and cycloheximide via affecting BCL-XL. J Cell Biochem 2017; 119:1501-1510. [PMID: 28777484 DOI: 10.1002/jcb.26310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 11/09/2022]
Abstract
DNA methylation plays a crucial role in lots of biological processes and cancer. 5-azacytidine (5-AC), a DNA methylation inhibitor, has been used as a potential chemotherapeutic agent for cancer. In this study, we used 5-AC treatment to investigate whether DNA methylation was involved in regulation of programmed cell death (PCD) in mouse embryo fibroblast NIH-3T3 cells which could undergo PCD after treatment with TNF-α and cycloheximide (CHX). The results showed that the genomic DNA of NIH-3T3 cells was hypermethylated during PCD induced by TNF-α and CHX, and 5-AC might prevent this PCD process. However, treatment with the other three DNA methylation inhibitors, 5-aza-deoxycytidine, 6-thioguanine and RG108, did not interfere with the NIH-3T3 cell PCD process. Additionally, knockdown of DNMT1 did not affect the apoptosis process. The present results and observations indicated that 5-AC specifically inhibited the NIH-3T3 apoptosis process via a genomic DNA methylation-independent pathway. During the TNF-α and CHX-inducing apoptosis process, the PCD related BCL-2 family proteins were significantly down-regulated. Furthermore, after the small interference RNA-mediated knockdown of BCL-XL, one of the BCL-2 family proteins, 5-AC did not inhibit the apoptosis process, suggesting that 5-AC inhibited the PCD process induced by TNF-α and CHX by affecting the anti-apoptotic protein BCL-XL.
Collapse
Affiliation(s)
- Qing Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Hu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengshen Xie
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Ningjie Ma
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hao Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijia Li
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
153
|
Young CS, Clarke KM, Kettyle LM, Thompson A, Mills KI. Decitabine-Vorinostat combination treatment in acute myeloid leukemia activates pathways with potential for novel triple therapy. Oncotarget 2017; 8:51429-51446. [PMID: 28881658 PMCID: PMC5584259 DOI: 10.18632/oncotarget.18009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/07/2017] [Indexed: 01/21/2023] Open
Abstract
Despite advancements in cancer therapeutics, acute myeloid leukemia patients over 60 years old have a 5-year survival rate of less than 8%. In an attempt to improve this, epigenetic modifying agents have been combined as therapies in clinical studies. In particular combinations with Decitabine and Vorinostat have had varying degrees of efficacy. This study therefore aimed to understand the underlying molecular mechanisms of these agents to identify potential rational epi-sensitized combinations. Combined Decitabine-Vorinostat treatment synergistically decreased cell proliferation, induced apoptosis, enhanced acetylation of histones and further decreased DNMT1 protein with HL-60 cells showing a greater sensitivity to the combined treatment than OCI-AML3. Combination therapy led to reprogramming of unique target genes including AXL, a receptor tyrosine kinase associated with cell survival and a poor prognosis in AML, which was significantly upregulated following treatment. Therefore targeting AXL following epi-sensitization with Decitabine and Vorinostat may be a suitable triple combination. To test this, cells were treated with a novel triple combination therapy including BGB324, an AXL specific inhibitor. Triple combination increased the sensitivity of OCI-AML3 cells to Decitabine and Vorinostat as shown through viability assays and significantly extended the survival of mice transplanted with pretreated OCI-AML3 cells, while bioluminescence imaging showed the decrease in disease burden following triple combination treatment. Further investigation is required to optimize this triple combination, however, these results suggest that AXL is a potential marker of response to Decitabine-Vorinostat combination treatment and offers a new avenue of epigenetic combination therapies for acute myeloid leukemia.
Collapse
Affiliation(s)
- Christine S. Young
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Kathryn M. Clarke
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- Department of Haematology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Laura M. Kettyle
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander Thompson
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
- Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ken I. Mills
- Blood Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, United Kingdom
| |
Collapse
|
154
|
Promoter hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic parathyroid adenomas. Sci Rep 2017; 7:3123. [PMID: 28600574 PMCID: PMC5466668 DOI: 10.1038/s41598-017-03143-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/24/2017] [Indexed: 12/04/2022] Open
Abstract
Cyclin D1, a G1-S phase regulator, is upregulated in parathyroid adenomas. Since cyclin-dependent kinase (CDK) inhibitors, CDKN2A and CDKN2B, and RASSF1A (Ras-association domain family 1, isoform A) are involved in G1-S phase arrest and act as potential tumor suppressor genes, we aimed to study potential methylation-mediated inactivation of these genes in parathyroid adenomas. Gene expressions of cyclin D1 (CCND1) and regulatory molecules (CDKN2A, CDKN2B and RASSF1A) was analysed in parathyroid adenoma tissues (n = 30). DNA promoter methylation of cyclin D1 regulators were assessed and correlated with clinicopathological features of the patients. Gene expression analysis showed a relative fold reductions of 0.35 for CDKN2A (p = 0.01), 0.45 for CDKN2B (P = 0.02), and 0.39 for RASSF1A (p < 0.01) in adenomatous compared to normal parathyroid tissue. There was an inverse relationship between the expressions of CDKN2A and CDKN2B with CCND1. In addition, the promoter regions of CDKN2A, CDKN2B, and of RASSF1A were significantly hyper-methylated in 50% (n = 15), 47% (n = 14), and 90% (n = 27) of adenomas respectively. In contrast, no such aberrant methylation of these genes was observed in normal parathyroid tissue. So, promoter hypermethylation is associated with down-regulation of CCND1 regulatory genes in sporadic parathyroid adenomas. This dysregulated cell cycle mechanism may contribute to parathyroid tumorigenesis.
Collapse
|
155
|
Burassakarn A, Pientong C, Sunthamala N, Chuerduangphui J, Vatanasapt P, Patarapadungkit N, Kongyingyoes B, Ekalaksananan T. Aberrant gene promoter methylation of E-cadherin, p16 INK4a , p14 ARF , and MGMT in Epstein–Barr virus-associated oral squamous cell carcinomas. Med Oncol 2017; 34:128. [DOI: 10.1007/s12032-017-0983-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 05/24/2017] [Indexed: 12/23/2022]
|
156
|
Fish TJ, Benninghoff AD. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food Chem Toxicol 2017; 109:703-713. [PMID: 28476633 DOI: 10.1016/j.fct.2017.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs.
Collapse
Affiliation(s)
- Trevor J Fish
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; School of Veterinary Medicine, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
157
|
Sakai T, Sowa Y. Molecular-targeting therapies against quantitative abnormalities in gene expression with malignant tumors. Cancer Sci 2017; 108:570-573. [PMID: 28178388 PMCID: PMC5406604 DOI: 10.1111/cas.13188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 01/15/2023] Open
Abstract
Genetic mutations in exons of oncogenes and tumor-suppressor genes causing qualitative abnormalities result in activation of the oncogenes and inactivation of the tumor-suppressor genes, thereby causing cancer. In contrast, we have previously demonstrated that decreases in the RB promoter activity by genetic or epigenetic abnormalities can also cause carcinogenesis. In addition, activation and inactivation of a variety of oncogenes and tumor-suppressor genes finally cause quantitative abnormalities in gene expression. Interestingly, we discovered effective molecular-targeting agents, such as a novel MEK inhibitor, trametinib, by screening for agents upregulating the expression of cyclin-dependent kinase inhibitors. In the present review, we focused on the quantitative abnormalities in gene expression with carcinogenesis, and discuss the importance of normalizing the quantitative abnormalities in gene expression with several molecular-targeting agents.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
158
|
Sonohara F, Inokawa Y, Hayashi M, Kodera Y, Nomoto S. Epigenetic modulation associated with carcinogenesis and prognosis of human gastric cancer. Oncol Lett 2017; 13:3363-3368. [PMID: 28529571 DOI: 10.3892/ol.2017.5912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/14/2017] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related death, particularly in Asia. Epidemiological and other clinical studies have identified an association between a number of risk factors, including Helicobacter pylori, and GC. A number of studies have also examined genetic changes associated with the development and progression of GC. When considering the clinical significance of the expression of a specific gene, its epigenetic modulation should be considered. Epigenetic modulation appears to be a primary driver of changes in gastric tissue that promotes carcinogenesis and progression of GC and other neoplasms. The role of epigenetic modulation in GC carcinogenesis and progression has been widely studied in recent years. In the present review, recent results of epigenetic modulation associated with GC and their effects on clinical outcome are examined, with particular respect to DNA methylation, histone modulation and non-coding RNA. A number of studies indicate that epigenetic changes in the expression of specific genes critically affect their clinical significance and further study may reveal epigenetic changes as the basis for targeted molecular therapy or novel biomarkers that predict GC prognosis or extension of this often fatal disease.
Collapse
Affiliation(s)
- Fuminori Sonohara
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.,Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.,Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan.,Department of Surgery, Aichi-Gakuin University School of Dentistry, Nagoya, Aichi 464-8651, Japan
| |
Collapse
|
159
|
Huang D, Ovcharenko I. Epigenetic and genetic alterations and their influence on gene regulation in chronic lymphocytic leukemia. BMC Genomics 2017; 18:236. [PMID: 28302063 PMCID: PMC5353786 DOI: 10.1186/s12864-017-3617-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/10/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND To understand the changes of gene regulation in carcinogenesis, we explored signals of DNA methylation - a stable epigenetic mark of gene regulatory elements - and designed a computational model to profile loss and gain of regulatory elements (REs) during carcinogenesis. We also utilized sequencing data to analyze the allele frequency of single nucleotide polymorphisms (SNPs) and detected the cancer-associated SNPs, i.e., the SNPs displaying the significant allele frequency difference between cancer and normal samples. RESULTS After applying this model to chronic lymphocytic leukemia (CLL) data, we identified REs differentially activated (dREs) between normal and CLL cells, consisting of 6,802 dREs gained and 4,606 dREs lost in CLL. The identified regulatory perturbations coincide with changes in the expression of target genes. In particular, the genes encoding DNA methyltransferases harbor multiple lost-in-cancer dREs and zero gained-in-cancer dREs, indicating that the damaged regulation of these genes might be one of the key causes of tumor formation. dREs display a significantly elevated density of the genome-wide association study (GWAS) SNPs associated with CLL and CLL-related traits. We observed that most of dRE GWAS SNPs associated with CLL and CLL-related traits (83%) display a significant haplotype association among the identified cancer-associated alleles and the risk alleles that have been reported in GWAS. Also dREs are enriched for the binding sites of the well-established B-cell and CLL transcription factors (TFs) NF-kB, AP2, P53, E2F1, PAX5, and SP1. We also identified CLL-associated SNPs and demonstrated that the mutations at these SNPs change the binding sites of key TFs much more frequently than expected. CONCLUSIONS Through exploring sequencing data measuring DNA methylation, we identified the epigenetic alterations (more specifically, DNA methylation) and genetic mutations along non-coding genomic regions CLL, and demonstrated that these changes play a critical role in carcinogenesis through damaging the regulation of key genes and alternating the binding of key TFs in B and CLL cells.
Collapse
Affiliation(s)
- Di Huang
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivan Ovcharenko
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
160
|
Wang Y, Zhang Y, Guo Y, Kang XF. Fast and precise detection of DNA methylation with tetramethylammonium-filled nanopore. Sci Rep 2017; 7:183. [PMID: 28298646 PMCID: PMC5428259 DOI: 10.1038/s41598-017-00317-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Abstract
The tremendous demand for detecting methylated DNA has stimulated intensive studies on developing fast single-molecule techniques with excellent sensitivity, reliability, and selectivity. However, most of these methods cannot directly detect DNA methylation at single-molecule level, which need either special recognizing elements or chemical modification of DNA. Here, we report a tetramethylammonium-based nanopore (termed TMA-NP) sensor that can quickly and accurately detect locus-specific DNA methylation, without bisulfite conversion, chemical modification or enzyme amplification. In the TMA-NP sensor, TMA-Cl is utilized as a nanopore-filling electrolyte to record the ion current change in a single nanopore triggered by methylated DNA translocation through the pore. Because of its methyl-philic nature, TMA can insert into the methylcytosine-guanine (mC-G) bond and then effectively unfasten and reduce the mC-G strength by 2.24 times. Simultaneously, TMA can increase the stability of A-T to the same level as C-G. The abilities of TMA (removing the base pair composition dependence of DNA strands, yet highly sensing for methylated base sites) endow the TMA-NP sensor with high selectivity and high precision. Using nanopore to detect dsDNA stability, the methylated and unmethylated bases are easily distinguished. This simple single-molecule technique should be applicable to the rapid analysis in epigenetic research.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yani Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, P. R. China
| | - Yanli Guo
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| |
Collapse
|
161
|
Dose- and time- effect responses of DNA methylation and histone H3K9 acetylation changes induced by traffic-related air pollution. Sci Rep 2017; 7:43737. [PMID: 28256616 PMCID: PMC5335614 DOI: 10.1038/srep43737] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Abstract
As an important risk factor of respiratory disorders, traffic-related air pollution (TRAP) has caused extensive concerns. Epigenetic change has been considered a link between TRAP and respiratory diseases. However, the exact effects of TRAP on epigenetic changes are still unclear. Here we investigated the dose- and time- effect responses of TRAP on DNA methylations and H3K9 acetylation (H3K9ac) in both blood and lung tissues of rats. The findings showed that every 1 μg/m3 increase of TRAP components were associated with changes in %5 mC (95% CI) in LINE-1, iNOS, p16CDKN2A, and APC ranging from −0.088% (−0.150, −0.026) to 0.102 (0.049, 0.154), as well as 0.276 (0.053, 0.498) to 0.475 (0.103, 0.848) ng/mg increase of H3K9ac. In addition, every 1 more day exposure at high level of TRAP (in tunnel) also significantly changed the levels of DNA methylation (ranging from −0.842% to 0.248%) and H3K9ac (16.033 and 15.718 ng/mg pro in PBMC and lung tissue, respectively) changes. Season and/or sex could interact with air pollutants in affecting DNA methylation and H3K9ac. The findings showed that TRAP exposure is dose- and time- dependently associated with the changes of DNA methylation and H3K9ac.
Collapse
|
162
|
Linnekamp JF, Butter R, Spijker R, Medema JP, van Laarhoven HWM. Clinical and biological effects of demethylating agents on solid tumours - A systematic review. Cancer Treat Rev 2017; 54:10-23. [PMID: 28189913 DOI: 10.1016/j.ctrv.2017.01.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023]
Abstract
BACKGROUND It is assumed that DNA methylation plays a key role in both tumour development and therapy resistance. Demethylating agents have been shown to be effective in the treatment of haematological malignancies. Based on encouraging preclinical results, demethylating agents may also be effective in solid tumours. This systematic review summarizes the evidence of the effect of demethylating agents on clinical response, methylation and the immune system in solid tumours. METHODS We conducted a systematic literature search from 1949 to December 2016, according to the PRISMA guidelines. Studies which evaluated treatment with azacitidine, decitabine, guadecitabine, hydralazine, procaine, MG98 and/or zebularine in patients with solid tumours were included. Data on clinical response, effects on methylation and immune response were extracted. RESULTS Fifty-eight studies were included: in 13 studies complete responses (CR) were observed, 35 studies showed partial responses (PR), 47 studies stable disease (SD) and all studies except two showed progressive disease (PD). Effects on global methylation were observed in 11/15 studies and demethylation/re-expression of tumour specific genes was seen in 15/17 studies. No clear correlation between (de)methylation and clinical response was observed. In 14 studies immune-related responses were reported, such as re-expression of cancer-testis antigens and upregulation of interferon genes. CONCLUSION Demethylating agents are able to improve clinical outcome and alter methylation status in patients with solid tumours. Although beneficial effect has been shown in individual patients, overall response is limited. Further research on biomarker predicting therapy efficacy is indicated, particularly in earlier stage and highly methylated tumours.
Collapse
Affiliation(s)
- J F Linnekamp
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - R Butter
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - R Spijker
- Cochrane Netherlands, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands; Medical Library, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - J P Medema
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands
| | - H W M van Laarhoven
- Laboratory of Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; Cancer Center Amsterdam and Cancer Genomics Center, Amsterdam, The Netherlands; Department of Medical Oncology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
163
|
Idris FP, Wan Y, Zhang X, Punyadeera C. Within-Day Baseline Variation in Salivary Biomarkers in Healthy Men. ACTA ACUST UNITED AC 2017; 21:74-80. [DOI: 10.1089/omi.2016.0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Firman Prathama Idris
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Yunxia Wan
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Xi Zhang
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Chamindie Punyadeera
- School of Biomedical Science, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
164
|
Hida T, Hamasaki M, Matsumoto S, Sato A, Tsujimura T, Kawahara K, Iwasaki A, Okamoto T, Oda Y, Honda H, Nabeshima K. Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: Comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer 2017; 104:98-105. [DOI: 10.1016/j.lungcan.2016.12.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
|
165
|
Bhat AA, Wani HA, Ishaq S, Waza AA, Malik RA, Shabir I, Jeelani S, Kadla S, Qureshie W, Masood A, Majid S. Promoter Hypermethylation and Its Impact on Expression of MGMT Gene in the GIT Malignant Patients of Kashmiri Origin. Cancer Invest 2017; 35:116-121. [DOI: 10.1080/07357907.2016.1271887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Arif Akbar Bhat
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Hilal Ahmad Wani
- Multidisciplinary Research Unit, Government Medical College Srinagar, Srinagar, India
| | - Shiekh Ishaq
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Ajaz Ahmad Waza
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, India
| | | | - Iram Shabir
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| | - Showkat Jeelani
- Department of Surgery, Government Medical College Srinagar, Srinagar, India
| | - Showkat Kadla
- Department of Medicine, Government Medical College Srinagar, Srinagar, India
| | - Waseem Qureshie
- Registrar, Government Medical College Srinagar, Srinagar, India
| | - Akbar Masood
- Department of Biochemistry, University of Kashmir, Srinagar, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College Srinagar, Srinagar, India
| |
Collapse
|
166
|
Todd MC, Langan TA, Sclafani RA. Doxycycline-Regulated p16 MTS1 Expression Suppresses the Anchorage-Independence and Tumorigenicity of Breast Cancer Cell Lines that Lack Endogenous p16. J Cancer 2017; 8:190-198. [PMID: 28243323 PMCID: PMC5327368 DOI: 10.7150/jca.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/17/2016] [Indexed: 01/04/2023] Open
Abstract
The RB pathway controls the critical transition from G1 into S phase of the mammalian cell cycle. Deregulation of the RB pathway by means of RB or p16 inactivation has been implicated in the development of virtually all human cancers. Such findings have led to the view that the loss of RB-mediated regulation at the G1/S checkpoint is a precondition for human malignancy. Our analysis of the RB-positive MCF-7 and ZR75.1 breast cancer cell lines revealed a lack of endogenous p16 protein expression as a result of the homozygous deletion and methylation of the p16 gene at the CDKN2A locus, respectively. We employed the TET-OFF inducible expression system to investigate the effects of non-growth inhibitory levels of functional p16 protein upon the in vitro and in vivo transformed properties of the MCF-7 and ZR75.1 cell lines. Stable transfectants of MCF-7 and ZR75.1 cells were isolated that expressed different levels of p16 protein in the absence of doxycycline (DOX) but continued to proliferate in culture. Transfectants that expressed modest levels of p16 (relative to SV40 T antigen-transformed HBL-100 breast epithelial cells) demonstrated a marked suppression of anchorage-independent growth in soft agar. Further, the induction of moderate and high levels of p16 (relative to HBL-100) resulted in the suppression of tumorigenicity of both MCF-7 and ZR75.1 cells as assayed by injection into nude mice. From these data, we concluded that RB pathway restoration by non-growth inhibitory levels of p16 protein was sufficient to revert breast cancer cells to a non-transformed and non-tumorigenic state.
Collapse
Affiliation(s)
- Maria C Todd
- Biology Department, Southwestern University, Georgetown, TX USA
| | - Thomas A Langan
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Robert A Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
167
|
Abstract
Mature T-cell lymphomas are aggressive malignancies. Treatment outcome is poor with conventional chemotherapy. They are about twice as common in Asia as compared with other non-Asian countries. Histone proteins form the basic structure of chromatin, and their acetylation at lysine residues relaxes chromatin structure, facilitating gene transcription. Conversely, histone deacetylation, catalyzed by histone deacetylases, compacts chromatin and represses gene transcription. Histone deacetylase inhibitors are an important class of antineoplastic agents. Chidamide is a novel orally active benzamide-type histone deacetylase inhibitor that has shown in vitro activities against a wide array of neoplasms. In Phase I trials, chidamide showed preferential efficacy in mature T-cell lymphomas. In a pivotal Phase II trial of chidamide in 79 patients with relapsed or refractory mature T-cell lymphomas, an overall response rate of 28% (complete remission/complete remission unconfirmed: 14%) was achieved, with most responses occurring within the first 6 weeks of treatment. The median duration of response (DOR) was 9.9 (1.1–40.8) months. Of 22 responders, 19 patients (86%) had a DOR of ≥3 months and eight patients (36%) had a DOR of >12 months. Angioimmunoblastic T-cell lymphoma and anaplastic large cell lymphoma (anaplastic lymphoma kinase-negative) showed better response rates, with the most durable responses observed in angioimmunoblastic T-cell lymphoma patients. Safety profile was favorable, with very few cases of grade 3/4 toxicities observed. Chidamide is approved by the China Food and Drug Administration for the treatment of relapsed and refractory peripheral T-cell lymphomas.
Collapse
Affiliation(s)
- Thomas S Chan
- Department of Medicine, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Eric Tse
- Department of Medicine, Queen Mary Hospital, Hong Kong, People's Republic of China
| | - Yok-Lam Kwong
- Department of Medicine, Queen Mary Hospital, Hong Kong, People's Republic of China
| |
Collapse
|
168
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
169
|
Yang Z, Jin M, Zhang Z, Lu J, Hao K. Classification Based on Feature Extraction For Hepatocellular Carcinoma Diagnosis Using High-throughput Dna Methylation Sequencing Data. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.procs.2017.03.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
170
|
Shinohara KI, Yoda N, Takane K, Watanabe T, Fukuyo M, Fujiwara K, Kita K, Nagase H, Nemoto T, Kaneda A. Inhibition of DNA Methylation at the MLH1 Promoter Region Using Pyrrole-Imidazole Polyamide. ACS OMEGA 2016; 1:1164-1172. [PMID: 30023504 PMCID: PMC6044701 DOI: 10.1021/acsomega.6b00229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/28/2016] [Indexed: 05/17/2023]
Abstract
Aberrant DNA methylation causes major epigenetic changes and has been implicated in cancer following the inactivation of tumor suppressor genes by hypermethylation of promoter CpG islands. Although methylated DNA regions can be randomly demethylated by 5-azacytidine and 5-aza-2'-deoxycytidine, site-specific inhibition of DNA methylation, for example, in the promoter region of a specific gene, has yet to be technically achieved. Hairpin pyrrole (Py)-imidazole (Im) polyamides are small molecules that can be designed to recognize and bind to particular DNA sequences. In this study, we synthesized the hairpin polyamide MLH1_-16 (Py-Im-β-Im-Im-Py-γ-Im-Py-β-Im-Py-Py) to target a CpG site 16 bp upstream of the transcription start site of the human MLH1 gene. MLH1 is known to be frequently silenced by promoter hypermethylation, causing microsatellite instability and a hypermutation phenotype in cancer. We show that MLH1_-16 binds to the target site and that CpG methylation around the binding site is selectively inhibited in vitro. MLH1_non, which does not have a recognition site in the MLH1 promoter, neither binds to the sequence nor inhibits DNA methylation in the region. When MLH1_-16 was used to treat RKO human colorectal cancer cells in a remethylating system involving the MLH1 promoter under hypoxic conditions (1% O2), methylation of the MLH1 promoter was inhibited in the region surrounding the compound binding site. Silencing of the MLH1 expression was also inhibited. Promoter methylation and silencing of MLH1 were not inhibited when MLH1_non was added. These results indicate that Py-Im polyamides can act as sequence-specific antagonists of CpG methylation in living cells.
Collapse
Affiliation(s)
- Ken-ichi Shinohara
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- Institute
for Global and Prominent Research, Chiba
University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Natsumi Yoda
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kiyoko Takane
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Takayoshi Watanabe
- Laboratory
of Cancer Genetics, Chiba Cancer Center
Research Institute, 666-2
Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Masaki Fukuyo
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kyoko Fujiwara
- Innovative
Therapy Research Group, Nihon University
Research Institute of Medical Science, Nihon University School of
Medicine, 30-1 Ooyaguchi-kami, Itabashi-ku, Tokyo 173-8610, Japan
| | - Kazuko Kita
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroki Nagase
- Laboratory
of Cancer Genetics, Chiba Cancer Center
Research Institute, 666-2
Nitona, Chuo-ku, Chiba 260-8717, Japan
| | - Tetsuhiro Nemoto
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kaneda
- Department
of Molecular Oncology, Graduate School of Medicine and Department of
Pharmaceutical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
- E-mail: . Phone: +81-43-226-2039. Fax: +81-43-226-2039 (A.K.)
| |
Collapse
|
171
|
Naftali O, Maman S, Meshel T, Sagi-Assif O, Ginat R, Witz IP. PHOX2B is a suppressor of neuroblastoma metastasis. Oncotarget 2016; 7:10627-37. [PMID: 26840262 PMCID: PMC4891146 DOI: 10.18632/oncotarget.7056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/23/2016] [Indexed: 12/27/2022] Open
Abstract
Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma. Lung micro-metastatic neuroblastoma (MicroNB) cells show high expression levels of PHOX2B and possess a less malignant and metastatic phenotype than lung macro metastatic neuroblastoma (MacroNB) cells, which hardly express PHOX2B. In vitro assays showed that PHOX2B knockdown in MicroNB cells did not affect cell viability; however it decreased the migratory capacity of the MicroNB-shPHOX2B cells. An orthotopic inoculation of MicroNB-shPHOX2B cells into the adrenal gland of nude mice resulted in significantly larger primary tumors and a heavier micro-metastatic load in the lungs and bone-marrow, than when control cells were inoculated. PHOX2B expression was found to be regulated by methylation. The PHOX2B promoter in MacroNB cells is significantly more methylated than in MicroNB cells. Demethylation assays using 5-azacytidine demonstrated that methylation can indeed inhibit PHOX2B transcription in MacroNB cells. These pre-clinical data strongly suggest that PHOX2B functions as a suppressor of neuroblastoma progression.
Collapse
Affiliation(s)
- Osnat Naftali
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Tsipi Meshel
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Orit Sagi-Assif
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Ravit Ginat
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 69978
| |
Collapse
|
172
|
Stålberg P, Westin G, Thirlwell C. Genetics and epigenetics in small intestinal neuroendocrine tumours. J Intern Med 2016; 280:584-594. [PMID: 27306880 DOI: 10.1111/joim.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuroendocrine tumour of the small intestine (SI-NET), formerly known as midgut carcinoid tumour, is the most common small intestinal malignancy. The incidence is rising, with recent reports of 0.67 per 100 000 in the USA and 1.12 per 100 000 in Sweden. SI-NETs often present a challenge in terms of diagnosis and treatment, as patients often have widespread disease and are beyond cure by surgery. Somatostatin analogues provide the mainstay of medical treatment to control hormonal excess and increase the time to progression. Despite overall favourable prognosis (5-year overall survival of 65%), there is a need to find markers to identify both patients with worse outcome and new targets for therapy. Loss on chromosome 18 has been reported in 60-90% of SI-NETs, but mutated genes on this chromosome have failed detection. Recently, a putative tumour suppressor role has been suggested for TCEB3C occurring at 18q21 (encoding elongin A3), which may undergo epigenetic repression. CDKN1B has recently been revealed as the only recurrently mutated gene in SI-NETs but, with a frequency as low as 8%, its role as a driver in SI-NET development may be questioned. Integrated genomewide analysis including exome and whole-genome sequencing, gene expression, DNA methylation and copy number analysis has identified three novel molecular subtypes of SI-NET with differing clinical outcome. DNA methylation analysis has demonstrated that SI-NETs have significant epigenetic dysregulation in 70-80% of tumours. In this review, we focus on understanding of the genetic, epigenetic and molecular events that lead to development and progression of SI-NETs.
Collapse
Affiliation(s)
- P Stålberg
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - G Westin
- Department of Surgical Sciences, Uppsala University and University Hospital, Uppsala, Sweden
| | - C Thirlwell
- Cancer Institute, University College London, London, UK
| |
Collapse
|
173
|
Chen K, Zhang M, Chang YN, Xia L, Gu W, Qin Y, Li J, Cui S, Xing G. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation. NANOSCALE RESEARCH LETTERS 2016; 11:304. [PMID: 27325520 PMCID: PMC4916073 DOI: 10.1186/s11671-016-1487-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met-p16). The probe, paired with Met-p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.
Collapse
Affiliation(s)
- Kui Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
- School of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Mingyi Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Ya-Nan Chang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Lin Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Weihong Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Yanxia Qin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Juan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China
| | - Suxia Cui
- School of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Gengmei Xing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Science (CAS), Beijing, 100049, China.
| |
Collapse
|
174
|
Schiffmann I, Greve G, Jung M, Lübbert M. Epigenetic therapy approaches in non-small cell lung cancer: Update and perspectives. Epigenetics 2016; 11:858-870. [PMID: 27846368 PMCID: PMC5193491 DOI: 10.1080/15592294.2016.1237345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 10/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) still constitutes the most common cancer-related cause of death worldwide. All efforts to introduce suitable treatment options using chemotherapeutics or targeted therapies have, up to this point, failed to exhibit a substantial effect on the 5-year-survival rate. The involvement of epigenetic alterations in the evolution of different cancers has led to the development of epigenetics-based therapies, mainly targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. So far, their greatest success stories have been registered in hematologic neoplasias. As the effects of epigenetic single agent treatment of solid tumors have been limited, the investigative focus now lies on combination therapies of epigenetically active agents with conventional chemotherapy, immunotherapy, or kinase inhibitors. This review includes a short overview of the most important preclinical approaches as well as an extensive discussion of clinical trials using epigenetic combination therapies in NSCLC, including ongoing trials. Thus, we are providing an overview of what lies ahead in the field of epigenetic combinatory therapies of NSCLC in the coming years.
Collapse
Affiliation(s)
- Insa Schiffmann
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Biology, Freiburg, Germany
| | - Manfred Jung
- University of Freiburg, Institute of Pharmaceutical Sciences, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Medical Center, Freiburg, Germany
- University of Freiburg, Faculty of Medicine, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
175
|
Lee J, Kim Y, Friso S, Choi SW. Epigenetics in non-alcoholic fatty liver disease. Mol Aspects Med 2016; 54:78-88. [PMID: 27889327 DOI: 10.1016/j.mam.2016.11.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a common hepatic disorder ranging from simple steatosis through steatohepatitis to fibrosis and cirrhosis, is an emerging health concern. NAFLD is a pathologic condition characterized by the buildup of extra fat in liver cells that is not caused by alcohol consumption. Excess hepatic fat accumulation results from increased delivery of triglycerides (TG) to the liver or conversion of surplus carbohydrates to TG. Importantly, a subgroup of NAFLD results in hepatocellular injury and inflammation, which is referred to as non-alcoholic steatohepatitis (NASH), and may progress to irreversible cirrhosis and hepatocellular carcinoma (HCC). NAFLD shares, in part, the common pathogenesis of metabolic syndrome including obesity, hyperlipidemia, insulin resistance, mitochondrial damage, oxidative stress response, and the release of inflammatory cytokines. Epigenetics, an inheritable phenomenon that affects gene expression without altering the DNA sequence, provides a new perspective on the pathogenesis of NAFLD. Reversible epigenetic changes take place at the transcriptional level and provide a phenotypic connection between the host and environment. An accumulating body of evidence suggests the importance of epigenetic roles in NAFLD, which in turn can be identified as potential therapeutic targets and non-invasive biomarkers of NAFLD. It is anticipated that the epigenetic modifiers in NAFLD may provide novel molecular indicators that can determine not only the initial risk but also the disease progression and prognosis. In the present review, we update the roles of epigenetics as pathologic mechanisms, therapeutic targets and biomarkers in NAFLD.
Collapse
Affiliation(s)
- Jooho Lee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, CHA Bundang Medical Center, CHA University of Medicine and Science, Seongnam, 13496, South Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760, South Korea
| | - Simonetta Friso
- University of Verona School of Medicine, Verona, 37134, Italy
| | - Sang-Woon Choi
- Chaum Life Center, CHA University of Medicine and Science, Seoul, 06062, South Korea.
| |
Collapse
|
176
|
Abstract
For several decades, we have known that epigenetic regulation is disrupted in cancer. Recently, an increasing body of data suggests epigenetics might be an intersection of current cancer research trends: next generation sequencing, immunology, metabolomics, and cell aging. The new emphasis on epigenetics is also related to the increasing production of drugs capable of interfering with epigenetic mechanisms and able to trigger clinical responses in even advanced phase patients. In this review, we will use myeloid malignancies as proof of concept examples of how epigenetic mechanisms can trigger or promote oncogenesis. We will also show how epigenetic mechanisms are related to genetic aberrations, and how they affect other systems, like immune response. Finally, we will show how we can try to influence the fate of cancer cells with epigenetic therapy.
Collapse
Affiliation(s)
- Maximilian Stahl
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Nathan Kohrman
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Steven D. Gore
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Tae Kon Kim
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Thomas Prebet
- Department of Internal Medicine, Section of Hematology, Yale Cancer Center at Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
177
|
Integrated analysis of gene expression and methylation profiles of 48 candidate genes in breast cancer patients. Breast Cancer Res Treat 2016; 160:371-383. [DOI: 10.1007/s10549-016-4004-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022]
|
178
|
Evaluation of DNMT1 gene expression profile and methylation of its promoter region in patients with ankylosing spondylitis. Clin Rheumatol 2016; 35:2723-2731. [DOI: 10.1007/s10067-016-3403-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
|
179
|
Stark A, Shin DJ, Pisanic T, Hsieh K, Wang TH. A parallelized microfluidic DNA bisulfite conversion module for streamlined methylation analysis. Biomed Microdevices 2016; 18:5. [PMID: 26759004 DOI: 10.1007/s10544-015-0029-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aberrant methylation of DNA has been identified as an epigenetic biomarker for numerous cancer types. The vast majority of techniques aimed at detecting methylation require bisulfite conversion of the DNA sample prior to analysis, which until now has been a benchtop process. Although microfluidics has potential benefits of simplified operation, sample and reagent economy, and scalability, bisulfite conversion has yet to be implemented in this format. Here, we present a novel droplet microfluidic design that facilitates rapid bisulfite conversion by reducing the necessary processing steps while retaining comparable performance to existing methods. This new format has a reduced overall processing time and is readily scalable for use in high throughput DNA methylation analysis.
Collapse
Affiliation(s)
- Alejandro Stark
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Dong Jin Shin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Thomas Pisanic
- Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Johns Hopkins Institute for NanoBioTechnology, Baltimore, MD, 21218, USA.
| |
Collapse
|
180
|
p16, pRb, and p53 in Feline Oral Squamous Cell Carcinoma. Vet Sci 2016; 3:vetsci3030018. [PMID: 29056726 PMCID: PMC5606583 DOI: 10.3390/vetsci3030018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a highly aggressive head and neck cancer in cats, but the molecular pathogenesis of this cancer is still uncertain. In this study, p16, p53, and pRb proteins were detected and quantified by immunohistochemistry in forty-three FOSCC primary tumors and three FOSCC xenografts. p16 mRNA levels were also measured in three FOSCC cell lines (SCCF1, F2, and F3), which were consistent with their p16 immunoreactivity. Feline SCCF1 cells had very high levels of p16 protein and mRNA (55-fold greater) compared to SCCF2 and F3. A partial feline p16 cDNA sequence was amplified and sequenced. The average age of cats with FOSCC with high p16 immunoreactivity was significantly lower than the average age in the low p16 group. Eighteen of 43 (42%) FOSCCs had low p16 intensity, while 6/43 (14%) had high p16 immunoreactivity. Feline papillomavirus L1 (major capsid) DNA was not detected in the SCC cell lines or the FOSCCs with high p16 immunostaining. Five of 6 (83%) of the high p16 FOSCC had low p53, but only 1/6 (17%) had low pRb immunoreactivity. In summary, the staining pattern of p16, p53, and pRb in FOSCC was different from human head and neck squamous cell carcinoma and feline cutaneous squamous cell carcinoma. The majority of FOSCCs have low p16 immunostaining intensity, therefore, inactivation of CDKN2A is suspected to play a role in the pathogenesis of FOSCC. A subset of FOSCCs had increased p16 protein, which supports an alternate pathogenesis of cancer in these cats.
Collapse
|
181
|
Geraldes C, Gonçalves AC, Cortesão E, Pereira MI, Roque A, Paiva A, Ribeiro L, Nascimento-Costa JM, Sarmento-Ribeiro AB. Aberrant p15, p16, p53, and DAPK Gene Methylation in Myelomagenesis: Clinical and Prognostic Implications. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 16:713-720.e2. [PMID: 27622827 DOI: 10.1016/j.clml.2016.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant DNA methylation is considered a crucial mechanism in the pathogenesis of monoclonal gammopathies. We aimed to investigate the contribution of hypermethylation of 4 tumor suppressor genes to the multistep process of myelomagenesis. METHODS The methylation status of p15, p16, p53, and DAPK genes was evaluated in bone marrow samples from 94 patients at diagnosis: monoclonal gammopathy of uncertain significance (MGUS) (n = 48), smoldering multiple myeloma (SMM) (n = 8) and symptomatic multiple myeloma (MM) (n = 38), and from 8 healthy controls by methylation-specific polymerase chain reaction analysis. RESULTS Overall, 63% of patients with MM and 39% of patients with MGUS presented at least 1 hypermethylated gene (P < .05). No aberrant methylation was detected in normal bone marrow. The frequency of methylation for individual genes in patients with MGUS, SMM, and MM was p15, 15%, 50%, 21%; p16, 15%, 13%, 32%; p53, 2%, 12,5%, 5%, and DAPK, 19%, 25%, 39%, respectively (P < .05). No correlation was found between aberrant methylation and immunophenotypic markers, cytogenetic features, progression-free survival, and overall survival in patients with MM. CONCLUSIONS The current study supports a relevant role for p15, p16, and DAPK hypermethylation in the genesis of the plasma cell neoplasm. DAPK hypermethylation also might be an important step in the progression from MGUS to MM.
Collapse
Affiliation(s)
- Catarina Geraldes
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal.
| | - Ana Cristina Gonçalves
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology.IBILI (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| | - Emília Cortesão
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Marta Isabel Pereira
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal
| | - Adriana Roque
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Clinical Pathology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Letícia Ribeiro
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - José Manuel Nascimento-Costa
- Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; University Clinic of Oncology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Oncology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal
| | - Ana Bela Sarmento-Ribeiro
- Clinical Hematology Department, Centro Hospitalar Universitário de Coimbra (CHUC), Coimbra, Portugal; University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Applied Molecular Biology and University Clinic of Hematology, Faculty of Medicine, University of Coimbra (FMUC), Coimbra, Portugal; Center for Neuroscience and Cell Biology.IBILI (CNC.IBILI), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
182
|
Guo J, Yu W, Su H, Pang X. Genomic landscape of gastric cancer: molecular classification and potential targets. SCIENCE CHINA-LIFE SCIENCES 2016; 60:126-137. [PMID: 27460193 DOI: 10.1007/s11427-016-0034-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Gastric cancer imposes a considerable health burden worldwide, and its mortality ranks as the second highest for all types of cancers. The limited knowledge of the molecular mechanisms underlying gastric cancer tumorigenesis hinders the development of therapeutic strategies. However, ongoing collaborative sequencing efforts facilitate molecular classification and unveil the genomic landscape of gastric cancer. Several new drivers and tumorigenic pathways in gastric cancer, including chromatin remodeling genes, RhoA-related pathways, TP53 dysregulation, activation of receptor tyrosine kinases, stem cell pathways and abnormal DNA methylation, have been revealed. These newly identified genomic alterations await translation into clinical diagnosis and targeted therapies. Considering that loss-of-function mutations are intractable, synthetic lethality could be employed when discussing feasible therapeutic strategies. Although many challenges remain to be tackled, we are optimistic regarding improvements in the prognosis and treatment of gastric cancer in the near future.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
183
|
Expression of the chemokine CXCL14 and cetuximab-dependent tumour suppression in head and neck squamous cell carcinoma. Oncogenesis 2016; 5:e240. [PMID: 27399917 PMCID: PMC5399171 DOI: 10.1038/oncsis.2016.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/04/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
Abstract
Cetuximab, a monoclonal antibody against the epidermal growth factor receptor (EGFR), has been successfully used to treat some patients with colorectal cancer and those with head and neck squamous cell carcinoma (HNSCC). For the effective treatment, it is essential to first identify cetuximab-responsive patients. The level of EGFR expression and/or the presence of mutations in signalling molecules downstream of the EGFR pathway have been reported to be determining factors for cetuximab responsiveness in colorectal cancer patients; however, limited data have been reported for HNSCC patients. We previously reported that the chemokine CXCL14 exhibits tumour-suppressive effects against xenografted HNSCC cells, which may be classified into two groups, CXCL14-expressing and non-expressing cells under serum-starved culture conditions. Here we employed CXCL14-expressing HSC-3 cells and CXCL14-non-expressing YCU-H891 cells as representatives of the two groups and compared their responses to cetuximab and their CXCL14 expression under various conditions. The growth of xenografted tumours initiated by HSC-3 cells, which expressed CXCL14 in vivo and in vitro, was suppressed by the injection of cetuximab into tumour-bearing mice; however, neither the expression of the chemokine nor the cetuximab-dependent suppression of xenograft tumour growth was observed for YCU-H891 cells. Both types of cells expressed EGFR and neither type harboured mutations in signalling molecules downstream of EGFR that have been reported in cetuximab-resistant colon cancer patients. The inhibition of the extracellular signal-regulated kinase (ERK) signalling increased the levels of CXCL14 messenger RNA (mRNA) in HSC-3 cells, but not in YCU-H891 cells. We also observed that the CXCL14 promoter region in YCU-H891 cells was hypermethylated, and that demethylation of the promoter by treatment with 5-aza-2′-deoxycytidine restored CXCL14 mRNA expression and in vivo cetuximab-mediated tumour growth suppression. Finally, we observed in vivo tumour growth suppression when YCU-H891 cells were engineered to express CXCL14 ectopically in the presence of doxycycline. These results indicate that CXCL14 expression may be a good predictive biomarker for cetuximab-dependent tumour suppression.
Collapse
|
184
|
Epigenetic mechanisms regulating the development of hepatocellular carcinoma and their promise for therapeutics. Hepatol Int 2016; 11:45-53. [PMID: 27271356 DOI: 10.1007/s12072-016-9743-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers around the globe and third most fatal malignancy. Chronic liver disorders such as chronic hepatitis and liver cirrhosis often lead to the development of HCC. Accumulation of genetic and epigenetic alterations are involved in the development of HCC. Genetic research sparked by recent developments in next generation sequencing has identified the frequency of genetic alterations that occur in HCC and has led to the identification of genetic hotspots. Emerging evidence suggests that epigenetic aberrations are strongly associated with the initiation and development of HCC. Various important genes encoding tumor suppressors including P16, RASSF1A, DLC-1, RUNX3 and SOCS-1 are targets of epigenetic dysregulation during the development of HCC. The present review discusses the importance of epigenetic regulations including DNA methylation, histone modification and microRNA mediated regulation of gene expression during tumorigenesis and their use as disease biomarkers. Furthermore, these epigenetic alterations have been discussed in relationship with promising therapeutic perspectives for HCC and related cancers.
Collapse
|
185
|
Abstract
Breast cancer is already the most common malignancy affecting women worldwide, and evidence is mounting that breast cancer induced by circadian disruption (CD) is a warranted concern. Numerous studies have investigated various aspects of the circadian clock in relation to breast cancer, and evidence from these studies indicates that melatonin and the core clock genes can play a crucial role in breast cancer development. Even though epigenetics has been increasingly recognized as a key player in the etiology of breast cancer and linked to circadian rhythms, and there is evidence of overlap between epigenetic deregulation and breast cancer induced by circadian disruption, only a handful of studies have directly investigated the role of epigenetics in CD-induced breast cancer. This review explores the circadian clock and breast cancer, and the growing role of epigenetics in breast cancer development and circadian rhythms. We also summarize the current knowledge and next steps for the investigation of the epigenetic link in CD-induced breast cancer.
Collapse
Affiliation(s)
- David Z Kochan
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
186
|
Ansari J, Shackelford RE, El-Osta H. Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 2016; 5:155-71. [PMID: 27186511 DOI: 10.21037/tlcr.2016.02.02] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer remains the number one cause of cancer-related deaths worldwide with 221,200 estimated new cases and 158,040 estimated deaths in 2015. Approximately 80% of cases are non-small cell lung cancer (NSCLC). The diagnosis is usually made at an advanced stage where the prognosis is poor and therapeutic options are limited. The evolution of lung cancer is a multistep process involving genetic, epigenetic, and environmental factor interactions that result in the dysregulation of key oncogenes and tumor suppressor genes, culminating in activation of cancer-related signaling pathways. The past decade has witnessed the discovery of multiple molecular aberrations that drive lung cancer growth, among which are epidermal growth factor receptor (EGFR) mutations and translocations involving the anaplastic lymphoma kinase (ALK) gene. This has translated into therapeutic agent developments that target these molecular alterations. The absence of targetable mutations in 50% of NSCLC cases and targeted therapy resistance development underscores the importance for developing alternative therapeutic strategies for treating lung cancer. Among these strategies, pharmacologic modulation of the epigenome has been used to treat lung cancer. Epigenetics approaches may circumvent the problem of tumor heterogeneity by affecting the expression of multiple tumor suppression genes (TSGs), halting tumor growth and survival. Moreover, it may be effective for tumors that are not driven by currently recognized druggable mutations. This review summarizes the molecular pathology of lung cancer epigenetic aberrations and discusses current efforts to target the epigenome with different pharmacological approaches. Our main focus will be on hypomethylating agents, histone deacetylase (HDAC) inhibitors, microRNA modulations, and the role of novel epigenetic biomarkers. Last, we will address the challenges that face this old-new strategy in treating lung cancer.
Collapse
Affiliation(s)
- Junaid Ansari
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E Shackelford
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| | - Hazem El-Osta
- 1 Department of Medicine, Feist-Weiller Cancer Center, LSU Health, Shreveport, LA, USA ; 2 Department of Pathology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
187
|
Lewis KA, Tollefsbol TO. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front Genet 2016; 7:83. [PMID: 27242892 PMCID: PMC4860561 DOI: 10.3389/fgene.2016.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Chromosome-shortening is characteristic of normal cells, and is known as the end replication problem. Telomerase is the enzyme responsible for extending the ends of the chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant cancers. There are three subunits of telomerase: human telomerase RNA (hTERC), human telomerase associated protein (hTEP1), or dyskerin, and human telomerase reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so the enzymatic activity of telomerase is dependent on the transcription of hTERT. DNA methylation, histone methylation, and histone acetylation are basic epigenetic regulations involved in the expression of hTERT. Non-coding RNA can also serve as a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT is important in providing a mechanism for reversibility of hTERT control in various biological states. These include embryonic down-regulation of hTERT contributing to aging and the upregulation of hTERT playing a critical role in over 90% of cancers. Normal human somatic cells have a non-methylated/hypomethylated CpG island within the hTERT promoter region, while telomerase-positive cells paradoxically have at least a partially methylated promoter region that is opposite to the normal roles of DNA methylation. Histone acetylation of H3K9 within the promoter region is associated with an open chromatin state such that transcription machinery has the space to form. Histone methylation of hTERT has varied control of the gene, however. Mono- and dimethylation of H3K9 within the promoter region indicate silent euchromatin, while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target epigenetic-modifying enzymes, as well as transcription factors involved in the control of hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent fascination that has received much attention. By combining portions of this diet with epigenome-altering treatments, it is possible to selectively regulate the epigenetic control of hTERT and its expression.
Collapse
Affiliation(s)
- Kayla A Lewis
- Department of Biology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, BirminghamAL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, BirminghamAL, USA
| |
Collapse
|
188
|
Qiu C, Bu X, Jiang Z. Protocadherin-10 acts as a tumor suppressor gene, and is frequently downregulated by promoter methylation in pancreatic cancer cells. Oncol Rep 2016; 36:383-9. [PMID: 27176920 DOI: 10.3892/or.2016.4793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/11/2016] [Indexed: 11/06/2022] Open
Abstract
Protocadherin-10 (PCDH10), a member of non-clustered protocadherin family which plays important roles in calcium-dependent cell-cell signal transduction and adhesion. PCDH10 functions as a tumor suppressor gene and its expression is downregulated by promoter methylation in many malignances. In the present study, we explored PCDH10 expression and promoter methylation status, and its biological effects in pancreatic cancer cells, and furthermore, we explored the mechanism of PCDH10 preliminary in pancreatic cancer cells. the mRNA level of PCDH10 was detected by semi-quantitative reverse transcription PCR and promoter methylation status examined by methylation-specific PCR in the pancreatic cancer cells (Capan-1, Panc-1, AsPC-1 and BxPC-3) as well as the human normal pancreatic ductal epithelial cells HPDE6-C7 which was used as a control. The human pancreatic cells were transfected with plasmid pcDNA3.1-PCDH10 or pcDNA3.1 by lipofectamine 2000. The biological function of PCDH10 in pancreatic cancer cells was determined by CCK-8 assay, colony formation assay, flow cytometry, Transwell invasion assay and wound-healing assay. The levels of apoptosis related proteins were examined by western blotting. PCDH10 expression was obviously downregulated in the pancreatic cancer cells (Capan-1, Panc-1, BxPC-3) compared to the normal pancreatic ductal epithelial cells. PCDH10 promoter methylation was observed in the two pancreatic cancer cells Capan-1 and BxPC-3,and the expression of PCDH10 could be restored after treating with 5-aza-2'-deoxycytidine and trichostatin A in the two cell types. Overexpression of PCDH10 can inhibit the proliferation, migration, invasion ability of pancreatic cancer cells and induce apoptosis. Ectopic expression of PCDH10 could increase the levels of PARP, caspase-3, caspase-9 and decrease the level of bcl-2, AKT and p-AKT. PCDH10 acts as a tumor suppressor gene, and is frequently down-regulated by promoter methylation in pancreatic cancer cells. PCDH10 may induce cancer cell apoptosis via the AKT pathway.
Collapse
Affiliation(s)
- Chan Qiu
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaona Bu
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
189
|
Mazor T, Pankov A, Song JS, Costello JF. Intratumoral Heterogeneity of the Epigenome. Cancer Cell 2016; 29:440-451. [PMID: 27070699 PMCID: PMC4852161 DOI: 10.1016/j.ccell.2016.03.009] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023]
Abstract
Investigation into intratumoral heterogeneity (ITH) of the epigenome is in a formative stage. The patterns of tumor evolution inferred from epigenetic ITH and genetic ITH are remarkably similar, suggesting widespread co-dependency of these disparate mechanisms. The biological and clinical relevance of epigenetic ITH are becoming more apparent. Rare tumor cells with unique and reversible epigenetic states may drive drug resistance, and the degree of epigenetic ITH at diagnosis may predict patient outcome. This perspective presents these current concepts and clinical implications of epigenetic ITH, and the experimental and computational techniques at the forefront of ITH exploration.
Collapse
Affiliation(s)
- Tali Mazor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | - Aleksandr Pankov
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jun S. Song
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
190
|
Song X, Shi K, Zhou SJ, Yu DP, Liu Z, Han Y. Clinicopathological significance and a potential drugtarget of RARβ in non-small-cell lung carcinoma: a meta-analysis and a systematic review. Drug Des Devel Ther 2016; 10:1345-54. [PMID: 27103788 PMCID: PMC4827914 DOI: 10.2147/dddt.s96766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality in men worldwide. Aberrant RARβ promoter methylation has been frequently investigated in non-small-cell lung carcinoma (NSCLC), the most common form of lung cancer. The aim of present study was to carry out a meta-analysis and a systematic review to evaluate clinicopathological significance of RARβ promoter hypermethylation in NSCLC. A systematic literature search was carried out. The data were extracted and assessed by two reviewers independently. The Cochrane software Review Manager 5.2 was used to conduct the review. Odds ratios (ORs) with 95% corresponding confidence intervals (CIs) were calculated. A total of 18 relevant articles were available for meta-analysis which included 1,871 participants. The frequency of RARβ hypermethylation was significantly increased in NSCLC than in nonmalignant lung tissue, and the pooled OR was 5.69 (P<0.00001). RARβ hypermethylation was significantly more frequently observed in adenocarcinoma (AC) than in squamous cell carcinoma (SCC), and the pooled OR was 1.47 (P=0.005). Hypermethylation of RARβ gene in NSCLC was 2.46 times higher in smoking than in nonsmoking individuals, and the pooled OR was 2.46 (P=0.0002). RARβ hypermethylation rate was not significantly correlated with stage of the disease and sex. RARβ gene methylation status was not associated with prognosis of patients with NSCLC. In conclusion, RARβ promoter hypermethylation significantly increased in NSCLC than in non-neoplastic lung tissue and is predominant in AC, suggesting that RARβ methylation contributes to the development of NSCLC, especially AC. RARβ gene is a potential novel target for development of personalized therapy in patients with NSCLC, and is promising in restoration of retinoic acid-target gene induction via demethylation of RARβ1' promoter.
Collapse
Affiliation(s)
- Xiaoyun Song
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Kang Shi
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shi-Jie Zhou
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Da-Ping Yu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhidong Liu
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yi Han
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
191
|
Lue JK, Amengual JE, O'Connor OA. Epigenetics and Lymphoma: Can We Use Epigenetics to Prime or Reset Chemoresistant Lymphoma Programs? Curr Oncol Rep 2016; 17:40. [PMID: 26141799 DOI: 10.1007/s11912-015-0464-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Non-Hodgkin lymphoma is a diverse group of lymphocyte-derived neoplasms. Although a heterogeneous group of malignancies, it has become apparent that epigenetic alterations, such as disturbances of DNA methylation and histone modification, are a common occurrence in both B cell and T cell lymphomas, contributing to lymphomagenesis. As a result, the use of epigenetic targeted therapy has been incorporated into various pre-clinical and clinical studies, demonstrating significant efficacy in lymphoma, with vorinostat becoming the first epigenetic therapy to receive FDA approval in any malignancy. The role of epigenetic drugs is evolving, with its potential use in combination therapy as well as a means of overcoming chemotherapy resistance. In this review, we discuss the epigenetic alterations in non-Hodgkin lymphomas as well as provide an overview of current epigenetic drugs and their role in clinical practice, and on-going clinical trials.
Collapse
Affiliation(s)
- Jennifer K Lue
- Center for Lymphoid Malignancies, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
192
|
Soto J, Rodriguez-Antolin C, Vallespín E, de Castro Carpeño J, Ibanez de Caceres I. The impact of next-generation sequencing on the DNA methylation-based translational cancer research. Transl Res 2016; 169:1-18.e1. [PMID: 26687736 DOI: 10.1016/j.trsl.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/29/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023]
Abstract
Epigenetics is currently in an exponential phase of growth, constituting one of the most promising fields in science, particularly in cancer research. Impaired epigenetic processes can lead to abnormal gene activity or inactivity, causing cellular disorders that are closely associated with tumor initiation and progression. Thus, there is a pivotal role of massive sequencing techniques for epigenetics, which aim to find novel biomarkers, factors of prognosis and prediction, and targets for achieving personalized treatments. We present a brief description of the evolution of next-generation sequencing technologies and its coupling with DNA methylation analysis techniques, highlighting its future in translational medicine and presenting significant findings in several malignancies. We also expose critical topics related to the implementation of these approaches, which is expected to be affordable for most research centers in the near future.
Collapse
Affiliation(s)
- Javier Soto
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Carlos Rodriguez-Antolin
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain
| | - Elena Vallespín
- Structural and Functional Genomics, INGEMM-IdiPAZ-CIBERER, La Paz University Hospital, Madrid, Spain
| | | | - Inmaculada Ibanez de Caceres
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Madrid, Spain; Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, Madrid, Spain.
| |
Collapse
|
193
|
Scaffidi P. Histone H1 alterations in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:533-9. [PMID: 26386351 DOI: 10.1016/j.bbagrm.2015.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Chromatin-related proteins have emerged as important players in the initiation and maintenance of several types of cancer. In addition to the established role of histone-modifying enzymes and chromatin remodelers in promoting and sustaining malignant phenotypes, recent findings suggest that the basic components of chromatin, the histone proteins, also suffer severe alterations in cancer and may contribute to the disease. Histopathological examination of clinical samples, characterization of the mutational landscape of various types of cancer and functional studies in cancer cell lines have highlighted the linker histone H1 both as a potential biomarker and a driver in cancer. This review summarizes H1 abnormalities in cancer identified by various approaches and critically discusses functional implications of such alterations, as well as potential mechanisms through which they may contribute to the disease.
Collapse
Affiliation(s)
- Paola Scaffidi
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, UK; UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
194
|
Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease. Cell Death Differ 2016; 23:1152-64. [PMID: 26891694 PMCID: PMC4946883 DOI: 10.1038/cdd.2015.165] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/04/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the ‘gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies.
Collapse
|
195
|
Prognostic significance of stem cell marker CD133 determined by promoter methylation but not by immunohistochemical expression in malignant gliomas. J Neurooncol 2016; 127:221-32. [PMID: 26757925 PMCID: PMC4781890 DOI: 10.1007/s11060-015-2039-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/28/2015] [Indexed: 01/06/2023]
Abstract
CD133 has played a pivotal role in the identification and isolation of brain tumor stem cells. The correlation between CD133 expression in tumor tissues with patients survival is still controversial. CD133 expression is determinated by methylation status of the promoter region 1–3. Aberrant methylation of CD133 was observed in glioblastoma. To date, a direct link between CD133 methylation and patient outcome has not been established.To address this question, we studied CD133 expression and promoter methylation in a series of 170 gliomas of various grade and histology, and investigated the correlation of CD133 expression and promoter methylation with patient outcome.We detected five CD133 promoter methylation patterns in 170 glioma samples: methylation only (M+, U−), unmethylation only (M−, U+), both methylation and unmethylation equally (M+, U+), high methylation and low unmethylation (M+, Ul), and low methylation and high unmethylation (Ml, U+). By multivariate survival analysis, we found CD133 promoter methylation status was significant (P < 0.01) prognostic factors for adverse progression-free survival and overall survival independent of tumor grade, extent of resection, or patient age. CD133 immunostaining showed considerable variability among tumors. While, there was lack of correlation between CD133 protein expression and patient’s survival. Furthermore, no correlation between CD133 protein expression and CD133 promoter methylation status was observed (Kw = −0.165).CD133 promoter methylation status in glioma is closely correlated with patient survival, which suggest CD133 promoter methylaiton pattern is a promising tool for diagnostic purposes.
Collapse
|
196
|
Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, Deng D. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol 2015; 16:252. [PMID: 26592237 PMCID: PMC4656189 DOI: 10.1186/s13059-015-0819-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022] Open
Abstract
Background P16 DNA methylation is well known to be the most frequent event in cancer development. It has been reported that genetic inactivation of P16 drives cancer growth and metastasis, however, whether P16 DNA methylation is truly a driver in cancer metastasis remains unknown. Results A P16-specific DNA methyltransferase (P16-dnmt) expression vector is designed using a P16 promoter-specific engineered zinc finger protein fused with the catalytic domain of dnmt3a. P16-dnmt transfection significantly decreases P16 promoter activity, induces complete methylation of P16 CpG islands, and inactivates P16 transcription in the HEK293T cell line. The P16-Dnmt coding fragment is integrated into an expression controllable vector and used to induce P16-specific DNA methylation in GES-1 and BGC823 cell lines. Transwell assays show enhanced migration and invasion of these cancer cells following P16-specific DNA methylation. Such effects are not observed in the P16 mutant A549 cell line. These results are confirmed using an experimental mouse pneumonic metastasis model. Moreover, enforced overexpression of P16 in these cells reverses the migration phenotype. Increased levels of RB phosphorylation and NFκB subunit P65 expression are also seen following P16-specific methylation and might further contribute to cancer metastasis. Conclusion P16 methylation could directly inactivate gene transcription and drive cancer metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0819-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenghua Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China. .,Department of Pathology, Institute of Hematology & Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Tianjin, 300020, China.
| | - Ying Gan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Liankun Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - James Wilson
- GRU Cancer Center, Georgia Regents University, Augusta, GA30912, USA.
| | - Zhaojun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Aetiology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
197
|
Sheng Y, Wang H, Liu D, Zhang C, Deng Y, Yang F, Zhang T, Zhang C. Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma. Gynecol Oncol 2015; 140:145-51. [PMID: 26597461 DOI: 10.1016/j.ygyno.2015.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/24/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Epigenetic changes in cancer and precancerous lesions could be utilized as biomarkers for cancer early detection. This study aims to investigate the novel biomarkers in endometrial carcinoma, and explore their epigenetic regulation. METHODS Methylation of six tumor suppressor genes (CDH13, SHP1, HIN1, DKK3, CTNNA1 and PCDH8) was evaluated in 155 endometrium samples. Changes of methylation and mRNA expression after treatment with 5-Aza-2'-deoxycytidine (5-Aza-CdR) or/and trichostatin A (TSA) were investigated by MSP and qRT-PCR respectively. Co-immunoprecipitation was used to detect the interactions between UHRF1 and PRMT5 proteins. RESULTS CDH13 and SHP1 promoters were highly methylated (81.36% and 86.44%, respectively) in endometrial carcinoma, while CDH13 promoter methylation was also present in complex hyperplasia and atypical hyperplasia (51.72% and 50.00%, respectively). Methylation of CDH13 and SHP1 promoters was associated with age and tumor differentiation or muscular infiltration depth. CDH13 and SHP1 promoters were completely methylated in endometrial carcinoma cell lines and were partially reversed by 5-Aza-CdR or TSA to induce mRNA levels (P<0.01). After combined treatment with these two agents, methylation of CDH13 and SHP1 promoters was completely reversed and expression of their mRNA was significantly increased (P<0.01). Moreover, PRMT5 could bind to UHRF1 and down-regulated by 5-Aza-CdR and/or TSA treatment (P<0.05). CONCLUSIONS Our data demonstrate for the first time that SHP1 methylation has high specificity for diagnosis of endometrial carcinoma, while CDH13 promoter methylation plays a role in the earlier stage. Furthermore, UHRF1 could form a complex with PRMT5 to contribute to the endometrial carcinogenesis.
Collapse
Affiliation(s)
- Yan Sheng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongtao Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, The Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dongchen Liu
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Cheng Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Yupeng Deng
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Fan Yang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
198
|
Wang Y, Wu J, Ma X, Liu B, Su R, Jiang Y, Wang W, Dong Y. Single Base-Resolution Methylome of the Dizygotic Sheep. PLoS One 2015; 10:e0142034. [PMID: 26536671 PMCID: PMC4633158 DOI: 10.1371/journal.pone.0142034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/17/2015] [Indexed: 12/12/2022] Open
Abstract
Sheep is an important livestock in the world for meat, dairy and wool production. The third version of sheep reference genome has been recently assembled, but sheep DNA methylome has not been profiled yet. In this study, we report the comprehensive sheep methylome with 94.38% cytosine coverage at single base resolution by sequencing DNA samples from Longissimus dorsi of dizygotic Sunit sheep, which were bred in different habitats. We also compared methylomes between the twin sheep. DNA methylation status at genome-scale differentially methylated regions (DMRs), functional genomic regions and 248 DMR-containing genes were identified between the twin sheep. Gene ontology (GO) and KEGG annotations of these genes were performed to discover computationally predicted function. Lipid metabolism, sexual maturity and tumor-associated categories were observed to significantly enrich DMR-containing genes. These findings could be used to illustrate the relationship between phenotypic variations and gene methylation patterns.
Collapse
Affiliation(s)
- Yangzi Wang
- Kunming University of Science and Technology, Chenggong District, Kunming, China
| | - Jianghong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
- Inner Mongolia Prataculture Research Center, Chinese Academy of Science, Hohhot, China
| | - Xiao Ma
- Yunnan Agricultural University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, China
| | - Rui Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (WW); (YD)
| | - Yang Dong
- Kunming University of Science and Technology, Chenggong District, Kunming, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- * E-mail: (WW); (YD)
| |
Collapse
|
199
|
Gallego-Durán R, Romero-Gómez M. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field. World J Hepatol 2015; 7:2497-2502. [PMID: 26523202 PMCID: PMC4621463 DOI: 10.4254/wjh.v7.i24.2497] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/30/2015] [Accepted: 10/19/2015] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an emerging health concern in both developed and non-developed world, encompassing from simple steatosis to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Incidence and prevalence of this disease are increasing due to the socioeconomic transition and change to harmful diet. Currently, gold standard method in NAFLD diagnosis is liver biopsy, despite complications and lack of accuracy due to sampling error. Further, pathogenesis of NAFLD is not fully understood, but is well-known that obesity, diabetes and metabolic derangements played a major role in disease development and progression. Besides, gut microbioma and host genetic and epigenetic background could explain considerable interindividual variability. Knowledge that epigenetics, heritable events not caused by changes in DNA sequence, contribute to development of diseases has been a revolution in the last few years. Recently, evidences are accumulating revealing the important role of epigenetics in NAFLD pathogenesis and in NASH genesis. Histone modifications, changes in DNA methylation and aberrant profiles or microRNAs could boost development of NAFLD and transition into clinical relevant status. PNPLA3 genotype GG has been associated with a more progressive disease and epigenetics could modulate this effect. The impact of epigenetic on NAFLD progression could deserve further applications on therapeutic targets together with future non-invasive methods useful for the diagnosis and staging of NAFLD.
Collapse
|
200
|
Mersakova S, Nachajova M, Szepe P, Kasajova PS, Halasova E. DNA methylation and detection of cervical cancer and precancerous lesions using molecular methods. Tumour Biol 2015; 37:23-7. [PMID: 26459314 DOI: 10.1007/s13277-015-4197-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 10/01/2015] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer is the third most common cancer disease affecting the female population, and a key factor in the development of the disease is the human papillomavirus infection (HPV). The disease is also impacted by epigenetic changes such as DNA methylation, which causes activation or exclusion of certain genes. The aim of our review is to summarize and compare the most common molecular methods for detection of methylated promoter regions in biomarkers occurring in cervical carcinoma and also show the importance of connections of HR-HPV testing with methylation analysis in patients with cervical intraepithelial neoplasia. Insight into genetic and epigenetic alterations associated with cervical cancer development can offer opportunities for the molecular biomarkers that can be useful for screening, diagnosis, and also as new ways of treatment of cervical cancer precursor lesions.
Collapse
Affiliation(s)
- Sandra Mersakova
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4 A, Martin, 036 01, Slovakia
| | - Marcela Nachajova
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4 A, Martin, 036 01, Slovakia.
| | - Peter Szepe
- Institute of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Petra Sumichrastova Kasajova
- Department of Gynecology and Obstetrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4 A, Martin, 036 01, Slovakia
| | - Erika Halasova
- BioMed Martin-Division of Molecular Medicine, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| |
Collapse
|