151
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
152
|
Zeb Z, Huang Y, Chen L, Zhou W, Liao M, Jiang Y, Li H, Wang L, Wang L, Wang H, Wei T, Zang D, Fan Z, Wei Y. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
153
|
Huang K, Xia J, Lu Y, Zhang B, Shi W, Cao X, Zhang X, Woods LM, Han C, Chen C, Wang T, Wu J, Huang Y. Self-Reconstructed Spinel Surface Structure Enabling the Long-Term Stable Hydrogen Evolution Reaction/Oxygen Evolution Reaction Efficiency of FeCoNiRu High-Entropy Alloyed Electrocatalyst. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300094. [PMID: 36950752 DOI: 10.1002/advs.202300094] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
High catalytic efficiency and long-term stability are two main components for the performance assessment of an electrocatalyst. Previous attention has been paid more to efficiency other than stability. The present work is focused on the study of the stability processed on the FeCoNiRu high-entropy alloy (HEA) in correlation with its catalytic efficiency. This catalyst has demonstrated not only performing the simultaneous hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with high efficiency but also sustaining long-term stability upon HER and OER. The study reveals that the outstanding stability is attributed to the spinel oxide surface layer developed during evolution reactions. The spinel structure preserves the active sites that are inherited from the HEA's intrinsic structure. This work will provide an insightful direction/pathway for the design and manufacturing activities of other metallic electrocatalysts and a benchmark for the assessment of their efficiency-stability relationship.
Collapse
Affiliation(s)
- Kang Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiuyang Xia
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yu Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bowei Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wencong Shi
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xinyue Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Lilia M Woods
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Changcun Han
- College of Science, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Chunjin Chen
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Tian Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Junsheng Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- College of Science, Hubei University of Technology, Wuhan, 430068, P. R. China
| |
Collapse
|
154
|
Zhang S, Zhao F, Yasin G, Dong Y, Zhao J, Guo Y, Tsiakaras P, Zhao J. Efficient photocatalytic hydrogen evolution: Linkage units engineering in triazine-based conjugated porous polymers. J Colloid Interface Sci 2023; 637:41-54. [PMID: 36682117 DOI: 10.1016/j.jcis.2023.01.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/31/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Conjugated porous polymers (CPPs) have been widely reported as promising photocatalysts. However, the realization of powerful photocatalytic hydrogen production performance still benefits from the rational design of molecular frameworks and the appropriate choice of building monomers. Herein, we synthesized two novel conjugated porous polymers (CPPs) by copolymerizing pyrene and 1,3,5-triazine building blocks. It is found that minor structural changes in the peripheral groups of the triazine units can greatly affect the photocatalytic activity of the polymers. Compared with the phenyl-linkage unit, the thiophene-linkage unit can give CPP a wider absorption range of visible light, a narrower band gap, a higher transmission and separation efficiency of photo-generated carriers (electrons/holes), and a better interface contact with the photocatalytic reaction solution. The catalyst containing thiophene-triazine (ThPy-CPP) has an efficient photocatalytic hydrogen evolution rate of 21.65 and 16.69 mmol g-1h-1 under full-arc spectrum and visible light without the addition of a Pt co-catalyst, respectively, much better than the one containing phenyl-triazine (PhPy-CPP, only 5.73 and 3.48 mmol g-1h-1). This study provides a promising direction to design and construct highly efficient, cost-effective CPP-based photocatalysts, for exploring the application of noble metal-free catalysts in photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Shengling Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China
| | - Ghulam Yasin
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China
| | - YunYun Dong
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Yue Guo
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems Department of Mechanical Engineering School of Engineering, University of Thessaly 1 Sekeri Str., Pedion Areos 38834 Greece.
| | - Jie Zhao
- Institute for Advanced Studies, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
155
|
Yu S, Chen J, Chen C, Zhou M, Shen L, Li B, Lin H. What happens when graphdiyne encounters doping for electrochemical energy conversion and storage. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
156
|
Zhu X, Huang J, Eikerling M. pH Effects in a Model Electrocatalytic Reaction Disentangled. JACS AU 2023; 3:1052-1064. [PMID: 37124300 PMCID: PMC10131201 DOI: 10.1021/jacsau.2c00662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Varying the solution pH not only changes the reactant concentrations in bulk solution but also the local reaction environment (LRE) that is shaped furthermore by macroscopic mass transport and microscopic electric double layer (EDL) effects. Understanding ubiquitous pH effects in electrocatalysis requires disentangling these interwoven factors, which is a difficult, if not impossible, task without physical modeling. Herein, we demonstrate how a hierarchical model that integrates microkinetics, double-layer charging, and macroscopic mass transport can help understand pH effects of the formic acid oxidation reaction (FAOR). In terms of the relation between the peak activity and the solution pH, intrinsic pH effects without consideration of changes in the LRE would lead to a bell-shaped curve with a peak at pH = 6. Adding only macroscopic mass transport, we can already reproduce qualitatively the experimentally observed trapezoidal shape with a plateau between pH 5 and 10 in perchlorate and sulfate solutions. A quantitative agreement with experimental data requires consideration of EDL effects beyond Frumkin correlations. Specifically, the peculiar nonmonotonic surface charging relation affects the free energies of adsorbed intermediates. We further discuss pH effects of FAOR in phosphate and chloride-containing solutions, for which anion adsorption becomes important. This study underpins the importance of a full consideration of multiple interrelated factors for the interpretation of pH effects in electrocatalysis.
Collapse
Affiliation(s)
- Xinwei Zhu
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| | - Jun Huang
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| | - Michael Eikerling
- Theory
and Computation of Energy Materials (IEK-13), Institute of Energy
and Climate Research, Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Chair
of Theory and Computation of Energy Materials, Faculty of Georesources
and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
| |
Collapse
|
157
|
Wang S, Li Z, Shen T, Wang D. N-Doped Carbon Shells Encapsulated Ru-Ni Nanoalloys for Efficient Hydrogen Evolution Reaction. CHEMSUSCHEM 2023; 16:e202202128. [PMID: 36715007 DOI: 10.1002/cssc.202202128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The alkaline hydrogen evolution reaction (HER) is of great significance for the large-scale green H2 production. Currently, pressing challenges in the fabrication of cost-effective HER electrocatalysts are related to their sluggish water dissociation kinetics. Herein, a facile strategy to accelerate the desorption of HER intermediates and water dissociation is proposed. RuNi nanoalloy confined within N-doped carbon shells (Ru7 Ni3 @NC/C) with optimized Ru/Ni ratio and the dicyandiamide dosage was prepared. It displays an overpotential (η10 ) of 16 mV, Tafel slope of 29.9 mV dec-1 , and long-term stability over 10 000 cycles. The decent HER performance on Ru7 Ni3 @NC/C stems from the core-shell structure that is favoring the exposure of dispersed active sites, and the synergistic effect to promote water capture and dissociation. This work provides insight into the relationship between the HER performance and the electrochemical behavior of the intermediate adsorbed state, and paves an avenue toward rational design efficient electrocatalysts for HER.
Collapse
Affiliation(s)
- Shuang Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zhengrong Li
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Tao Shen
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Deli Wang
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
158
|
Enhanced photocatalytic hydrogen evolution activity of co-catalyst free S-scheme polymer heterojunctions via ultrasonic assisted reorganization in solvent. J Colloid Interface Sci 2023; 636:230-244. [PMID: 36634393 DOI: 10.1016/j.jcis.2023.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
In this work, two donor-acceptor linear conjugated polymers were designed and synthesized based on thianthrene-5,5,10,10-tetraoxide (TTO) as the acceptor unit, benzo[1,2-b:4,5-b']dithiophene derivative (Py1) and thiophene (Py2) as the donor units, respectively. The Py1/Py2 composite was prepared by physical ball milling of the two polymers in a mixture, which was further treated with a N-methyl-2-pyrrolidone (NMP)-assisted sonication treatment, and the obtained catalyst was named N-Py1/Py2. Compared with the single polymer or Py1/Py2, the FTIR characteristic peaks of O=S=O have a red shift for N-Py1/Py2, accompanied by a profound change in morphology. Furthermore, N-Py1/Py2 has a broader light response and more efficient separation and transport of charge carriers, and as a result it exhibits a higher photocatalytic hydrogen evolution rate (26.5 mmol g-1 h-1) without the involvement of any co-catalyst than Py1/Py2 catalyst (3.56 mmol g-1 h-1). The underlying mechanism for the enhanced photocatalytic activity by the sonication treatment in NMP is discussed based both on experimental and theoretical calculation data.
Collapse
|
159
|
Zhang KX, Liu ZP. Electrochemical hydrogen evolution on Pt-based catalysts from a theoretical perspective. J Chem Phys 2023; 158:141002. [PMID: 37061480 DOI: 10.1063/5.0142540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Hydrogen evolution reaction (HER) by splitting water is a key technology toward a clean energy society, where Pt-based catalysts were long known to have the highest activity under acidic electrochemical conditions but suffer from high cost and poor stability. Here, we overview the current status of Pt-catalyzed HER from a theoretical perspective, focusing on the methodology development of electrochemistry simulation, catalytic mechanism, and catalyst stability. Recent developments in theoretical methods for studying electrochemistry are introduced, elaborating on how they describe solid-liquid interface reactions under electrochemical potentials. The HER mechanism, the reaction kinetics, and the reaction sites on Pt are then summarized, which provides an atomic-level picture of Pt catalyst surface dynamics under reaction conditions. Finally, state-of-the-art experimental solutions to improve catalyst stability are also introduced, which illustrates the significance of fundamental understandings in the new catalyst design.
Collapse
Affiliation(s)
- Ke-Xiang Zhang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
160
|
Xu Y, Guo Y, Sheng Y, Yu H, Deng K, Wang Z, Li X, Wang H, Wang L. Selective CO 2 Electroreduction to Formate on Polypyrrole-Modified Oxygen Vacancy-Rich Bi 2 O 3 Nanosheet Precatalysts by Local Microenvironment Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300001. [PMID: 37058094 DOI: 10.1002/smll.202300001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Challenges remain in the development of highly efficient catalysts for selective electrochemical transformation of carbon dioxide (CO2 ) to high-valued hydrocarbons. In this study, oxygen vacancy-rich Bi2 O3 nanosheets coated with polypyrrole (Bi2 O3 @PPy NSs) are designed and synthesized, as precatalysts for selective electrocatalytic CO2 reduction to formate. Systematic material characterization demonstrated that Bi2 O3 @PPy precatalyst can evolve intoBi2 O2 CO3 @PPy nanosheets with rich oxygen vacancies (Bi2 O2 CO3 @PPy NSs) via electrolyte-mediated conversion and function as the real active catalyst for CO2 reduction reaction electrocatalysis. Coating catalyst with a PPy shell can modulate the interfacial microenvironment of active sites, which work in coordination with rich oxygen vacancies in Bi2 O2 CO3 and efficiently mediate directional selective CO2 reduction toward formate formation. With the fine-tuning of interfacial microenvironment, the optimized Bi2 O3 @PPy-2 NSs derived Bi2 O2 CO3 @PPy-2 NSs exhibit a maximum Faradaic efficiency of 95.8% at -0.8 V (versus. reversible hydrogen electrode) for formate production. This work might shed some light on designing advanced catalysts toward selective electrocatalytic CO2 reduction through local microenvironment engineering.
Collapse
Affiliation(s)
- You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yiyi Guo
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Youwei Sheng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
161
|
Aydin F, Andrade MFC, Stinson RS, Zagalskaya A, Schwalbe-Koda D, Chen Z, Sharma S, Maiti A, Esposito DV, Ardo S, Pham TA, Ogitsu T. Mechanistic Insights on Permeation of Water over Iron Cations in Nanoporous Silicon Oxide Films for Selective H 2 and O 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17814-17824. [PMID: 36975208 DOI: 10.1021/acsami.2c22865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrocatalysts encapsulated by an ultrathin and semipermeable oxide layer offer a promising avenue for efficient, selective, and cost-effective production of hydrogen through photoelectrochemical water splitting. This architecture is especially attractive for Z-scheme water splitting, for which a nanoporous oxide film can be leveraged to mitigate undesired, yet kinetically facile, reactions involving redox shuttles, such as aqueous iron cations, by limiting transport of these species to catalytically active sites. In this work, molecular dynamics simulations were combined with electrochemical measurements to provide a mechanistic understanding of permeation of water and Fe(III)/Fe(II) redox shuttles through nanoporous SiO2 films. It is shown that even for SiO2 pores with a width as small as 0.8 nm, water does not experience any energy barrier for permeating into the pores due to a favorable interaction with hydrophilic silanol groups on the oxide surface. In contrast, permeation of Fe(III) and Fe(II) into microporous SiO2 pores is limited due to high energy barriers, which stem from a combination of distortion and dehydration of the second and third ion solvation shells. Our simulations and experimental results show that SiO2 coatings can effectively mitigate undesired Fe(III)/Fe(II) redox reactions at underlying electrodes by attenuating permeation of iron cations, while allowing water to permeate and thus participate in water splitting reactions. In a broader context, our study demonstrates that selectivity of solvated cations can be manipulated by controlling the pore size and surface chemistry of oxide films.
Collapse
Affiliation(s)
- Fikret Aydin
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Marcos F Calegari Andrade
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Robert S Stinson
- Chemical Engineering Department, Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, United States
| | - Alexandra Zagalskaya
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Daniel Schwalbe-Koda
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Zejie Chen
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Shubham Sharma
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Amitesh Maiti
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Daniel V Esposito
- Chemical Engineering Department, Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, United States
| | - Shane Ardo
- Department of Chemistry, University of California, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Tuan Anh Pham
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tadashi Ogitsu
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
162
|
Lee SA, Bu J, Lee J, Jang HW. High‐Entropy Nanomaterials for Advanced Electrocatalysis. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Affiliation(s)
- Sol A Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Liquid Sunlight Alliance (LiSA) Department of Applied Physics and Materials Science California Institute of Technology Pasadena CA 91106 USA
| | - Jeewon Bu
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Jiwoo Lee
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering Research Institute of Advanced Materials (RIAM) Seoul National University Seoul 08826 South Korea
- Advanced Institute of Convergence Technology Seoul National University Suwon 16229 Republic of Korea
| |
Collapse
|
163
|
Li H, Dai S, Wu Y, Dong Q, Chen J, Chen HT, Hu A, Chou J, Chen T. Atomic Scaled Depth Correlation to the Oxygen Reduction Reaction Performance of Single Atom Ni Alloy to the NiO 2 Supported Pd Nanocrystal. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207109. [PMID: 36752398 PMCID: PMC10104651 DOI: 10.1002/advs.202207109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
This study demonstrates the intercalation of single-atom Ni (NiSA ) substantially reduces the reaction activity of Ni oxide supported Pd nanoparticle (NiO2 /Pd) in the oxygen reduction reaction (ORR). The results indicate the transition states kinetically consolidate the adsorption energy for the chemisorbed O and OH species on the ORR activity. Notably, the NiO2 /Ni1 /Pd performs the optimum ORR behavior with the lowest barrier of 0.49 eV and moderate second-step barrier of 0.30 eV consequently confirming its utmost ORR performance. Through the stepwise cross-level demonstrations, a structure-Eads -ΔE correspondence for the proposed NiO2 /Nin /Pd systems is established. Most importantly, such a correspondence reveals that the electronic structure of heterogeneous catalysts can be significantly differed by the segregation of atomic clusters in different dimensions and locations. Besides, the doping-depth effect exploration of the NiSA in the NiO2 /Pd structure intrinsically elucidates that the Ni atom doping in the subsurface induces the most fruitful NiSA /PdML synergy combining the electronic and strain effects to optimize the ORR, whereas this desired synergy diminishes at high Pd coverages. Overall, the results not only rationalize the variation in the redox properties but most importantly provides a precision evaluation of the process window for optimizing the configuration and composition of bimetallic catalysts in practical experiments.
Collapse
Affiliation(s)
- Haolin Li
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Sheng Dai
- School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200234China
| | - Yawei Wu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Qi Dong
- Department of Electrical EngineeringTsinghua UniversityBeijing100084China
| | - Jianjun Chen
- School of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhou310018China
| | - Hsin‐Yi Tiffany Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
| | - Alice Hu
- Department of Mechanical EngineeringCity University of Hong KongHong Kong SAR999077China
- Department of Materials Science and EngineeringCity University of Hong KongHong Kong SAR999077China
| | - Jyh‐Pin Chou
- Department of PhysicsNational Changhua University of EducationChanghua50007Taiwan
| | - Tsan‐Yao Chen
- Department of Engineering and System ScienceNational Tsing Hua UniversityHsinchu300044Taiwan
- Hierarchical Green‐Energy Materials (Hi‐GEM) Research CentreNational Cheng Kung UniversityTainan70101Taiwan
- Department of Materials Science and EngineeringNational Taiwan University of Science and TechnologyTaipei10617Taiwan
| |
Collapse
|
164
|
Wan XQ, Yang CL, Wang MS, Ma XG. Efficient photocatalytic hydrogen evolution and CO 2 reduction by HfSe 2/GaAs 3 and ZrSe 2/GaAs 3 heterostructures with direct Z-schemes. Phys Chem Chem Phys 2023; 25:8861-8870. [PMID: 36916407 DOI: 10.1039/d2cp05902a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The elaborate configuration of the heterostructure is crucial and challenging to achieve high solar-to-hydrogen efficiency or CO2 reduction efficiency . Here, we predict two heterostructures composed of HfSe2, ZrSe2, and GaAs3 monolayers. The maximum of 42.71%/35.12% with the heterostructures can be reached with the perfect match between the bandgap and band edges. The configurations of the heterostructures are discovered from 12 possible stacking types of the three monolayers. The formation energy, potentials of band edges, carrier mobilities, and optical absorption were used to identify the feasibility of the CO2 reduction reaction (CO2RR), the hydrogen evolution reaction (HER), and the oxygen evolution reaction (OER). The and based on overpotentials and bandgaps and the Gibbs free energies (ΔGs) are evaluated to quantificationally access the photocatalytic performance of the constructed heterostructures. The results demonstrate that high can be obtained for the solar photocatalytic Z-schemes with the HfSe2/GaAs3 and ZrSe2/GaAs3 heterostructures, and these values can be further enhanced through strain engineering. Moreover, small changes in ΔGs were observed for HER, OER, and CO2RR. Therefore, the two heterostructures have excellent performance in photocatalytic hydrogen evolution and CO2 reduction. The results of the electronic properties revealed that the delicate matching of the projected band edges of the monolayers in the heterostructures is responsible for the high photocatalytic performance.
Collapse
Affiliation(s)
- Xue-Qing Wan
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Chuan-Lu Yang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Mei-Shan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| | - Xiao-Guang Ma
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China.
| |
Collapse
|
165
|
Liang Y, Li T, Lee Y, Zhang Z, Li Y, Si W, Liu Z, Zhang C, Qiao Y, Bai S, Lin Y. Organic Photovoltaic Catalyst with σ-π Anchor for High-Performance Solar Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202217989. [PMID: 36700554 DOI: 10.1002/anie.202217989] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
Efficient in situ deposition of metallic cocatalyst, like zero-valent platinum (Pt), on organic photovoltaic catalysts (OPCs) is the prerequisite for their high catalytic activities. Here we develop the OPC (Y6CO), by introducing carbonyl in the core, which is available to σ-π coordinate with transition metals, due to the high-energy empty π* orbital of carbonyl. Y6CO exhibits a stronger capability to anchor Pt species and reduce them to metallic state, resulting in more Pt0 deposition, relative to the control OPC without the central σ-π anchor. Single-component and heterojunction nanoparticles (NPs) employing Y6CO show enhanced average hydrogen evolution rates of 230.98 and 323.22 mmol h-1 g[OPC] -1 , respectively, under AM 1.5G, 100 mW cm-2 for 10 h, and heterojunction NPs yield the external quantum efficiencies of ca. 10 % in 500-800 nm. This work demonstrates that σ-π anchoring is one efficient strategy for integrating metallic cocatalyst and OPC for high-performance photocatalysis.
Collapse
Affiliation(s)
- Yuanxin Liang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tengfei Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhsuan Lee
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yawen Li
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqin Si
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zesheng Liu
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, Laboratories of Organic Solids, Structural Chemistry of Unstable and Stable Species, Photochemistry, and Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
166
|
Zhao X, Wu G, Zheng X, Jiang P, Yi JD, Zhou H, Gao X, Yu ZQ, Wu Y. A Double Atomic-Tuned RuBi SAA/Bi@OG Nanostructure with Optimum Charge Redistribution for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2023; 62:e202300879. [PMID: 36721306 DOI: 10.1002/anie.202300879] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
Charge redistribution on surface of Ru nanoparticle can significantly affect electrocatalytic HER activity. Herein, a double atomic-tuned RuBi SAA/Bi@OG nanostructure that features RuBi single-atom alloy nanoparticle supported by Bi-O single-site-doped graphene was successfully developed by one-step pyrolysis method. The alloyed Bi single atom and adjacent Bi-O single site in RuBi SAA/Bi@OG can synergistically manipulate electron transfer on Ru surface leading to optimum charge redistribution. Thus, the resulting RuBi SAA/Bi@OG exhibits superior alkaline HER activity. Its mass activity is up to 65000 mA mg-1 at an overpotential of 150 mV, which is 72.2 times as much as that of commercial Pt/C. DFT calculations reveal that the RuBi SAA/Bi@OG possesses the optimum charge redistribution, which is most beneficial to strengthen adsorption of water and weaken hydrogen-adsorption free energy in HER process. This double atomic-tuned strategy on surface charge redistribution of Ru nanoparticle opens a new way to develop highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Xiaole Zhao
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, 518071, China.,School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Geng Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Peng Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jun-Dong Yi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huang Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoping Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Institute of Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen, 518071, China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.,Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| |
Collapse
|
167
|
Ramos NC, Medlin JW, Holewinski A. Electrochemical Stability of Thiolate Self-Assembled Monolayers on Au, Pt, and Cu. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36898023 DOI: 10.1021/acsami.3c01224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Self-assembled monolayers (SAMs) of thiolates have increasingly been used for modification of metal surfaces in electrochemical applications including selective catalysis (e.g., CO2 reduction, nitrogen reduction) and chemical sensing. Here, the stable electrochemical potential window of thiolate SAMs on Au, Pt, and Cu electrodes is systematically studied for a variety of thiols in aqueous electrolyte systems. For fixed tail-group functionality, the reductive stability of thiolate SAMs is found to follow the trend Au < Pt < Cu; this can be understood by considering the combined influences of the binding strength of sulfur and competitive adsorption of hydrogen. The oxidative stability of thiolate SAMs is found to follow the order: Cu < Pt < Au, consistent with each surface's propensity toward surface oxide formation. The stable reductive and oxidative potential limits are both found to vary linearly with pH, except for reduction above pH ∼10, which is independent of pH for most thiol compositions. The electrochemical stability across different functionalized thiols is then revealed to depend on many different factors including SAM defects (accessible surface metal atom sites decrease stability), intermolecular interactions (hydrophilic groups reduce the stability), and SAM thickness (stability increases with alkanethiol carbon chain length) as well as factors such as SAM-induced surface reconstruction and the ability to directly oxidize or reduce the non-sulfur part of the SAM molecule.
Collapse
Affiliation(s)
- Nathanael C Ramos
- Department of Chemical and Biological Engineering, University of Colorado Boulder, JSCBB, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, SEEC, 4001 Discovery Dr, Boulder, Colorado 80309, United States
| | - J Will Medlin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, JSCBB, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Adam Holewinski
- Department of Chemical and Biological Engineering, University of Colorado Boulder, JSCBB, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, SEEC, 4001 Discovery Dr, Boulder, Colorado 80309, United States
| |
Collapse
|
168
|
Yang L, Feng S, Zhu W. Novel honeycomb-like metal organic frameworks as multifunction electrodes for nitrate degradation: A computational study. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130534. [PMID: 36493649 DOI: 10.1016/j.jhazmat.2022.130534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Electrocatalytic reduction of ubiquitous waste nitrate to ammonia (NH3) is a promising converting route toward recovering the disrupted nitrogen cycle. However, this carbon neutral synthesis process suffers from sluggish kinetics and flat Faradaic efficiency owing to the lack of efficient catalysts. Herein, we reported a novel two-dimension metal organic framework (MOF) as multifunction electrode via combining metal Zr atoms and benzenehexaselenolate skeletons (denoted as Zr-BHS) for nitrate remediation, featured with an impressive limiting potential of - 0.47 V, satisfactory selectivity, and favorable stability. A reasonable electronic indicator φ proposed here successfully explains why early transition metal elements in recently reports exhibit excellent electrochemical nitrate reduction activity. More importantly, as a derivative, Co-BHT has surprisingly superior hydrogen evolution performance comparable to the Pt-based material since the striking H-s and Co-d orbital hybridization overlap tailors the H attachment. Our studies not only offer a brand new multifunction MOF material for hydrogen energy carrier (NH3 and H2) electroreduction, but also put forward an ingenious self-assembly tactic, paving road for guiding the top-down synthesis.
Collapse
Affiliation(s)
- Lei Yang
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shenghua Feng
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
169
|
Integration of amorphous CoSnO3 onto wrinkled MXene nanosheets as efficient electrocatalysts for alkaline hydrogen evolution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
170
|
Behrendt D, Banerjee S, Clark C, Rappe AM. High-Throughput Computational Screening of Bioinspired Dual-Atom Alloys for CO 2 Activation. J Am Chem Soc 2023; 145:4730-4735. [PMID: 36795018 DOI: 10.1021/jacs.2c13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CO2 activation is an integral component of thermocatalytic and electrocatalytic CO2 conversion to liquid fuels and value-added chemicals. However, the thermodynamic stability of CO2 and the high kinetic barriers to activating CO2 are significant bottlenecks. In this work, we propose that dual atom alloys (DAAs), homo- and heterodimer islands in a Cu matrix, can offer stronger covalent CO2 binding than pristine Cu. The active site is designed to mimic the Ni-Fe anaerobic carbon monoxide dehydrogenase CO2 activation environment in a heterogeneous catalyst. We find that combinations of early transition metals (TMs) and late TMs embedded in Cu are thermodynamically stable and can offer stronger covalent CO2 binding than Cu. Additionally, we identify DAAs that have CO binding energies similar to Cu, both to avoid surface poisoning and to ensure attainable CO diffusion to Cu sites so that the C-C bond formation ability of Cu can be retained in conjunction with facile CO2 activation at the DAA sites. Machine learning feature selection reveals that the more electropositive dopants are primarily responsible for attaining the strong CO2 binding. We propose seven Cu-based DAAs and two single atom alloys (SAAs) with early TM late TM combinations, (Sc, Ag), (Y, Ag), (Y, Fe), (Y, Ru), (Y, Cd), (Y, Au), (V, Ag), (Sc), and (Y), for facile CO2 activation.
Collapse
Affiliation(s)
- Drew Behrendt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cole Clark
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
171
|
Metal-Organic Frameworks Derived Interfacing Fe2O3/ZnCo2O4 Multimetal Oxides as a Bifunctional Electrocatalyst for Overall Water Splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
172
|
Kang J, Chen X, Si R, Gao X, Zhang S, Teobaldi G, Selloni A, Liu L, Guo L. Activating Bi
p‐
orbitals in Dispersed Clusters of Amorphous BiO
x
for Electrocatalytic Nitrogen Reduction. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202217428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Jianxin Kang
- School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Beihang University Beijing 100191 China
| | - Xiangyu Chen
- School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Beihang University Beijing 100191 China
| | - Rutong Si
- Beijing Computational Science Research Center Beijing 100193 China
- School of Physics Beihang University Beijing 100191 China
| | - Xiang Gao
- Center for High Pressure Science and Technology Advanced Research Beijing 100190 China
| | - Shuo Zhang
- Shanghai Synchrotron Radiation Facility Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201204 China
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI Rutherford Appleton Laboratory Didcot OX11 0QX UK
- School of Chemistry University of Southampton Highfield Southampton SO17 1BJ UK
| | | | - Li‐Min Liu
- School of Physics Beihang University Beijing 100191 China
| | - Lin Guo
- School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Beihang University Beijing 100191 China
| |
Collapse
|
173
|
Ren E, Coudert FX. Rapid adsorption enthalpy surface sampling (RAESS) to characterize nanoporous materials. Chem Sci 2023; 14:1797-1807. [PMID: 36819873 PMCID: PMC9931060 DOI: 10.1039/d2sc05810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Molecular adsorption in nanoporous materials has many large-scale industrial applications ranging from separation to storage. To design the best materials, computational simulations are key to guiding the experimentation and engineering processes. Because nanoporous materials exist in a plethora of forms, we need to speed up the existing simulation tools to be able to screen databases of hundreds of thousands of structures. Here, we describe a new algorithm that quickly calculates adsorption enthalpies by sampling the surface of the material instead of the whole porous space. This surface sampling has been tested on the CoRE MOF 2019 database and has been proven to be more than 2 orders of magnitude faster than the gold standard method (Widom insertion), with an acceptable level of error on an enthalpy value of 0.34 kJ mol-1, and is therefore proposed as a valuable addition to the high-throughput screening toolbox.
Collapse
Affiliation(s)
- Emmanuel Ren
- CEA, DES, ISEC, DMRC, Univ. Montpellier Marcoule France.,Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| | - François-Xavier Coudert
- Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris 75005 Paris France
| |
Collapse
|
174
|
Han S, Yang J, Wei X, Huang Y, Zhang J, Wang Z. Tuning Catalytic Performance of C
2
N/GaN Heterostructure for Hydrogen Evolution Reaction by Doping. ADVANCED THEORY AND SIMULATIONS 2023. [DOI: 10.1002/adts.202200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Shuang Han
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
- Chongqing BOE Optoelectronics Technology Co., Ltd
| | - Jian Yang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Xiumei Wei
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Yuhong Huang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Jianmin Zhang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| | - Zhenduo Wang
- School of Physics & Information Technology Shaanxi Normal University Xi'an Shaanxi 710119 China
| |
Collapse
|
175
|
Lynn MO, Ologunagba D, Dangi BB, Kattel S. Density functional theory study of bulk properties of transition metal nitrides. Phys Chem Chem Phys 2023; 25:5156-5163. [PMID: 36723016 DOI: 10.1039/d2cp06082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Density functional theory (DFT) calculations are performed to compute the lattice constants, formation energies and vacancy formation energies of transition metal nitrides (TMNs) for transition metals (TM) ranging from 3d-5d series. The results obtained using six different DFT exchange and correlation potentials (LDA, AM05, BLYP, PBE, rPBE, and PBEsol) show that the experimental lattice constants are best predicted by rPBE, while the values obtained using AM05, PBE, rPBE and PBEsol lie between the LDA and BLYP calculated values. A linear relationship is observed between the lattice constants and formation energies with the mean radii of TM and the difference in the electronegativity of TM and N in TMNs, respectively. Our calculated vacancy formation energies, in general, show that N-vacancies are more favorable than TM-vacancies in most TMNs. We observe that N-vacancy formation energies are linearly correlated with the calculated bulk formation energies indicating that TMNs with large negative formation energies are less susceptible to the formation of N-vacancies. Thus, our results from this extensive DFT study not only provide a systematic comparison of various DFT functionals in calculating the properties of TMNs but also serve as reference data for the computation-driven experimental design of materials.
Collapse
Affiliation(s)
- Michael O Lynn
- Department of Physics, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA.
| | - Damilola Ologunagba
- Department of Physics, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA.
| | - Beni B Dangi
- Department of Chemistry, Florida Agricultural and Mechanical University, Tallahassee, FL, USA, 32307.
| | - Shyam Kattel
- Department of Physics, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
176
|
Exner KS. Toward data‐ and mechanistic‐driven volcano plots in electrocatalysis. ELECTROCHEMICAL SCIENCE ADVANCES 2023. [DOI: 10.1002/elsa.202200014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- Kai S. Exner
- Faculty of Chemistry Theoretical Inorganic Chemistry University Duisburg‐Essen Essen Germany
- Cluster of Excellence RESOLV Bochum Germany
- Center for Nanointegration (CENIDE) Duisburg‐Essen Duisburg Germany
| |
Collapse
|
177
|
Xie Z, Wu Y, Zhao Y, Wei M, Jiang Q, Yang X, Xun W. Activating MoS
2
Basal Plane via Non‐noble Metal Doping For Enhanced Hydrogen Production. ChemistrySelect 2023. [DOI: 10.1002/slct.202204608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zhongqi Xie
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Yue Wu
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Ya Zhao
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Mengyuan Wei
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Qing‐Song Jiang
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Xiao Yang
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| | - Wei Xun
- Faculty of Electronic Information Engineering Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
- Jiangsu Engineering Laboratory for Lake Environment Remote Sensing Technologies Huaiyin Institute of Technology Meicheng road No. 1 Huaian 223003 China
| |
Collapse
|
178
|
Do HH, Tekalgne MA, Le QV, Cho JH, Ahn SH, Kim SY. Hollow Ni/NiO/C composite derived from metal-organic frameworks as a high-efficiency electrocatalyst for the hydrogen evolution reaction. NANO CONVERGENCE 2023; 10:6. [PMID: 36729265 PMCID: PMC9895561 DOI: 10.1186/s40580-023-00354-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) constitute a class of crystalline porous materials employed in storage and energy conversion applications. MOFs possess characteristics that render them ideal in the preparation of electrocatalysts, and exhibit excellent performance for the hydrogen evolution reaction (HER). Herein, H-Ni/NiO/C catalysts were synthesized from a Ni-based MOF hollow structure via a two-step process involving carbonization and oxidation. Interestingly, the performance of the H-Ni/NiO/C catalyst was superior to those of H-Ni/C, H-NiO/C, and NH-Ni/NiO/C catalysts for the HER. Notably, H-Ni/NiO/C exhibited the best electrocatalytic activity for the HER, with a low overpotential of 87 mV for 10 mA cm-2 and a Tafel slope of 91.7 mV dec-1. The high performance is ascribed to the synergistic effect of the metal/metal oxide and hollow architecture, which is favorable for breaking the H-OH bond, forming hydrogen atoms, and enabling charge transport. These results indicate that the employed approach is promising for fabricating cost-effective catalysts for hydrogen production in alkaline media.
Collapse
Affiliation(s)
- Ha Huu Do
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Mahider Asmare Tekalgne
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Jin Hyuk Cho
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
179
|
Huang J, Feng M, Peng Y, Huang C, Yue X, Huang S. Encapsulating Ni Nanoparticles into Interlayers of Nitrogen-Doped Nb 2 CT x MXene to Boost Hydrogen Evolution Reaction in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206098. [PMID: 36507610 DOI: 10.1002/smll.202206098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Design and development of low-cost and highly efficient non-precious metal electrocatalysts for hydrogen evolution reaction (HER) in an acidic medium are key issues to realize the commercialization of proton exchange membrane water electrolyzers. Ni is regarded as an ideal alternative to substitute Pt for HER based on the similar electronic structure and low price as well. However, low intrinsic activity and poor stability in acid restrict its practical applications. Herein, a new approach is reported to encapsulate Ni nanoparticles (NPs) into interlayer edges of N-doped Nb2 CTx MXene (Ni NPs@N-Nb2 CTx ) by an electrochemical process. The as-prepared Ni NPs@N-Nb2 CTx possesses Pt-like onset potentials and can reach 500 mA cm-2 at overpotentials of only 383 mV, which is much higher than that of N-Nb2 CTx supported Ni NPs synthesized by a wet-chemical method (w- Ni NPs/N-Nb2 CTx ). Furthermore, it shows high durability toward HER with a large current density of 300 mA cm-2 for 24 h because of the encapsulated structure against corrosion, oxidation as well as aggregation of Ni NPs in an acidic medium. Detailed structural characterization and density functional theory calculations reveal that the stronger interaction boosts the HER.
Collapse
Affiliation(s)
- Jingle Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Min Feng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Peng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
180
|
Zhang Q, Cui C, Wang Z, Deng F, Qiu S, Zhu Y, Jing B. Mott Schottky CoS x-MoO x@NF heterojunctions electrode for H 2 production and urea-rich wastewater purification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160170. [PMID: 36379335 DOI: 10.1016/j.scitotenv.2022.160170] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The sluggish kinetics of oxygen evolution reaction (OER) is the bottleneck of alkaline water electrolysis. The urea oxidation reaction (UOR) with much faster kinetics was to replace OER. To further promote UOR, a heterojunction structure assembled of CoSx and MoOx was established, and then its superior catalytic activity was predicted by DFT calculation. After that, an ultra-thin CoSx-MoOx@nickel foam (CoSx-MoOx@NF) electrode with a Mott-Schottky structure was prepared via a facile hydrothermal method, followed by a low-temperature vulcanization. Results highlighted CoSx-MoOx@NF electrode presented a superior performance toward UOR, OER, and H2 evolution reaction (HER). Notably, it exhibited excellent electrocatalytic performance for OER (1.32 V vs. RHE, 10 mA cm-2), UOR (1.305 V vs. RHE, 10 mA cm-2), and urea-assisted overall water splitting with a low voltage (1.38 V, 10 mA cm-2) when CoSx-MoOx@NF electrode served as both anode and cathode. It is promising to use CoSx-MoOx@NF in an electrochemical system integrated with H2 generation and urea-rich wastewater purification.
Collapse
Affiliation(s)
- Qiwei Zhang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chongwei Cui
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhuowen Wang
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fengxia Deng
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yingshi Zhu
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baojian Jing
- School of Environment, State Key Laboratory of Urban Water Resources Centre, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
181
|
Chen J, Xu W, Zhang R. Optimization of chemical synthesis with heuristic algorithms. Phys Chem Chem Phys 2023; 25:4323-4331. [PMID: 36688899 DOI: 10.1039/d2cp03970b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Optimizing reaction conditions to improve the yield is fundamental for chemical synthesis and industrial processes. Experiments can only be performed under a small portion of reaction conditions for a system, so a strategy of experimental design is required. Bayesian optimization, a global optimization algorithm, was found to outperform human decision-making in reaction optimization. Similarly, heuristic algorithms also have the potential to solve optimization problems. In this work, we optimize these reaction conditions for Buchwald-Hartwig and Suzuki systems by predicting reaction yields with three heuristic algorithms and three encoding methods. Our results demonstrate that particle swarm optimization with numerical encoding is better than the genetic algorithm or simulated annealing. Moreover, its performance is comparable to Bayesian optimization without the computational costs of descriptors. Particle swarm optimization is simple and easy to perform, and it can be implemented into laboratory practice to promote chemical synthesis.
Collapse
Affiliation(s)
- Jialu Chen
- Department of Physics, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Wenjun Xu
- Department of Physics, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Ruiqin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, People's Republic of China. .,Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
182
|
Meng W, Zhang X, Liu Y, Dai X, Liu G, Gu Y, Kenny EP, Kou L. Multifold Fermions and Fermi Arcs Boosted Catalysis in Nanoporous Electride 12CaO·7Al 2 O 3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205940. [PMID: 36574466 PMCID: PMC9951387 DOI: 10.1002/advs.202205940] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Topological materials have been recently regarded as ideal catalysts for heterogeneous reactions due to their surface metallic states and high carrier mobility. However, the underlying relationship between their catalytic performance and topological states is under debate. It has been discovered that the electride 12CaO·7Al2 O3 (C12A7:4e- ) hosts multifold fermions and Fermi arcs on the (001) surface near the Fermi level due to the interstitial electrons. Through the comparison of catalytic performance under different doping and strain conditions, based on the hydrogen evolution process, it has been demonstrated that the excellent catalytic performance indeed originates from topological properties. A linear relationship between the length of Fermi arcs, and Gibbs free energy (ΔGH* ) has been found, which not only provides the direct evidence to link the enhanced catalytic performance and surface Fermi arc states, but also fully clarifies the fundamental mechanism in topological catalysis.
Collapse
Affiliation(s)
- Weizhen Meng
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Xiaoming Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ying Liu
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Xuefang Dai
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Guodong Liu
- State Key Laboratory of Reliability and Intelligence of Electrical EquipmentHebei University of TechnologyTianjin300130China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Yuantong Gu
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyGarden Point CampusBrisbaneQLD4001Australia
| | - E. P. Kenny
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyGarden Point CampusBrisbaneQLD4001Australia
| | - Liangzhi Kou
- School of MechanicalMedical and Process EngineeringQueensland University of TechnologyGarden Point CampusBrisbaneQLD4001Australia
| |
Collapse
|
183
|
Buravets V, Hosek F, Lapcak L, Miliutina E, Sajdl P, Elashnikov R, Švorčík V, Lyutakov O. Beyond the Platinum Era─Scalable Preparation and Electrochemical Activation of TaS 2 Flakes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5679-5686. [PMID: 36668671 PMCID: PMC10016745 DOI: 10.1021/acsami.2c20261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 06/12/2023]
Abstract
Among 2D materials, transition-metal dichalcogenides (TMDCs) of group 5 metals recently have attracted substantial interest due to their superior electrocatalytic activity toward hydrogen evolution reaction (HER). However, a straightforward and efficient synthesis of the TMDCs which can be easily scaled up is missing. Herein, we report an innovative, simple, and scalable method for tantalum disulfide (TaS2) synthesis, involving CS2 as a sulfurizing agent and Ta2O5 as a metal precursor. The structure of the created TaS2 flakes was analyzed by Raman, XRD, XPS, SEM, and HRTEM techniques. It was demonstrated that a tuning between 1T (metallic) and 3R (semiconductor) TaS2 phases can be accomplished by varying the reaction conditions. The created materials were tested for HER, and the electrocatalytic activity of both phases was significantly enhanced by electrochemical self-activation, up to that comparable with the Pt one. The final values of the Tafel slopes of activated TaS2 were found to be 35 and 43 mV/dec for 3R-TaS2 and 1T-TaS2, respectively, with the corresponding overpotentials of 63 and 109 mV required to reach a current density of 10 mA/cm2. We also investigated the mechanism of flake activation, which can be attributed to the changes in the flake morphology and surface chemistry. Our work provides a scalable and simple synthesis method to produce transition-metal sulfides which could replace the platinum catalyst in water splitting technology.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department
of Solid State Engineering, University of
Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Frantisek Hosek
- Department
of Solid State Engineering, University of
Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Ladislav Lapcak
- Central
Laboratories, University of Chemistry and
Technology, 166 28 Prague, Czech Republic
| | - Elena Miliutina
- Department
of Solid State Engineering, University of
Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Petr Sajdl
- Department
of Power Engineering, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Roman Elashnikov
- Department
of Solid State Engineering, University of
Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Václav Švorčík
- Department
of Solid State Engineering, University of
Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Oleksiy Lyutakov
- Department
of Solid State Engineering, University of
Chemistry and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
184
|
Yu M, Chen Y, Gao M, Huang G, Chen Q, Bi J. Interspersed Bi Promoting Hot Electron Transfer of Covalent Organic Frameworks Boosts Nitrogen Reduction to ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206407. [PMID: 36464629 DOI: 10.1002/smll.202206407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Seeking highly-efficient, non-pollutant, and chemically robust photocatalysts for visible-light-driven ammonia production still remained challenging, especially in pure water. The key bottle-necks closely correlate to the nitrogen activation, water oxidization, and hydrogen evolution reaction (HER) processes. In this study, a novel Bi decorated imine-linked COF-TaTp (Bi/COF-TaTp) through N-Bi-O coordination is reasonably designed to achieve a boosting solar-to-ammonia conversion of 61 µmol-1 g-1 h-1 in the sacrificial-free system. On basis of serial characterizations and DFT calculations, the incorporated Bi is conducive to the acceleration of charge carriers transfer and N2 activation through the donation and back-donation mode. The N2 adsorption energy of 5% Bi/COF-TaTp is calculated to be -0.19 eV in comparison with -0.09 eV of the pure COF-TaTp and the electron exchange between N2 and the modified catalyst is much more intensive. Moreover, the accompanied hydrogen production process is effectively inhibited by Bi modification, demonstrated by the higher energy barrier for HER over Bi/COF-TaTp (2.62 eV) than the pure COF-TaTp (2.31 eV) when using H binding free energy (ΔGH* ) as a descriptor. This work supplies novel insights for the design of photocatalysts for N2 reduction and intensifies the understanding of N2 adsorption and activation over covalent organic frameworks-based materials.
Collapse
Affiliation(s)
- Mingfei Yu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Yueling Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Ming Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| |
Collapse
|
185
|
Scandurra A, Iacono V, Boscarino S, Scalese S, Grimaldi MG, Ruffino F. Alkaline Electro-Sorption of Hydrogen Onto Nanoparticles of Pt, Pd, Pt 80Pd 20 and Cu(OH) 2 Obtained by Pulsed Laser Ablation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:561. [PMID: 36770523 PMCID: PMC9919309 DOI: 10.3390/nano13030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Recently, hydrogen evolution reaction (HER) in alkaline media has received a renewed interest both in the fundamental research as well as in practical applications. Pulsed Laser Ablation in Liquid (PLAL) has been demonstrated as a very useful technique for the unconventional preparation of nanomaterials with amazing electro-catalyst properties toward HER, compared to those of nanomaterials prepared by conventional methods. In this paper, we compared the electro-sorption properties of hydrogen in alkaline media by Pt, Pd, Pt80Pd20, and Cu(OH)2 nanoparticles (NPs) prepared by PLAL. The NPs were placed onto graphene paper (GP). Noble metal particles have an almost spherical shape, whereas Cu(OH)2 presents a flower-bud-like shape, formed by very thin nanowalls. XPS analyses of Cu(OH)2 are compatible with a high co-ordination of Cu(II) centers by OH and H2O. A thin layer of perfluorosulfone ionomer placed onto the surface of nanoparticles (NPs) enhances their distribution on the surface of graphene paper (GP), thereby improving their electro-catalytic properties. The proposed mechanisms for hydrogen evolution reaction (HER) on noble metals and Cu(OH)2 are in line with the adsorption energies of H, OH, and H2O on the surfaces of Pt, Pd, and oxidized copper. A significant spillover mechanism was observed for the noble metals when supported by graphene paper. Cu(OH)2 prepared by PLAL shows a competitive efficiency toward HER that is attributed to its high hydrophilicity which, in turn, is due to the high co-ordination of Cu(II) centers in very thin Cu(OH)2 layers by OH- and H2O. We propose the formation of an intermediate complex with water which can reduce the barrier energy of water adsorption and dissociation.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), via S. Sofia 64, 95125 Catania, Italy
| | - Valentina Iacono
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Stefano Boscarino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), Ottava Strada, 5 (Zona Industriale), 95121 Catania, Italy
| | - Maria Grazia Grimaldi
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM, Catania University Unit), via Santa Sofia 64, 95123 Catania, Italy
- Research Unit of the University of Catania, National Interuniversity Consortium of Materials Science and Technology (INSTM-UdR of Catania), via S. Sofia 64, 95125 Catania, Italy
| |
Collapse
|
186
|
Qin X, Vegge T, Hansen HA. Cation-Coordinated Inner-Sphere CO 2 Electroreduction at Au-Water Interfaces. J Am Chem Soc 2023; 145:1897-1905. [PMID: 36630567 DOI: 10.1021/jacs.2c11643] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is a promising technology for the clean energy economy. Numerous efforts have been devoted to enhancing the mechanistic understanding of CO2RR from both experimental and theoretical studies. Electrolyte ions are critical for the CO2RR; however, the role of alkali metal cations is highly controversial, and a complete free energy diagram of CO2RR at Au-water interfaces is still missing. Here, we provide a systematic mechanism study toward CO2RR via ab initio molecular dynamics simulations integrated with the slow-growth sampling (SG-AIMD) method. By using the SG-AIMD approach, we demonstrate that CO2RR is facile at the inner-sphere interface in the presence of K cations, which promote the CO2 activation with the free energy barrier of only 0.66 eV. Furthermore, the competitive hydrogen evolution reaction (HER) is inhibited by the interfacial cations with the induced kinetic blockage effect, where the rate-limiting Volmer step shows a much higher energy barrier (1.27 eV). Eventually, a comprehensive free energy diagram including both kinetics and thermodynamics of the CO2RR to CO and the HER at the electrochemical interface is derived, which illustrates the critical role of cations on the overall performance of CO2 electroreduction by facilitating CO2 adsorption while suppressing the hydrogen evolution at the same time.
Collapse
Affiliation(s)
- Xueping Qin
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby2800, Denmark
| |
Collapse
|
187
|
Wang Y, Wang X, Wei H, Huang J, Yin L, Zhu W, Zhuang Z. Unveiling the Metal Incorporation Effect of Steady-Active FeP Hydrogen Evolution Nanocatalysts for Water Electrolyzer. Chemistry 2023; 29:e202202858. [PMID: 36331543 DOI: 10.1002/chem.202202858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Metal phosphides are promising noble metal-free electrocatalysts for hydrogen evolution reaction (HER), but they usually suffer from inferior stability and thus are far from the device applications. We reported a facile and controllable synthetic method to prepare metal-incorporated M-FeP nanoparticles (M=Cr, Mn, Co, Fe, Ni, Cu, and Mo) with the guide of the density functional theory (DFT). The evaluated HER activity sequence was consistent with the DFT predictions, and cobalt was revealed to be the appropriate dopant. With the optimization of the Co/Fe ratio, the Fe0.67 Co0.33 P/C only required overpotentials of 67 mV and 129 mV to obtain the cathodic current density of 10 and 100 mA cm-2, respectively. It maintained the initial activity in the 10 h stability test, surpassing the other Co-FeP/C catalysts. Ex situ experiments demonstrated that the decreased element leaching and the increased surface phosphide content contributed to the high stability of the Fe0.67 Co0.33 P/C. A proton exchange membrane water electrolyzer was assembled using the Fe0.67 Co0.33 P/C as the cathodic catalyst. It showed a current density of 0.8 A cm-2 at the applied voltage of 2.0 V and retained the initial activity in the 1000 cycles' stability test, suggesting the potential application of the catalysts.
Collapse
Affiliation(s)
- Yongsheng Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China.,State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China.,International Clean Energy Research Office, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Hailong Wei
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Junling Huang
- International Clean Energy Research Office, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Likun Yin
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, P. R. China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
188
|
Tsounis C, Kumar PV, Masood H, Kulkarni RP, Gautam GS, Müller CR, Amal R, Kuznetsov DA. Advancing MXene Electrocatalysts for Energy Conversion Reactions: Surface, Stoichiometry, and Stability. Angew Chem Int Ed Engl 2023; 62:e202210828. [PMID: 36278885 PMCID: PMC10099934 DOI: 10.1002/anie.202210828] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/05/2022]
Abstract
MXenes, due to their tailorable chemistry and favourable physical properties, have great promise in electrocatalytic energy conversion reactions. To exploit fully their enormous potential, further advances specific to electrocatalysis revolving around their performance, stability, compositional discovery and synthesis are required. The most recent advances in these aspects are discussed in detail: surface functional and stoichiometric modifications which can improve performance, Pourbaix stability related to their electrocatalytic operating conditions, density functional theory and advances in machine learning for their discovery, and prospects in large scale synthesis and solution processing techniques to produce membrane electrode assemblies and integrated electrodes. This Review provides a perspective that is complemented by new density functional theory calculations which show how these recent advances in MXene material design are paving the way for effective electrocatalysts required for the transition to integrated renewable energy systems.
Collapse
Affiliation(s)
- Constantine Tsounis
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia.,Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Priyank V Kumar
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Hassan Masood
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Rutvij Pankaj Kulkarni
- Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, India
| | | | - Christoph R Müller
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Denis A Kuznetsov
- Department of Mechanical and Process Engineering, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
189
|
Jeon TY, Lee HK, Yoon GH, Lee SH, Yun HJ, Kim KJ, Lee KS, Pinna N, Yu SH. Selective dealloying of chemically disordered Pt-Ni bimetallic nanoparticles for the oxygen reduction reaction. NANOSCALE 2023; 15:1136-1144. [PMID: 35880665 DOI: 10.1039/d2nr02677e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Changes in electronic and compositional structures of Pt-Ni electrocatalysts with 44% of Ni fraction with repeated chemical dealloying have been studied. By comparing the Pt-enriched surfaces formed using hydroquinone and sulfuric acid as a leaching agent, we found that hydroquinone generated Pt-enriched surfaces exhibit the highest oxygen reduction reaction (ORR) activity after repeating the treatment twice. In particular, it was found that while sulfuric acid causes an uncontrollable dissolution of Ni clusters, the unique selectivity of hydroquinone allows the preferential dissolution of Ni atoms alloyed with Pt. Despite its wide usage in the field, the results show that traditional acid leaching is unsuitable for Pt-Ni alloys with a high Ni content and an incomplete alloying level. We finally proved that the unique and lasting selectivity of hydroquinone enables an incompletely alloyed Pt-Ni catalyst to obtain a highly ORR active Pt shell region without an extensive loss of Ni.
Collapse
Affiliation(s)
- Tae-Yeol Jeon
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Han-Koo Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Geon-Hee Yoon
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Si-Hwan Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hyung Joong Yun
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Ki-Jeong Kim
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
190
|
Dong WJ, Xiao Y, Yang KR, Ye Z, Zhou P, Navid IA, Batista VS, Mi Z. Pt nanoclusters on GaN nanowires for solar-asssisted seawater hydrogen evolution. Nat Commun 2023; 14:179. [PMID: 36635289 PMCID: PMC9837051 DOI: 10.1038/s41467-023-35782-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Seawater electrolysis provides a viable method to produce clean hydrogen fuel. To date, however, the realization of high performance photocathodes for seawater hydrogen evolution reaction has remained challenging. Here, we introduce n+-p Si photocathodes with dramatically improved activity and stability for hydrogen evolution reaction in seawater, modified by Pt nanoclusters anchored on GaN nanowires. We find that Pt-Ga sites at the Pt/GaN interface promote the dissociation of water molecules and spilling H* over to neighboring Pt atoms for efficient H2 production. Pt/GaN/Si photocathodes achieve a current density of -10 mA/cm2 at 0.15 and 0.39 V vs. RHE and high applied bias photon-to-current efficiency of 1.7% and 7.9% in seawater (pH = 8.2) and phosphate-buffered seawater (pH = 7.4), respectively. We further demonstrate a record-high photocurrent density of ~169 mA/cm2 under concentrated solar light (9 suns). Moreover, Pt/GaN/Si can continuously produce H2 even under dark conditions by simply switching the electrical contact. This work provides valuable guidelines to design an efficient, stable, and energy-saving electrode for H2 generation by seawater splitting.
Collapse
Affiliation(s)
- Wan Jae Dong
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Yixin Xiao
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Ke R. Yang
- grid.47100.320000000419368710Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, CT 06520 USA
| | - Zhengwei Ye
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Peng Zhou
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Ishtiaque Ahmed Navid
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Victor S. Batista
- grid.47100.320000000419368710Department of Chemistry and Energy Sciences Institute, Yale University, New Haven, CT 06520 USA
| | - Zetian Mi
- grid.214458.e0000000086837370Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
191
|
Mao X, Wang L, Li Y. Machine-Learning-Assisted Discovery of High-Efficient Oxygen Evolution Electrocatalysts. J Phys Chem Lett 2023; 14:170-177. [PMID: 36579956 DOI: 10.1021/acs.jpclett.2c02873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iridium oxide (IrO2) is the predominant electrocatalyst for the oxygen evolution reaction (OER), but its low efficiency and high cost limit its applications. In this work, we have developed a strategy by combination of high-throughput density functional theory (DFT) and machine learning (ML) techniques for material discovery on IrO2-based electrocatalysts with enhanced OER activity. A total of 36 kinds of metal dopants are considered to substitute for Ir to form binary and ternary metal oxides, and the most stable surface structures are selected from a total of 4648 structures for OER activity evaluation. Utilizing the neural network language model (NNLM), we associate the atomic environment with the formation energies of crystals and free energies of OER intermediates, and finally a series of potential candidates have been screened as the superior OER catalysts. Our strategy could efficiently explore promising electrocatalysts, especially for evaluating complex multi-metallic compounds.
Collapse
Affiliation(s)
- Xinnan Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, People's Republic of China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, People's Republic of China
| |
Collapse
|
192
|
Liu F, Gao PF, Wu C, Yang S, Ding X. DFT-based Machine Learning for Ensemble Effect of Pd@Au Electrocatalysts on CO 2 Reduction Reaction. Chemphyschem 2023; 24:e202200642. [PMID: 36633526 DOI: 10.1002/cphc.202200642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
The ensemble effect due to variation of Pd content in Pd-Au alloys have been widely investigated for several important reactions, including CO2 reduction reaction (CO2 RR), however, identifying the stable Pd arrangements on the alloyed surface and picking out the active sites are still challenging. Here we use a density functional theory (DFT) based machine-learning (ML) approach to efficiently find the low-energy configurations of Pd-Au(111) surface alloys and the potentially active sites for CO2 RR, fully covering the Pd content from 0 to 100 %. The ML model is actively learning process to improve the predicting accuracy for the configuration formation energy and to find the stable Pd-Au(111) alloyed surfaces, respectively. The local surface properties of adsorption sites are classified into two classes by the K-means clustering approach, which are closely related to the Pd content on Au surface. The classification is reflected in the variation of adsorption energy of CO and H: In the low Pd content range (0-60 %) the adsorption energies over the surface alloys can be tuned significantly, and in the medium Pd content (37-68 %), the catalytic activity of surface alloys for CO2 RR can be increased by increase the Pd content and attributed to the meta-stable active site over the surface. Thus, the active site-dependent reaction mechanism is elucidated based on the ensemble effect, which provides new physical insights to understand the surface-related properties of catalysts.
Collapse
Affiliation(s)
- Fuzhu Liu
- State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng-Fei Gao
- Northwest Institute of Nuclear Technology, Xi'an, 710024, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shengchun Yang
- State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
193
|
Barlocco I, Cipriano LA, Di Liberto G, Pacchioni G. Does the Oxygen Evolution Reaction follow the classical OH*, O*, OOH* path on single atom catalysts? J Catal 2023. [DOI: 10.1016/j.jcat.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
194
|
Sun Y, Wang Z, Liu Y, Cai Q, Zhao J. The β-PdBi 2 monolayer for efficient electrocatalytic NO reduction to NH 3: a computational study. Inorg Chem Front 2023. [DOI: 10.1039/d3qi00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
β-PdBi2 was proposed as a novel NORR catalyst for NH3 synthesis with high efficiency and high selectivity, and its catalytic activity can be enhanced by a tensile strain.
Collapse
Affiliation(s)
- Yuting Sun
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Zhongxu Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| | - Yuejie Liu
- Modern Experiment Center, Harbin Normal University, Harbin, 150025, China
| | - Qinghai Cai
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
- Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin 150025, China
| | - Jingxiang Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, Heilongjiang, China
| |
Collapse
|
195
|
Tajuddin AAH, Wakisaka M, Ohto T, Yu Y, Fukushima H, Tanimoto H, Li X, Misu Y, Jeong S, Fujita JI, Tada H, Fujita T, Takeguchi M, Takano K, Matsuoka K, Sato Y, Ito Y. Corrosion-Resistant and High-Entropic Non-Noble-Metal Electrodes for Oxygen Evolution in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207466. [PMID: 36271728 DOI: 10.1002/adma.202207466] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
To realize a sustainable hydrogen economy, corrosion-resistant non-noble-metal catalysts are needed to replace noble-metal-based catalysts. The combination of passivation elements and catalytically active elements is crucial for simultaneously achieving high corrosion resistance and high catalytic activity. Herein, the self-selection/reconstruction characteristics of multi-element (nonary) alloys that can automatically redistribute suitable elements and rearrange surface structures under the target reaction conditions during the oxygen evolution reaction are investigated. The following synergetic effect (i.e., cocktail effect), among the elements Ti, Zr, Nb, and Mo, significantly contributes to passivation, whereas Cr, Co, Ni, Mn, and Fe enhance the catalytic activity. According to the practical water electrolysis experiments, the self-selected/reconstructed multi-element alloy demonstrates high performance under a similar condition with proton exchange membrane (PEM)-type water electrolysis without obvious degradation during stability tests. This verifies the resistance of the alloy to corrosion when used as an electrode under a practical PEM electrolysis condition.
Collapse
Affiliation(s)
- Aimi A H Tajuddin
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Mitsuru Wakisaka
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Tatsuhiko Ohto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Yue Yu
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Haruki Fukushima
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Hisanori Tanimoto
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Xiaoguang Li
- Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Japan
| | - Yoshitatsu Misu
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidori-cho, Naka-Ku, Yokohama, 231-0815, Japan
| | - Samuel Jeong
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Jun-Ichi Fujita
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hirokazu Tada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami City, Kochi, 782-8502, Japan
| | - Masaki Takeguchi
- Electron Microscopy Analysis Station, National Institute for Materials Science (NIMS), Tsukuba, 305-0047, Japan
| | - Kaori Takano
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidori-cho, Naka-Ku, Yokohama, 231-0815, Japan
| | - Koji Matsuoka
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidori-cho, Naka-Ku, Yokohama, 231-0815, Japan
| | - Yasushi Sato
- Central Technical Research Laboratory, ENEOS Corporation, 8 Chidori-cho, Naka-Ku, Yokohama, 231-0815, Japan
| | - Yoshikazu Ito
- Institute of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
196
|
kumar P, Arumugam M, Maia G, Praserthdam S, Praserthdam P. Double role of CTAB as a surfactant and carbon source in Ni-Mo2C/GA composite: as a highly active electrocatalyst for hydrogen evolution reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
197
|
Shao D, Deng J, Sheng H, Zhang R, Weng H, Fang Z, Chen XQ, Sun Y, Wang Z. Large Spin Hall Conductivity and Excellent Hydrogen Evolution Reaction Activity in Unconventional PtTe 1.75 Monolayer. RESEARCH (WASHINGTON, D.C.) 2023; 6:0042. [PMID: 36930816 PMCID: PMC10013811 DOI: 10.34133/research.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Two-dimensional (2D) materials have gained lots of attention due to the potential applications. In this work, we propose that based on first-principles calculations, the (2 × 2) patterned PtTe2 monolayer with kagome lattice formed by the well-ordered Te vacancy (PtTe1.75) hosts large and tunable spin Hall conductivity (SHC) and excellent hydrogen evolution reaction (HER) activity. The unconventional nature relies on the A1 @ 1b band representation of the highest valence band without spin-orbit coupling (SOC). The large SHC comes from the Rashba SOC in the noncentrosymmetric structure induced by the Te vacancy. Even though it has a metallic SOC band structure, the ℤ2 invariant is well defined because of the existence of the direct bandgap and is computed to be nontrivial. The calculated SHC is as large as 1.25 × 103 ℏ e (Ω cm)-1 at the Fermi level (EF ). By tuning the chemical potential from EF - 0.3 to EF + 0.3 eV, it varies rapidly and monotonically from -1.2 × 103 to 3.1 × 1 0 3 ℏ e Ω cm - 1 . In addition, we also find that the Te vacancy in the patterned monolayer can induce excellent HER activity. Our results not only offer a new idea to search 2D materials with large SHC, i.e., by introducing inversion-symmetry breaking vacancies in large SOC systems, but also provide a feasible system with tunable SHC (by applying gate voltage) and excellent HER activity.
Collapse
Affiliation(s)
- Dexi Shao
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Junze Deng
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haohao Sheng
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruihan Zhang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongming Weng
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Fang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Qiu Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, Liaoning, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yan Sun
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, Liaoning, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
198
|
Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Adv Colloid Interface Sci 2023; 311:102811. [PMID: 36436436 DOI: 10.1016/j.cis.2022.102811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
An unsustainable reliance on fossil fuels is the primary cause of the vast majority of greenhouse gas emissions, which in turn lead to climate change. Green hydrogen (H2), which may be generated by electrolyzing water with renewable power sources, is a possible substitute for fossil fuels. On the other hand, the increasing intricacy of hydrogen evolution electrocatalysts that are presently being explored makes it more challenging to integrate catalytic theories, catalytic fabrication procedures, and characterization techniques. This review will initially present the thermodynamics, kinetics, and associated electrical and structural characteristics for HER electrocatalysts before highlighting design approaches for the electrocatalysts. Secondly, an in-depth discussion regarding the rational design, synthesis, mechanistic insight, and performance improvement of electrocatalysts is centered on both the intrinsic and extrinsic influences. Thirdly, the most recent technological advances in electrocatalytic water-splitting approaches are described. Finally, the difficulties and possibilities associated with generating extremely effective HER electrocatalysts for water-splitting applications are discussed.
Collapse
|
199
|
Xu G, Cai C, Zhao W, Liu Y, Wang T. Rational design of catalysts with earth‐abundant elements. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gaomou Xu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Cheng Cai
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Wanghui Zhao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Yonghua Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science Westlake University Hangzhou Zhejiang Province China
- Institute of Natural Sciences, Westlake Institute for Advanced Study Hangzhou Zhejiang Province China
| |
Collapse
|
200
|
Bhat V, Sornberger P, Pokuri BSS, Duke R, Ganapathysubramanian B, Risko C. Electronic, redox, and optical property prediction of organic π-conjugated molecules through a hierarchy of machine learning approaches. Chem Sci 2022; 14:203-213. [PMID: 36605753 PMCID: PMC9769113 DOI: 10.1039/d2sc04676h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Accelerating the development of π-conjugated molecules for applications such as energy generation and storage, catalysis, sensing, pharmaceuticals, and (semi)conducting technologies requires rapid and accurate evaluation of the electronic, redox, or optical properties. While high-throughput computational screening has proven to be a tremendous aid in this regard, machine learning (ML) and other data-driven methods can further enable orders of magnitude reduction in time while at the same time providing dramatic increases in the chemical space that is explored. However, the lack of benchmark datasets containing the electronic, redox, and optical properties that characterize the diverse, known chemical space of organic π-conjugated molecules limits ML model development. Here, we present a curated dataset containing 25k molecules with density functional theory (DFT) and time-dependent DFT (TDDFT) evaluated properties that include frontier molecular orbitals, ionization energies, relaxation energies, and low-lying optical excitation energies. Using the dataset, we train a hierarchy of ML models, ranging from classical models such as ridge regression to sophisticated graph neural networks, with molecular SMILES representation as input. We observe that graph neural networks augmented with contextual information allow for significantly better predictions across a wide array of properties. Our best-performing models also provide an uncertainty quantification for the predictions. To democratize access to the data and trained models, an interactive web platform has been developed and deployed.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry and Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506 USA
| | - Parker Sornberger
- Department of Chemistry and Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506 USA
| | - Balaji Sesha Sarath Pokuri
- Department of Mechanical Engineering and Translational AI Center, Iowa State University Ames Iowa 50010 USA
| | - Rebekah Duke
- Department of Chemistry and Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506 USA
| | | | - Chad Risko
- Department of Chemistry and Center for Applied Energy Research, University of Kentucky Lexington Kentucky 40506 USA
| |
Collapse
|