151
|
Boerneke MA, Dibrov SM, Hermann T. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles. Angew Chem Int Ed Engl 2016; 55:4097-100. [PMID: 26914842 DOI: 10.1002/anie.201600233] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/25/2016] [Indexed: 12/11/2022]
Abstract
RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation.
Collapse
Affiliation(s)
- Mark A Boerneke
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Sergey M Dibrov
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA. .,Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
152
|
RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 139:165-85. [PMID: 26970194 DOI: 10.1016/bs.pmbts.2015.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems.
Collapse
|
153
|
Kim H, Park Y, Kim J, Jeong J, Han S, Lee JS, Lee JB. Nucleic Acid Engineering: RNA Following the Trail of DNA. ACS COMBINATORIAL SCIENCE 2016; 18:87-99. [PMID: 26735596 DOI: 10.1021/acscombsci.5b00108] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The self-assembly feature of the naturally occurring biopolymer, DNA, has fascinated researchers in the fields of materials science and bioengineering. With the improved understanding of the chemical and structural nature of DNA, DNA-based constructs have been designed and fabricated from two-dimensional arbitrary shapes to reconfigurable three-dimensional nanodevices. Although DNA has been used successfully as a building block in a finely organized and controlled manner, its applications need to be explored. Hence, with the myriad of biological functions, RNA has recently attracted considerable attention to further the application of nucleic acid-based structures. This Review categorizes different approaches of engineering nucleic acid-based structures and introduces the concepts, principles, and applications of each technique, focusing on how DNA engineering is applied as a guide to RNA engineering.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Yongkuk Park
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jieun Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jae Sung Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 130-743, Korea
| |
Collapse
|
154
|
Wang C, Bae JH, Zhang DY. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis. Nat Commun 2016; 7:10319. [PMID: 26782977 PMCID: PMC4735651 DOI: 10.1038/ncomms10319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022] Open
Abstract
DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. DNA hybridisation thermodynamics parameters underlie rational design of oligonucleotides for diagnostics and nanotechnology. Here, the authors present an accurate method to measure the free energy of a given DNA structure at specific temperature and buffer conditions.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - Jin H Bae
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, USA.,Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
155
|
Evadé L, Dausse E, Taouji S, Daguerre E, Chevet E, Toulmé JJ. Aptamer-mediated nanoparticle interactions: from oligonucleotide-protein complexes to SELEX screens. Methods Mol Biol 2016; 1297:153-67. [PMID: 25896002 DOI: 10.1007/978-1-4939-2562-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aptamers are oligonucleotides displaying specific binding properties for a predetermined target. They can be easily immobilized on various surfaces such as nanoparticles. Functionalized particles can then be used to various aims. We took advantage of the AlphaScreen(®) technology for monitoring aptamer-mediated interactions. A particle bearing an aptamer contains a photosensitizer whereas another type of particle contains a chemiluminescer. Irradiation causes the formation of singlet oxygen species in the photosensitizer-containing bead that in turn activates the chemiluminescer. Luminescence emission can be observed if the two types of beads are in close proximity (<200 nm). This is achieved when the cognate ligand of the aptamer is grafted onto the chemiluminescer-containing bead. Using this technology we have screened oligonucleotide libraries and monitored aptamer-protein interactions. This constitutes the basis for aptamer-based analytical assays.
Collapse
Affiliation(s)
- Laetitia Evadé
- Novaptech, European Institute of Chemistry and Biology, Pessac, France
| | | | | | | | | | | |
Collapse
|
156
|
Zhang H, Pi F, Shu D, Vieweger M, Guo P. Using RNA nanoparticles with thermostable motifs and fluorogenic modules for real-time detection of RNA folding and turnover in prokaryotic and eukaryotic cells. Methods Mol Biol 2016; 1297:95-111. [PMID: 25895998 DOI: 10.1007/978-1-4939-2562-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA nanotechnology is an emerging field at the interface of biochemistry and nanomaterials that shows immense promise for applications in nanomedicines, therapeutics and nanotechnology. Noncoding RNAs, such as siRNA, miRNA, ribozymes, and riboswitches, play important roles in the regulation of cellular processes. They carry out highly specific functions on a compact and efficient footprint. The properties of specificity and small size make them excellent modules in the construction of multifaceted RNA nanoparticles for targeted delivery and therapy. Biological activity of RNA molecules, however, relies on their proper folding. Therefore their thermodynamic and biochemical stability in the cellular environment is critical. Consequently, it is essential to assess global fold and intracellular lifetime of multifaceted RNA nanoparticles to optimize their therapeutic effectiveness. Here, we describe a method to express and assemble stable RNA nanoparticles in cells, and to assess the folding and turnover rate of RNA nanoparticles in vitro as well as in vivo in real time using a thermostable core motif derived from pRNA of bacteriophage Phi29 DNA packaging motor and fluorogenic RNA modules.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Markey Cancer Center, Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA,
| | | | | | | | | |
Collapse
|
157
|
Dobrovolskaia MA. Self-assembled DNA/RNA nanoparticles as a new generation of therapeutic nucleic acids: immunological compatibility and other translational considerations. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/rnan-2016-0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTherapeutic nucleic acids (TNAs) are rapidly being embraced as effective interventions in a variety of genetic disorders, cancers, and viral/microbial infections, as well as for use in improving vaccine efficacy. Many traditional nucleotide-based formulations have been approved for clinical use, while various macromolecular nucleic acids are in different phases of preclinical and clinical development. Various nanotechnology carriers, including but not limited to liposomes, emulsions, dendrimers, and polyplexes, are considered for their improved delivery and reduced toxicity compared to traditional TNAs. Moreover, a new generation of TNAs has recently emerged and is represented by DNA/RNA nanoparticles formed by the self-assembly of DNA, RNA, or hybrid DNA-RNA oligonucleotides into 1D, 2D, and 3D structures of different shapes. In this mini-review, I will discuss immunocompatibility and other translational aspects in the development of this new class of promising nucleic acid therapeutics.
Collapse
|
158
|
Stewart JM, Franco E. Self-assembly of large RNA structures: learning from DNA nanotechnology. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/rnan-2015-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNucleic acid nanotechnology offers many methods to build self-assembled structures using RNA and DNA. These scaffolds are valuable in multiple applications, such as sensing, drug delivery and nanofabrication. Although RNA and DNA are similar molecules, they also have unique chemical and structural properties. RNA is generally less stable than DNA, but it folds into a variety of tertiary motifs that can be used to produce complex and functional nanostructures. Another advantage of using RNA over DNA is its ability to be encoded into genes and to be expressed in vivo. Here we review existing approaches for the self-assembly of RNA and DNA nanostructures and specifically methods to assemble large RNA structures. We describe de novo design approaches used in DNA nanotechnology that can be ported to RNA. Lastly, we discuss some of the challenges yet to be solved to build micron-scale, multi stranded RNA scaffolds.
Collapse
|
159
|
Sharma A, Haque F, Pi F, Shlyakhtenko LS, Evers BM, Guo P. Controllable self-assembly of RNA dendrimers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:835-844. [PMID: 26656633 DOI: 10.1016/j.nano.2015.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/09/2015] [Accepted: 11/14/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED We report programmable self-assembly of branched, 3D globular, monodisperse and nanoscale sized dendrimers using RNA as building blocks. The central core and repeating units of the RNA dendrimer are derivatives of the ultrastable three-way junction (3WJ) motif from the bacteriophage phi29 motor pRNA. RNA dendrimers were constructed by step-wise self-assembly of modular 3WJ building blocks initiating with a single 3WJ core (Generation-0) with overhanging sticky end and proceeding in a radial manner in layers up to Generation-4. The final constructs were generated under control without any structural defects in high yield and purity, as demonstrated by gel electrophoresis and AFM imaging. Upon incorporation of folate on the peripheral branches of the RNA dendrimers, the resulting constructs showed high binding and internalization into cancer cells. RNA dendrimers are envisioned to have a major impact in targeting, disease therapy, molecular diagnostics and bioelectronics in the near future. FROM THE CLINICAL EDITOR Dendrimers are gaining importance as a carrier platform for diagnosis and therapeutics. The authors here reported building of their dendrimer molecules using RNA as building blocks. The addition of folate also allowed recognition and subsequent binding to tumor cells. This new construct may prove to be useful in many clinical settings.
Collapse
Affiliation(s)
- Ashwani Sharma
- College of Pharmacy, College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Farzin Haque
- College of Pharmacy, College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| | - Fengmei Pi
- College of Pharmacy, College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Lyudmila S Shlyakhtenko
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - B Mark Evers
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Peixuan Guo
- College of Pharmacy, College of Medicine/Department of Physiology & Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
160
|
El Tannir Z, Afonin KA, Shapiro BA. RNA and DNA nanoparticles for triggering RNA interference. RNA & DISEASE 2015; 2:e724. [PMID: 34307840 PMCID: PMC8301276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Control over the delivery of different functionalities and their synchronized activation in vivo is a challenging undertaking that requires careful design and implementation. The goal of the research highlighted herein was to develop a platform allowing the simultaneous activation of multiple RNA interference pathways and other functionalities inside cells. Our team has developed several RNA, RNA/DNA and DNA/RNA nanoparticles able to successfully complete such tasks. The reported designs can potentially be used to target myriad of different diseases.
Collapse
Affiliation(s)
- Ziad El Tannir
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
161
|
Abstract
Isothermal amplification of nucleic acids is a simple process that rapidly and efficiently accumulates nucleic acid sequences at constant temperature. Since the early 1990s, various isothermal amplification techniques have been developed as alternatives to polymerase chain reaction (PCR). These isothermal amplification methods have been used for biosensing targets such as DNA, RNA, cells, proteins, small molecules, and ions. The applications of these techniques for in situ or intracellular bioimaging and sequencing have been amply demonstrated. Amplicons produced by isothermal amplification methods have also been utilized to construct versatile nucleic acid nanomaterials for promising applications in biomedicine, bioimaging, and biosensing. The integration of isothermal amplification into microsystems or portable devices improves nucleic acid-based on-site assays and confers high sensitivity. Single-cell and single-molecule analyses have also been implemented based on integrated microfluidic systems. In this review, we provide a comprehensive overview of the isothermal amplification of nucleic acids encompassing work published in the past two decades. First, different isothermal amplification techniques are classified into three types based on reaction kinetics. Then, we summarize the applications of isothermal amplification in bioanalysis, diagnostics, nanotechnology, materials science, and device integration. Finally, several challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yongxi Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University , Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Qian Li
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Lihua Wang
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China
| | - Chunhai Fan
- Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboraotory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences , Shanghai 201800, China.,School of Life Science & Technology, ShanghaiTech University , Shanghai 200031, China
| |
Collapse
|
162
|
Jabbari H, Aminpour M, Montemagno C. Computational Approaches to Nucleic Acid Origami. ACS COMBINATORIAL SCIENCE 2015; 17:535-47. [PMID: 26348196 DOI: 10.1021/acscombsci.5b00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.
Collapse
Affiliation(s)
- Hosna Jabbari
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Maral Aminpour
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| | - Carlo Montemagno
- Ingenuity Lab, 11421 Saskatchewan
Drive, Edmonton, Alberta T6G 2M9, Canada
- Department
of Chemical and Materials Engineering, University of Alberta, Edmonton T6G 2V4, Canada
| |
Collapse
|
163
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
164
|
Chen YJ, Groves B, Muscat RA, Seelig G. DNA nanotechnology from the test tube to the cell. NATURE NANOTECHNOLOGY 2015; 10:748-60. [PMID: 26329111 DOI: 10.1038/nnano.2015.195] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 07/29/2015] [Indexed: 05/18/2023]
Abstract
The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.
Collapse
Affiliation(s)
- Yuan-Jyue Chen
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Benjamin Groves
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Richard A Muscat
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
165
|
Cragnolini T, Derreumaux P, Pasquali S. Ab initio RNA folding. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:233102. [PMID: 25993396 DOI: 10.1088/0953-8984/27/23/233102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.
Collapse
Affiliation(s)
- Tristan Cragnolini
- Laboratoire de Biochimie Théorique UPR 9080 CNRS, Université Paris Diderot, Sorbonne, Paris Cité, IBPC 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | |
Collapse
|
166
|
Ohno H, Inoue T. Designed Regular Tetragon-Shaped RNA-Protein Complexes with Ribosomal Protein L1 for Bionanotechnology and Synthetic Biology. ACS NANO 2015; 9:4950-4956. [PMID: 25933202 DOI: 10.1021/nn5069622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA nanotechnology has been established by employing the molecular architecture of RNA structural motifs. Here, we report two designed RNA-protein complexes (RNPs) composed of ribosomal protein L1 (RPL1) and its RNA-binding motif that are square-shaped nano-objects. The formation and the shape of the objects were confirmed by gel electrophoresis analysis and atomic force microscopy, respectively. Any protein can be attached to the RNA via a fusion protein with RPL1, indicating that it can be used as a scaffold for loading a variety of functional proteins or for building higher-order structures. In summary, the RNP object will serve as a useful tool in the fields of bionanotechnology and synthetic biology. Moreover, the RNP interaction enhances the RNA stability against nucleases, rendering these complexes stable in cells.
Collapse
Affiliation(s)
- Hirohisa Ohno
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tan Inoue
- Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
167
|
Šulc P, Romano F, Ouldridge TE, Doye JPK, Louis AA. A nucleotide-level coarse-grained model of RNA. J Chem Phys 2015; 140:235102. [PMID: 24952569 DOI: 10.1063/1.4881424] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We present a new, nucleotide-level model for RNA, oxRNA, based on the coarse-graining methodology recently developed for the oxDNA model of DNA. The model is designed to reproduce structural, mechanical, and thermodynamic properties of RNA, and the coarse-graining level aims to retain the relevant physics for RNA hybridization and the structure of single- and double-stranded RNA. In order to explore its strengths and weaknesses, we test the model in a range of nanotechnological and biological settings. Applications explored include the folding thermodynamics of a pseudoknot, the formation of a kissing loop complex, the structure of a hexagonal RNA nanoring, and the unzipping of a hairpin motif. We argue that the model can be used for efficient simulations of the structure of systems with thousands of base pairs, and for the assembly of systems of up to hundreds of base pairs. The source code implementing the model is released for public use.
Collapse
Affiliation(s)
- Petr Šulc
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Flavio Romano
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Thomas E Ouldridge
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
| |
Collapse
|
168
|
Rogers TA, Andrews GE, Jaeger L, Grabow WW. Fluorescent monitoring of RNA assembly and processing using the split-spinach aptamer. ACS Synth Biol 2015; 4:162-6. [PMID: 24932527 DOI: 10.1021/sb5000725] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As insights into RNA's many diverse cellular roles continue to be gained, interest and applications in RNA self-assembly and dynamics remain at the forefront of structural biology. The bifurcation of functional molecules into nonfunctional fragments provides a useful strategy for controlling and monitoring cellular RNA processes and functionalities. Herein we present the bifurcation of the preexisting Spinach aptamer and demonstrate its utility as a novel split aptamer system for monitoring RNA self-assembly as well as the processing of pre-short interfering substrates. We show for the first time that the Spinach aptamer can be divided into two nonfunctional halves that, once assembled, restore the original fluorescent signal characteristic of the unabridged aptamer. In this regard, the split-Spinach aptamer is represented as a potential tool for monitoring the self-assembly of artificial and/or natural RNAs.
Collapse
Affiliation(s)
- Tucker A. Rogers
- Department
of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third
Avenue West, Seattle, Washington 98119, United States
| | - Grant E. Andrews
- Department
of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third
Avenue West, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Bio-Molecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Wade W. Grabow
- Department
of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third
Avenue West, Seattle, Washington 98119, United States
| |
Collapse
|
169
|
Afonin KA, Bindewald E, Kireeva M, Shapiro BA. Computational and experimental studies of reassociating RNA/DNA hybrids containing split functionalities. Methods Enzymol 2015; 553:313-34. [PMID: 25726471 PMCID: PMC6319920 DOI: 10.1016/bs.mie.2014.10.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, we developed a novel technique based on RNA/DNA hybrid reassociation that allows conditional activation of different split functionalities inside diseased cells and in vivo. We further expanded this idea to permit simultaneous activation of multiple different functions in a fully controllable fashion. In this chapter, we discuss some novel computational approaches and experimental techniques aimed at the characterization, design, and production of reassociating RNA/DNA hybrids containing split functionalities. We also briefly describe several experimental techniques that can be used to test these hybrids in vitro and in vivo.
Collapse
Affiliation(s)
- Kirill A Afonin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eckart Bindewald
- Basic Science Program, Leidos Biomedical Research Inc., National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, National Cancer Institute, Frederick, Maryland, USA
| | - Bruce A Shapiro
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
170
|
Yu J, Liu Z, Jiang W, Wang G, Mao C. De novo design of an RNA tile that self-assembles into a homo-octameric nanoprism. Nat Commun 2015; 6:5724. [PMID: 25635537 DOI: 10.1038/ncomms6724] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022] Open
Abstract
Rational, de novo design of RNA nanostructures can potentially integrate a wide array of structural and functional diversities. Such nanostructures have great promises in biomedical applications. Despite impressive progress in this field, all RNA building blocks (or tiles) reported so far are not geometrically well defined. They are generally flexible and can only assemble into a mixture of complexes with different sizes. To achieve defined structures, multiple tiles with different sequences are needed. In this study, we design an RNA tile that can homo-oligomerize into a uniform RNA nanostructure. The designed RNA nanostructure is characterized by gel electrophoresis, atomic force microscopy and cryogenic electron microscopy imaging. We believe that development along this line would help RNA nanotechnology to reach the structural control that is currently associated with DNA nanotechnology.
Collapse
Affiliation(s)
- Jinwen Yu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Zhiyu Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Wen Jiang
- Markey Center for Structural Biology and Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Guansong Wang
- The Institute of Respiratory Diseases, Xinqiao Hospital, Chongqing 400037, China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
171
|
Afonin KA, Viard M, Kagiampakis I, Case CL, Dobrovolskaia MA, Hofmann J, Vrzak A, Kireeva M, Kasprzak WK, KewalRamani VN, Shapiro BA. Triggering of RNA interference with RNA-RNA, RNA-DNA, and DNA-RNA nanoparticles. ACS NANO 2015; 9:251-9. [PMID: 25521794 PMCID: PMC4310632 DOI: 10.1021/nn504508s] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/11/2014] [Indexed: 05/08/2023]
Abstract
Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Inc., NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ioannis Kagiampakis
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Christopher L. Case
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Jen Hofmann
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ashlee Vrzak
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research, Inc., NCI Center for Cancer Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Vineet N. KewalRamani
- HIV Drug Resistance Program, NCI, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
172
|
Jedrzejczyk D, Chworos A. Structural identification of the novel 3 way-junction motif. ACTA ACUST UNITED AC 2015. [DOI: 10.1515/rnan-2015-0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractA novel RNA motif was identified based on its sequence by computational structure modeling. The RNA molecule was reported to be a substrate for the structurally specific endoribonuclease, Dicer, which cleaves doublestranded RNA and cuts out 20−25 nucleotide fragments. This enzymatic property was essential for the potential utilization of the motif in the nanoparticle design of further biological experiments. Herein, the protocol for the prediction of the structure of this motif in-silico is presented, starting from its primary sequence and proceeding through secondary and tertiary structure predictions. Applying RNA architectonics, this novel structural motif, 3wj-nRA, was used for rational RNA nanoparticle design. The molecules, which are based on this three-way junction fold, may assemble into more complex, triangular shaped nano-objects. This trimeric nanoparticle containing 3wj-nRA motif can be further utilized for functionalization and application.
Collapse
|
173
|
Dabkowska AP, Michanek A, Jaeger L, Rabe M, Chworos A, Höök F, Nylander T, Sparr E. Assembly of RNA nanostructures on supported lipid bilayers. NANOSCALE 2015; 7:583-96. [PMID: 25417592 PMCID: PMC4274363 DOI: 10.1039/c4nr05968a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.
Collapse
Affiliation(s)
- Aleksandra P Dabkowska
- Division of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Multiple approaches for the investigation of bacterial small regulatory RNAs self-assembly. Methods Mol Biol 2015; 1297:21-42. [PMID: 25895993 DOI: 10.1007/978-1-4939-2562-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNAs are flexible molecules involved in a multitude of roles in the cell. Specifically, noncoding RNAs (i.e., RNAs that do not encode a protein) have important functions in the regulation of biological processes such as RNA decay, translation, or protein translocation. In bacteria, most of those noncoding RNAs have been shown to be critical for posttranscriptional control through their binding to the untranslated regions of target mRNAs. Recent evidence shows that some of these noncoding RNAs have the propensity to self-assemble in prokaryotes. Although the function of this self-assembly is not known and may vary from one RNA to another, it offers new insights into riboregulation pathways. We present here the various approaches that can be used for the detection and analysis of bacterial small noncoding RNA self-assemblies.
Collapse
|
175
|
Haque F, Guo P. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles. Methods Mol Biol 2015; 1297:1-19. [PMID: 25895992 DOI: 10.1007/978-1-4939-2562-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.
Collapse
Affiliation(s)
- Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, Departmentof Pharmaceutical Sciences, University of Kentucky, 789 S Limestone Ave, 576 Biopharm Complex, Lexington, KY, 40536, USA,
| | | |
Collapse
|
176
|
Afonin KA, Schultz D, Jaeger L, Gwinn E, Shapiro BA. Silver nanoclusters for RNA nanotechnology: steps towards visualization and tracking of RNA nanoparticle assemblies. Methods Mol Biol 2015; 1297:59-66. [PMID: 25895995 PMCID: PMC6345514 DOI: 10.1007/978-1-4939-2562-9_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing interest in designing functionalized, RNA-based nanoparticles (NPs) for applications such as cancer therapeutics requires simple, efficient assembly assays. Common methods for tracking RNA assemblies such as native polyacrylamide gels and atomic force microscopy are often time-intensive and, therefore, undesirable. Here we describe a technique for rapid analysis of RNA NP assembly stages using the formation of fluorescent silver nanoclusters (Ag NCs). This method exploits the single-stranded specificity and sequence dependence of Ag NC formation to produce unique optical readouts for each stage of RNA NP assembly, obtained readily after synthesis.
Collapse
Affiliation(s)
- Kirill A Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD, 21702, USA
| | | | | | | | | |
Collapse
|
177
|
Dao BN, Viard M, Martins AN, Kasprzak WK, Shapiro BA, Afonin KA. Triggering RNAi with multifunctional RNA nanoparticles and their delivery. DNA AND RNA NANOTECHNOLOGY 2015; 2:1-12. [PMID: 34322586 PMCID: PMC8315566 DOI: 10.1515/rnan-2015-0001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteins are considered to be the key players in structure, function, and metabolic regulation of our bodies. The mechanisms used in conventional therapies often rely on inhibition of proteins with small molecules, but another promising method to treat disease is by targeting the corresponding mRNAs. In 1998, Craig Mellow and Andrew Fire discovered dsRNA-mediated gene silencing via RNA interference or RNAi. This discovery introduced almost unlimited possibilities for new gene silencing methods, thus opening new doors to clinical medicine. RNAi is a biological process that inhibits gene expression by targeting the mRNA. RNAi-based therapeutics have several potential advantages (i) a priori ability to target any gene, (ii) relatively simple design process, (iii) site-specificity, (iv) potency, and (v) a potentially safe and selective knockdown of the targeted cells. However, the problem lies within the formulation and delivery of RNAi therapeutics including rapid excretion, instability in the bloodstream, poor cellular uptake, and inefficient intracellular release. In an attempt to solve these issues, different types of RNAi therapeutic delivery strategies including multifunctional RNA nanoparticles are being developed. In this mini-review, we will briefly describe some of the current approaches.
Collapse
Affiliation(s)
- Bich Ngoc Dao
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Mathias Viard
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA; Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Angelica N. Martins
- Department of Biology, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, USA; Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Bruce A. Shapiro
- Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Kirill A. Afonin
- Department of Chemistry, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, USA
| |
Collapse
|
178
|
Afonin KA, Lindsay B, Shapiro BA. Engineered RNA Nanodesigns for Applications in RNA Nanotechnology. DNA AND RNA NANOTECHNOLOGY 2015; 1:1-15. [PMID: 34322585 PMCID: PMC8315564 DOI: 10.2478/rnan-2013-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create de novo nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Brian Lindsay
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
179
|
|
180
|
Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nat Commun 2014; 5:5578. [PMID: 25470497 PMCID: PMC4268701 DOI: 10.1038/ncomms6578] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
DNA can be programmed to self-assemble into high molecular weight 3D assemblies with precise nanometer-scale structural features. Although numerous sequence design strategies exist to realize these assemblies in solution, there is currently no computational framework to predict their 3D structures on the basis of programmed underlying multi-way junction topologies constrained by DNA duplexes. Here, we introduce such an approach and apply it to assemblies designed using the canonical immobile four-way junction. The procedure is used to predict the 3D structure of high molecular weight planar and spherical ring-like origami objects, a tile-based sheet-like ribbon, and a 3D crystalline tensegrity motif, in quantitative agreement with experiments. Our framework provides a new approach to predict programmed nucleic acid 3D structure on the basis of prescribed secondary structure motifs, with possible application to the design of such assemblies for use in biomolecular and materials science. DNA may be used to fabricate functional nanostructures with various possible geometries, but first being able to predict these structures is a challenging task. Here, the authors use coarse-grained modelling to predict the shape of artificial DNA nanostructures in solution.
Collapse
|
181
|
Structure of a designed protein cage that self-assembles into a highly porous cube. Nat Chem 2014; 6:1065-71. [PMID: 25411884 PMCID: PMC4239666 DOI: 10.1038/nchem.2107] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 10/01/2014] [Indexed: 12/11/2022]
Abstract
Natural proteins can be versatile building blocks for multimeric, self-assembling structures. Yet, creating protein-based assemblies with specific geometries and chemical properties remains challenging. Highly porous materials represent particularly interesting targets for designed assembly. Here we utilize a strategy of fusing two natural protein oligomers using a continuous alpha-helical linker to design a novel protein that self assembles into a 750 kDa, 225 Å diameter, cube-shaped cage with large openings into a 130 Å diameter inner cavity. A crystal structure of the cage showed atomic level agreement with the designed model, while electron microscopy, native mass spectrometry, and small angle x-ray scattering revealed alternate assembly forms in solution. These studies show that accurate design of large porous assemblies with specific shapes is feasible, while further specificity improvements will likely require limiting flexibility to select against alternative forms. These results provide a foundation for the design of advanced materials with applications in bionanotechnology, nanomedicine and material sciences.
Collapse
|
182
|
Nanostructured RNAs for RNA interference. Methods Mol Biol 2014; 1218:17-36. [PMID: 25319643 DOI: 10.1007/978-1-4939-1538-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
We synthesized three types of nanostructured RNAs that induce RNA interference (RNAi): branched RNAs, dumbbell-shaped RNA, and circular double-stranded RNAs. All three nanostructured RNAs were transformed into double-stranded RNA of approximately 20 base pairs when they were treated with nuclease enzymes such as Dicer. These dsRNA species induced gene silencing when they are were introduced into mammalian cells.
Collapse
|
183
|
Afonin K, Viard M, Koyfman AY, Martins AN, Kasprzak WK, Panigaj M, Desai R, Santhanam A, Grabow WW, Jaeger L, Heldman E, Reiser J, Chiu W, Freed EO, Shapiro BA. Multifunctional RNA nanoparticles. NANO LETTERS 2014; 14:5662-71. [PMID: 25267559 PMCID: PMC4189619 DOI: 10.1021/nl502385k] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/27/2014] [Indexed: 05/06/2023]
Abstract
Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA-DNA hybrids aimed to conditionally activate multiple split functionalities inside cells.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Alexey Y. Koyfman
- National
Center for Macromolecular Imaging, Verna and Marrs McLean Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Angelica N. Martins
- HIV
Drug Resistance Program, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Martin Panigaj
- Food
and Drug Administration, Center for Biologics Evaluation and Research,
Office of Cellular, Tissue and Gene Therapies, Silver Spring, Maryland 20993, United States
| | - Ravi Desai
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Arti Santhanam
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wade W. Grabow
- Department
of Chemistry, Seattle Pacific University, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Biomolecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| | - Eliahu Heldman
- Basic
Science Program, Leidos Biomedical Research,
Inc., NCI Center for Cancer Research, Frederick National Laboratory
for Cancer Research, Frederick, Maryland 21702, United States
| | - Jakob Reiser
- Food
and Drug Administration, Center for Biologics Evaluation and Research,
Office of Cellular, Tissue and Gene Therapies, Silver Spring, Maryland 20993, United States
| | - Wah Chiu
- National
Center for Macromolecular Imaging, Verna and Marrs McLean Department
of Biochemistry and Molecular Biology, Baylor
College of Medicine, Houston, Texas 77030, United States
| | - Eric O. Freed
- HIV
Drug Resistance Program, National Cancer
Institute, Frederick, Maryland 21702, United
States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
184
|
Geary C, Rothemund PWK, Andersen ES. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 2014; 345:799-804. [PMID: 25124436 DOI: 10.1126/science.1253920] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Artificial DNA and RNA structures have been used as scaffolds for a variety of nanoscale devices. In comparison to DNA structures, RNA structures have been limited in size, but they also have advantages: RNA can fold during transcription and thus can be genetically encoded and expressed in cells. We introduce an architecture for designing artificial RNA structures that fold from a single strand, in which arrays of antiparallel RNA helices are precisely organized by RNA tertiary motifs and a new type of crossover pattern. We constructed RNA tiles that assemble into hexagonal lattices and demonstrated that lattices can be made by annealing and/or cotranscriptional folding. Tiles can be scaled up to 660 nucleotides in length, reaching a size comparable to that of large natural ribozymes.
Collapse
Affiliation(s)
- Cody Geary
- Center for DNA Nanotechnology, Interdisciplinary Nanoscience Center, and Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Paul W K Rothemund
- Bioengineering, Computer Science, and Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ebbe S Andersen
- Center for DNA Nanotechnology, Interdisciplinary Nanoscience Center, and Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark.
| |
Collapse
|
185
|
Badu SR, Melnik R, Paliy M, Prabhakar S, Sebetci A, Shapiro BA. Modeling of RNA nanotubes using molecular dynamics simulation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:555-64. [PMID: 25208764 DOI: 10.1007/s00249-014-0985-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/14/2014] [Accepted: 08/21/2014] [Indexed: 01/11/2023]
Abstract
In this study, we construct novel RNA nanoclusters, RNA nanotubes made of several nanorings up to the size of 20 nm, utilizing the molecular dynamics simulation, and study their structural properties [i.e., the root mean square deviation, the radius of gyration and the radial distribution function (RDF)] in physiological solutions that can be used for drug delivery into the human body. The patterns of energy and temperature variations of the systems are also discussed. Furthermore, we study the concentration of ions around the tube as a function of time at a particular temperature. We have found that when the temperature increases, the number of ions increases within a certain distance of the tube. We report that the number of ions within this distance around the tubes decreases in quenched runs. This indicates that some ions evaporate with decrease in temperature, as has been observed in the case of the nanoring. RDF plots also demonstrate a similar trend with temperature, as was found in the case of RNA nanorings.
Collapse
Affiliation(s)
- S R Badu
- MS2Discovery Interdisciplinary Research Institute, M2Net Lab, Wilfrid Laurier University, 75 University Avenue, Waterloo, ON, N3L 3V6, Canada,
| | | | | | | | | | | |
Collapse
|
186
|
Kočar V, Božič Abram S, Doles T, Bašić N, Gradišar H, Pisanski T, Jerala R. TOPOFOLD, the designed modular biomolecular folds: polypeptide-based molecular origami nanostructures following the footsteps of DNA. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:218-37. [PMID: 25196147 DOI: 10.1002/wnan.1289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/08/2014] [Accepted: 07/20/2014] [Indexed: 12/14/2022]
Abstract
Biopolymers, the essential components of life, are able to form many complex nanostructures, and proteins in particular are the material of choice for most cellular processes. Owing to numerous cooperative interactions, rational design of new protein folds remains extremely challenging. An alternative strategy is to design topofolds-nanostructures built from polypeptide arrays of interacting modules that define their topology. Over the course of the last several decades DNA has successfully been repurposed from its native role of information storage to a smart nanomaterial used for nanostructure self-assembly of almost any shape, which is largely because of its programmable nature. Unfortunately, polypeptides do not possess the straightforward complementarity as do nucleic acids. However, a modular approach can nevertheless be used to assemble polypeptide nanostructures, as was recently demonstrated on a single-chain polypeptide tetrahedron. This review focuses on the current state-of-the-art in the field of topological polypeptide folds. It starts with a brief overview of the field of structural DNA and RNA nanotechnology, from which it draws parallels and possible directions of development for the emerging field of polypeptide-based nanotechnology. The principles of topofold strategy and unique properties of such polypeptide nanostructures in comparison to native protein folds are discussed. Reasons for the apparent absence of such folds in nature are also examined. Physicochemical versatility of amino acid residues and cost-effective production makes polypeptides an attractive platform for designed functional bionanomaterials.
Collapse
Affiliation(s)
- Vid Kočar
- Department of Biotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
187
|
RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology. PLoS One 2014; 9:e106074. [PMID: 25188578 PMCID: PMC4154854 DOI: 10.1371/journal.pone.0106074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022] Open
Abstract
Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (λ2) associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs.
Collapse
|
188
|
Jasinski DL, Khisamutdinov EF, Lyubchenko YL, Guo P. Physicochemically tunable polyfunctionalized RNA square architecture with fluorogenic and ribozymatic properties. ACS NANO 2014; 8:7620-9. [PMID: 24971772 PMCID: PMC4148160 DOI: 10.1021/nn502160s] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/27/2014] [Indexed: 05/22/2023]
Abstract
Recent advances in RNA nanotechnology allow the rational design of various nanoarchitectures. Previous methods utilized conserved angles from natural RNA motifs to form geometries with specific sizes. However, the feasibility of producing RNA architecture with variable sizes using native motifs featuring fixed sizes and angles is limited. It would be advantageous to display RNA nanoparticles of diverse shape and size derived from a given primary sequence. Here, we report an approach to construct RNA nanoparticles with tunable size and stability. Multifunctional RNA squares with a 90° angle were constructed by tuning the 60° angle of the three-way junction (3WJ) motif from the packaging RNA (pRNA) of the bacteriophage phi29 DNA packaging motor. The physicochemical properties and size of the RNA square were also easily tuned by modulating the “core” strand and adjusting the length of the sides of the square via predictable design. Squares of 5, 10, and 20 nm were constructed, each showing diverse thermodynamic and chemical stabilities. Four “arms” extending from the corners of the square were used to incorporate siRNA, ribozyme, and fluorogenic RNA motifs. Unique intramolecular contact using the pre-existing intricacy of the 3WJ avoids relatively weaker intermolecular interactions via kissing loops or sticky ends. Utilizing the 3WJ motif, we have employed a modular design technique to construct variable-size RNA squares with controllable properties and functionalities for diverse and versatile applications with engineering, pharmaceutical, and medical potential. This technique for simple design to finely tune physicochemical properties adds a new angle to RNA nanotechnology.
Collapse
Affiliation(s)
- Daniel L. Jasinski
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Emil F. Khisamutdinov
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Address correspondence to
| |
Collapse
|
189
|
Osada E, Suzuki Y, Hidaka K, Ohno H, Sugiyama H, Endo M, Saito H. Engineering RNA-protein complexes with different shapes for imaging and therapeutic applications. ACS NANO 2014; 8:8130-8140. [PMID: 25058166 DOI: 10.1021/nn502253c] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Molecular machines composed of RNA–protein (RNP) complexes may expand the fields of molecular robotics, nanomedicine, and synthetic biology. However, constructing and directly visualizing a functional RNP nanostructure to detect and control living cell function remains a challenge. Here we show that RNP nanostructures with modular functions can be designed and visualized at single-RNP resolution in real time. The RNP structural images collected in solution through high-speed atomic force microscopy showed that a single RNP interaction induces a conformational change in the RNA scaffold, which supports the nanostructure formation designed. The specific RNP interaction also improved RNA nanostructure stability in a serum-containing buffer. We developed and visualized functional RNPs (e.g., to detect human cancer cells or knockdown target genes) by attaching a protein or RNA module to the same RNA scaffold of an optimal size. The synthetic RNP architecture may provide alternative materials to detect and control functions in target mammalian cells.
Collapse
|
190
|
Franco E, Giordano G, Forsberg PO, Murray RM. Negative autoregulation matches production and demand in synthetic transcriptional networks. ACS Synth Biol 2014; 3:589-99. [PMID: 24697805 DOI: 10.1021/sb400157z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a negative feedback architecture that regulates activity of artificial genes, or "genelets", to meet their output downstream demand, achieving robustness with respect to uncertain open-loop output production rates. In particular, we consider the case where the outputs of two genelets interact to form a single assembled product. We show with analysis and experiments that negative autoregulation matches the production and demand of the outputs: the magnitude of the regulatory signal is proportional to the "error" between the circuit output concentration and its actual demand. This two-device system is experimentally implemented using in vitro transcriptional networks, where reactions are systematically designed by optimizing nucleic acid sequences with publicly available software packages. We build a predictive ordinary differential equation (ODE) model that captures the dynamics of the system and can be used to numerically assess the scalability of this architecture to larger sets of interconnected genes. Finally, with numerical simulations we contrast our negative autoregulation scheme with a cross-activation architecture, which is less scalable and results in slower response times.
Collapse
Affiliation(s)
- Elisa Franco
- Mechanical Engineering, University of California at Riverside, Riverside, California 92521, United States
| | - Giulia Giordano
- Mathematics and Computer Science, University of Udine, 33100 Udine, Italy
| | | | - Richard M. Murray
- Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
191
|
Khisamutdinov EF, Li H, Jasinski DL, Chen J, Fu J, Guo P. Enhancing immunomodulation on innate immunity by shape transition among RNA triangle, square and pentagon nanovehicles. Nucleic Acids Res 2014; 42:9996-10004. [PMID: 25092921 PMCID: PMC4150753 DOI: 10.1093/nar/gku516] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Modulation of immune response is important in cancer immunotherapy, vaccine adjuvant development and inflammatory or immune disease therapy. Here we report the development of new immunomodulators via control of shape transition among RNA triangle, square and pentagon. Changing one RNA strand in polygons automatically induced the stretching of the interior angle from 60° to 90° or 108°, resulting in self-assembly of elegant RNA triangles, squares and pentagons. When immunological adjuvants were incorporated, their immunomodulation effect for cytokine TNF-α and IL-6 induction was greatly enhanced in vitro and in animals up to 100-fold, while RNA polygon controls induced unnoticeable effect. The RNA nanoparticles were delivered to macrophages specifically. The degree of immunostimulation greatly depended on the size, shape and number of the payload per nanoparticles. Stronger immune response was observed when the number of adjuvants per polygon was increased, demonstrating the advantage of shape transition from triangle to pentagon.
Collapse
Affiliation(s)
- Emil F Khisamutdinov
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Hui Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Daniel L Jasinski
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Jiao Chen
- Center for Research on Environmental Disease, Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jian Fu
- Center for Research on Environmental Disease, Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, Markey Cancer Center, Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
192
|
Afonin K, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, Shapiro BA. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 2014; 47:1731-41. [PMID: 24758371 PMCID: PMC4066900 DOI: 10.1021/ar400329z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/25/2022]
Abstract
CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Mikhail Kashlev
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
193
|
Abstract
CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles.
Collapse
Affiliation(s)
- Wade W. Grabow
- Department
of Chemistry and Biochemistry, Seattle Pacific University, 3307 Third
Avenue West, Seattle, Washington 98119, United States
| | - Luc Jaeger
- Department
of Chemistry and Biochemistry, Bio-Molecular Science and Engineering
Program, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
194
|
Kumar A, Kumar V. Biotemplated Inorganic Nanostructures: Supramolecular Directed Nanosystems of Semiconductor(s)/Metal(s) Mediated by Nucleic Acids and Their Properties. Chem Rev 2014; 114:7044-78. [DOI: 10.1021/cr4007285] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Vinit Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
195
|
Khisamutdinov EF, Jasinski DL, Guo P. RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS NANO 2014; 8:4771-81. [PMID: 24694194 PMCID: PMC4046798 DOI: 10.1021/nn5006254] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/25/2014] [Indexed: 05/22/2023]
Abstract
RNA is a polyribonucleic acid belonging to a special class of anionic polymers, holding a unique property of self-assembly that is controllable in the construction of structures with defined size, shape, and stoichiometry. We report here the use of RNA as polymers to fabricate boiling-resistant triangular nanoscaffolds, which were used to construct hexagons and patterned hexagonal arrays. The RNA triangular scaffolds demonstrated promising potential to construct fluorogenic probes and therapeutic agents as functionalization with siRNA, ribozyme, folate, and fluorogenic RNA aptamers revealed independent functional activity of each RNA moiety. The ribozyme was able to cleave hepatitis genomic RNA fragments, the siRNA silenced the target genes, and all fluorogenic RNA aptamers retained their fluorescence emission property. The creation of boiling-temperature-resistant RNA nanoparticles opens a new dimension of RNA as a special polymer, feasible in industrial and nanotechnological applications.
Collapse
|
196
|
Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage. Nat Commun 2014; 5:3890. [DOI: 10.1038/ncomms4890] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/15/2014] [Indexed: 02/08/2023] Open
|
197
|
Afonin KA, Kasprzak W, Bindewald E, Puppala PS, Diehl AR, Hall KT, Kim TJ, Zimmermann MT, Jernigan RL, Jaeger L, Shapiro BA. Computational and experimental characterization of RNA cubic nanoscaffolds. Methods 2014; 67:256-65. [PMID: 24189588 PMCID: PMC4007386 DOI: 10.1016/j.ymeth.2013.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/03/2023] Open
Abstract
The fast-developing field of RNA nanotechnology requires the adoption and development of novel and faster computational approaches to modeling and characterization of RNA-based nano-objects. We report the first application of Elastic Network Modeling (ENM), a structure-based dynamics model, to RNA nanotechnology. With the use of an Anisotropic Network Model (ANM), a type of ENM, we characterize the dynamic behavior of non-compact, multi-stranded RNA-based nanocubes that can be used as nano-scale scaffolds carrying different functionalities. Modeling the nanocubes with our tool NanoTiler and exploring the dynamic characteristics of the models with ANM suggested relatively minor but important structural modifications that enhanced the assembly properties and thermodynamic stabilities. In silico and in vitro, we compared nanocubes having different numbers of base pairs per side, showing with both methods that the 10 bp-long helix design leads to more efficient assembly, as predicted computationally. We also explored the impact of different numbers of single-stranded nucleotide stretches at each of the cube corners and showed that cube flexibility simulations help explain the differences in the experimental assembly yields, as well as the measured nanomolecule sizes and melting temperatures. This original work paves the way for detailed computational analysis of the dynamic behavior of artificially designed multi-stranded RNA nanoparticles.
Collapse
Affiliation(s)
- Kirill A Afonin
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Wojciech Kasprzak
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Basic Science Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Praneet S Puppala
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Alex R Diehl
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Kenneth T Hall
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Tae Jin Kim
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael T Zimmermann
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Robert L Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9510, USA.
| | - Bruce A Shapiro
- Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
198
|
Binzel DW, Khisamutdinov EF, Guo P. Entropy-driven one-step formation of Phi29 pRNA 3WJ from three RNA fragments. Biochemistry 2014; 53:2221-31. [PMID: 24694349 PMCID: PMC4004221 DOI: 10.1021/bi4017022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The
emerging field of RNA nanotechnology necessitates creation
of functional RNA nanoparticles but has been limited by particle instability.
It has been shown that the three-way junction of bacteriophage phi29
motor pRNA has unusual stability and can self-assemble from three
fragments with high efficiency. It is generally believed that RNA
and DNA folding is energy landscape-dependent, and the folding of
RNA is driven by enthalpy. Here we examine the thermodynamic characteristics
of the 3WJ components as 2′-fluoro RNA, DNA, and RNA. It was
seen that the three fragments existed either in 3WJ complex or as
monomers, with the intermediate of dimers almost undetectable. It
seems that the three fragments can lead to the formation of the 3WJ
complex efficiently within a rapid time. A low dissociation constant
(apparent KD) of 11.4 nM was determined
for RNA, inclusion of 2′-F pyrimidines strengthened the KD to 4.5 nM, and substitution of DNA weakened
it to 47.7 nM. The ΔG°37, were
−36, −28, and −15 kcal/mol for 3WJ2′-F, 3WJRNA, and 3WJDNA, respectively. It is found
that the formation of the three-component complex was governed by
entropy, instead of enthalpy, as usually found in RNA complexes.
Collapse
Affiliation(s)
- Daniel W Binzel
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , Lexington, Kentucky 40536, United States
| | | | | |
Collapse
|
199
|
Afonin KA, Desai R, Viard M, Kireeva ML, Bindewald E, Case CL, Maciag AE, Kasprzak WK, Kim T, Sappe A, Stepler M, KewalRamani VN, Kashlev M, Blumenthal R, Shapiro BA. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Res 2014; 42:2085-97. [PMID: 24194608 PMCID: PMC3919563 DOI: 10.1093/nar/gkt1001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022] Open
Abstract
Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ravi Desai
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maria L. Kireeva
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher L. Case
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wojciech K. Kasprzak
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Taejin Kim
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alison Sappe
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marissa Stepler
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Vineet N. KewalRamani
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mikhail Kashlev
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
200
|
Shu Y, Pi F, Sharma A, Rajabi M, Haque F, Shu D, Leggas M, Evers BM, Guo P. Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 2014; 66:74-89. [PMID: 24270010 DOI: 10.1016/j.addr.2013.11.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/11/2013] [Accepted: 11/13/2013] [Indexed: 12/13/2022]
Abstract
Human genome sequencing revealed that only ~1.5% of the DNA sequence coded for proteins. More and more evidence has uncovered that a substantial part of the 98.5% so-called "junk" DNAs actually code for noncoding RNAs. Two milestones, chemical drugs and protein drugs, have already appeared in the history of drug development, and it is expected that the third milestone in drug development will be RNA drugs or drugs that target RNA. This review focuses on the development of RNA therapeutics for potential cancer treatment by applying RNA nanotechnology. A therapeutic RNA nanoparticle is unique in that its scaffold, ligand, and therapeutic component can all be composed of RNA. The special physicochemical properties lend to the delivery of siRNA, miRNA, ribozymes, or riboswitches; imaging using fluogenenic RNA; and targeting using RNA aptamers. With recent advances in solving the chemical, enzymatic, and thermodynamic stability issues, RNA nanoparticles have been found to be advantageous for in vivo applications due to their uniform nano-scale size, precise stoichiometry, polyvalent nature, low immunogenicity, low toxicity, and target specificity. In vivo animal studies have revealed that RNA nanoparticles can specifically target tumors with favorable pharmacokinetic and pharmacodynamic parameters without unwanted accumulation in normal organs. This review summarizes the key studies that have led to the detailed understanding of RNA nanoparticle formation as well as chemical and thermodynamic stability issue. The methods for RNA nanoparticle construction, and the current challenges in the clinical application of RNA nanotechnology, such as endosome trapping and production costs, are also discussed.
Collapse
Affiliation(s)
- Yi Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ashwani Sharma
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Mehdi Rajabi
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Farzin Haque
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Dan Shu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Markos Leggas
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peixuan Guo
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|