151
|
Abstract
Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.
Collapse
Affiliation(s)
- Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| | - Serena Silvi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Chimica "G. Ciamician" , Università di Bologna , via Selmi 2 , 40126 Bologna , Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures , Istituto ISOF-CNR , via Gobetti 101 , 40129 Bologna , Italy.,Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , viale Fanin 44 , 40127 Bologna , Italy
| |
Collapse
|
152
|
Stadler E, Tassoti S, Lentes P, Herges R, Glasnov T, Zangger K, Gescheidt G. In Situ Observation of Photoswitching by NMR Spectroscopy: A Photochemical Analogue to the Exchange Spectroscopy Experiment. Anal Chem 2019; 91:11367-11373. [DOI: 10.1021/acs.analchem.9b02613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eduard Stadler
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Sebastian Tassoti
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Pascal Lentes
- Otto Diels Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, DE-24118 Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, University of Kiel, Otto-Hahn-Platz 4, DE-24118 Kiel, Germany
| | - Toma Glasnov
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstraße 28, A-8010 Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
153
|
Light on Molecular Devices. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
154
|
Biagini C, Fielden SDP, Leigh DA, Schaufelberger F, Di Stefano S, Thomas D. Dissipative Catalysis with a Molecular Machine. Angew Chem Int Ed Engl 2019; 58:9876-9880. [PMID: 31111628 PMCID: PMC6900173 DOI: 10.1002/anie.201905250] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Indexed: 11/29/2022]
Abstract
We report on catalysis by a fuel-induced transient state of a synthetic molecular machine. A [2]rotaxane molecular shuttle containing secondary ammonium/amine and thiourea stations is converted between catalytically inactive and active states by pulses of a chemical fuel (trichloroacetic acid), which is itself decomposed by the machine and/or the presence of additional base. The ON-state of the rotaxane catalyzes the reduction of a nitrostyrene by transfer hydrogenation. By varying the amount of fuel added, the lifetime of the rotaxane ON-state can be regulated and temporal control of catalysis achieved. The system can be pulsed with chemical fuel several times in succession, with each pulse activating catalysis for a time period determined by the amount of fuel added. Dissipative catalysis by synthetic molecular machines has implications for the future design of networks that feature communication and signaling between the components.
Collapse
Affiliation(s)
- Chiara Biagini
- School of ChemistryUniversity of ManchesterOxford RoadM13 9PLManchesterUK
- Edificio Cannizzaro (VEC)Dipartimento di ChimicaUniversità degli Studi di Roma “La Sapienza”Piazzale Aldo Moro 500185RomaItaly
| | | | - David A. Leigh
- School of ChemistryUniversity of ManchesterOxford RoadM13 9PLManchesterUK
| | | | - Stefano Di Stefano
- Edificio Cannizzaro (VEC)Dipartimento di ChimicaUniversità degli Studi di Roma “La Sapienza”Piazzale Aldo Moro 500185RomaItaly
| | - Dean Thomas
- School of ChemistryUniversity of ManchesterOxford RoadM13 9PLManchesterUK
| |
Collapse
|
155
|
Biagini C, Fielden SDP, Leigh DA, Schaufelberger F, Di Stefano S, Thomas D. Dissipative Catalysis with a Molecular Machine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905250] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chiara Biagini
- School of ChemistryUniversity of Manchester Oxford Road M13 9PL Manchester UK
- Edificio Cannizzaro (VEC)Dipartimento di ChimicaUniversità degli Studi di Roma “La Sapienza” Piazzale Aldo Moro 5 00185 Roma Italy
| | | | - David A. Leigh
- School of ChemistryUniversity of Manchester Oxford Road M13 9PL Manchester UK
| | | | - Stefano Di Stefano
- Edificio Cannizzaro (VEC)Dipartimento di ChimicaUniversità degli Studi di Roma “La Sapienza” Piazzale Aldo Moro 5 00185 Roma Italy
| | - Dean Thomas
- School of ChemistryUniversity of Manchester Oxford Road M13 9PL Manchester UK
| |
Collapse
|
156
|
Aeschi Y, Jucker L, Häussinger D, Mayor M. Slow Formation of Pseudorotaxanes in Water. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yves Aeschi
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
- Swiss Nanoscience Institute; University of Basel; Klingelbergstrasse 82 4056 Basel Switzerland
| | - Laurent Jucker
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Marcel Mayor
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
- Swiss Nanoscience Institute; University of Basel; Klingelbergstrasse 82 4056 Basel Switzerland
- Institute for Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); P. O. Box 3640 76021 Karlsruhe Germany
- Lehn Institute of Functional Materials (LIFM); School of Chemistry; Sun Yat-Sen University (SYSU); 510275 Guangzhou China
| |
Collapse
|
157
|
Vialetto J, Anyfantakis M, Rudiuk S, Morel M, Baigl D. Photoswitchable Dissipative Two‐Dimensional Colloidal Crystals. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jacopo Vialetto
- PASTEURDepartment of ChemistryÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS 75005 Paris France
| | - Manos Anyfantakis
- PASTEURDepartment of ChemistryÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS 75005 Paris France
- Physics & Materials Science Research UnitUniversity of Luxembourg 162a Avenue de la Faiencerie Luxembourg 1511 Luxembourg
| | - Sergii Rudiuk
- PASTEURDepartment of ChemistryÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS 75005 Paris France
| | - Mathieu Morel
- PASTEURDepartment of ChemistryÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS 75005 Paris France
| | - Damien Baigl
- PASTEURDepartment of ChemistryÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS 75005 Paris France
| |
Collapse
|
158
|
Vialetto J, Anyfantakis M, Rudiuk S, Morel M, Baigl D. Photoswitchable Dissipative Two-Dimensional Colloidal Crystals. Angew Chem Int Ed Engl 2019; 58:9145-9149. [PMID: 31041837 DOI: 10.1002/anie.201904093] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/09/2022]
Abstract
Control over particle interactions and organization at fluid interfaces is of great importance both for fundamental studies and practical applications. Rendering these systems stimulus-responsive is thus a desired challenge both for investigating dynamic phenomena and realizing reconfigurable materials. Here, we describe the first reversible photocontrol of two-dimensional colloidal crystallization at the air/water interface, where millimeter-sized assemblies of microparticles can be actuated through the dynamic adsorption/desorption behavior of a photosensitive surfactant added to the suspension. This allows us to dynamically switch the particle organization between a highly crystalline (under light) and a disordered (in the dark) phase with a fast response time (crystallization in ≈10 s, disassembly in ≈1 min). These results evidence a new kind of dissipative system where the crystalline state can be maintained only upon energy supply.
Collapse
Affiliation(s)
- Jacopo Vialetto
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Manos Anyfantakis
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.,Physics & Materials Science Research Unit, University of Luxembourg, 162a Avenue de la Faiencerie, Luxembourg, 1511, Luxembourg
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| |
Collapse
|
159
|
Baggi G, Casimiro L, Baroncini M, Silvi S, Credi A, Loeb SJ. Threading-gated photochromism in [2]pseudorotaxanes. Chem Sci 2019; 10:5104-5113. [PMID: 31183062 PMCID: PMC6524668 DOI: 10.1039/c9sc00913b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/08/2019] [Indexed: 11/21/2022] Open
Abstract
Rigid, Y-shaped imidazole compounds containing the bis(thienyl)ethene moiety were designed and synthesized. The 4,5-bis(benzothienyl)-2-phenylimidazolium cations were then used as axles for [2]pseudorotaxane formation with 24-membered crown ether wheels. It was demonstrated using 1H NMR spectroscopy, UV-Vis absorption and emission spectroscopies that this host-guest interaction results in significant changes in the photochromic properties of the imidazolium axles. This is a rare example of gated photochromism, which exploits the recognition event of an interpenetrated molecular system to tune the photochromic properties in one of the components.
Collapse
Affiliation(s)
- Giorgio Baggi
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON N9B 3P4 , Canada .
| | - Lorenzo Casimiro
- Dipartimento di Chimica "G. Ciamician" , Università di Bologna , 40126 Bologna , Italy .
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Massimo Baroncini
- Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , 40127 Bologna , Italy
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Serena Silvi
- Dipartimento di Chimica "G. Ciamician" , Università di Bologna , 40126 Bologna , Italy .
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Alberto Credi
- Dipartimento di Scienze e Tecnologie Agro-alimentari , Università di Bologna , 40127 Bologna , Italy
- CLAN-Center for Light Activated Nanostructures , Università di Bologna , Consiglio Nazionale delle Ricerche , 40129 Bologna , Italy
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry , University of Windsor , Windsor , ON N9B 3P4 , Canada .
| |
Collapse
|
160
|
Yu JJ, Zhao LY, Shi ZT, Zhang Q, London G, Liang WJ, Gao C, Li MM, Cao XM, Tian H, Feringa BL, Qu DH. Pumping a Ring-Sliding Molecular Motion by a Light-Powered Molecular Motor. J Org Chem 2019; 84:5790-5802. [PMID: 30971085 DOI: 10.1021/acs.joc.9b00783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Designing artificial molecular machines to execute complex mechanical tasks, like coupling rotation and translation to accomplish transmission of motion, continues to provide important challenges. Herein, we demonstrated a novel molecular machine comprising a second-generation light-driven molecular motor and a bistable [1]rotaxane unit. The molecular motor can rotate successfully even in an interlocked [1]rotaxane system through a photoinduced cis-to -trans isomerization and a thermal helix inversion, resulting in concomitant transitional motion of the [1]rotaxane. The transmission process was elucidated via 1H NMR, 1H-1H COSY, HMQC, HMBC, and 2D ROESY NMR spectroscopies, UV-visible absorption spectrum, and density functional theory calculations. This is the first demonstration of a molecular motor to rotate against the appreciably noncovalent interactions between dibenzo-24-crown-8 and N-methyltriazolium moieties comprising the rotaxane unit, showing operational capabilities of molecular motors to perform more complex tasks.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Li-Yang Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Gabor London
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands.,Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar, tudósok körútja 2 , Budapest 1117 , Hungary
| | - Wen-Jing Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ming-Ming Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
161
|
Kageyama Y. Light‐Powered Self‐Sustainable Macroscopic Motion for the Active Locomotion of Materials. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshiyuki Kageyama
- Department of ChemistryFaculty of Science, Hokkaido University Kita-10 Nishi-8, Kita-ku Sapporo 060-0810 JAPAN
| |
Collapse
|
162
|
Sabatino A, Frezzato D. Tagged-moiety viewpoint of chemical reaction networks. J Chem Phys 2019; 150:134104. [DOI: 10.1063/1.5081675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Andrea Sabatino
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
163
|
Ke H, Yang LP, Xie M, Chen Z, Yao H, Jiang W. Shear-induced assembly of a transient yet highly stretchable hydrogel based on pseudopolyrotaxanes. Nat Chem 2019; 11:470-477. [DOI: 10.1038/s41557-019-0235-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 02/25/2019] [Indexed: 11/09/2022]
|
164
|
Yu S, McClenaghan ND, Pozzo JL. Photochromic rotaxanes and pseudorotaxanes. Photochem Photobiol Sci 2019; 18:2102-2111. [PMID: 30907909 DOI: 10.1039/c9pp00057g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among stimulus-responsive molecular ring-on-thread rotaxanes and pseudorotaxanes, variants incorporating photochromic sub-units are attracting considerable attention as their properties and structure can be remotely and precisely controlled, additionally without producing chemical waste. The focus herein is on photoswitching-driven assembly/disassembly and modulation of properties resulting from light-activated isomerization or changes in electronic properties.
Collapse
Affiliation(s)
- Shilin Yu
- CNRS/Univ. Bordeaux, Institut des Sciences Moléculaires, Talence, France.
| | | | - Jean-Luc Pozzo
- CNRS/Univ. Bordeaux, Institut des Sciences Moléculaires, Talence, France.
| |
Collapse
|
165
|
Credi A. A Molecular Cable Car for Transmembrane Ion Transport. Angew Chem Int Ed Engl 2019; 58:4108-4110. [DOI: 10.1002/anie.201814333] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Alberto Credi
- CLAN-Center for light activated nanostructuresUniversità di Bologna and Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italy
| |
Collapse
|
166
|
Zhou HY, Han Y, Shi Q, Chen CF. Directional Transportation of a Helic[6]arene along a Nonsymmetric Molecular Axle. J Org Chem 2019; 84:5872-5876. [PMID: 30900452 DOI: 10.1021/acs.joc.9b00229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
167
|
Colard-Itté JR, Li Q, Collin D, Mariani G, Fuks G, Moulin E, Buhler E, Giuseppone N. Mechanical behaviour of contractile gels based on light-driven molecular motors. NANOSCALE 2019; 11:5197-5202. [PMID: 30859173 DOI: 10.1039/c9nr00950g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The networking of individual artificial molecular motors into collective actuation systems is a promising approach for the design of active materials working out of thermodynamic equilibrium. Here, we report the first mechanical studies on active polymer gels built by integrating light-driven rotary molecular motors as reticulation units in polymer networks. We correlate the volume ratio before and after light irradiation with the change of the elastic modulus, and we reveal the universal maximum mechanical efficiency of such gels related to their critical overlap concentration before chemical reticulation. We also show the major importance of heterogeneities in the macroscopic contraction process and we confirm that these materials can increase their internal energy by the motorized winding of their polymer chains.
Collapse
Affiliation(s)
- Jean-Rémy Colard-Itté
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, France.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Affiliation(s)
- Alberto Credi
- CLAN-Center for Light Activated NanostructuresUniversità di Bologna und Consiglio Nazionale delle Ricerche Via Gobetti 101 40129 Bologna Italien
| |
Collapse
|
169
|
Huang CM, Kucinic A, Le JV, Castro CE, Su HJ. Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis. NANOSCALE 2019; 11:1647-1660. [PMID: 30519693 DOI: 10.1039/c8nr06377j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Significant advances have been made towards the design, fabrication, and actuation of dynamic DNA nanorobots including the development of DNA origami mechanisms. These DNA origami mechanisms integrate relatively stiff links made of bundles of double-stranded DNA and relatively flexible joints made of single-stranded DNA to mimic the design of macroscopic machines and robots. Despite reproducing the complex configurations of macroscopic machines, these DNA origami mechanisms exhibit significant deviations from their intended motion behavior since nanoscale mechanisms are subject to significant thermal fluctuations that lead to variations in the geometry of the underlying DNA origami components. Understanding these fluctuations is critical to assess and improve the performance of DNA origami mechanisms and to enable precise nanoscale robotic functions. Here, we report a hybrid computational framework combining coarse-grained modeling with kinematic variance analysis to predict uncertainties in the motion pathway of a multi-component DNA origami mechanism. Coarse-grained modeling was used to evaluate the variation in geometry of individual components due to thermal fluctuations. This variation was incorporated in kinematic analyses to predict the motion pathway uncertainty of the entire mechanism, which agreed well with experimental characterization of motion. We further demonstrated the ability to predict the probability density of DNA origami mechanism conformations based on analysis of mechanical properties of individual joints. This integration of computational analysis, modeling tools, and experimental methods establish the foundation to predict and manage motion uncertainties of general DNA origami mechanisms to guide the design of DNA-based nanoscale machines and robots.
Collapse
Affiliation(s)
- Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | |
Collapse
|
170
|
Zhou HY, Han Y, Shi Q, Chen CF. A Triply Operable Molecular Switch: Anion-, Acid/Base- and Solvent-Responsive [2]Rotaxane. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Molecular Recognition and Function; Institute of Chemistry; Chinese Academy of Sciences; 100190 Beijing China
- University of Chinese Academy of Sciences; 100049 Beijing China
| |
Collapse
|
171
|
Remón P, González D, Li S, Basílio N, Andréasson J, Pischel U. Light-driven control of the composition of a supramolecular network. Chem Commun (Camb) 2019; 55:4335-4338. [PMID: 30907910 DOI: 10.1039/c9cc00922a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composition of a supramolecular network, constituted by several cucurbituril receptors and guests, can be controlled by the reversible and all-photonic switching of a dithienylethene guest.
Collapse
Affiliation(s)
- Patricia Remón
- CIQSO - Centre for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus de El Carmen s/n, E-21071 Huelva, Spain.
| | | | | | | | | | | |
Collapse
|
172
|
Groppi J, Baroncini M, Venturi M, Silvi S, Credi A. Design of photo-activated molecular machines: highlights from the past ten years. Chem Commun (Camb) 2019; 55:12595-12602. [DOI: 10.1039/c9cc06516d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Researchers continue to generate ingenious (supra)molecular structures in which light can trigger controlled and directed movements of the components.
Collapse
Affiliation(s)
- Jessica Groppi
- CLAN-Center for Light Activated Nanostructures
- Istituto ISOF-CNR
- 40129 Bologna
- Italy
| | - Massimo Baroncini
- CLAN-Center for Light Activated Nanostructures
- Istituto ISOF-CNR
- 40129 Bologna
- Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari
| | - Margherita Venturi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Serena Silvi
- Dipartimento di Chimica “G. Ciamician”
- Università di Bologna
- 40126 Bologna
- Italy
| | - Alberto Credi
- CLAN-Center for Light Activated Nanostructures
- Istituto ISOF-CNR
- 40129 Bologna
- Italy
- Dipartimento di Scienze e Tecnologie Agro-alimentari
| |
Collapse
|
173
|
Shi ZT, Yu JJ, Zhang Q, Li MM, Liang WJ, Zhao CX, Qu DH. Controlling interfacial interactions of supramolecular assemblies by light-responsive overcrowded alkenes. Chem Commun (Camb) 2019; 55:10292-10295. [PMID: 31396605 DOI: 10.1039/c9cc05023j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A light-responsive supramolecular polymer was constructed by an AB-type monomer containing a light-responsive overcrowded alkene. The primary assemblies of the supramolecular polymer can further undertake secondary self-assembly by interfacial host-guest connections, which can be manipulated by light stimuli to convert into discrete primary assemblies.
Collapse
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | | | | | | | | | | | | |
Collapse
|
174
|
Chen S, Wang Y, Nie T, Bao C, Wang C, Xu T, Lin Q, Qu DH, Gong X, Yang Y, Zhu L, Tian H. An Artificial Molecular Shuttle Operates in Lipid Bilayers for Ion Transport. J Am Chem Soc 2018; 140:17992-17998. [PMID: 30445811 DOI: 10.1021/jacs.8b09580] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inspired by natural biomolecular machines, synthetic molecular-level machines have been proven to perform well-defined mechanical tasks and measurable work. To mimic the function of channel proteins, we herein report the development of a synthetic molecular shuttle, [2]rotaxane 3, as a unimolecular vehicle that can be inserted into lipid bilayers to perform passive ion transport through its stochastic shuttling motion. The [2]rotaxane molecular shuttle is composed of an amphiphilic molecular thread with three binding stations, which is interlocked in a macrocycle wheel component that tethers a K+ carrier. The structural characteristics enable the rotaxane to transport ions across the lipid bilayers, similar to a cable car, transporting K+ with an EC50 value of 1.0 μM (3.0 mol % relative to lipid). We expect that this simple molecular machine will provide new opportunities for developing more effective and selective ion transporters.
Collapse
Affiliation(s)
- Sujun Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Yichuan Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Ting Nie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Chunyan Bao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Chenxi Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Tianyi Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Qiuning Lin
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Xueqing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, School of Pharmacy , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - Linyong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science & Technology , 130 Meilong Road , Shanghai , 200237 , China
| |
Collapse
|
175
|
Baroncini M, Canton M, Casimiro L, Corra S, Groppi J, La Rosa M, Silvi S, Credi A. Photoactive Molecular-Based Devices, Machines and Materials: Recent Advances. Eur J Inorg Chem 2018; 2018:4589-4603. [PMID: 31007574 PMCID: PMC6472663 DOI: 10.1002/ejic.201800923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 11/07/2022]
Abstract
Molecular and supramolecular-based systems and materials that can perform predetermined functions in response to light stimulation have been extensively studied in the past three decades. Their investigation continues to be a highly stimulating topic of chemical research, not only because of the inherent scientific value related to a bottom-up approach to functional nanostructures, but also for the prospective applications in diverse fields of technology and medicine. Light is an important tool in this context, as it can be conveniently used both for supplying energy to the system and for probing its states and transformations. In this microreview we recall some basic aspects of light-induced processes in (supra)molecular assemblies, and discuss their exploitation to implement novel functionalities with nanostructured devices, machines and materials. To this aim we illustrate a few examples from our own recent work, which are meant to illustrate the trends of current research in the field.
Collapse
Affiliation(s)
- Massimo Baroncini
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Martina Canton
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Lorenzo Casimiro
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Stefano Corra
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Jessica Groppi
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Marcello La Rosa
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| | - Serena Silvi
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Chimica “G. Ciamician”Università di BolognaVia Selmi 240126BolognaItaly
| | - Alberto Credi
- Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheCLAN‐Center for Light Activated NanostructuresVia Gobetti 10140129BolognaItaly
- Dipartimento di Scienze e Tecnologie Agro‐alimentariUniversità di BolognaViale Fanin 5040127BolognaItaly
| |
Collapse
|
176
|
Dudek M, Deiana M, Pokladek Z, Pawlik K, Matczyszyn K. Reversible Photocontrol of DNA Melting by Visible-Light-Responsive F4-Coordinated Azobenzene Compounds. Chemistry 2018; 24:18963-18970. [PMID: 30198626 DOI: 10.1002/chem.201803529] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Spatiotemporal control over the regulation of intra- and intermolecular motions in naturally occurring systems is systematically studied to expand the toolbox of mechanical operations in multicomponent nanoarchitectures. DNA is ideally suited for programming light-powered processes that are based on a minimalist molecular design. Here, the noncovalent incorporation of bistable photoswitches into B-like DNA moieties is shown to trigger the thermal transition midpoint of the duplexes by converting visible light into directed mechanical work by orchestrating the collective actions of the photoresponsive chromophores and the host DNA nanostructures. Besides its practical applications, the resulting hybrid nanosystem bears unique features of modulability, biocompatibility, reversibility, and addressability, which are key components for developing molecular photon-controlled programmed materials.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marco Deiana
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Ziemowit Pokladek
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Krzysztof Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114, Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
177
|
Zhang Q, Rao SJ, Xie T, Li X, Xu TY, Li DW, Qu DH, Long YT, Tian H. Muscle-like Artificial Molecular Actuators for Nanoparticles. Chem 2018. [DOI: 10.1016/j.chempr.2018.08.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
178
|
Harris TC, Sevick E, Williams DRM. Mechanical Conformers of Keyring Catenanes. J Phys Chem A 2018; 122:8923-8930. [DOI: 10.1021/acs.jpca.8b08646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. C. Harris
- Research School of Chemistry, The Australian National University, Canberra 2601, Australia
| | - E.M. Sevick
- Research School of Chemistry, The Australian National University, Canberra 2601, Australia
| | - D. R. M. Williams
- Research School of Physical Sciences & Engineering, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
179
|
Ragazzon G, Prins LJ. Energy consumption in chemical fuel-driven self-assembly. NATURE NANOTECHNOLOGY 2018; 13:882-889. [PMID: 30224796 DOI: 10.1038/s41565-018-0250-8] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/30/2018] [Indexed: 05/24/2023]
Abstract
Nature extensively exploits high-energy transient self-assembly structures that are able to perform work through a dissipative process. Often, self-assembly relies on the use of molecules as fuel that is consumed to drive thermodynamically unfavourable reactions away from equilibrium. Implementing this kind of non-equilibrium self-assembly process in synthetic systems is bound to profoundly impact the fields of chemistry, materials science and synthetic biology, leading to innovative dissipative structures able to convert and store chemical energy. Yet, despite increasing efforts, the basic principles underlying chemical fuel-driven dissipative self-assembly are often overlooked, generating confusion around the meaning and definition of scientific terms, which does not favour progress in the field. The scope of this Perspective is to bring closer together current experimental approaches and conceptual frameworks. From our analysis it also emerges that chemically fuelled dissipative processes may have played a crucial role in evolutionary processes.
Collapse
Affiliation(s)
- Giulio Ragazzon
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
180
|
Vella SJ, Loeb SJ. A pyridinium/anilinium [2]catenane that operates as an acid-base driven optical switch. Beilstein J Org Chem 2018; 14:1908-1916. [PMID: 30112096 PMCID: PMC6071693 DOI: 10.3762/bjoc.14.165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/05/2018] [Indexed: 11/23/2022] Open
Abstract
A two-station [2]catenane containing a large macrocycle with two different recognition sites, one bis(pyridinium)ethane and one benzylanilinium, as well as a smaller DB24C8 ring was synthesized and characterized. 1H NMR spectroscopy showed that the DB24C8 ring can shuttle between the two recognition sites depending on the protonation state of the larger macrocycle. When the aniline group is neutral, the DB24C8 ring resides solely at the bis(pyridinium)ethane site, while addition of acid forms a charged benzylanilinium site. The DB24C8 then shuttles between the two charged recognition sites with occupancy favoring the bis(pyridinium)ethane site by a ratio of 4:1. The unprotonated [2]catenane has a deep yellow/orange color when the DB24C8 ring resides solely at the bis(pyridinium)ethane site and changes to colorless when the crown ether is shuttling (i.e., circumrotating) back and forth between the two recognition sites thus optically signalling the onset of the shuttling dynamics.
Collapse
Affiliation(s)
- Sarah J Vella
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Stephen J Loeb
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
181
|
Dong B, Liu L, Hu C. ATP-Driven Temporal Control over Structure Switching of Polymeric Micelles. Biomacromolecules 2018; 19:3659-3668. [PMID: 30068081 DOI: 10.1021/acs.biomac.8b00769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An adenosine triphosphate (ATP)-fueled micellar system in the out-of-equilibrium state was constructed based on 4,5-diamino-1,3,5-triazine (DAT)-containing block copolymer. The block copolymer self-assembled into spherical micelles in equilibrium steady state at pH higher than its p Ka. The pendant DAT residues in protonated form acted as ATP catchers via hydrogen bonding and electrostatic interactions. Activated by ATP fuel, the polymeric micelles spontaneously disrupted into small aggregates of ATP/polymer hybrid complexes. The consumption of ATP energy via the enzymatic hydrolysis led to dissociation of the complexes and reversible formation of polymeric micelles. A transient self-assembly cycle, in which the assembly underwent autonomous division-fusion motion, was created using ATP fuel and enzyme; the switching of assembly structure was sustained by continuous supply of ATP fuel. This DAT-containing block copolymer have good biocompatibility, and drug-loaded micelles display ATP-responsive release behavior. It is expected that this ATP-fueled supramolecular assembly system will provide a functional platform for biomimic chemistry and therapeutic applications.
Collapse
Affiliation(s)
- Bingyang Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| | - Cong Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , People's Republic of China
| |
Collapse
|
182
|
Light-driven molecular trap enables bidirectional manipulation of dynamic covalent systems. Nat Chem 2018; 10:1031-1036. [DOI: 10.1038/s41557-018-0106-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 06/13/2018] [Indexed: 12/16/2022]
|
183
|
Lu S, Huang M, Qin Z, Yu Y, Guo Q, Cao G. Highly ordered molecular rotor matrix on a nanopatterned template: titanyl phthalocyanine molecules on FeO/Pt(111). NANOTECHNOLOGY 2018; 29:315301. [PMID: 29770773 DOI: 10.1088/1361-6528/aac594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular rotors, motors and gears play important roles in artificial molecular machines, in which rotor and motor matrices are highly desirable for large-scale bottom-up fabrication of molecular machines. Here we demonstrate the fabrication of a highly ordered molecular rotor matrix by depositing nonplanar dipolar titanyl phthalocyanine (TiOPc, C32H16N8OTi) molecules on a Moiré patterned dipolar FeO/Pt(111) substrate. TiOPc molecules with O atoms pointing outwards from the substrate (upward) or towards the substrate (downward) are alternatively adsorbed on the fcc sites by strong lateral confinement. The adsorbed molecules, i.e. two kinds of molecular rotors, show different scanning tunneling microscopy images, thermal stabilities and rotational characteristics. Density functional theory calculations clarify that TiOPc molecules anchoring upwards with high adsorption energies correspond to low-rotational-rate rotors, while those anchoring downwards with low adsorption energies correspond to high-rotational-rate rotors. A robust rotor matrix fully occupied by low-rate rotors is fabricated by depositing molecules on the substrate at elevated temperature. Such a paradigm opens up a promising route to fabricate functional molecular rotor matrices, driven motor matrices and even gear groups on solid substrates.
Collapse
Affiliation(s)
- Shuangzan Lu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | | | | | |
Collapse
|
184
|
Ying YL, Li ZY, Hu ZL, Zhang J, Meng FN, Cao C, Long YT, Tian H. A Time-Resolved Single-Molecular Train Based on Aerolysin Nanopore. Chem 2018. [DOI: 10.1016/j.chempr.2018.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
185
|
Karcher J, Pianowski ZL. Photocontrol of Drug Release from Supramolecular Hydrogels with Green Light. Chemistry 2018; 24:11605-11610. [DOI: 10.1002/chem.201802205] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/22/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Johannes Karcher
- Institut für Organische ChemieKarlsruher Institut für Technologie Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Zbigniew L. Pianowski
- Institut für Organische ChemieKarlsruher Institut für Technologie Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- Institut für Toxikologie und GenetikKarlsruher Institut für Technologie, Campus Nord Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
186
|
Abstract
Molecular machines use external energy to drive transport, to do mechanical, osmotic, or electrical work on the environment, and to form structure. In this paper the fundamental difference between the design principles necessary for a molecular machine to use light or external modulation of thermodynamic parameters as an energy source vs. the design principle for using an exergonic chemical reaction as a fuel will be explored. The key difference is that for catalytically-driven motors microscopic reversibility must hold arbitrarily far from equilibrium. Applying the constraints of microscopic reversibility assures that a coarse grained model is consistent with an underlying model for motion on a single time-independent potential energy surface. In contrast, light-driven processes, and processes driven by external modulation of the thermodynamic parameters of a system cannot in general be described in terms of motion on a single time-independent potential energy surface, and the rate constants are not constrained by microscopic reversibility. The results presented here call into question the value of the so-called power stroke model as an explanation of the function of autonomous chemically-driven molecular machines such as are commonly found in biology.
Collapse
Affiliation(s)
- R D Astumian
- Dept. of Physics, University of Maine, 5709 Bennett Hall, Orono, ME 04469, USA.
| |
Collapse
|
187
|
|
188
|
Li D, Yang Y, Li C, Liu Y. Unveiling the mechanism of the promising two-dimensional photoswitch - Hemithioindigo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 200:1-9. [PMID: 29656229 DOI: 10.1016/j.saa.2018.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
The control of internal molecular motions by outside stimuli is a decisive task in the construction of functional molecules and molecular machines. Light-induced intramolecular rotations of photoswitches have attracted increasing research interests because of the high stability and high reversibility of photoswitches. Recently, Henry et al. reported an unprecedented two-dimensional controlled photoswitch, the hemithioindigo (HTI) derivative Z1, whose single bond rotation in dimethyl sulphoxide (DMSO) solvent and double bond rotation in cyclohexane solvent can be induced by visible light (J. Am. Chem. Soc. 2016, 138, 12,219). Here we investigate the intramolecular rotations of the HTI and Z1 in different polar solvents by time-dependent density functional theory (TDDFT) and Nonadiabatic dynamic simulations. Due to the steric hindrance between methyl and thioindigo fragment, the rotations of Z1 in the excited state are obstructed. Interestingly, the HTI exhibits two distinct rotation paths in DMSO and cyclohexane solvents at about 50fs. The intermolecular hydrogen bonds between HTI and DMSO play an important role in the rotation of HTI in DMSO solvent. Therefore, the HTI is a more promising two-dimensional photoswitch compared with the Z1. Our finding is thus of fundamental importance to understand the mechanisms of this class of photoswitches and design complex molecular behavior.
Collapse
Affiliation(s)
- Donglin Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - Yonggang Yang
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - Chaozheng Li
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China
| | - Yufang Liu
- College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
189
|
Zarei M, Zarei M. Self-Propelled Micro/Nanomotors for Sensing and Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800912. [PMID: 29882292 DOI: 10.1002/smll.201800912] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/08/2018] [Indexed: 06/08/2023]
Abstract
Self-propelled micro/nanomotors have gained attention for successful application in cargo delivery, therapeutic treatments, sensing, and environmental remediation. Unique characteristics such as high speed, motion control, selectivity, and functionability promote the application of micro/nanomotors in analytical sciences. Here, the recent advancements and main challenges regarding the application of self-propelled micro/nanomotors in sensing and environmental remediation are discussed. The current state of micro/nanomotors is reviewed, emphasizing the period of the last five years, then their developments into the future applications for enhanced sensing and efficient purification of water resources are extrapolated.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Civil Engineering, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Mohanna Zarei
- Department of Civil Engineering, University of Kurdistan, Sanandaj, 66177-15175, Iran
| |
Collapse
|
190
|
Pezzato C, Nguyen MT, Kim DJ, Anamimoghadam O, Mosca L, Stoddart JF. Controlling Dual Molecular Pumps Electrochemically. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803848] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Cristian Pezzato
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dong Jun Kim
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Ommid Anamimoghadam
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Lorenzo Mosca
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute of Molecular Design and Synthesis Tianjin University Nankai District Tianjin 300072 China
| |
Collapse
|
191
|
Pezzato C, Nguyen MT, Kim DJ, Anamimoghadam O, Mosca L, Stoddart JF. Controlling Dual Molecular Pumps Electrochemically. Angew Chem Int Ed Engl 2018; 57:9325-9329. [DOI: 10.1002/anie.201803848] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Cristian Pezzato
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dong Jun Kim
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Ommid Anamimoghadam
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Lorenzo Mosca
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute of Molecular Design and Synthesis Tianjin University Nankai District Tianjin 300072 China
| |
Collapse
|
192
|
Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
193
|
Cui JS, Ba QK, Ke H, Valkonen A, Rissanen K, Jiang W. Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle. Angew Chem Int Ed Engl 2018; 57:7809-7814. [DOI: 10.1002/anie.201803349] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/25/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Jie-Shun Cui
- Department of Chemistry; Southern University of Science and Technology; Xueyuan Blvd 1088 Shenzhen 518055 China
- College of Chemistry; Nankai University; Weijin Road 94 Tianjin 300071 China
| | - Qian-Kai Ba
- Department of Chemistry; Southern University of Science and Technology; Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Hua Ke
- Department of Chemistry; Southern University of Science and Technology; Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Arto Valkonen
- Department of Chemistry; University of Jyvaskyla, Nanoscience Center; P. O. Box 35 40014 Jyvaskyla Finland
| | - Kari Rissanen
- Department of Chemistry; University of Jyvaskyla, Nanoscience Center; P. O. Box 35 40014 Jyvaskyla Finland
| | - Wei Jiang
- Department of Chemistry; Southern University of Science and Technology; Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
194
|
Zanichelli V, Bazzoni M, Arduini A, Franchi P, Lucarini M, Ragazzon G, Secchi A, Silvi S. Redox-Switchable Calix[6]arene-Based Isomeric Rotaxanes. Chemistry 2018; 24:12370-12382. [DOI: 10.1002/chem.201800496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Valeria Zanichelli
- Dipartimento di Scienze Chimiche, della Vita e della; Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Margherita Bazzoni
- Dipartimento di Scienze Chimiche, della Vita e della; Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della; Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Paola Franchi
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Lucarini
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; Via Selmi 2 40126 Bologna Italy
| | - Giulio Ragazzon
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; Via Selmi 2 40126 Bologna Italy
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della; Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Serena Silvi
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
195
|
Abstract
Efficient molecular switching in confined spaces is critical for the successful development of artificial molecular machines. However, molecular switching events often entail large structural changes and therefore require conformational freedom, which is typically limited under confinement conditions. Here, we investigated the behavior of azobenzene-the key building block of light-controlled molecular machines-in a confined environment that is flexible and can adapt its shape to that of the bound guest. To this end, we encapsulated several structurally diverse azobenzenes within the cavity of a flexible, water-soluble coordination cage, and investigated their light-responsive behavior. Using UV/Vis absorption spectroscopy and a combination of NMR methods, we showed that each of the encapsulated azobenzenes exhibited distinct switching properties. An azobenzene forming a 1:1 host-guest inclusion complex could be efficiently photoisomerized in a reversible fashion. In contrast, successful switching in inclusion complexes incorporating two azobenzene guests was dependent on the availability of free cages in the system, and it involved reversible trafficking of azobenzene between the cages. In the absence of extra cages, photoswitching was either suppressed or it involved expulsion of azobenzene from the cage and consequently its precipitation from the solution. This finding was utilized to develop an information storage medium in which messages could be written and erased in a reversible fashion using light.
Collapse
|
196
|
Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat Chem 2018; 10:625-630. [PMID: 29713030 DOI: 10.1038/s41557-018-0040-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/05/2018] [Indexed: 12/12/2022]
Abstract
Mechanically interlocked molecules such as rotaxanes and catenanes comprise two or more components whose motion relative to each other can be controlled. A [2]rotaxane molecular shuttle, for example, consists of an axle bearing two recognition sites and a single macrocyclic wheel that can undergo a to-and-fro motion along the axle-shuttling between the recognition sites. The ability of mechanically interlocked molecules to undergo this type of large-amplitude change is the core mechanism behind almost every interlocked molecular switch or machine, including sophisticated mechanical systems such as a molecular elevator and a peptide synthesizer. Here, as a way to expand the scope of dynamics possible at the molecular level, we have developed a molecular shuttling mechanism involving the exchange of rings between two recognition sites in a saturated [3]rotaxane (one with no empty recognition sites). This was accomplished by passing a smaller ring through a larger one, thus achieving ring-through-ring molecular shuttling.
Collapse
|
197
|
Abstract
The field of synthetic molecular machines has quickly evolved in recent years, growing from a fundamental curiosity to a highly active field of chemistry. Many different applications are being explored in areas such as catalysis, self-assembled and nanostructured materials, and molecular electronics. Rotary molecular motors hold great promise for achieving dynamic control of molecular functions as well as for powering nanoscale devices. However, for these motors to reach their full potential, many challenges still need to be addressed. In this paper we focus on the design principles of rotary motors featuring a double-bond axle and discuss the major challenges that are ahead of us. Although great progress has been made, further design improvements, for example in terms of efficiency, energy input, and environmental adaptability, will be crucial to fully exploit the opportunities that these rotary motors offer.
Collapse
|
198
|
Abstract
A [1]rotaxane with two threaded α-cyclodextrin (α-CD) wheels was synthesized in 92% yield using a one-pot process at room temperature that employed spontaneous α-CD threading onto a 12-carbon alkyl chain in water followed by an oxime condensation reaction that attached two boronic acid-containing stopper groups. Rapid pirouetting of the threaded α-CD wheels around the encapsulated dumbbell was switched "ON" or "OFF" by the presence of chemical additives that controlled boronate ester bond formation between the interlocked components.
Collapse
Affiliation(s)
- Qi-Wei Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Jaroslav Zajíček
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
199
|
Rao S, Ye X, Zhang Q, Gao C, Wang W, Qu D. Light‐Induced Cyclization of A [
c
2]Daisy‐Chain Rotaxane to Form a Shrinkable Double‐Lasso Macrocycle. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Si‐Jia Rao
- School of Chemistry and Molecular EngineeringKey Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Xu‐Hao Ye
- School of Chemistry and Molecular EngineeringKey Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Qi Zhang
- School of Chemistry and Molecular EngineeringKey Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Chuan Gao
- School of Chemistry and Molecular EngineeringKey Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Wen‐Zhi Wang
- School of Chemistry and Molecular EngineeringKey Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Da‐Hui Qu
- School of Chemistry and Molecular EngineeringKey Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| |
Collapse
|
200
|
Xu L, Mou F, Gong H, Luo M, Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev 2018; 46:6905-6926. [PMID: 28949354 DOI: 10.1039/c7cs00516d] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Light, as an external stimulus, is capable of driving the motion of micro/nanomotors (MNMs) with the advantages of reversible, wireless and remote manoeuvre on demand with excellent spatial and temporal resolution. This review focuses on the state-of-the-art light-driven MNMs, which are able to move in liquids or on a substrate surface by converting light energy into mechanical work. The general design strategies for constructing asymmetric fields around light-driven MNMs to propel themselves are introduced as well as the photoactive materials for light-driven MNMs, including photocatalytic materials, photothermal materials and photochromic materials. Then, the propulsion mechanisms and motion behaviors of the so far developed light-driven MNMs are illustrated in detail involving light-induced phoretic propulsion, bubble recoil and interfacial tension gradient, followed by recent progress in the light-driven movement of liquid crystalline elastomers based on light-induced deformation. An outlook is further presented on the future development of light-driven MNMs towards overcoming key challenges after summarizing the potential applications in biomedical, environmental and micro/nanoengineering fields.
Collapse
Affiliation(s)
- Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | | | | | | | | |
Collapse
|