151
|
Qu X, Yan X, Kong C, Zhu Y, Li H, Pan D, Zhang X, Liu Y, Yin F, Qin H. c-Myb promotes growth and metastasis of colorectal cancer through c-fos-induced epithelial-mesenchymal transition. Cancer Sci 2019; 110:3183-3196. [PMID: 31338937 PMCID: PMC6778643 DOI: 10.1111/cas.14141] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
c-Myb is a crucial transcription factor that participates in various biological functions; however, its role in colorectal cancer (CRC) remains poorly investigated. We first analyzed the expression and clinical significance of c-Myb in a retrospective cohort enrolling 132 CRC patients. Then, the CRISPR/Cas9 technique was used to establish c-Myb gene KO CRC cell lines. Cellular functional assays in vitro and in vivo were used to evaluate the impact of c-Myb KO in CRC cells. Finally, RNA sequencing was used to investigate the potential oncogenic mechanisms regulated by c-Myb in CRC progression and related cellular validations were accordingly carried out. As a result, c-Myb is significantly overexpressed in CRC tissues as compared with adjacent normal tissues. High expression of c-Myb is positively correlated with lymph node metastasis and poor prognosis. Univariate analysis and multivariate analysis further identify c-Myb as an independent unfavorable prognostic factor for CRC patients. c-Myb KO inhibits the proliferation, apoptosis resistance, invasion, metastasis, colony formation and in vivo tumorigenesis of CRC cells. Also, the mechanism investigation indicates that c-Myb may promote CRC progression by regulating c-fos. c-fos overexpression can rescue the inhibitory effect of c-Myb KO on the malignant characteristics of CRC cells. Finally, we find that c-Myb KO inhibits the epithelial-mesenchymal transition (EMT) molecular phenotype in CRC cells, whereas c-fos overexpression can rescue this inhibitory effect. This study suggests that c-Myb promotes the malignant progression of CRC through c-fos-induced EMT and has the potential to be a promising prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiao Qu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Shanghai Clinical College, Anhui Medical University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Xuebing Yan
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Cheng Kong
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Yin Zhu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Dengdeng Pan
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohui Zhang
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Yongqiang Liu
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Fang Yin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China.,Shanghai Clinical College, Anhui Medical University, Shanghai, China.,Institute for Intestinal Diseases, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
152
|
Low infiltration of tumor-associated macrophages in high c-Myb-expressing breast tumors. Sci Rep 2019; 9:11634. [PMID: 31406165 PMCID: PMC6690941 DOI: 10.1038/s41598-019-48051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are prominent components of tumor stroma that promotes tumorigenesis. Many soluble factors participate in the deleterious cross-talk between TAMs and transformed cells; however mechanisms how tumors orchestrate their production remain relatively unexplored. c-Myb is a transcription factor recently described as a negative regulator of a specific immune signature involved in breast cancer (BC) metastasis. Here we studied whether c-Myb expression is associated with an increased presence of TAMs in human breast tumors. Tumors with high frequency of c-Myb-positive cells have lower density of CD68-positive macrophages. The negative association is reflected by inverse correlation between MYB and CD68/CD163 markers at the mRNA levels in evaluated cohorts of BC patients from public databases, which was found also within the molecular subtypes. In addition, we identified potential MYB-regulated TAMs recruiting factors that in combination with MYB and CD163 provided a valuable clinical multigene predictor for BC relapse. We propose that identified transcription program running in tumor cells with high MYB expression and preventing macrophage accumulation may open new venues towards TAMs targeting and BC therapy.
Collapse
|
153
|
Genome-wide mapping of DNA-binding sites identifies stemness-related genes as directly repressed targets of SNAIL1 in colorectal cancer cells. Oncogene 2019; 38:6647-6661. [DOI: 10.1038/s41388-019-0905-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 06/18/2019] [Accepted: 07/10/2019] [Indexed: 12/26/2022]
|
154
|
McIntyre JB, Ko JJ, Siever J, Chan AMY, Simpson RHW, Hao D, Lau HY. MYB-NFIB gene fusions identified in archival adenoid cystic carcinoma tissue employing NanoString analysis: an exploratory study. Diagn Pathol 2019; 14:78. [PMID: 31301736 PMCID: PMC6626627 DOI: 10.1186/s13000-019-0855-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) is a slow growing salivary gland malignancy that is molecularly characterized by t(6:9)(q22-23;p23-24) translocations which predominantly result in MYB-NFIB gene fusions in nearly half of tumours. Detection of MYB-NFIB transcripts is typically performed with fresh ACC tissue using conventional RT-PCR fragment analysis or FISH techniques, which are prone to failure when only archival formalin fixed paraffin embedded (FFPE) tissue is available. The purpose of this pilot study was to evaluate the utility of NanoString probe technology for the detection of MYB-NFIB transcripts in archival ACC tissue. METHODS A NanoString probeset panel was designed targeting the junctions of three currently annotated MYB-NFIB fusion genes as well as 5'/3' MYB probesets designed to detect MYB gene expression imbalance. RNA isolated from twenty-five archival ACC specimens was profiled and analyzed. RT-qPCR and sequencing were performed to confirm NanoString results. MYB protein expression was analyzed by immunohistochemistry. RESULTS Of the 25 samples analyzed, 11/25 (44%) expressed a high degree of MYB 5'/3' imbalance and five of these samples were positive for at least one specific MYB-NFIB variant in our panel. MYB-NFIB variant detection on NanoString analysis was confirmed by direct cDNA sequencing. No clinical correlations were found to be associated with MYB fusion status. CONCLUSION We conclude that the application of NanoString digital probe counting technology is well suited for the detection and quantification of MYB-NFIB fusion transcripts in archival ACC specimens.
Collapse
Affiliation(s)
- John B McIntyre
- Translational Laboratory, Department of Oncology, University of Calgary, Calgary, AB, Canada.
| | - Jenny J Ko
- Department of Medical Oncology, BC Cancer - Abbotsford, Abbotsford, BC, Canada
| | - Jodi Siever
- Faculty of Medicine, Southern Medical Program University of British Columbia, Kelowna, BC, Canada
| | - Angela M Y Chan
- Translational Laboratory, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Roderick H W Simpson
- Department of Anatomical Pathology, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Desiree Hao
- Department of Medical Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, AB, Canada
| | - Harold Y Lau
- Department of Radiation Oncology, University of Calgary, Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
155
|
Pham T, Pereira L, Roth S, Galletta L, Link E, Akhurst T, Solomon B, Michael M, Darcy P, Sampurno S, Heriot A, Ramsay R, Desai J. First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: The MYPHISMO study protocol (NCT03287427). Contemp Clin Trials Commun 2019; 16:100409. [PMID: 31650066 PMCID: PMC6804811 DOI: 10.1016/j.conctc.2019.100409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 11/04/2022] Open
Abstract
Background MYB is a transcription factor that is overexpressed in colorectal cancer (CRC) and also a driver mutation in adenoid cystic carcinoma (AdCC). Therefore, the MYB protein is an ideal target to vaccinate against to aid recruitment of tumour infiltrating lymphocytes (TILs) against these tumours. The Peter MacCallum Cancer Centre (Melbourne, Australia) has engineered a DNA vaccine, TetMYB, based on the pVAX1 plasmid vector carrying a fusion construct consisting of the universal tetanus toxin T-cell epitopes flanking an inactivated MYB gene. Methods This prospective first-in-human phase I single-arm multi-centre clinical trial involves patients with metastatic CRC or AdCC. Stage 1 will evaluate the safety profile of escalating doses of TetMYB vaccine, given sequentially and in combination with an anti-PD-1 inhibitory antibody, to determine the maximum tolerated dose (MTD). Stage 2 will assess the MTD in an expanded cohort. The calculated sample size is 32 patients: 12 in Stage 1 and 20 in Stage 2. The expected total duration of the trial is 3 years with 15 months of recruitment followed by a minimum of 18 months follow-up. Discussion MYB transcription factor is aberrantly overexpressed in a range of epithelial cancers, not limited to the above tumour types. Based on promising pre-clinical data of vaccine-induced tumour clearance and establishment of anti-tumour memory, we are embarking on this first-in-human trial. If successful, the results from this trial will allow progression to a Phase II trial and validation of this breakthrough immunotherapeutic approach, not only in CRC and AdCC, but other MYB over-expressing cancers. Trial registration ClinicalTrials.gov ID: NCT03287427. Registered: September 19, 2017.
Collapse
Affiliation(s)
- Toan Pham
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Lloyd Pereira
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sara Roth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Laura Galletta
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Emma Link
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tim Akhurst
- Division of Medical Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ben Solomon
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Michael
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shienny Sampurno
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Alexander Heriot
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Robert Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Pathology, University of Melbourne, Melbourne, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
156
|
Ye Z, Wang F, Yan F, Wang L, Li B, Liu T, Hu F, Jiang M, Fu Z. Identification of candidate genes of nasopharyngeal carcinoma by bioinformatical analysis. Arch Oral Biol 2019; 106:104478. [PMID: 31319350 DOI: 10.1016/j.archoralbio.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to identify candidate genes as potential biomarkers in nasopharyngeal carcinoma (NPC) by bioinformatical analysis. METHODS Three microarray datasets: GSE32906, GSE15170, GSE53819 were download from public database and analyzed to identify the differentially expressed genes (DEGs) between NPC and normal samples. Functional and pathway enrichment analysis of the DEGs were performed. Protein-protein interaction network and gene-transcription factor regulatory network of DEGs were constructed. And the expression of hub genes in NPC was also validated based on the public database. RESULTS A total of 16 up-regulated and 27 down-regulated genes were screened out from the microarray datasets. Functional and pathway enrichment analysis showed that DEGs were mostly enriched in positive regulation of angiogenesis, mesenchymal cell proliferation, cell surface and DNA binding, ECM-receptor interaction pathway, PI3K-Akt signaling pathway, and pathways in cancer. Five hub genes JUN, VEGFA, FOXM1, MYB, and WNT5A were identified from the protein-protein interaction network. Subsequently, the hub gene-transcription factor regulatory network revealed that STAT3, MYC, SOX2, RUNX2 present key relations with hub genes. The expression of these five hub genes were also validated to be differentially expressed among NPC and normal samples. CONCLUSIONS The current study indicated that the hub DEGs JUN, VEGFA, FOXM1, MYB, and WNT5A we identified might be potential therapeutic biomarkers of NPC.
Collapse
Affiliation(s)
- Zhimin Ye
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Fangzheng Wang
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Fengqin Yan
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lei Wang
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Bin Li
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Tongxin Liu
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Fujun Hu
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Mingxiang Jiang
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiology, Zhejiang Cancer Hospital, No.1 Banshan East Road, Hangzhou, Zhejiang, China.
| | - Zhenfu Fu
- Institute of Cancer Research and Basic Medical Science of Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Cancer hospital of University of Chinese Academy of Science, Hangzhou, Zhejiang, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
157
|
Dysregulated Transcriptional Control in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122883. [PMID: 31200487 PMCID: PMC6627928 DOI: 10.3390/ijms20122883] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Recent advances in whole-genome and transcriptome sequencing of prostate cancer at different stages indicate that a large number of mutations found in tumors are present in non-protein coding regions of the genome and lead to dysregulated gene expression. Single nucleotide variations and small mutations affecting the recruitment of transcription factor complexes to DNA regulatory elements are observed in an increasing number of cases. Genomic rearrangements may position coding regions under the novel control of regulatory elements, as exemplified by the TMPRSS2-ERG fusion and the amplified enhancer identified upstream of the androgen receptor (AR) gene. Super-enhancers are increasingly found to play important roles in aberrant oncogenic transcription. Several players involved in these processes are currently being evaluated as drug targets and may represent new vulnerabilities that can be exploited for prostate cancer treatment. They include factors involved in enhancer and super-enhancer function such as bromodomain proteins and cyclin-dependent kinases. In addition, non-coding RNAs with an important gene regulatory role are being explored. The rapid progress made in understanding the influence of the non-coding part of the genome and of transcription dysregulation in prostate cancer could pave the way for the identification of novel treatment paradigms for the benefit of patients.
Collapse
|
158
|
The AAA+ATPase RUVBL2 is essential for the oncogenic function of c-MYB in acute myeloid leukemia. Leukemia 2019; 33:2817-2829. [PMID: 31138842 PMCID: PMC6887538 DOI: 10.1038/s41375-019-0495-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Subtype-specific leukemia oncogenes drive aberrant gene expression profiles that converge on common essential mediators to ensure leukemia self-renewal and inhibition of differentiation. The transcription factor c-MYB functions as one such mediator in a diverse range of leukemias. Here we show for the first time that transcriptional repression of myeloid differentiation associated c-MYB target genes in AML is enforced by the AAA+ ATPase RUVBL2. Silencing RUVBL2 expression resulted in increased binding of c-MYB to these loci and their transcriptional activation. RUVBL2 inhibition resulted in AML cell apoptosis and severely impaired disease progression of established AML in engrafted mice. In contrast, such inhibition had little impact on normal hematopoietic progenitor differentiation. These data demonstrate that RUVBL2 is essential for the oncogenic function of c-MYB in AML by governing inhibition of myeloid differentiation. They also indicate that targeting the control of c-MYB function by RUVBL2 is a promising approach to developing future anti-AML therapies.
Collapse
|
159
|
Marceau AH, Brison CM, Nerli S, Arsenault HE, McShan AC, Chen E, Lee HW, Benanti JA, Sgourakis NG, Rubin SM. An order-to-disorder structural switch activates the FoxM1 transcription factor. eLife 2019; 8:e46131. [PMID: 31134895 PMCID: PMC6538375 DOI: 10.7554/elife.46131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered transcription factor transactivation domains (TADs) function through structural plasticity, adopting ordered conformations when bound to transcriptional co-regulators. Many transcription factors contain a negative regulatory domain (NRD) that suppresses recruitment of transcriptional machinery through autoregulation of the TAD. We report the solution structure of an autoinhibited NRD-TAD complex within FoxM1, a critical activator of mitotic gene expression. We observe that while both the FoxM1 NRD and TAD are primarily intrinsically disordered domains, they associate and adopt a structured conformation. We identify how Plk1 and Cdk kinases cooperate to phosphorylate FoxM1, which releases the TAD into a disordered conformation that then associates with the TAZ2 or KIX domains of the transcriptional co-activator CBP. Our results support a mechanism of FoxM1 regulation in which the TAD undergoes switching between disordered and different ordered structures.
Collapse
Affiliation(s)
- Aimee H Marceau
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Caileen M Brison
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Santrupti Nerli
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
- Department of Computer ScienceUniversity of California, Santa CruzSanta CruzUnited States
| | - Heather E Arsenault
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Andrew C McShan
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Eefei Chen
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Hsiau-Wei Lee
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Jennifer A Benanti
- Department of Molecular, Cell and Cancer BiologyUniversity of Massachusetts Medical SchoolWorcesterUnited States
| | - Nikolaos G Sgourakis
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| | - Seth M Rubin
- Department of Chemistry and BiochemistryUniversity of California, Santa CruzSanta CruzUnited States
| |
Collapse
|
160
|
c-Myb regulates tumorigenic potential of embryonal rhabdomyosarcoma cells. Sci Rep 2019; 9:6342. [PMID: 31004084 PMCID: PMC6474878 DOI: 10.1038/s41598-019-42684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 04/04/2019] [Indexed: 02/08/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are a heterogeneous group of mesodermal tumors, the most common sub-types are embryonal (eRMS) and alveolar (aRMS) rhabdomyosarcoma. Immunohistochemical analysis revealed c-Myb expression in both eRMS and aRMS. c-Myb has been reported to be often associated with malignant human cancers. We therefore investigated the c-Myb role in RMS using cellular models of RMS. Specific suppression of c-Myb by a lentiviral vector expressing doxycycline (Dox)-inducible c-Myb shRNA inhibited proliferation, colony formation, and migration of the eRMS cell line (RD), but not of the aRMS cell line (RH30). Upon c-Myb knockdown in eRMS cells, cells accumulated in G0/G1 phase, the invasive behaviour of cells was repressed, and elevated levels of myosin heavy chain, marker of muscle differentiation, was detected. Next, we used an RD-based xenograft model to investigate the role of c-Myb in eRMS tumorigenesis in vivo. We found that Dox administration did not result in efficient suppression of c-Myb in growing tumors. However, when c-Myb-deficient RD cells were implanted into SCID mice, we observed inefficient tumor grafting and attenuation of tumor growth during the initial stages of tumor expansion. The presented study suggests that c-Myb could be a therapeutic target in embryonal rhabdomyosarcoma assuming that its expression is ablated.
Collapse
|
161
|
Yang RM, Nanayakkara D, Kalimutho M, Mitra P, Khanna KK, Dray E, Gonda TJ. MYB regulates the DNA damage response and components of the homology-directed repair pathway in human estrogen receptor-positive breast cancer cells. Oncogene 2019; 38:5239-5249. [PMID: 30971760 DOI: 10.1038/s41388-019-0789-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/20/2019] [Accepted: 03/07/2019] [Indexed: 11/09/2022]
Abstract
Over 70% of human breast cancers are estrogen receptor-positive (ER+), most of which express MYB. In these and other cell types, the MYB transcription factor regulates the expression of many genes involved in cell proliferation, differentiation, tumorigenesis, and apoptosis. So far, no clear link has been established between MYB and the DNA damage response in breast cancer. Here, we found that silencing MYB in the ER+ breast cancer cell line MCF-7 led to increased DNA damage accumulation, as marked by increased γ-H2AX foci following induction of double-stranded breaks. We further found that this was likely mediated by decreased homologous recombination-mediated repair (HRR), since silencing MYB impaired the formation of RAD51 foci in response to DNA damage. Moreover, cells depleted for MYB exhibited reduced expression of several key genes involved in HRR including BRCA1, PALB2, and TOPBP1. Taken together, these data imply that MYB and its targets play an important role in the response of ER+ breast cancer cells to DNA damage, and suggest that induction of DNA damage along with inhibition of MYB activity could offer therapeutic benefits for ER+ breast cancer and possibly other cancer types.
Collapse
Affiliation(s)
- Ren-Ming Yang
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Keck School of Medicine at the Children's Hospital Los Angeles Campus, University of Southern California, Los Angeles, CA, 90027, USA
| | - Devathri Nanayakkara
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Murugan Kalimutho
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Partha Mitra
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, TRI, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Eloise Dray
- Institute of Health and Biomedical Innovations, QUT at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,Mater Research/UQ at the Translational Research Institute, Brisbane, QLD, 4102, Australia. .,University of Texas Health, San Antonio, Department of Biochemistry and Structural Biology, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, QLD, 4102, Australia. .,University of South Australia Cancer Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
162
|
Moody L, Hernández-Saavedra D, Kougias DG, Chen H, Juraska JM, Pan YX. Tissue-specific changes in Srebf1 and Srebf2 expression and DNA methylation with perinatal phthalate exposure. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz009. [PMID: 31240115 PMCID: PMC6586200 DOI: 10.1093/eep/dvz009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/30/2023]
Abstract
Perinatal exposure to endocrine disrupting chemicals negatively impacts health, but the mechanism by which such toxicants damage long-term reproductive and metabolic function is unknown. Lipid metabolism plays a pivotal role in steroid hormone synthesis as well as energy utilization and storage; thus, aberrant lipid regulation may contribute to phthalate-driven health impairments. In order to test this hypothesis, we specifically examined epigenetic disruptions in lipid metabolism pathways after perinatal phthalate exposure. During gestation and lactation, pregnant Long-Evans rat dams were fed environmentally relevant doses of phthalate mixture: 0 (CON), 200 (LO), or 1000 (HI) µg/kg body weight/day. On PND90, male offspring in the LO and HI groups had higher body weights than CON rats. Gene expression of lipid metabolism pathways was altered in testis and adipose tissue of males exposed to the HI phthalate dosage. Specifically, Srebf1 was downregulated in testis and Srebf2 was upregulated in adipose tissue. In testis of HI rats, DNA methylation was increased at two loci and reduced at one other site surrounding Srebf1 transcription start site. In adipose tissue of HI rats, we observed increased DNA methylation at one region within the first intron of Srebf2. Computational analysis revealed several potential transcriptional regulator binding sites, suggesting functional relevance of the identified differentially methylated CpGs. Overall, we show that perinatal phthalate exposure affects lipid metabolism gene expression in a tissue-specific manner possibly through altering DNA methylation of Srebf1 and Srebf2.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Daniel G Kougias
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hong Chen
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Janice M Juraska
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
163
|
Xu LH, Zhao F, Yang WW, Chen CW, Du ZH, Fu M, Ge XY, Li SL. MYB promotes the growth and metastasis of salivary adenoid cystic carcinoma. Int J Oncol 2019; 54:1579-1590. [PMID: 30896785 PMCID: PMC6438425 DOI: 10.3892/ijo.2019.4754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
The incidence of recurrent t(6;9) translocation of the MYB proto-oncogene to NFIB (the gene that encodes nuclear factor 1 B-type) in adenoid cystic carcinoma (ACC) tumour tissues is high. However, MYB [the gene that encodes transcriptional activator Myb (MYB)] overexpression is more common, indicating that MYB serves a key role in ACC. The current study aimed to investigate the role of MYB in salivary (S)ACC growth and metastasis. A total of 50 fresh-frozen SACC tissues and 41 fresh-frozen normal submandibular gland (SMG) tissues were collected to measure MYB mRNA expression, and to analyse the associations between MYB and epithelial-mesenchymal transition (EMT) markers. Compared with normal SMG tissue, SACC tissues demonstrated significantly increased MYB expression, with a high expression rate of 90%. Interestingly, MYB tended to be negatively correlated with CDH1 [the gene that encodes cadherin-1 (E-cadherin)] and positively correlated with VIM (the gene that encodes vimentin), suggesting that MYB is associated with SACC metastasis. To explore the role of MYB in SACC, the authors stably overexpressed and knocked down MYB in SACC cells. The authors of the current study demonstrated that MYB overexpression promoted SACC cell proliferation, migration and invasion, whereas its knockdown inhibited these activities. Additionally, when MYB was overexpressed, CDH1 expression was downregulated, and CDH2 (the gene that encodes cadherin-2), VIM and ACTA2 (the gene that encodes actin, aortic smooth muscle) expression was upregulated. Then, the effect of MYB on lung tumour metastasis was investigated in vivo in non-obese diabetic/severe combined immunodeficiency mice. MYB overexpressing and control cells were injected into the mice through the tail vein. The results revealed that MYB promoted SACC lung metastasis. Collectively, these results demonstrated that MYB is aberrantly overexpressed in SACC tissues, and promotes SACC cell proliferation and metastasis, indicating that MYB may be a novel therapeutic target for SACC.
Collapse
Affiliation(s)
- Li-Hua Xu
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Fei Zhao
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Wen-Wen Yang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Chu-Wen Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Zhi-Hao Du
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Min Fu
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Xi-Yuan Ge
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| | - Sheng-Lin Li
- Central Laboratory, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing 10081, P.R. China
| |
Collapse
|
164
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
165
|
Gorbatenko A, Søkilde R, Sorensen EE, Newie I, Persson H, Morancho B, Arribas J, Litman T, Rovira C, Pedersen SF. HER2 and p95HER2 differentially regulate miRNA expression in MCF-7 breast cancer cells and downregulate MYB proteins through miR-221/222 and miR-503. Sci Rep 2019; 9:3352. [PMID: 30833639 PMCID: PMC6399295 DOI: 10.1038/s41598-019-39733-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
The HER2 oncogene and its truncated form p95HER2 play central roles in breast cancer. Here, we show that although HER2 and p95HER2 generally elicit qualitatively similar changes in miRNA profile in MCF-7 breast cancer cells, a subset of changes are distinct and p95HER2 shifts the miRNA profile towards the basal breast cancer subtype. High-throughput miRNA profiling was carried out 15, 36 and 60 h after HER2 or p95HER2 expression and central hits validated by RT-qPCR. miRNAs strongly regulated by p95HER2 yet not by HER2, included miR-221, miR-222, miR-503, miR-29a, miR-149, miR-196 and miR-361. Estrogen receptor-α (ESR1) expression was essentially ablated by p95HER2 expression, in a manner recapitulated by miR-221/-222 mimics. c-Myb family transcription factors MYB and MYBL1, but not MYBL2, were downregulated by p95HER2 and by miR-503 or miR-221/-222 mimics. MYBL1 3′UTR inhibition by miR-221/222 was lost by deletion of a single putative miR-221/222 binding sites. p95HER2 expression, or knockdown of either MYB protein, elicited upregulation of tissue inhibitor of matrix metalloprotease-2 (TIMP2). miR-221/222 and -503 mimics increased, and TIMP2 knockdown decreased, cell migration and invasion. A similar pathway was operational in T47D- and SKBr-3 cells. This work reveals important differences between HER2- and p95HER2- mediated miRNA changes in breast cancer cells, provides novel mechanistic insight into regulation of MYB family transcription factors by p95HER2, and points to a role for a miR-221/222– MYB family–TIMP2 axis in regulation of motility in breast cancer cells.
Collapse
Affiliation(s)
- Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.,Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Rolf Søkilde
- BioCare, Strategic Cancer Research Program, Lund, Sweden.,Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ester E Sorensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Inga Newie
- BioCare, Strategic Cancer Research Program, Lund, Sweden.,Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Helena Persson
- BioCare, Strategic Cancer Research Program, Lund, Sweden.,Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Beatriz Morancho
- Preclinical Research Program, Vall d'Hebron Institute of Oncology and CIBERONC, 08035, Barcelona, Spain
| | - Joaquin Arribas
- Preclinical Research Program, Vall d'Hebron Institute of Oncology and CIBERONC, 08035, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autonoma de Barcelona, Campus de la UAB, JA, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats, JA, Barcelona, Spain
| | - Thomas Litman
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark
| | - Carlos Rovira
- BioCare, Strategic Cancer Research Program, Lund, Sweden.,Department of Clinical Sciences Lund, Oncology and Pathology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
166
|
Pham T, Carpinteri S, Sampurno S, Pereira L, Roth S, Narasimhan V, Darcy P, Desai J, Heriot AG, Ramsay RG. Novel Vaccine Targeting Colonic Adenoma: a Pre-clinical Model. J Gastrointest Surg 2019; 23:626-633. [PMID: 30623377 DOI: 10.1007/s11605-018-4060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/15/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related mortality in the USA. Over 80% of CRC develop from adenomatous polyps. Hence, early treatment and prevention of adenomas would lead to a significant decrease of disease burden for CRC. MYB is a transcription factor that is overexpressed in both precancerous adenomatous polyps and colorectal cancer, and hence an ideal immunotherapeutic target. We have developed a cancer vaccine, TetMYB, that targets MYB and aim to evaluate its efficacy in the prophylactic and therapeutic management of adenomatous polyps. MATERIAL AND METHODS Six- to eight-week-old Apcmin/+ (Familial Adenomatous Polyposis model) and Apc580S (sporadic model) C57BL/6 mice were used. The Apcmin/+ mice are carried a germline mutation of one Apc allele whereas the Apc580S model has an inducible silencing of one Apc allele, when exposed to tamoxifen, via the Cre-Lox recombination enzyme system. In the prophylactic treatment group, Apcmin/+ and Apc580S C57BL/6 mice were vaccinated and surveyed for clinical signs of distress. Number of adenoma and survival were measured. In the therapeutic cohort, Apc580S C57BL/6 mice were given tamoxifen-laced food to activate Cre-Lox recombinase mediated silencing of one Apc allele and thus inducing adenoma development. Following adenoma detection, mice were vaccinated with TetMYB and treated with anti-PD-1 antibody and were analyzed for overall survival. RESULTS In both the prophylactic and therapeutic setting, mice vaccinated with TetMYB had a significantly improved outcome, with the vaccinated Apcmin/+ mice having a median survival benefit of 70 days (p = 0.008) and the vaccinated Apc580S mice having a mean survival benefit of 134 days (p = 0.01) over the unvaccinated mice. In the prophylactic cohort, immunofluorescence confirmed a stronger cytotoxic CD8+ T cell infiltrate in the vaccinated group, implying an anti-tumor immune response. In the therapeutic cohort, vaccinated Apc580S mice showed significantly reduced adenoma progression rate compared to the unvaccinated mice (p = 0.0005). CONCLUSION TetMYB vaccine has shown benefit in a prophylactic and therapeutic setting in the management of colonic adenoma in a murine model. This will form the basis for a future clinical trial to prevent and treat colonic adenomatous polyps.
Collapse
Affiliation(s)
- Toan Pham
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia. .,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia. .,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Sandra Carpinteri
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Shienny Sampurno
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Lloyd Pereira
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Sara Roth
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Vignesh Narasimhan
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip Darcy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Jayesh Desai
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander G Heriot
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert G Ramsay
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
167
|
Gautam S, Fioravanti J, Zhu W, Le Gall JB, Brohawn P, Lacey NE, Hu J, Hocker JD, Hawk NV, Kapoor V, Telford WG, Gurusamy D, Yu Z, Bhandoola A, Xue HH, Roychoudhuri R, Higgs BW, Restifo NP, Bender TP, Ji Y, Gattinoni L. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat Immunol 2019; 20:337-349. [PMID: 30778251 PMCID: PMC6489499 DOI: 10.1038/s41590-018-0311-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.
Collapse
Affiliation(s)
- Sanjivan Gautam
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Fioravanti
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhu
- Department of Bioinformatics, Inova Translational Medicine Institute, Fairfax, VA, USA
| | - John B Le Gall
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Neal E Lacey
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jinhui Hu
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nga Voong Hawk
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Devikala Gurusamy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | | | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Timothy P Bender
- Department of Microbiology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cellular Biomedicine Group, Gaithersburg, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
168
|
Xie R, Yang Y, Zhang H, Liu H, Guo J, Qin H, Ma Y, Goel A, Li X, Wei Q. c-Myb and its Effector COX-2 as an Indicator Associated with Prognosis and Therapeutic Outcome in Colorectal Cancer. J Cancer 2019; 10:1601-1610. [PMID: 31205515 PMCID: PMC6548004 DOI: 10.7150/jca.27261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: One of our previous studies have demonstrated that the cancer suppressor miR-150 regulated the progression of colorectal cancer (CRC) by down-regulating v-myb avian myeloblastosis viral oncogene homolog (c-Myb). The purpose of present study was to evaluate the prognostic value of the expression of c-Myb and its effector, prostaglandin-endoperoxide synthase 2 (COX-2) in patients with CRC. Methods: We used tissue microarrays (containing 202 CRC tissues and matched adjacent normal tissues) and conducted immunohistochemical analysis and western blotting analysis (containing 3 CRC tissues and matched adjacent normal tissues) to detect the expression of c-Myb and COX-2. Results: Compared with the adjacent nontumorous tissues, both the expression levels of c-Myb and COX-2 were higher in the cancer tissues. A statistically significant correlation was found between the expression of c-Myb and COX-2. Elevated c-Myb and COX-2 were associated with more advanced tumor invasion and poorer overall survival by univariate analysis. Higher expression levels of both c-Myb and COX-2 were significantly associated with shorter overall survival for stage II and stage III patients with 5-Fu based chemotherapy. Multivariate analysis identified the lymph node involvement, distant metastatic spread and the elevated c-Myb and COX-2 as independent factors of poor prognosis for CRC. Conclusions: In conclusion, the overexpression of both c-Myb and COX-2 would be of prognostic screening value in patients with CRC.
Collapse
Affiliation(s)
- Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai200072, P.R. China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai200233, P.R. China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai200072, P.R. China
| | - Jing Guo
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai200072, P.R. China
| | - Huanlong Qin
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated with Tongji University, Shanghai 200072, P. R. China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ajay Goel
- Center for Translational Epigenomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, United States
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University, Shanghai200072, P.R. China
| |
Collapse
|
169
|
Kido T, Li Y, Tanaka Y, Dahiya R, Chris Lau YF. The X-linked tumor suppressor TSPX downregulates cancer-drivers/oncogenes in prostate cancer in a C-terminal acidic domain dependent manner. Oncotarget 2019; 10:1491-1506. [PMID: 30863497 PMCID: PMC6407674 DOI: 10.18632/oncotarget.26673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/31/2019] [Indexed: 01/02/2023] Open
Abstract
TSPX is a tumor suppressor gene located at Xp11.22, a prostate cancer susceptibility locus. It is ubiquitously expressed in most tissues but frequently downregulated in various cancers, including lung, brain, liver and prostate cancers. The C-terminal acidic domain (CAD) of TSPX is crucial for the tumor suppressor functions, such as inhibition of cyclin B/CDK1 phosphorylation and androgen receptor transactivation. Currently, the exact role of the TSPX CAD in transcriptional regulation of downstream genes is still uncertain. Using different variants of TSPX, we showed that overexpression of either TSPX, that harbors a CAD, or a CAD-truncated variant (TSPX[∆C]) drastically retarded cell proliferation in a prostate cancer cell line LNCaP, but cell death was induced only by overexpression of TSPX. Transcriptome analyses showed that TSPX or TSPX[∆C] overexpression downregulated multiple cancer-drivers/oncogenes, including MYC and MYB, in a CAD-dependent manner and upregulated various tumor suppressors in a CAD-independent manner. Datamining of transcriptomes of prostate cancer specimens in the Cancer Genome Atlas (TCGA) dataset confirmed the negative correlation between the expression level of TSPX and those of MYC and MYB in clinical prostate cancer, thereby supporting the hypothesis that the CAD of TSPX plays an important role in suppression of cancer-drivers/oncogenes in prostatic oncogenesis.
Collapse
Affiliation(s)
- Tatsuo Kido
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yunmin Li
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center, San Francisco and University of California San Francisco, San Francisco, California, USA
| | - Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| |
Collapse
|
170
|
Loss of MYBBP1A Induces Cancer Stem Cell Activity in Renal Cancer. Cancers (Basel) 2019; 11:cancers11020235. [PMID: 30781655 PMCID: PMC6406377 DOI: 10.3390/cancers11020235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 01/20/2023] Open
Abstract
Tumors are cellular ecosystems where different populations and subpopulations of cells coexist. Among these cells, cancer stem cells (CSCs) are considered to be the origin of the tumor mass, being involved in metastasis and in the resistance to conventional therapies. Furthermore, tumor cells have an enormous plasticity and a phenomenon of de-differentiation of mature tumor cells to CSCs may occur. Therefore, it is essential to identify genetic alterations that cause the de-differentiation of mature tumor cells to CSCs for the future design of therapeutic strategies. In this study, we characterized the role of MYBBP1A by experiments in cell lines, xenografts and human tumor samples. We have found that MYBBP1A downregulation increases c-MYB (Avian myeloblastosis viral oncogene homolog) activity, leading to a rise in the stem-like cell population. We identified that the downregulation of MYBBP1A increases tumorigenic properties, in vitro and in vivo, in renal carcinoma cell lines that express high levels of c-MYB exclusively. Moreover, in a cohort of renal tumors, MYBBP1A is downregulated or lost in a significant percentage of tumors correlating with poor patient prognosis and a metastatic tendency. Our data support the role of MYBBP1A as a tumor suppressor by repressing c-MYB, acting as an important regulator of the plasticity of tumor cells.
Collapse
|
171
|
Asamitsu S, Obata S, Yu Z, Bando T, Sugiyama H. Recent Progress of Targeted G-Quadruplex-Preferred Ligands Toward Cancer Therapy. Molecules 2019; 24:E429. [PMID: 30682877 PMCID: PMC6384606 DOI: 10.3390/molecules24030429] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
A G-quadruplex (G4) is a well-known nucleic acid secondary structure comprising guanine-rich sequences, and has profound implications for various pharmacological and biological events, including cancers. Therefore, ligands interacting with G4s have attracted great attention as potential anticancer therapies or in molecular probe applications. To date, a large variety of DNA/RNA G4 ligands have been developed by a number of laboratories. As protein-targeting drugs face similar situations, G-quadruplex-interacting drugs displayed low selectivity to the targeted G-quadruplex structure. This low selectivity could cause unexpected effects that are usually reasons to halt the drug development process. In this review, we address the recent research on synthetic G4 DNA-interacting ligands that allow targeting of selected G4s as an approach toward the discovery of highly effective anticancer drugs.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Shunsuke Obata
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto, 606-8502, Japan.
- Institute for Integrated Cell-Material Science (WPI-iCeMS) Kyoto University, Yoshida-Ushinomiyacho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
172
|
Small Subset of Adenoid Cystic Carcinoma of the Skin Is Associated With Alterations of the MYBL1 Gene Similar to Their Extracutaneous Counterparts. Am J Dermatopathol 2019; 40:721-726. [PMID: 29570128 DOI: 10.1097/dad.0000000000001091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenoid cystic carcinoma (ACC) of the skin is a rare malignant neoplasm histologically identical to homonymous tumors in other organs. Cutaneous ACC has been found to harbor MYB gene activations, either through MYB chromosomal abnormalities or by generation of the MYB-NFIB fusion. In salivary gland ACC, in addition to the MYB gene, alterations in MYBL1, the gene closely related to MYB, have been reported. We studied 10 cases of cutaneous ACC (6 women, 4 men; and age range 51-83 years) for alterations in the MYB, NFIB, and MYBL1 genes, using FISH and PCR. MYB break-apart and NFIB break-apart tests were positive in 4 and 5 cases, respectively. MYB-NFIB fusions were found in 4 cases. The break of MYBL1 was found in 2 cases, and in one of them, the NFIB break-apart probe was positive, strongly indicating a MYBL1-NFIB fusion. In 2 cases, the MYB break-apart test was positive, whereas no MYB-NFIB was detected, strongly suggesting another fusion partner. It is concluded that MYBL1 alterations are detected in primary cutaneous ACC but are apparently less common compared with MYB and NFIB alterations.
Collapse
|
173
|
Ochoa B, Chico Y, Martínez MJ. Insights Into SND1 Oncogene Promoter Regulation. Front Oncol 2018; 8:606. [PMID: 30619748 PMCID: PMC6297716 DOI: 10.3389/fonc.2018.00606] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/27/2018] [Indexed: 01/09/2023] Open
Abstract
The staphylococcal nuclease and Tudor domain containing 1 gene (SND1), also known as Tudor-SN, TSN or p100, encodes an evolutionarily conserved protein with invariant domain composition. SND1 contains four repeated staphylococcal nuclease domains and a single Tudor domain, which confer it endonuclease activity and extraordinary capacity for interacting with nucleic acids, individual proteins and protein complexes. Originally described as a transcriptional coactivator, SND1 plays fundamental roles in the regulation of gene expression, including RNA splicing, interference, stability, and editing, as well as in the regulation of protein and lipid homeostasis. Recently, SND1 has gained attention as a potential disease biomarker due to its positive correlation with cancer progression and metastatic spread. Such functional diversity of SND1 marks this gene as interesting for further analysis in relation with the multiple levels of regulation of SND1 protein production. In this review, we summarize the SND1 genomic region and promoter architecture, the set of transcription factors that can bind the proximal promoter, and the evidence supporting transactivation of SND1 promoter by a number of signal transduction pathways operating in different cell types and conditions. Unraveling the mechanisms responsible for SND1 promoter regulation is of utmost interest to decipher the SND1 contribution in the realm of both normal and abnormal physiology.
Collapse
Affiliation(s)
| | | | - María José Martínez
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
174
|
Sarvizadeh M, Ghasemi F, Tavakoli F, Sadat Khatami S, Razi E, Sharifi H, Biouki NM, Taghizadeh M. Vaccines for colorectal cancer: an update. J Cell Biochem 2018; 120:8815-8828. [PMID: 30536960 DOI: 10.1002/jcb.28179] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 11/12/2018] [Indexed: 12/29/2022]
Abstract
Colorectal cancer (CRC) is known as the third most common and fourth leading cancer associated death worldwide. The occurrence of metastasis has remained as a critical challenge in CRC, so that distant metastasis (mostly to the liver) has been manifested in about 20%-25% of patients. Several screening approaches have introduced for detecting CRC in different stages particularly in early stages. The standard treatments for CRC are surgery, chemotherapy and radiotherapy, in alone or combination. Immunotherapy is a set of novel approaches with the aim of remodeling the immune system battle with metastatic cancer cells, such as immunomodulatory monoclonal antibodies (immune checkpoint inhibitors), adoptive cell transfer (ACT) and cancer vaccine. Cancer vaccines are designed to trigger the intense response of immune system to tumor-specific antigens. In two last decades, introduction of new cancer vaccines and designing several clinical trials with vaccine therapy, have been taken into consideration in colon cancer patients. This review will describe the treatment approaches with the special attention to vaccines applied to treat colorectal cancer.
Collapse
Affiliation(s)
- Mostafa Sarvizadeh
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ebrahim Razi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Hossein Sharifi
- The Advocate Center for Clinical Research, Ayatollah Yasrebi Hospital, Kashan, Iran
| | - Nousin Moussavi Biouki
- Department of Surgery, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
175
|
Association of SHMT1, MAZ, ERG, and L3MBTL3 Gene Polymorphisms with Susceptibility to Multiple Sclerosis. Biochem Genet 2018; 57:355-370. [PMID: 30456721 DOI: 10.1007/s10528-018-9894-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/07/2018] [Indexed: 01/08/2023]
Abstract
Multiple sclerosis (MS) is the most common inflammatory and chronic disease of the central nervous system (CNS). A complex interaction between genetic, environmental, and epigenetic factors is involved in the pathogenesis of MS. With the advancement of GWAS, various variants associated with MS have been identified. This study aimed to evaluate the association of single-nucleotide polymorphisms (SNPs) rs4925166 and rs1979277 in the SHMT1, MAZ rs34286592, ERG rs2836425, and L3MBTL3 rs4364506 with MS. In this case-control study, the association of five SNPs in SHMT1, MAZ, ERG, and L3MBTL3 genes with relapsing-remitting MS (RR-MS) was investigated in 190 patients and 200 healthy individuals. Four SNPs including SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and L3MBTL3 rs4364506 were genotyped using PCR-RFLP and genotyping of ERG rs2836425 was performed by tetra-primer ARMS PCR. Our findings showed a significant difference in the allelic frequencies for the four SNPs of SHMT1 rs4925166, SHMT1 rs1979277, MAZ rs34286592, and ERG rs2836425, while there were no differences in the allele and genotype frequencies for L3MBTL3 rs4364506. These significant associations were observed for the following genotypes: TT and GG genotypes of SHMT1 rs4925166 (OR 0.47 and 1.90, respectively) genotype GG of SHMT1 rs1979277 (OR 0.63), genotype GG of MAZ rs34286592 (OR 0.61), TC and CC genotypes of ERG rs2836425 (OR 1.89 and 0.50, respectively). Our study highlighted that people who are carrying genotypes including GG (SHMT1 rs4925166) and TC (ERG rs2836425) have the highest susceptibility chance for MS, respectively. However, genotypes TT (SHMT1 rs4925166), CC (ERG rs2836425), GG (MAZ rs34286592), and GG (SHMT1 rs1979277) had the highest negative association (protective effect) with MS, respectively. L3MBTL3 rs4364506 was found neither as a predisposing nor a protective variant.
Collapse
|
176
|
Semaphorin 5A drives melanoma progression: role of Bcl-2, miR-204 and c-Myb. J Exp Clin Cancer Res 2018; 37:278. [PMID: 30454024 PMCID: PMC6245779 DOI: 10.1186/s13046-018-0933-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/18/2018] [Indexed: 11/17/2022] Open
Abstract
Background Melanoma, the most aggressive form of skin cancer, is characterized by high rates of metastasis, drug resistance and mortality. Here we investigated the role of Semaphorin 5A (Sema5A) on the properties associated with melanoma progression and the factors involved in Sema5A regulation. Methods Western blotting, qRT-PCR, Chromatin immunoprecipitation (ChIP) assay, immunohistochemistry of melanoma patient specimens and xenograft tissues, in vitro Transwell assay for cell migration and invasion evaluation, in vitro capillary-like structure formation analysis. Results A significant correlation of Sema5A mRNA expression and melanoma progression was observed by analyzing GEO profile dataset. Endogenous Sema5A protein was detected in 95% of human melanoma cell lines tested, in 70% of metastatic specimens from patients affected by melanoma, and 16% of in situ melanoma specimens showed a focal positivity. We demonstrated that Sema5A regulates in vitro cell migration and invasion and the formation of vasculogenic structures. We also found an increase of Sema5A at both mRNA and protein level after forced expression of Bcl-2. By use of transcriptional and proteasome inhibitors, we showed that Bcl-2 increases the stability of Sema5A mRNA and protein. Moreover, by ChIP we demonstrated that Sema5A expression is under the control of the transcription factor c-Myb and that c-Myb recruitment on Sema5A promoter is increased after Bcl-2 overexpression. Finally, a concomitant decrease in the expression of Sema5A, Bcl-2 and c-Myb proteins was observed in melanoma cells after miR-204 overexpression. Conclusion Overall our data provide evidences supporting the role of Sema5A in melanoma progression and the involvement of Bcl-2, miR-204 and c-Myb in regulating its expression. Electronic supplementary material The online version of this article (10.1186/s13046-018-0933-x) contains supplementary material, which is available to authorized users.
Collapse
|
177
|
Lee JH, Kang HJ, Yoo CW, Park WS, Ryu JS, Jung YS, Choi SW, Park JY, Han N. PLAG1, SOX10, and Myb Expression in Benign and Malignant Salivary Gland Neoplasms. J Pathol Transl Med 2018; 53:23-30. [PMID: 30424592 PMCID: PMC6344797 DOI: 10.4132/jptm.2018.10.12] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022] Open
Abstract
Background Recent findings in molecular pathology suggest that genetic translocation and/or overexpression of oncoproteins is important in salivary gland tumorigenesis and diagnosis. We investigated PLAG1, SOX10, and Myb protein expression in various salivary gland neoplasm tissues. Methods A total of 113 cases of surgically resected salivary gland neoplasms at the National Cancer Center from January 2007 to March 2017 were identified. Immunohistochemical staining of PLAG1, SOX10, and Myb in tissue samples was performed using tissue microarrays. Results Among the 113 cases, 82 (72.6%) were benign and 31 (27.4%) were malignant. PLAG1 showed nuclear staining and normal parotid gland was not stained. Among 48 cases of pleomorphic adenoma, 29 (60.4%) were positive for PLAG1. All other benign and malignant salivary gland neoplasms were PLAG1-negative. SOX10 showed nuclear staining. In normal salivary gland tissues SOX10 was expressed in cells of acinus and intercalated ducts. In benign tumors, SOX10 expression was observed in all pleomorphic adenoma (48/48), and basal cell adenoma (3/3), but not in other benign tumors. SOX10 positivity was observed in nine of 31 (29.0%) malignant tumors. Myb showed nuclear staining but was not detected in normal parotid glands. Four of 31 (12.9%) malignant tumors showed Myb positivity: three adenoid cystic carcinomas (AdCC) and one myoepithelial carcinoma with focal AdCC-like histology. Conclusions PLAG1 expression is specific to pleomorphic adenoma. SOX10 expression is helpful to rule out excretory duct origin tumor, but its diagnostic value is relatively low. Myb is useful for diagnosing AdCC when histology is unclear in the surgical specimen.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Hye Ju Kang
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Chong Woo Yoo
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Weon Seo Park
- Department of Pathology, National Cancer Center, Goyang, Korea
| | - Jun Sun Ryu
- Head and Neck Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Head and Neck Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Sung Weon Choi
- Oral Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Joo Yong Park
- Oral Oncology Clinic, National Cancer Center, Goyang, Korea
| | - Nayoung Han
- Department of Pathology, National Cancer Center, Goyang, Korea
| |
Collapse
|
178
|
Takanche JS, Kim JE, Kim JS, Lee MH, Jeon JG, Park IS, Yi HK. Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S807-S817. [PMID: 30307328 DOI: 10.1080/21691401.2018.1513940] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Osseointegration of dental implants is affected by osteoporosis. The purpose of this study was overcome the implant failure and facilitate the osseointegration of dental implants by c-myb in ovariectomized (OVX)-induced osteoporosis. c-myb is a transcription factor and supports bone formation. Plasmid DNA/c-myb conjugated with chitosan-gold nanoparticles (Ch-GNPs/c-myb) promoted osteogenesis and inhibited osteoclastogenesis in MC-3T3 E1 cells. Ch-GNPs/c-myb involved the reduction of the nuclear factor of activated T-cells 1, c-Fos, and tartrate-resistant acid phosphatase-positive multinucleated osteoclasts in receptor activator of nuclear factor-κB ligand (RANKL) stimulated bone marrow macrophages. In vivo results of rat mandibles demonstrated Ch-GNP/c-myb-coated titanium (Ti) implants increased the volume and density of newly formed bone and the osseointegration of dental implant with bone by micro computed tomography examination after OVX-induced osteoporosis. Immunohistochemical analysis showed increased c-myb expression and upregulation of bone morphogenic proteins, osteoprotegerin and EphB4, as well as the downregulation of RANKL by Ch-GNP/c-myb-coated Ti implants. Hematoxylin and Eosin staining expressed new bone formation by Ch-GNP/c-myb-coated Ti implants. Our findings indicated that c-myb delivered by Ch-GNPs supports osseointegration of dental implant even in osteoporotic condition. c-myb may be applicable to support dental implant integration and treatment in age-dependent bone destruction disease.
Collapse
Affiliation(s)
| | - Ji-Eun Kim
- a Department of Oral Biochemistry , Chonbuk National University , Jeonju , Korea
| | - Jeong-Seok Kim
- a Department of Oral Biochemistry , Chonbuk National University , Jeonju , Korea
| | - Min-Ho Lee
- b Department of Dental Materials , Chonbuk National University , Jeonju , Korea
| | - Jae-Gyu Jeon
- c Department of Preventive Dentistry, Institute of Oral Bioscience, School of Dentistry , Chonbuk National University , Jeonju , Korea
| | - Il-Song Park
- d Division of Advanced Materials Engineering , Chonbuk National University , Jeonju , Korea
| | - Ho-Keun Yi
- a Department of Oral Biochemistry , Chonbuk National University , Jeonju , Korea
| |
Collapse
|
179
|
Mandelbaum J, Shestopalov IA, Henderson RE, Chau NG, Knoechel B, Wick MJ, Zon LI. Zebrafish blastomere screen identifies retinoic acid suppression of MYB in adenoid cystic carcinoma. J Exp Med 2018; 215:2673-2685. [PMID: 30209067 PMCID: PMC6170170 DOI: 10.1084/jem.20180939] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/16/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
Pluripotent cells have been used to probe developmental pathways that are involved in genetic diseases and oncogenic events. To find new therapies that would target MYB-driven tumors, we developed a pluripotent zebrafish blastomere culture system. We performed a chemical genetic screen and identified retinoic acid agonists as suppressors of c-myb expression. Retinoic acid treatment also decreased c-myb gene expression in human leukemia cells. Translocations that drive overexpression of the oncogenic transcription factor MYB are molecular hallmarks of adenoid cystic carcinoma (ACC), a malignant salivary gland tumor with no effective therapy. Retinoic acid agonists inhibited tumor growth in vivo in ACC patient-derived xenograft models and decreased MYB binding at translocated enhancers, thereby potentially diminishing the MYB positive feedback loop driving ACC. Our findings establish the zebrafish pluripotent cell culture system as a method to identify modulators of tumor formation, particularly establishing retinoic acid as a potential new effective therapy for ACC.
Collapse
Affiliation(s)
- Joseph Mandelbaum
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Ilya A Shestopalov
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Rachel E Henderson
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Nicole G Chau
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Birgit Knoechel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Harvard Medical School, Boston, MA
| | - Michael J Wick
- South Texas Accelerated Research Therapeutics, San Antonio, TX
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
180
|
Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proc Natl Acad Sci U S A 2018; 115:10040-10045. [PMID: 30232260 DOI: 10.1073/pnas.1810397115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The human T cell leukemia virus I basic leucine zipper protein (HTLV-1 HBZ) maintains chronic viral infection and promotes leukemogenesis through poorly understood mechanisms involving interactions with the KIX domain of the transcriptional coactivator CBP and its paralog p300. The KIX domain binds regulatory proteins at the distinct MLL and c-Myb/pKID sites to form binary or ternary complexes. The intrinsically disordered N-terminal activation domain of HBZ (HBZ AD) deregulates cellular signaling pathways by competing directly with cellular and viral transcription factors for binding to the MLL site and by allosterically perturbing binding of the transactivation domain of the hematopoietic transcription factor c-Myb. Crystal structures of the ternary KIX:c-Myb:HBZ complex show that the HBZ AD recruits two KIX:c-Myb entities through tandem amphipathic motifs (L/V)(V/L)DGLL and folds into a long α-helix upon binding. Isothermal titration calorimetry reveals strong cooperativity in binding of the c-Myb activation domain to the KIX:HBZ complex and in binding of HBZ to the KIX:c-Myb complex. In addition, binding of KIX to the two HBZ (V/L)DGLL motifs is cooperative; the structures suggest that this cooperativity is achieved through propagation of the HBZ α-helix beyond the first binding motif. Our study suggests that the unique structural flexibility and the multiple interaction motifs of the intrinsically disordered HBZ AD are responsible for its potency in hijacking KIX-mediated transcription pathways. The KIX:c-Myb:HBZ complex provides an example of cooperative stabilization in a transcription factor:coactivator network and gives insights into potential mechanisms through which HBZ dysregulates hematopoietic transcriptional programs and promotes T cell proliferation.
Collapse
|
181
|
Abstract
The MuvB transcriptional regulatory complex, which controls cell-cycle-dependent gene expression, cooperates with B-Myb to activate genes required for the G2 and M phases of the cell cycle. We have identified the domain in B-Myb that is essential for the assembly of the Myb-MuvB (MMB) complex. We determined a crystal structure that reveals how this B-Myb domain binds MuvB through the adaptor protein LIN52 and the scaffold protein LIN9. The structure and biochemical analysis provide an understanding of how oncogenic B-Myb is recruited to regulate genes required for cell-cycle progression, and the MMB interface presents a potential therapeutic target to inhibit cancer cell proliferation.
Collapse
|
182
|
Yusenko M, Jakobs A, Klempnauer KH. A novel cell-based screening assay for small-molecule MYB inhibitors identifies podophyllotoxins teniposide and etoposide as inhibitors of MYB activity. Sci Rep 2018; 8:13159. [PMID: 30177851 PMCID: PMC6120916 DOI: 10.1038/s41598-018-31620-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
The transcription factor MYB plays key roles in hematopoietic cells and has been implicated the development of leukemia. MYB has therefore emerged as an attractive target for drug development. Recent work has suggested that targeting MYB by small-molecule inhibitors is feasible and that inhibition of MYB has potential as a therapeutic approach against acute myeloid leukemia. To facilitate the identification of small-molecule MYB inhibitors we have re-designed and improved a previously established cell-based screening assay and have employed it to screen a natural product library for potential inhibitors. Our work shows that teniposide and etoposide, chemotherapeutic agents causing DNA-damage by inhibiting topoisomerase II, potently inhibit MYB activity and induce degradation of MYB in AML cell lines. MYB inhibition is suppressed by caffeine, suggesting that MYB is inhibited indirectly via DNA-damage signalling. Importantly, ectopic expression of an activated version of MYB in pro-myelocytic NB4 cells diminished the anti-proliferative effects of teniposide, suggesting that podophyllotoxins disrupt the proliferation of leukemia cells not simply by inducing general DNA-damage but that their anti-proliferative effects are boosted by inhibition of MYB. Teniposide and etoposide therefore act like double-edged swords that might be particularly effective to inhibit tumor cells with deregulated MYB.
Collapse
Affiliation(s)
- Maria Yusenko
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149, Münster, Germany.
| |
Collapse
|
183
|
Wang Y, Hu P, Li H, Wang Y, Long LK, Li K, Zhang X, Pan Y, Liu G. A Myb transcription factor represses conidiation and cephalosporin C production in Acremonium chrysogenum. Fungal Genet Biol 2018; 118:1-9. [PMID: 29870835 DOI: 10.1016/j.fgb.2018.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/21/2022]
Abstract
Acremonium chrysogenum is the industrial producer of cephalosporin C (CPC). We isolated a mutant (AC554) from a T-DNA inserted mutant library of A. chrysogenum. AC554 exhibited a reduced conidiation and lack of CPC production. In consistent with it, the transcription of cephalosporin biosynthetic genes pcbC and cefEF was significantly decreased in AC554. Thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) was performed and sequence analysis indicated that a T-DNA was inserted upstream of an open reading frame (ORF) which was designated AcmybA. On the basis of sequence analysis, AcmybA encodes a Myb domain containing transcriptional factor. Observation of red fluorescent protein (RFP) tagged AcMybA showed that AcMybA is naturally located in the nucleus of A. chrysogenum. Transcriptional analysis demonstrated that the AcmybA transcription was increased in AC554. In contrast, the AcmybA deleted mutant (ΔAcmybA) overproduced conidia and CPC. To screen the targets of AcmybA, we sequenced and compared the transcriptome of ΔAcmybA, AC554 and the wild-type strain at different developmental stages. Twelve differentially expressed regulatory genes were identified. Taken together, our results indicate that AcMybA negatively regulates conidiation and CPC production in A. chrysogenum.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengjie Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Honghua Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang-Kun Long
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoling Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
184
|
Spagnuolo M, Regazzo G, De Dominici M, Sacconi A, Pelosi A, Korita E, Marchesi F, Pisani F, Magenta A, Lulli V, Cordone I, Mengarelli A, Strano S, Blandino G, Rizzo MG, Calabretta B. Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells. Haematologica 2018; 104:82-92. [PMID: 30076175 PMCID: PMC6312025 DOI: 10.3324/haematol.2018.191213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/27/2018] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the “MYB addiction” of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/β-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/β-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the “MYB addiction” of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival.
Collapse
Affiliation(s)
- Manuela Spagnuolo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Marco De Dominici
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea Sacconi
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Pelosi
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Etleva Korita
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Marchesi
- Department of Clinical and Experimental Oncology-Hematology and Stem Cell Transplant Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Pisani
- Department of Clinical and Experimental Oncology-Hematology and Stem Cell Transplant Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Alessandra Magenta
- Istituto Dermopatico dell'Immacolata-IRCCS, FLMM, Laboratorio di Patologia Vascolare, Rome, Italy
| | - Valentina Lulli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Cordone
- Department of Research, Advanced Diagnostics and Technological Innovation, Clinical Pathology Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Mengarelli
- Department of Clinical and Experimental Oncology-Hematology and Stem Cell Transplant Unit, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Sabrina Strano
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Giovanni Blandino
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Maria G Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Oncogenomic and Epigenetic Unit, Translational Research Area, IRCCS - Regina Elena National Cancer Institute, Rome, Italy
| | - Bruno Calabretta
- Department of Cancer Biology and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
185
|
Advances of circular RNAs in carcinoma. Biomed Pharmacother 2018; 107:59-71. [PMID: 30077838 DOI: 10.1016/j.biopha.2018.07.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNAs with single-stranded closed structure. The rapid development of high-throughput sequencing technology has allowed for the widespread presence of circRNAs in transcriptomes. Moreover, increasing studies have identified a correlation between circRNAs and different cancers. In addition, most circRNAs are dysregulated in various cancers, and some of them have been reported be vital in the occurrence and development of tumors. For example, ciRS-7 plays a role in tumor promotion and circ-ITCH acts as a tumor suppressor. This review summarizes the latest progressions in the field regarding the functions of circRNAs in relation with cancers, and anticipates the emerging roles of circRNAs and future challenges in cancer research.
Collapse
|
186
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
187
|
Andreasen S. Molecular features of adenoid cystic carcinoma with an emphasis on microRNA expression. APMIS 2018; 126 Suppl 140:7-57. [DOI: 10.1111/apm.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon Andreasen
- Department of Otorhinolaryngology and Maxillofacial Surgery; Zealand University Hospital; Køge Denmark
| |
Collapse
|
188
|
Wang Q, Yang HS. The role of Pdcd4 in tumour suppression and protein translation. Biol Cell 2018; 110:10.1111/boc.201800014. [PMID: 29806708 PMCID: PMC6261700 DOI: 10.1111/boc.201800014] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 01/07/2023]
Abstract
Programmed cell death 4 (Pdcd4), a tumour suppressor, is frequently down-regulated in various types of cancer. Pdcd4 has been demonstrated to efficiently suppress tumour promotion, progression and proliferation. The biochemical function of Pdcd4 is a protein translation inhibitor. Although the fact that Pdcd4 inhibits protein translation has been known for more than a decade, the mechanism by which Pdcd4 controls tumorigenesis through translational regulation of its target genes is still not fully understood. Recent studies show that Pdcd4 inhibits translation of stress-activated-protein kinase interacting protein 1 to suppress tumour invasion, depicting a picture of how Pdcd4 inhibits tumorigenesis through translational inhibition. Thus, understanding the mechanism of how Pdcd4 attenuates tumorigenesis by translational control should provide a new strategy for combating cancer.
Collapse
Affiliation(s)
- Qing Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Hsin-Sheng Yang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
189
|
Abstract
Background Precise identification of three-dimensional genome organization, especially enhancer-promoter interactions (EPIs), is important to deciphering gene regulation, cell differentiation and disease mechanisms. Currently, it is a challenging task to distinguish true interactions from other nearby non-interacting ones since the power of traditional experimental methods is limited due to low resolution or low throughput. Results We propose a novel computational framework EP2vec to assay three-dimensional genomic interactions. We first extract sequence embedding features, defined as fixed-length vector representations learned from variable-length sequences using an unsupervised deep learning method in natural language processing. Then, we train a classifier to predict EPIs using the learned representations in supervised way. Experimental results demonstrate that EP2vec obtains F1 scores ranging from 0.841~ 0.933 on different datasets, which outperforms existing methods. We prove the robustness of sequence embedding features by carrying out sensitivity analysis. Besides, we identify motifs that represent cell line-specific information through analysis of the learned sequence embedding features by adopting attention mechanism. Last, we show that even superior performance with F1 scores 0.889~ 0.940 can be achieved by combining sequence embedding features and experimental features. Conclusions EP2vec sheds light on feature extraction for DNA sequences of arbitrary lengths and provides a powerful approach for EPIs identification. Electronic supplementary material The online version of this article (10.1186/s12864-018-4459-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanwen Zeng
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing, 100084, China.,Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Mengmeng Wu
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing, 100084, China.,Department of Computer Science, Tsinghua University, Beijing, 100084, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing, 100084, China. .,Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
190
|
Hyrenius-Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh MP, Song G, Kazi JU, Liu J, Ramakrishan R, Garcia-Ruiz C, Nance S, Gupta P, Zhang J, Rönnstrand L, Hultquist A, Downing JR, Lindkvist-Petersson K, Paulsson K, Järås M, Gruber TA, Ma J, Hagström-Andersson AK. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun 2018; 9:1770. [PMID: 29720585 PMCID: PMC5932012 DOI: 10.1038/s41467-018-04180-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Activating signaling mutations are common in acute leukemia with KMT2A (previously MLL) rearrangements (KMT2A-R). These mutations are often subclonal and their biological impact remains unclear. Using a retroviral acute myeloid mouse leukemia model, we demonstrate that FLT3ITD, FLT3N676K, and NRASG12D accelerate KMT2A-MLLT3 leukemia onset. Further, also subclonal FLT3N676K mutations accelerate disease, possibly by providing stimulatory factors. Herein, we show that one such factor, MIF, promotes survival of mouse KMT2A-MLLT3 leukemia initiating cells. We identify acquired de novo mutations in Braf, Cbl, Kras, and Ptpn11 in KMT2A-MLLT3 leukemia cells that favored clonal expansion. During clonal evolution, we observe serial genetic changes at the KrasG12D locus, consistent with a strong selective advantage of additional KrasG12D. KMT2A-MLLT3 leukemias with signaling mutations enforce Myc and Myb transcriptional modules. Our results provide new insight into the biology of KMT2A-R leukemia with subclonal signaling mutations and highlight the importance of activated signaling as a contributing driver. In acute leukemia with KMT2A rearrangements (KMT2A-R), activating signaling mutations are common. Here, the authors use a retroviral acute myeloid mouse leukemia model to show that subclonal de novo activating mutations drive clonal evolution in acute leukemia with KMT2A-R and enhance clonal fitness.
Collapse
Affiliation(s)
- Axel Hyrenius-Wittsten
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Mattias Pilheden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Helena Sturesson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Michael P Walsh
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 63, Lund, Sweden
| | - Jian Liu
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Ramprasad Ramakrishan
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Cristian Garcia-Ruiz
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Stephanie Nance
- Department of Oncology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Pankaj Gupta
- Department of Computational Biology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 63, Lund, Sweden.,Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden.,Division of Oncology, Skane University Hospital, Lund University, 221 85, Lund, Sweden
| | - Anne Hultquist
- Department of Pathology, Skane University Hospital, Lund University, 221 85, Lund, Sweden
| | - James R Downing
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Karin Lindkvist-Petersson
- Medical Structural Biology, Department of Experimental Medical Science, 221 84 Lund University, Lund, Sweden
| | - Kajsa Paulsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Marcus Järås
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden
| | - Tanja A Gruber
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA.,Department of Oncology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Jing Ma
- Department of Pathology, St. Jude Children´s Research Hospital, Memphis, TN, 38105, USA
| | - Anna K Hagström-Andersson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
191
|
Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N 6-methyladenosine modification in cancers: current status and perspectives. Cell Res 2018; 28:507-517. [PMID: 29686311 PMCID: PMC5951805 DOI: 10.1038/s41422-018-0034-6] [Citation(s) in RCA: 535] [Impact Index Per Article: 89.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), has been shown to play critical roles in various normal bioprocesses such as tissue development, stem cell self-renewal and differentiation, heat shock or DNA damage response, and maternal-to-zygotic transition. The m6A modification is deposited by the m6A methyltransferase complex (MTC; i.e., writer) composed of METTL3, METTL14 and WTAP, and probably also VIRMA and RBM15, and can be removed by m6A demethylases (i.e., erasers) such as FTO and ALKBH5. The fates of m6A-modified mRNAs rely on the functions of distinct proteins that recognize them (i.e., readers), which may affect the stability, splicing, and/or translation of target mRNAs. Given the functional importance of the m6A modification machinery in normal bioprocesses, it is not surprising that evidence is emerging that dysregulation of m6A modification and the associated proteins also contributes to the initiation, progression, and drug response of cancers. In this review, we focus on recent advances in the study of biological functions and the underlying molecular mechanisms of dysregulated m6A modification and the associated machinery in the pathogenesis and drug response of various types of cancers. In addition, we also discuss possible therapeutic interventions against the dysregulated m6A machinery to treat cancers.
Collapse
Affiliation(s)
- Xiaolan Deng
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| | - Rui Su
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Hengyou Weng
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Huilin Huang
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA
| | - Zejuan Li
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Jianjun Chen
- Department of Systems Biology & the Gehr Family Center for Leukemia Research, The Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45219, USA.
| |
Collapse
|
192
|
Frech M, Teichler S, Feld C, Bouchard C, Berberich H, Sorg K, Mernberger M, Bullinger L, Bauer UM, Neubauer A. MYB induces the expression of the oncogenic corepressor SKI in acute myeloid leukemia. Oncotarget 2018; 9:22423-22435. [PMID: 29854289 PMCID: PMC5976475 DOI: 10.18632/oncotarget.25051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 03/21/2018] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) arises through clonal expansion of transformed myeloid progenitor cells. The SKI proto-oncogene is highly upregulated in different solid tumors and leukemic cells, but little is known about its transcriptional regulation during leukemogenesis. MYB is an important hematopoietic transcription factor involved in proliferation as well as differentiation and upregulated in most human acute leukemias. Here, we find that MYB protein binds within the regulatory region of the SKI gene in AML cells. Reporter gene assays using MYB binding sites present in the SKI gene locus show MYB-dependent transcriptional activation. SiRNA-mediated depletion of MYB in leukemic cell lines reveals that MYB is crucial for SKI gene expression. Consistently, we observed a positive correlation of MYB and SKI expression in leukemic cell lines and in samples of AML patients. Moreover, MYB and SKI both were downregulated by treatment with histone deacetylase inhibitors. Strikingly, differentiation of AML cells induced by depletion of MYB is attenuated by overexpression of SKI. Our findings identify SKI as a novel MYB target gene, relevant for the MYB-induced differentiation block in leukemic cells.
Collapse
Affiliation(s)
- Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Sabine Teichler
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Christine Feld
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany.,Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Caroline Bouchard
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Hannah Berberich
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Katharina Sorg
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps University Marburg, Marburg 35043, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Marburg 35043, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, Marburg 35033, Germany.,University Hospital Giessen and Marburg, Marburg 35033, Germany
| |
Collapse
|
193
|
Fahl SP, Daamen AR, Crittenden RB, Bender TP. c-Myb Coordinates Survival and the Expression of Genes That Are Critical for the Pre-BCR Checkpoint. THE JOURNAL OF IMMUNOLOGY 2018; 200:3450-3463. [PMID: 29654210 DOI: 10.4049/jimmunol.1302303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
Abstract
The c-Myb transcription factor is required for adult hematopoiesis, yet little is known about c-Myb function during lineage-specific differentiation due to the embryonic lethality of Myb-null mutations. We previously used tissue-specific inactivation of the murine Myb locus to demonstrate that c-Myb is required for differentiation to the pro-B cell stage, survival during the pro-B cell stage, and the pro-B to pre-B cell transition during B lymphopoiesis. However, few downstream mediators of c-Myb-regulated function have been identified. We demonstrate that c-Myb regulates the intrinsic survival of CD19+ pro-B cells in the absence of IL-7 by repressing expression of the proapoptotic proteins Bmf and Bim and that levels of Bmf and Bim mRNA are further repressed by IL-7 signaling in pro-B cells. c-Myb regulates two crucial components of the IL-7 signaling pathway: the IL-7Rα-chain and the negative regulator SOCS3 in CD19+ pro-B cells. Bypassing IL-7R signaling through constitutive activation of Stat5b largely rescues survival of c-Myb-deficient pro-B cells, whereas constitutively active Akt is much less effective. However, rescue of pro-B cell survival is not sufficient to rescue proliferation of pro-B cells or the pro-B to small pre-B cell transition, and we further demonstrate that c-Myb-deficient large pre-B cells are hypoproliferative. Analysis of genes crucial for the pre-BCR checkpoint demonstrates that, in addition to IL-7Rα, the genes encoding λ5, cyclin D3, and CXCR4 are downregulated in the absence of c-Myb, and λ5 is a direct c-Myb target. Thus, c-Myb coordinates survival with the expression of genes that are required during the pre-BCR checkpoint.
Collapse
Affiliation(s)
- Shawn P Fahl
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Andrea R Daamen
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Rowena B Crittenden
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and
| | - Timothy P Bender
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908; and .,Beirne B. Carter Center for Immunology Research, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
194
|
miR-15a-5p, A Novel Prognostic Biomarker, Predicting Recurrent Colorectal Adenocarcinoma. Mol Diagn Ther 2018; 21:453-464. [PMID: 28405803 DOI: 10.1007/s40291-017-0270-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Colorectal cancer is one of the most common gastrointestinal diseases and the second leading cause of cancer-associated deaths among adults. miR-15a-5p is a post-transcriptional regulator of the proto-oncogene MYB, a transcription factor essential for prolonged cancer cell proliferation and survival. In the current study, we assessed the potential diagnostic and prognostic utility of miR-15a-5p expression in colorectal adenocarcinoma. METHODS To accomplish this goal, total RNA was extracted from 182 colorectal adenocarcinoma specimens and 86 non-cancerous colorectal mucosae. After polyadenylation by poly(A) polymerase and subsequent reverse transcription with an oligo-dT adapter primer, miR-15a-5p expression was analyzed using an in-house developed reverse transcription quantitative real-time PCR method, based on SYBR Green chemistry. SNORD43 (RNU43) was used as an internal control gene. RESULTS miR-15a-5p was significantly upregulated in colorectal tumors compared to non-cancerous colorectal mucosae, while ROC analysis suggested its potential use for diagnostic purposes. Moreover, miR-15a-5p overexpression predicts poor disease-free survival (DFS) and overall survival (OS). Multivariate Cox regression analysis confirmed that miR-15a-5p overexpression is a significant unfavorable prognosticator of DFS in colorectal adenocarcinoma, independent of other established prognostic factors plus treatment of patients. Importantly, miR-15a-5p overexpression retains its unfavorable prognostic value in patients with T3 colorectal adenocarcinoma and in those without distant metastasis (M0). More importantly, the cumulative DFS probability of patients with early stage disease was significantly lower for those with colorectal adenocarcinoma overexpressing miR-15a-5p. DISCUSSION In conclusion, elevated expression of the cancer-associated miR-15a-5p predicts poor DFS and OS of colorectal adenocarcinoma patients. The prognostic value of miR-15a-5p expression regarding DFS is independent of clinicopathological factors currently used for colorectal adenocarcinoma prognosis.
Collapse
|
195
|
Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B, Wang S. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 2018; 9:417. [PMID: 29549306 PMCID: PMC5856798 DOI: 10.1038/s41419-018-0454-8] [Citation(s) in RCA: 482] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
Mounting evidences indicate that circular RNAs (circRNAs) have a vital role in human diseases, especially cancers. More recently, circHIPK3, a particularly abundant circRNA, was proposed to be involved in tumorigenesis. However, its role in colorectal cancer (CRC) has not been explored. In this study, we found circHIPK3 was significantly upregulated in CRC tissues and cell lines, at least in part, due to c-Myb overexpression and positively correlated with metastasis and advanced clinical stage. Moreover, Cox multivariate survival analysis showed that high-level expression of circHIPK3 was an independent prognostic factor of poor overall survival (OS) in CRC (hazard ratio [HR] = 2.75, 95% confidence interval [CI] 1.74-6.51, p = 0.009). Functionally, knockdown of circHIPK3 markedly inhibited CRC cells proliferation, migration, invasion, and induced apoptosis in vitro and suppressed CRC growth and metastasis in vivo. Mechanistically, by using biotinylated-circHIPK3 probe to perform RNA pull-down assay in CRC cells, we identified miR-7 was the only one microRNA that was abundantly pulled down by circHIPK3 in both HCT116 and HT29 cells and these interactions were also confirmed by biotinylated miR-7 pull-down and dual-luciferase reporter assays. Overexpression of miR-7 mimicked the effect of circHIPK3 knockdown on CRC cells proliferation, migration, invasion, and apoptosis. Furthermore, ectopic expression of circHIPK3 effectively reversed miR-7-induced attenuation of malignant phenotypes of CRC cells by increasing the expression levels of miR-7 targeting proto-oncogenes (FAK, IGF1R, EGFR, YY1). Remarkably, the combination of circHIPK3 silencing and miR-7 overexpression gave a better effect on tumor suppression both in vitro and in vivo than did circHIPK3 knockdown or miR-7 overexpression alone. Taken together, our data indicate that circHIPK3 may have considerable potential as a prognostic biomarker in CRC, and support the notion that therapeutic targeting of the c-Myb/circHIPK3/miR-7 axis may be a promising treatment approach for CRC patients.
Collapse
Affiliation(s)
- Kaixuan Zeng
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xiaoxiang Chen
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Mu Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
- School of Medicine, Southeast University, 210009, Nanjing, China.
| |
Collapse
|
196
|
Liu X, Xu Y, Han L, Yi Y. Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J Cancer 2018; 9:1259-1266. [PMID: 29675107 PMCID: PMC5907674 DOI: 10.7150/jca.23992] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/28/2018] [Indexed: 01/27/2023] Open
Abstract
Transcription factor MYB is essential for the tumorigenesis of multiple cancers, especially leukemia, breast cancer, colon cancer, adenoid cystic carcinoma and brain cancer. Thus, MYB has been regarded as an attractive target for tumor therapy. However, pioneer studies of antisense oligodeoxynucleotides against MYB, which were launched three decades ago in leukemia therapy, were discontinued because of their unsatisfactory clinical outcomes. In recent years, the roles of MYB in tumor transformation have become increasingly clear. Moreover, the regulatory mechanisms of MYB, such as the vital effects of MYB co-regulators on MYB activity and of transcriptional elongation on MYB expression, have been unveiled. These observations have underpinned novel approaches in inhibiting MYB. This review discusses the structure, function and regulation of MYB, focusing on recent insights into MYB-associated oncogenesis and how MYB-targeted therapeutics can be explored. Additionally, the main MYB-targeted therapies, including novel genetic therapy, RNA interference, microRNAs and low-molecular-weight compounds, which are especially promising inhibitors that target MYB co-regulators and transcriptional elongation, are described, and their prospects are assessed.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yunxiao Xu
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Liping Han
- School of Life Science, Changchun Normal University, Changchun, Jilin Province, P.R. China
| | - Yan Yi
- Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
197
|
Nguyen N, Vishwakarma BA, Oakley K, Han Y, Przychodzen B, Maciejewski JP, Du Y. Myb expression is critical for myeloid leukemia development induced by Setbp1 activation. Oncotarget 2018; 7:86300-86312. [PMID: 27863435 PMCID: PMC5349915 DOI: 10.18632/oncotarget.13383] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
SETBP1 missense mutations have been frequently identified in multiple myeloid neoplasms; however, their oncogenic potential remains unclear. Here we show that expression of Setbp1 mutants carrying two such mutations in mouse bone marrow progenitors efficiently induced development of acute myeloid leukemias (AMLs) in irradiated recipient mice with significantly shorter latencies and greater penetrance than expression of wild-type Setbp1, suggesting that these mutations are highly oncogenic. The increased oncogenicity of Setbp1 missense mutants could be due in part to their capability to drive significantly higher target gene transcription. We further identify Myb as a critical mediator of Setbp1-induced self-renewal as its knockdown caused efficient differentiation of myeloid progenitors immortalized by wild-type Setbp1 and Setbp1 missense mutants. Interestingly, Myb is also a direct transcriptional target of Setbp1 and Setbp1 missense mutants as they directly bind to the Myb locus in immortalized cells and dramatically activate a critical enhancer/promoter region of Myb in luciferase reporter assays. Furthermore, Myb knockdown in Setbp1 and Setbp1 missense mutations-induced AML cells also efficiently induced their differentiation in culture and significantly prolonged the survival of their secondary recipient mice, suggesting that targeting MYB pathway could be a promising strategy for treating human myeloid neoplasms with SETBP1 activation.
Collapse
Affiliation(s)
- Nhu Nguyen
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bandana A Vishwakarma
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kevin Oakley
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Yufen Han
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
198
|
Kim YJ, Sung M, Oh E, Vrancken MV, Song JY, Jung K, Choi YL. Engrailed 1 overexpression as a potential prognostic marker in quintuple-negative breast cancer. Cancer Biol Ther 2018; 19:335-345. [PMID: 29333926 PMCID: PMC5902237 DOI: 10.1080/15384047.2018.1423913] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype characterized by poor patient prognosis and for which no targeted therapies are currently available. TNBC can be further categorized as either basal-like (BLBC) or quintuple-negative breast cancer (QNBC). In the present study, we aimed to identify novel molecular therapeutic targets for TNBC by analyzing the mRNA expression of TNBC-related genes in publicly available microarray data sets. We found that Engrailed 1 (EN1) was significantly overexpressed in TNBC. Using breast cancer cell lines, we found that EN1 was more highly expressed in TNBC than in other breast cancer subtypes. EN1 expression was analyzed in 199 TNBC paraffin-embedded tissue samples by immunohistochemistry. EN1 protein expression was positively associated with reduced overall survival (OS) rate in patients with QNBC, but not those with BLBC. The importance of EN1 expression in QNBC cell viability and tumorigenicity was evaluated using the QNBC cell lines, HCC38 and HCC1395. Based on our data, EN1 may promote the proliferation, migration, and multinucleation of QNBC cells, likely via the transcriptional activation of HDAC8, UTP11L, and ZIC3. We also demonstrated that actinomycin D effectively inhibits EN1 activity in QNBC cells. The results of the present study suggest that EN1 activity is highly clinically relevant to the survival prognosis of patients with QNBC and EN1 is a promising potential therapeutic target for future QNBC treatment.
Collapse
Affiliation(s)
- Yu Jin Kim
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Minjung Sung
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Ensel Oh
- b Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University , Seoul , Korea
| | - Michael Van Vrancken
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Ji-Young Song
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Kyungsoo Jung
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea.,b Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University , Seoul , Korea
| | - Yoon-La Choi
- a Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea.,b Department of Health Sciences and Technology , SAIHST, Sungkyunkwan University , Seoul , Korea.,c Department of Pathology , Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul , Korea
| |
Collapse
|
199
|
Adenoid cystic carcinoma: emerging role of translocations and gene fusions. Oncotarget 2018; 7:66239-66254. [PMID: 27533466 PMCID: PMC5323230 DOI: 10.18632/oncotarget.11288] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 12/24/2022] Open
Abstract
Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research.
Collapse
|
200
|
Coulibaly A, Haas A, Steinmann S, Jakobs A, Schmidt TJ, Klempnauer KH. The natural anti-tumor compound Celastrol targets a Myb-C/EBPβ-p300 transcriptional module implicated in myeloid gene expression. PLoS One 2018; 13:e0190934. [PMID: 29394256 PMCID: PMC5796697 DOI: 10.1371/journal.pone.0190934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022] Open
Abstract
Myb is a key regulator of hematopoietic progenitor cell proliferation and differentiation and has emerged as a potential target for the treatment of acute leukemia. Using a myeloid cell line with a stably integrated Myb-inducible reporter gene as a screening tool we have previously identified Celastrol, a natural compound with anti-tumor activity, as a potent Myb inhibitor that disrupts the interaction of Myb with the co-activator p300. We showed that Celastrol inhibits the proliferation of acute myeloid leukemia (AML) cells and prolongs the survival of mice in an in vivo model of AML, demonstrating that targeting Myb with a small-molecule inhibitor is feasible and might have potential as a therapeutic approach against AML. Recently we became aware that the reporter system used for Myb inhibitor screening also responds to inhibition of C/EBPβ, a transcription factor known to cooperate with Myb in myeloid cells. By re-investigating the inhibitory potential of Celastrol we have found that Celastrol also strongly inhibits the activity of C/EBPβ by disrupting its interaction with the Taz2 domain of p300. Together with previous studies our work reveals that Celastrol independently targets Myb and C/EBPβ by disrupting the interaction of both transcription factors with p300. Myb, C/EBPβ and p300 cooperate in myeloid-specific gene expression and, as shown recently, are associated with so-called super-enhancers in AML cells that have been implicated in the maintenance of the leukemia. We hypothesize that the ability of Celastrol to disrupt the activity of a transcriptional Myb-C/EBPβ-p300 module might explain its promising anti-leukemic activity.
Collapse
Affiliation(s)
- Anna Coulibaly
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Astrid Haas
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Simone Steinmann
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Anke Jakobs
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Thomas J. Schmidt
- Institute for Pharmaceutical Biology and Phytochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität, D-48149 Münster, Germany
| |
Collapse
|