151
|
Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N, Mokhtarzadeh A, Baradaran B. MicroRNAs in cancer drug resistance: Basic evidence and clinical applications. J Cell Physiol 2018; 234:2152-2168. [PMID: 30146724 DOI: 10.1002/jcp.26810] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 12/19/2022]
Abstract
Development of drug resistance has considerably limited the efficacy of cancer treatments, including chemotherapy and targeted therapies. Hence, understanding the molecular mechanisms underpinning the innate or the acquired resistance to these therapies is critical to improve drug efficiency and clinical outcomes. Several studies have implicated microRNAs (miRNA) in this process. MiRNAs repress gene expression by specific binding to complementary sequences in the 3' region of target messenger RNAs (mRNAs), followed by target mRNA degradation or blocked translation. By targeting molecules specific to a particular pathway within tumor cells, the new generation of cancer treatment strategies has shown significant advantages over conventional chemotherapy. However, the long-term efficacy of targeted therapies often remains poor, because tumor cells develop resistance to such therapeutics. Targeted therapies often involve monoclonal antibodies (mAbs), such as those blocking the ErB/HER tyrosine kinases, epidermal growth factor receptor (cetuximab) and HER2 (trastuzumab), and those inhibiting vascular endothelial growth factor receptor signaling (e.g., bevacizumab). Even though these are among the most used agents in tumor medicine, clinical response to these drugs is reduced due to the emergence of drug resistance as a result of toxic effects in the tumor microenvironment. Research on different types of human cancers has revealed that aberrant expression of miRNAs promotes resistance to the aforementioned drugs. In this study, we review the mechanisms of tumor cell resistance to mAb therapies and the role of miRNAs therein. Emerging treatment strategies combine therapies using innovative miRNA mimics or antagonizers with conventional approaches to maximize outcomes of patients with cancer.
Collapse
Affiliation(s)
- Mehri Ghasabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pascal Hg Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naghmeh Shirafkan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
152
|
Circulating Levels of Omentin, Leptin, VEGF, and HGF and Their Clinical Relevance with PSA Marker in Prostate Cancer. DISEASE MARKERS 2018; 2018:3852401. [PMID: 30186533 PMCID: PMC6116468 DOI: 10.1155/2018/3852401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/23/2018] [Indexed: 01/11/2023]
Abstract
Background Prostate cancer (PCa) is the first in terms of occurrence in Europe and second in Poland. The PCa risk factors include: genetic load, obesity, diet rich in fat, hypertriglyceridemia, and exposure to androgens. The prostate-specific antigen (PSA) level may be elevated in prostate cancer or other prostate disorders. Fat tissue secretes adipocytokines, which increase the risk of cancer development and metastasis. Objectives The aims of the study were to investigate the relationship between circulating levels of PSA, adipocytokines: omentin, leptin, hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF) in serum obtained from patients with benign prostate hyperplasia (BPH) and prostate cancer (PCa). Methods Forty patients diagnosed with BPH and forty diagnosed with PCa were assessed for the purpose of the study. The concentrations of omentin, leptin, HGF, and VEGF were determined using enzyme-linked immunosorbent assays (EIA). Results PSA level was significantly higher in the PCa group than in BPH (18.2 versus 9 ng/mL, p < 0.01), while volume of prostate gland was significantly higher in the BPH group than in PCa (39.1 versus 31.1 cm3, p = 0.02). HGF, VEGF, omentin, and leptin concentrations were significantly higher in PCa group than in BPH (359.5 versus 294.9 pg/mL, p = 0.04; 179.3 versus 127.3 pg/mL, p < 0.01; 478.8 versus 408.3 ng/mL, p = 0.01; 15.7 versus 11.2 ng/mL, p = 0.02, resp.). The multiple logistic regression analysis demonstrated that only omentin and PSA levels were independent predictors of PCa in studied subjects. Conclusions PSA level as well as the level of omentin may be valuable markers of PCa with clinical significance, when compared to PSA.
Collapse
|
153
|
Binz HK, Bakker TR, Phillips DJ, Cornelius A, Zitt C, Göttler T, Sigrist G, Fiedler U, Ekawardhani S, Dolado I, Saliba JA, Tresch G, Proba K, Stumpp MT. Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin® drug candidate. MAbs 2018; 9:1262-1269. [PMID: 29035637 DOI: 10.1080/19420862.2017.1305529] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MP0250 is a multi-domain drug candidate currently being tested in clinical trials for the treatment of cancer. It comprises one anti-vascular endothelial growth factor-A (VEGF-A), one anti-hepatocyte growth factor (HGF), and two anti-human serum albumin (HSA) DARPin® domains within a single polypeptide chain. While there is first clinical validation of a single-domain DARPin® drug candidate, little is known about DARPin® drug candidates comprising multiple domains. Here, we show that MP0250 can be expressed at 15 g/L in soluble form in E. coli high cell-density fermentation, it is stable in soluble/frozen formulation for 2 years as assessed by reverse phase HPLC, it has picomolar potency in inhibiting VEGF-A and HGF in ELISA and cellular assays, and its domains are simultaneously active as shown by surface plasmon resonance. The inclusion of HSA-binding DARPin® domains leads to a favorable pharmacokinetic profile in mouse and cynomolgus monkey, with terminal half-lives of ∼ 30 hours in mouse and ∼ 5 days in cynomolgus monkey. MP0250 is thus a highly potent drug candidate that could be particularly useful in oncology. Beyond MP0250, the properties of MP0250 indicate that multi-domain DARPin® proteins can be valuable next-generation drug candidates.
Collapse
Affiliation(s)
- H Kaspar Binz
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | - Talitha R Bakker
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | | | | | - Christof Zitt
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | - Thomas Göttler
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | - Gabriel Sigrist
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | - Ulrike Fiedler
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | | | - Ignacio Dolado
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | | | - Gaby Tresch
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | - Karl Proba
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| | - Michael T Stumpp
- a Molecular Partners AG , Wagistrasse 14, Schlieren , Switzerland
| |
Collapse
|
154
|
Spatial regulation of signaling by the coordinated action of the protein tyrosine kinases MET and FER. Cell Signal 2018; 50:100-110. [PMID: 29920310 DOI: 10.1016/j.cellsig.2018.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
Abstract
A critical aspect of understanding the regulation of signal transduction is not only to identify the protein-protein interactions that govern assembly of signaling pathways, but also to understand how those pathways are regulated in time and space. In this report, we have applied both gain-of-function and loss-of-function analyses to assess the role of the non-receptor protein tyrosine kinase FER in activation of the HGF Receptor protein tyrosine kinase MET. Overexpression of FER led to direct phosphorylation of several signaling sites in MET, including Tyr1349, but not the activation loop residues Tyr1234/5; in contrast, suppression of FER by RNAi revealed that phosphorylation of both a C-terminal signaling site (Tyr1349) and the activation loop (Tyr1234/5) were influenced by the function of this kinase. Adaptin β, a component of the adaptor protein complex 2 (AP-2) that links clathrin to receptors in coated vesicles, was recruited to MET following FER-mediated phosphorylation. Furthermore, we provide evidence to support a role of FER in maintaining plasma membrane distribution of MET and thereby delaying protein-tyrosine phosphatase PTP1B-mediated inactivation of the receptor. Simultaneous up-regulation of FER and down-regulation of PTP1B observed in ovarian carcinoma-derived cell lines would be expected to contribute to persistent activation of HGF-MET signaling, suggesting that targeting of both FER and MET may be an effective strategy for therapeutic intervention in ovarian cancer.
Collapse
|
155
|
Fardi M, Solali S, Farshdousti Hagh M. Epigenetic mechanisms as a new approach in cancer treatment: An updated review. Genes Dis 2018; 5:304-311. [PMID: 30591931 PMCID: PMC6303480 DOI: 10.1016/j.gendis.2018.06.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Epigenetic, along with genetic mechanisms, is essential for natural evolution and maintenance of specific patterns of gene expression in mammalians. Global epigenetic variation is inherited somatically and unlike genetic variation, it is dynamic and reversible. They are somatically associated with known genetic variations. Recent studies indicate the broad role of epigenetic mechanisms in the initiation and development of cancers, that they are including DNA methylation, histone modifications, nucleosomes changes, non-coding RNAs. The reversible nature of epigenetic changes has led to the emergence of novel epigenetic therapeutic approaches, so that several types of these medications have been approved by the FDA so far. In this review, we discuss the concept of epigenetic changes in diseases, especially cancers, the role of these changes in the onset and progression of cancers and the potential of using this knowledge in designing novel therapeutic strategies.
Collapse
Affiliation(s)
- Masoumeh Fardi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Department of Immunology, Division of Hematology and Blood Transfusion Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | | |
Collapse
|
156
|
Yamasaki K, Mukai S, Sugie S, Nagai T, Nakahara K, Kamibeppu T, Sakamoto H, Shibasaki N, Terada N, Toda Y, Kataoka H, Kamoto T. Dysregulated HAI-2 Plays an Important Role in Renal Cell Carcinoma Bone Metastasis through Ligand-Dependent MET Phosphorylation. Cancers (Basel) 2018; 10:cancers10060190. [PMID: 29890660 PMCID: PMC6025049 DOI: 10.3390/cancers10060190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/22/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
MET, a c-met proto-oncogene product and hepatocyte growth factor (HGF) receptor, is known to play an important role in cancer progression, including bone metastasis. In a previous study, we reported increased expression of MET and matriptase, a novel activator of HGF, in bone metastasis. In this study, we employed a mouse model of renal cell carcinoma (RCC) bone metastasis to clarify the significance of the HGF/MET signaling axis and the regulator of HGF activator inhibitor type-2 (HAI-2). Luciferase-transfected 786-O cells were injected into the left cardiac ventricle of mice to prepare the mouse model of bone metastasis. The formation of bone metastasis was confirmed by whole-body bioluminescent imaging, and specimens were extracted. Expression of HGF/MET-related molecules was analyzed. Based on the results, we produced HAI-2 stable knockdown 786-O cells, and analyzed invasiveness and motility. Expression of HGF and matriptase was increased in bone metastasis compared with the control, while that of HAI-2 was decreased. Furthermore, we confirmed increased phosphorylation of MET in bone metastasis. The expression of matriptase was upregulated, and both invasiveness and motility were increased significantly by knockdown of HAI-2. The significance of ligand-dependent MET activation in RCC bone metastasis is considered, and HAI-2 may be an important regulator in this system.
Collapse
Affiliation(s)
- Koji Yamasaki
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Shoichiro Mukai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Satoru Sugie
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Takahiro Nagai
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Kozue Nakahara
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Toyoharu Kamibeppu
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Hiromasa Sakamoto
- Department of Urology, Faculty of Medicine, University of Kyoto, Kyoto 606-8507, Japan.
| | - Noboru Shibasaki
- Department of Urology, Faculty of Medicine, University of Kyoto, Kyoto 606-8507, Japan.
| | - Naoki Terada
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Yoshinobu Toda
- Department of Clinical Laboratory Science, Tenri Health Care University, Nara 632-0018, Japan.
| | - Hiroaki Kataoka
- Oncopathology and Regenerative Biology Section, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| | - Toshiyuki Kamoto
- Department of Urology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan.
| |
Collapse
|
157
|
Comoglio PM, Trusolino L, Boccaccio C. Known and novel roles of the MET oncogene in cancer: a coherent approach to targeted therapy. Nat Rev Cancer 2018; 18:341-358. [PMID: 29674709 DOI: 10.1038/s41568-018-0002-y] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells. We discuss how MET drives cancer clonal evolution and progression towards metastasis, both ab initio and under therapeutic pressure. We then elaborate on the use of MET inhibitors in the clinic with a critical appraisal of failures and successes. Ultimately, we advocate a rationale to improve the outcome of anti-MET therapies on the basis of thorough consideration of the entire spectrum of MET-mediated biological responses, which implicates adequate patient stratification, meaningful biomarkers and appropriate clinical end points.
Collapse
Affiliation(s)
- Paolo M Comoglio
- Exploratory Research and Molecular Cancer Therapy, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.
| | - Livio Trusolino
- Translational Cancer Medicine, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| | - Carla Boccaccio
- Cancer Stem Cell Research, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| |
Collapse
|
158
|
Anestis A, Zoi I, Karamouzis MV. Current advances of targeting HGF/c-Met pathway in gastric cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:247. [PMID: 30069449 PMCID: PMC6046293 DOI: 10.21037/atm.2018.04.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Despite the advances in systemic chemotherapy, gastric adenocarcinoma (GC) remains the third most common cause of cancer-related deaths with poor prognosis. The heterogeneity of GC indicates that novel biomarkers should be established in order to further classify tumors and develop individual targeted therapies. High-quality preclinical and clinical research has demonstrated that growth factor (HGF)-hepatocyte growth factor receptor (c-Met) pathway plays a pivotal role on the growth, survival and invasiveness of GC. In particular, aberrant activation of HGF/c-Met signaling pathway has been associated with poor clinical outcomes, suggesting the therapeutic potential of c-Met. This has stimulated the development and evaluation of a number of c-Met targeted agents in an advance disease setting. In this review, we summarize the current state of the art in the advances on the inhibition of c-Met pathway, with particular emphasis on the clinical testing of c-Met targeted therapeutic agents. Furthermore, we discuss the challenges facing the incorporation of c-Met targeted agents in randomized trials, with the idea that the definition of the appropriate genetic and molecular context for the use of these agents remains the priority.
Collapse
Affiliation(s)
- Aristomenis Anestis
- Molecular Oncology Unit, Department of Biological Chemistry, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilianna Zoi
- Molecular Oncology Unit, Department of Biological Chemistry, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
159
|
Basilico C, Modica C, Maione F, Vigna E, Comoglio PM. Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy. Int J Cancer 2018; 143:1774-1785. [PMID: 29693242 DOI: 10.1002/ijc.31550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/07/2018] [Accepted: 03/01/2018] [Indexed: 12/18/2022]
Abstract
MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMETK842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMETK842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience."
Collapse
Affiliation(s)
| | - Chiara Modica
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | - Federica Maione
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Elisa Vigna
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Turin, Torino, Italy
| | | |
Collapse
|
160
|
Identification of a MET-eIF4G1 translational regulation axis that controls HIF-1α levels under hypoxia. Oncogene 2018; 37:4181-4196. [DOI: 10.1038/s41388-018-0256-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 02/02/2023]
|
161
|
Reis H, Metzenmacher M, Goetz M, Savvidou N, Darwiche K, Aigner C, Herold T, Eberhardt WE, Skiba C, Hense J, Virchow I, Westerwick D, Bogner S, Ting S, Kasper S, Stuschke M, Nensa F, Herrmann K, Hager T, Schmid KW, Schuler M, Wiesweg M. MET Expression in Advanced Non-Small-Cell Lung Cancer: Effect on Clinical Outcomes of Chemotherapy, Targeted Therapy, and Immunotherapy. Clin Lung Cancer 2018; 19:e441-e463. [PMID: 29631966 DOI: 10.1016/j.cllc.2018.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 03/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND The receptor tyrosine kinase MET is implicated in malignant transformation, tumor progression, metastasis, and acquired treatment resistance. We conducted an analysis of the effect of MET expression and MET genomic aberrations on the outcome of patients with advanced or metastatic pulmonary adenocarcinomas prospectively enrolled in an institutional precision oncology program. PATIENTS AND METHODS Standardized immunohistochemistry (IHC) analyses of MET and markers of pathway activation were available in 384 patients, and next-generation sequencing-based MET hotspot mutation analyses were available from 892 patients. Clinical data were retrieved with a median follow-up from initial diagnosis of 37 months. RESULTS High MET expression, defined as MET IHC 3+ or MET H-Score in the upper quartile, was observed in 102 of 384 patients (26.6%). MET exon 14 mutations were only detected in 7 of 892 patients (0.78%). High MET expression correlated with activation markers of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways only in cases without Kirsten rat sarcoma viral oncogene homolog (KRAS), epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B (BRAF), anaplastic lymphoma kinase (ALK) and proto-oncogene tyrosine-protein kinase ROS (ROS1) aberrations. There was no association of MET expression with outcome during chemotherapy. High MET expression negatively affected the outcome during EGFR-targeting therapy but was associated with more favorable results with programmed death 1/programmed death ligand 1 (PD-L1)-directed therapy, independent of smoking history, PD-L1 expression or KRAS mutation. Two patients with MET exon 14 mutation and high PD-L1 expression failed to respond to pembrolizumab. CONCLUSION MET expression affects the outcomes of targeted therapies in non-small-cell lung cancer, thus supporting the development of biomarker-informed combination strategies. The interaction of MET expression and MET mutation with immune checkpoint inhibitor therapy is novel and merits further investigation.
Collapse
Affiliation(s)
- Henning Reis
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Metzenmacher
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Moritz Goetz
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nikoleta Savvidou
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kaid Darwiche
- Department of Pulmonary Medicine, Section of Interventional Pneumology, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Endoscopy, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E Eberhardt
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Division of Thoracic Oncology, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Charlotte Skiba
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jörg Hense
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Isabel Virchow
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Westerwick
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simon Bogner
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Kasper
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Felix Nensa
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ken Herrmann
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kurt W Schmid
- Institute of Pathology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Division of Thoracic Oncology, Ruhrlandklinik - University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Marcel Wiesweg
- Department of Medical Oncology, West German Cancer Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
162
|
Sagi Z, Hieronymus T. The Impact of the Epithelial-Mesenchymal Transition Regulator Hepatocyte Growth Factor Receptor/Met on Skin Immunity by Modulating Langerhans Cell Migration. Front Immunol 2018; 9:517. [PMID: 29616031 PMCID: PMC5864859 DOI: 10.3389/fimmu.2018.00517] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/27/2018] [Indexed: 01/16/2023] Open
Abstract
Langerhans cells (LCs), the epidermal dendritic cell (DC) subset, express the transmembrane tyrosine kinase receptor Met also known as hepatocyte growth factor (HGF) receptor. HGF is the exclusive ligand of Met and upon binding executes mitogenic, morphogenic, and motogenic activities to various cells. HGF exerts anti-inflammatory activities via Met signaling and was found to regulate various functions of immune cells, including differentiation and maturation, cytokine production, cellular migration and adhesion, and T cell effector function. It has only recently become evident that a number of HGF-regulated functions in inflammatory processes and immune responses are imparted via DCs. However, the mechanisms by which Met signaling in DCs conveys its immunoregulatory effects have not yet been fully understood. In this review, we focus on the current knowledge of Met signaling in DCs with particular attention on the morphogenic and motogenic activities. Met signaling was shown to promote DC mobility by regulating matrix metalloproteinase activities and adhesion. This is a striking resemblance to the role of Met in regulating a cell fate program during embryonic development, wound healing, and in tumor invasion known as epithelial–mesenchymal transition (EMT). Hence, we propose the concept that an EMT program is executed by Met signaling in LCs.
Collapse
Affiliation(s)
- Zsofia Sagi
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Thomas Hieronymus
- Department of Cell Biology, Institute of Biomedical Engineering, RWTH Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
163
|
Tomasello C, Baldessari C, Napolitano M, Orsi G, Grizzi G, Bertolini F, Barbieri F, Cascinu S. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives. Crit Rev Oncol Hematol 2018; 123:149-161. [DOI: 10.1016/j.critrevonc.2018.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
|
164
|
Acquired savolitinib resistance in non-small cell lung cancer arises via multiple mechanisms that converge on MET-independent mTOR and MYC activation. Oncotarget 2018; 7:57651-57670. [PMID: 27472392 PMCID: PMC5295379 DOI: 10.18632/oncotarget.10859] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/13/2016] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.
Collapse
|
165
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
166
|
Albitar M, Sudarsanam S, Ma W, Jiang S, Chen W, Funari V, Blocker F, Agersborg S. Correlation of MET gene amplification and TP53 mutation with PD-L1 expression in non-small cell lung cancer. Oncotarget 2018; 9:13682-13693. [PMID: 29568386 PMCID: PMC5862607 DOI: 10.18632/oncotarget.24455] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/09/2018] [Indexed: 12/26/2022] Open
Abstract
Background The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. Methods In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. Results Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. Conclusions This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification.
Collapse
Affiliation(s)
| | | | - Wanlong Ma
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | | | - Wayne Chen
- NeoGenomics Laboratories, Aliso Viejo, CA, USA
| | | | | | | |
Collapse
|
167
|
Zhu T, Hu X, Wei P, Shan G. Molecular background of the regional lymph node metastasis of gastric cancer. Oncol Lett 2018; 15:3409-3414. [PMID: 29556271 DOI: 10.3892/ol.2018.7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer (GC) is one of the deadliest types of cancer in the world. Lymph node (LN) metastasis is a complex and malignant behavior of GC, involving a sequence of biological processes, including decreased adherence to adjacent cells, extracellular matrix (ECM) degradation and lymphatic channel permeation. LN metastasis is directly associated with the treatment response, local recurrence and long-term survival of patients with GC. Therefore, the molecular mechanisms of LN metastasis in GC development require further investigation. Recently, a large number of clinical studies have focused on the molecular mechanisms and biological markers of tumor invasion and metastasis. However, few articles have broadly summarized LN metastasis in GC, and the molecular mechanisms of LN metastasis are not yet fully understood. In the present review, the molecular mechanisms of LN metastasis in GC will be discussed, including the following aspects: Cell adhesion and movement, ECM degradation, new vessel formation, and molecular pattern differences between metastatic LNs and the primary tumor. This review may lead to a better understanding of LN metastasis in GC, and the identification of new diagnostic markers.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Xueqian Hu
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| | - Pinkang Wei
- Department of Traditional Chinese Medicine, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, P.R. China
| | - Guangzhi Shan
- Department of Oncology, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
168
|
Oliveira AG, Araújo TG, Carvalho BDM, Rocha GZ, Santos A, Saad MJA. The Role of Hepatocyte Growth Factor (HGF) in Insulin Resistance and Diabetes. Front Endocrinol (Lausanne) 2018; 9:503. [PMID: 30214428 PMCID: PMC6125308 DOI: 10.3389/fendo.2018.00503] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
In obesity, insulin resistance (IR) and diabetes, there are proteins and hormones that may lead to the discovery of promising biomarkers and treatments for these metabolic disorders. For example, these molecules may impair the insulin signaling pathway or provide protection against IR. Thus, identifying proteins that are upregulated in IR states is relevant to the diagnosis and treatment of the associated disorders. It is becoming clear that hepatocyte growth factor (HGF) is an important component of the pathophysiology of IR, with increased levels in most common IR conditions, including obesity. HGF has a role in the metabolic flux of glucose in different insulin sensitive cell types; plays a key role in β-cell homeostasis; and is capable of modulating the inflammatory response. In this review, we discuss how, and to what extent HGF contributes to IR and diabetes pathophysiology, as well as its role in cancer which is more prevalent in obesity and diabetes. Based on the current literature and knowledge, it is clear that HGF plays a central role in these metabolic disorders. Thus, HGF levels could be employed as a biomarker for disease status/progression, and HGF/c-Met signaling pathway modulators could effectively regulate IR and treat diabetes.
Collapse
Affiliation(s)
- Alexandre G. Oliveira
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physical Education, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
- *Correspondence: Alexandre G. Oliveira
| | - Tiago G. Araújo
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Bruno de Melo Carvalho
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Institute of Biological Sciences, University of Pernambuco, Recife, Brazil
| | - Guilherme Z. Rocha
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Andrey Santos
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
| | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas, Campinas, Brazil
- Mario J. A. Saad
| |
Collapse
|
169
|
Thewke DP, Kou J, Fulmer ML, Xie Q. The HGF/MET Signaling and Therapeutics in Cancer. CURRENT HUMAN CELL RESEARCH AND APPLICATIONS 2018. [DOI: 10.1007/978-981-10-7296-3_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
170
|
von Mässenhausen A, Sanders C, Thewes B, Deng M, Queisser A, Vogel W, Kristiansen G, Duensing S, Schröck A, Bootz F, Brossart P, Kirfel J, Heasley L, Brägelmann J, Perner S. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget 2017; 7:32678-94. [PMID: 27081701 PMCID: PMC5078043 DOI: 10.18632/oncotarget.8724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Although head and neck cancer (HNSCC) is the sixth most common tumor entity worldwide therapy options remain limited leading to 5-year survival rates of only 50 %. MERTK is a promising therapeutic target in several tumor entities, however, its role in HNSCC has not been described yet. The aim of our study was to investigate the biological significance of MERTK and to evaluate its potential as a novel therapeutic target in this dismal tumor entity. In two large HNSCC cohorts (n=537 and n=520) we found that MERTK is overexpressed in one third of patients. In-vitro, MERTK overexpression led to increased proliferation, migration and invasion whereas MERTK inhibition with the small molecule inhibitor UNC1062 or MERTK knockdown reduced cell motility via the small GTPase RhoA. Taken together, we are the first to show that MERTK is frequently overexpressed in HNSCC and plays an important role in tumor cell motility. It might therefore be a potential target for selected patients suffering from this dismal tumor entity.
Collapse
Affiliation(s)
- Anne von Mässenhausen
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Christine Sanders
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Britta Thewes
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Mario Deng
- Pathology of The University Hospital of Luebeck, Luebeck, Germany.,Leibniz Research Center Borstel, Borstel, Germany
| | - Angela Queisser
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Wenzel Vogel
- Pathology of The University Hospital of Luebeck, Luebeck, Germany.,Leibniz Research Center Borstel, Borstel, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Stefan Duensing
- Department of Urology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schröck
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Bonn, Germany
| | - Friedrich Bootz
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Bonn, Germany
| | - Peter Brossart
- Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology/Oncology, University Hospital of Bonn, Bonn, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany
| | - Lynn Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Johannes Brägelmann
- Section of Prostate Cancer Research, University Hospital of Bonn, Bonn, Germany.,Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, Bonn, Germany.,Department of Hematology/Oncology, University Hospital of Bonn, Bonn, Germany
| | - Sven Perner
- Pathology of The University Hospital of Luebeck, Luebeck, Germany.,Leibniz Research Center Borstel, Borstel, Germany
| |
Collapse
|
171
|
Qiu T, Li W, Zhang T, Xing P, Huang W, Wang B, Chu L, Guo L, Liu X, Li Y, Ying J, Li J. Distinct MET Protein Localization Associated With MET Exon 14 Mutation Types in Patients With Non-small-cell Lung Cancer. Clin Lung Cancer 2017; 19:e391-e398. [PMID: 29338938 DOI: 10.1016/j.cllc.2017.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND The MET gene has been recognized as a potential important therapeutic target in non-small-cell lung cancer (NSCLC). We sought to investigate the MET exon 14 mutations in a cohort of Chinese patients with NSCLC. METHODS We tested 461 NSCLCs for MET exon 14 mutations by sequencing whole exon 14 and its flanking introns. The protein expression was determined by immunohistochemical analysis. RESULTS In this study, we identified MET exon 14 mutations in 9 (2.0%) of 461 NSCLCs. Of these 9 mutations, 7 (77.8%) were located in the splice sites of MET exon 14, with MET overexpression in 6. One point mutation c.3010C>T (p.Arg1004Ter) was nonsense mutation with no MET expression. One insertion mutation was within exon 14 of MET with MET overexpression. MET protein localization in tumor cells with MET exon 14 mutations was different between mutation types. Three point mutations that disrupted the splice donor site of intron 14 were membranous staining, whereas the other mutations were cytoplasmic staining. Patients with MET exon 14 splice site mutations were significantly older. The incidence of MET exon 14 mutations in sarcomatoid carcinoma was significantly higher than in other histologic types (P = .034). CONCLUSION Distinct MET protein localization is associated with MET exon 14 mutation types in patients with NSCLC. Different MET exon 14 mutation types were identified in a subset of Chinese patients with NSCLC who could possibly benefit from MET targeted therapy.
Collapse
Affiliation(s)
- Tian Qiu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tongtong Zhang
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenting Huang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingning Wang
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lixia Chu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuyun Liu
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
172
|
Owusu BY, Bansal N, Venukadasula PKM, Ross LJ, Messick TE, Goel S, Galemmo RA, Klampfer L. Inhibition of pro-HGF activation by SRI31215, a novel approach to block oncogenic HGF/MET signaling. Oncotarget 2017; 7:29492-506. [PMID: 27121052 PMCID: PMC5045412 DOI: 10.18632/oncotarget.8785] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/28/2016] [Indexed: 01/05/2023] Open
Abstract
The binding of hepatocyte growth factor (HGF) to its receptor MET activates a signaling cascade that promotes cell survival, proliferation, cell scattering, migration and invasion of malignant cells. HGF is secreted by cancer cells or by tumor-associated fibroblasts as pro-HGF, an inactive precursor. A key step in the regulation of HGF/MET signaling is proteolytic processing of pro-HGF to its active form by one of the three serine proteases, matriptase, hepsin or HGF activator (HGFA).We developed SRI 31215, a small molecule that acts as a triplex inhibitor of matriptase, hepsin and HGFA and mimics the activity of HAI-1/2, endogenous inhibitors of HGF activation. We demonstrated that SRI 31215 inhibits fibroblast-induced MET activation, epithelial-mesenchymal transition and migration of cancer cells. SRI 31215 overcomes primary resistance to cetuximab and gefitinib in HGF-producing colon cancer cells and prevents fibroblast-mediated resistance to EGFR inhibitors. Thus, SRI 31215 blocks signaling between cancer cells and fibroblasts and inhibits the tumor-promoting activity of cancer-associated fibroblasts.Aberrant HGF/MET signaling supports cell survival, proliferation, angiogenesis, invasion and metastatic spread of cancer cells, establishing HGF and MET as valid therapeutic targets. Our data demonstrate that inhibitors of HGF activation, such as SRI 31215, merit investigation as potential therapeutics in tumors that are addicted to HGF/MET signaling. The findings reported here also indicate that inhibitors of HGF activation overcome primary and acquired resistance to anti-EGFR therapy, providing a rationale for concurrent inhibition of EGFR and HGF to prevent therapeutic resistance and to improve the outcome of cancer patients.
Collapse
Affiliation(s)
- Benjamin Y Owusu
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Namita Bansal
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | | | - Larry J Ross
- High Throughput Screening, Southern Research, Drug Discovery Division, Birmingham, AL, USA
| | - Troy E Messick
- The Wistar Institute, Southern Research, Philadelphia, PA, USA
| | - Sanjay Goel
- Albert Einstein Cancer Center, Southern Research, Bronx, NY, USA
| | - Robert A Galemmo
- Department of Chemistry, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| | - Lidija Klampfer
- Department of Oncology, Drug Discovery Division, Southern Research, Birmingham, AL, USA
| |
Collapse
|
173
|
Ai J, Chen Y, Peng X, Ji Y, Xi Y, Shen Y, Yang X, Su Y, Sun Y, Gao Y, Ma Y, Xiong B, Shen J, Ding J, Geng M. Preclinical Evaluation of SCC244 (Glumetinib), a Novel, Potent, and Highly Selective Inhibitor of c-Met in MET-dependent Cancer Models. Mol Cancer Ther 2017; 17:751-762. [DOI: 10.1158/1535-7163.mct-17-0368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
|
174
|
Li Y, Gu Z, Zhang C, Li S, Zhang L, Zhou G, Wang S, Zhang J. Synthesis, characterization and ROS-mediated antitumor effects of palladium(II) complexes of curcuminoids. Eur J Med Chem 2017; 144:662-671. [PMID: 29289889 DOI: 10.1016/j.ejmech.2017.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Based on the synthesis of curcumin and its derivatives from aromatic aldehydes, a novel series of palladium(II) complexes with curcumin (or its derivatives) and 2,2'-bipyridine have been synthesized through a directed self-assembly approach that involves spontaneous deprotonation of the curcuminoid ligands in H2O/acetone solution. These complexes have been characterized by 1H (13C) NMR, HRMS and elemental analysis. Crystal structure of 3h has been determined by X-ray diffraction analysis. Their cytotoxicity was tested by MTT. The preliminary results showed that complexes 3d, 3f, 3h have significant inhibition on proliferation of three carcinoma cells such as MCF-7, HeLa and A549 cells, which were more active than cisplatin. Further mechanistic studies indicated that the tested complex 3h arrested the cell cycle in the S phase and can disrupted mitochondrial membrane potential and induced tumor cell apoptosis through reactive oxygen species (ROS)-dependent pathway.
Collapse
Affiliation(s)
- Yanci Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Zhenyu Gu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Can Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Shenghui Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Liang Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China.
| | - Shuxiang Wang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, College of Chemistry & Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
175
|
Ohashi Y, Okamura M, Katayama R, Fang S, Tsutsui S, Akatsuka A, Shan M, Choi HW, Fujita N, Yoshimatsu K, Shiina I, Yamori T, Dan S. Targeting the Golgi apparatus to overcome acquired resistance of non-small cell lung cancer cells to EGFR tyrosine kinase inhibitors. Oncotarget 2017; 9:1641-1655. [PMID: 29416720 PMCID: PMC5788588 DOI: 10.18632/oncotarget.22895] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (EGFR-TKIs) were demonstrated to provide survival benefit in patients with non-small cell lung cancer (NSCLC) harboring activating mutations of EGFR; however, emergence of acquired resistance to EGFR-TKIs has been shown to cause poor outcome. To overcome the TKI resistance, drugs with different mode of action are required. We previously reported that M-COPA (2-methylcoprophilinamide), a Golgi disruptor, suppressed the growth of gastric cancers overexpressing receptor tyrosine kinases (RTKs) such as hepatocyte growth factor receptor (MET) via downregulating their cell surface expression. In this study, we examined the antitumor effect of M-COPA on NSCLC cells with TKI resistance. As a result, M-COPA effectively downregulated cell surface EGFR and its downstream signals, and finally exerted in vivo antitumor effect in NSCLC cells harboring secondary (T790M/del19) and tertiary (C797S/T790M/del19) mutated EGFR, which exhibit acquired resistance to first- and third generation EGFR-TKIs, respectively. M-COPA also downregulated MET expression potentially involved in the acquired resistance to EGFR-TKIs via bypassing the EGFR pathway blockade. These results provide the first evidence that targeting the Golgi apparatus might be a promising therapeutic strategy to overcome the vicious cycle of TKI resistance in EGFR-mutated NSCLC cells via downregulating cell surface RTK expression.
Collapse
Affiliation(s)
- Yoshimi Ohashi
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mutsumi Okamura
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Siyang Fang
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Saki Tsutsui
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Akinobu Akatsuka
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mingde Shan
- Eisai AiM Institute, Eisai Inc., Andover, MA, USA
| | | | - Naoya Fujita
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Present address: Center for Product Evaluation, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
176
|
Trusolino L. Oncogenic MET as an Effective Therapeutic Target in Non-Small Cell Lung Cancer Resistant to EGFR Inhibitors: The Rise of the Phoenix. Cancer Discov 2017; 6:1306-1308. [PMID: 27920137 DOI: 10.1158/2159-8290.cd-16-1181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anecdotal reports have shown that concomitant inhibition of EGFR and MET can be clinically effective in patients with non-small cell lung cancer carrying EGFR mutations and MET amplification, but large phase III trials in genetically unselected individuals have failed to confirm the benefit of this combination therapy. A new study corroborates the evidence that lung cancer susceptibility to EGFR and MET blockade is sustained by genetically based activation of both targets and identifies a mutation in MET that confers acquired resistance to standard MET inhibitors hitting the active kinase, yet is vulnerable to other MET-directed compounds with a different binding mode. Cancer Discov; 6(12); 1306-8. ©2016 AACR.See related article by Bahcall and colleagues, p. 1334.
Collapse
Affiliation(s)
- Livio Trusolino
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute IRCCS, and Department of Oncology, University of Torino School of Medicine, Candiolo, Torino, Italy.
| |
Collapse
|
177
|
Abstract
Cabozantinib inhibits receptor tyrosine kinases involved in tumor angiogenesis and metastasis. The capsule formulation (Cometriq®) is approved for the treatment of progressive metastatic medullary thyroid cancer at a 140-mg free base equivalent dose. The tablet formulation (Cabometyx™, 60-mg free base equivalent dose) is approved for the treatment of renal cell carcinoma following anti-angiogenic therapy. Cabozantinib displays a long terminal plasma half-life (~120 h) and accumulates ~fivefold by day 15 following daily dosing based on area under the plasma concentration-time curve (AUC). Four identified inactive metabolites constitute >65 % of total cabozantinib-related AUC following a single 140-mg free base equivalent dose. Cabozantinib AUC was increased by 63-81 % or 7-30 % in subjects with mild/moderate hepatic or renal impairment, respectively; by 34-38 % with concomitant cytochrome P450 3A4 inhibitor ketoconazole; and by 57 % following a high-fat meal. Cabozantinib AUC was decreased by 76-77 % with concomitant cytochrome P450 3A4 inducer rifampin, and was unaffected following administration of proton pump inhibitor esomeprazole. Cabozantinib is a potent in vitro inhibitor of P-glycoprotein, and multidrug and toxin extrusion transporter 1 and 2-K, and is a substrate for multidrug resistance protein 2. No clinically significant covariates affecting cabozantinib pharmacokinetics were identified in a population pharmacokinetic analysis. Patients with medullary thyroid cancer with low model-predicted apparent clearance were more likely to dose hold/reduce cabozantinib early, and had a lower average dose through day 85. However, longitudinal tumor modeling suggests that cabozantinib dose reductions from 140 to 60 mg/day did not markedly reduce tumor growth inhibition in medullary thyroid cancer patients.
Collapse
|
178
|
El-Wakil MH, Ashour HM, Saudi MN, Hassan AM, Labouta IM. Design, synthesis and molecular modeling studies of new series of antitumor 1,2,4-triazines with potential c-Met kinase inhibitory activity. Bioorg Chem 2017; 76:154-165. [PMID: 29175587 DOI: 10.1016/j.bioorg.2017.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/29/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
The receptor tyrosine kinase c-Met is an attractive target for therapeutic treatment of cancers nowadays. Herein we describe the design and synthesis of a novel series of 1,2,4-triazine derivatives based on our lead NCI 748494/1, possessing different N-linkers to aromatic and heterocyclic rings. In addition, a molecular hybrid series combining the 1,2,4-triazine scaffold to the well-known anticancer drug 6-mercaptopurine (6-MP) was synthesized in order to explore its "double-drug" antitumor effect. The synthesized compounds were evaluated for their in vitro antitumor activity against three c-Met addicted cancer cell lines (A549, HT-29 and MKN-45). Most compounds showed moderate to excellent antitumor activity. Compound 3d showed potent inhibitory activity more than reference Foretinib, BMS-777607 and NCI 748494/1 with IC50 values in the range 0.01-0.31 µM against the cancer cell lines. The calculated IC50 of 3d against c-Met kinase was found to be 2.71 µM, which is more potent than NCI 748494/1 (IC50 = 31.70 µM). Docking studies were performed to identify the binding mode of 3d with c-Met kinase domain in comparison to moderate and weak derivatives. The present study clearly demonstrates that 1,2,4-triazine ring exhibits promising antitumor activity and the double-drug optimization strategy led to identifying 3d as a potent c-Met kinase inhibitor suitable for further development.
Collapse
Affiliation(s)
- Marwa H El-Wakil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Hayam M Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Manal N Saudi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed M Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ibrahim M Labouta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
179
|
A non-randomized, open-label, single-arm, Phase 2 study of emibetuzumab in Asian patients with MET diagnostic positive, advanced gastric cancer. Cancer Chemother Pharmacol 2017; 80:1197-1207. [PMID: 29071414 PMCID: PMC5686250 DOI: 10.1007/s00280-017-3445-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Purpose Mesenchymal–epithelial transition factor (MET) is expressed in gastric cancer and associated with poor clinical outcomes. We assessed activity, safety, and pharmacokinetics of emibetuzumab, a bivalent monoclonal anti-MET antibody that blocks ligand-dependent and ligand-independent MET signaling. Methods This non-randomized, single-arm, Phase 2 study enrolled Asian patients with MET diagnostic positive advanced gastric adenocarcinoma. Emibetuzumab (2000 mg, intravenous) was given on days 1 and 15 (28-day cycle). The primary endpoint was 8-week progression-free survival rate. Secondary objectives included safety, pharmacokinetics, overall survival, and change in tumor size. Results Tumors from 65 patients were immunohistochemically screened to enroll 15 MET diagnostic positive patients (23% positivity; 8 Japanese, 7 Korean; 10 male). Eight-week progression-free survival rate was 0.47 (70% CI, 0.33–0.59). Disease control rate was 40% (target lesion decreases, three patients; no complete/partial responses according to RECIST). Median overall survival was 17.1 weeks (95% CI, 6.3–not achievable). No serious emibetuzumab-related adverse events or new safety signals emerged. Grade ≥ 3 possibly drug-related adverse events were hyperkalemia, hyponatremia, and hyperuricemia (one each). Emibetuzumab’s pharmacokinetics profile was similar to that observed previously. MET expression and clinical outcomes were not obviously associated. Conclusion Emibetuzumab was well tolerated with limited single-agent activity in advanced gastric adenocarcinoma.
Collapse
|
180
|
Stella GM, Benvenuti S, Gentile A, Comoglio PM. MET Activation and Physical Dynamics of the Metastatic Process: The Paradigm of Cancers of Unknown Primary Origin. EBioMedicine 2017; 24:34-42. [PMID: 29037604 PMCID: PMC5652293 DOI: 10.1016/j.ebiom.2017.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/14/2022] Open
Abstract
The molecular and cellular mechanisms which drive metastatic spread are the topic of constant debate and scientific research due to the potential implications for cancer patients' prognosis. In addition to genetics and environmental factors, mechanics of single cells and physical interaction with the surrounding environment play relevant role in defining invasive phenotype. Reconstructing the physical properties of metastatic clones may help to clarify still open issues in disease progression as well as to lead to new diagnostic and therapeutic approaches. In this perspective cancer of unknown primary origin (CUP) identify the ideal model to study physical interactions and forces involved in the metastatic process. We have previously demonstrated that MET oncogene is mutated with unexpected high frequency in CUPs. We here analyze and discuss how the MET activation by somatic mutation may affect physical properties in giving rise to such a highly malignant syndrome, as that defined by CUP.
Collapse
Affiliation(s)
- Giulia M Stella
- Cardiothoracic Dept., Section of Respiratory System Diseases, IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Silvia Benvenuti
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Alessandra Gentile
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| | - Paolo M Comoglio
- Candiolo Cancer Institute, FPO-IRCCS, Str Prov 142, 10060 Candiolo, Italy
| |
Collapse
|
181
|
Prognostic value of c-MET in head and neck cancer: A systematic review and meta-analysis of aggregate data. Oral Oncol 2017; 74:68-76. [PMID: 29103754 DOI: 10.1016/j.oraloncology.2017.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/30/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) ligand/receptor axis has been implicated in pathogenesis of malignant diseases including squamous cell carcinoma of the head and neck (SCCHN). Overexpression of c-MET has been reported as a common molecular abnormality in SCCHN, although its prognostic and predictive value remains to be validated. METHODS We systematically searched literature for studies evaluating c-MET expression on immunohistochemistry in newly diagnosed, non-metastatic SCCHN. The c-MET expressing cases were classified into three categories according to predefined cut-off values for positivity. Our aim was to assess the prevalence of c-MET expression and its relationship with selected clinicopathological variables. RESULTS Twenty-eight studies with 2019 cases were included. Relative frequencies of c-MET expression above cut-off levels I, II, and III were 81.8%, 63.8%, and 46.2%, respectively. Differences between these three values were statistically significant (p<1.0×10-6). Above cut-off level II, c-MET positivity was associated with worse overall survival (p=4.0×10-6), positive nodal status (p=1.0×10-4), higher disease stage (p=7.0×10-4), older age (p=2.1×10-3), disease recurrence (p=2.0×10-2), and primary tumour localization in the oral cavity (p=2.3×10-2). Above cut-off level III, c-MET positivity was associated with worse disease-free or progression-free survival (p=9.0×10-6), p16 negativity (p=2.4×10-4), worse overall survival (p=4.0×10-4), positive epidermal growth factor receptor (EGFR) status (p=7.2×10-4), and larger primary tumours (p=4.6×10-3). CONCLUSION In SCCHN, immunohistochemical overexpression of c-MET above cut-off levels III and particularly II was associated with inferior survival outcomes and advanced disease. Moreover, it represents a promising predictive biomarker for c-MET targeting, yet the optimal scoring method remains to be defined.
Collapse
|
182
|
Farag E, Sessler DI, Ebrahim Z, Kurz A, Morgan J, Ahuja S, Maheshwari K, John Doyle D. The renin angiotensin system and the brain: New developments. J Clin Neurosci 2017; 46:1-8. [PMID: 28890045 DOI: 10.1016/j.jocn.2017.08.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/14/2017] [Indexed: 11/19/2022]
Abstract
The traditional renin-angiotensin system (RAS) is indispensable system in adjusting sodium homeostasis, body fluid volume, and controlling arterial blood pressure. The key elements are renin splitting inactive angiotensinogen to yield angiotensin (Ang-I). Ang-1 is then changed by angiotensin-1 converting enzyme (ACE) into angiotensin II (Ang-II). Using PubMed, Google Scholar, and other means, we searched the peer-reviewed literature from 1990 to 2013 for articles on newly discovered findings related to the RAS, especially focusing on how the system influences the central nervous system (CNS). The classical RAS is now considered to be only part of the picture; the discovery of additional RAS pathways in the brain and elsewhere has yielded a vastly improved understanding of how the RAS influences the CNS. Newly discovered effects of the RAS on brain tissue include neuroprotection, cognition, and cerebral vasodilation. A number of brain biochemical pathways are influenced by the brain RAS. Within various pathways, there are potential opportunities for classical pharmacologic interventions as well as the possibility of controlling gene expression.
Collapse
Affiliation(s)
- Ehab Farag
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA. http://www.OR.org/
| | - Daniel I Sessler
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Zeyd Ebrahim
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrea Kurz
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Morgan
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sanchit Ahuja
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kamal Maheshwari
- Department of Outcomes Research, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA; Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| | - D John Doyle
- Department of General Anaesthesiology, Anaesthesiology Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
183
|
Rodon J, Postel-Vinay S, Hollebecque A, Nuciforo P, Azaro A, Cattan V, Marfai L, Sudey I, Brendel K, Delmas A, Malasse S, Soria JC. First-in-human phase I study of oral S49076, a unique MET/AXL/FGFR inhibitor, in advanced solid tumours. Eur J Cancer 2017. [PMID: 28624695 DOI: 10.1016/j.ejca.2017.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVES S49076 is a novel ATP-competitive tyrosine kinase inhibitor of MET, AXL and FGFR with a unique selectivity profile. A phase I open-label study was undertaken to establish the tolerability profile and determine the recommended dose (RD) and administration schedule. MATERIALS AND METHODS Patients with advanced solid tumours received S49076 orally once-daily (qd) or twice-daily (bid) in continuous 21-day cycles at escalating doses guided by a 3 + 3 design and followed by an expansion phase at the RD. Pharmacokinetic (PK) parameters were assessed and pharmacodynamic end-points were evaluated in pre- and post-treatment tumour biopsies. Preliminary anti-tumour activity was evaluated as per the Response Evaluation Criteria In Solid Tumours 1.1 criteria. RESULTS A total of 103 patients were treated: 79 in the dose-escalation and 24 in the expansion. Doses from 15 to 900 mg were evaluated. Dose-limiting toxicities were reported in 9 patients and occurred at 30, 760 and 900 mg in the qd arm and at 180, 225 and 285 mg in the bid arm. The RD was defined at 600 mg qd. Adverse events (AEs) occurred with similar frequency in both regimens at an equivalent total daily dose. Overall, 83 patients (81.4%) had drug-related AEs, the majority (93%) of which were grade I-II (National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0) and only 3% led to drug discontinuation. Intratumoural PK analysis at the RD suggested hitting of MET, AXL and FGFR. CONCLUSION S49076 demonstrated a tolerable safety profile with limited single-agent activity. PK/pharmacodynamic readouts of S49076 are encouraging for further investigation of S49076 in combination therapies. TRIAL REGISTRATION NUMBER ISRCTN00759419.
Collapse
Affiliation(s)
- Jordi Rodon
- Medical Oncology, Vall D'Hebron University Hospital and Vall D'Hebron Institut D'Oncologia, Barcelona, Spain.
| | - Sophie Postel-Vinay
- Drug Development Department DITEP, Institut Gustave Roussy, 94805, Villejuif, France; Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Orsay, 91405, France
| | - Antoine Hollebecque
- Drug Development Department DITEP, Institut Gustave Roussy, 94805, Villejuif, France; Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Orsay, 91405, France
| | - Paolo Nuciforo
- Molecular Oncology Laboratory, Vall D'Hebron University Hospital Institut D'Oncologia, Barcelona, Spain
| | - Analia Azaro
- Medical Oncology, Vall D'Hebron University Hospital and Vall D'Hebron Institut D'Oncologia, Barcelona, Spain
| | - Valérie Cattan
- Oncology R&D Unit, Institut de Recherches Internationales Servier, 92284, Suresnes, France
| | - Lucie Marfai
- Oncology R&D Unit, Institut de Recherches Internationales Servier, 92284, Suresnes, France
| | - Isabelle Sudey
- Oncology R&D Unit, Institut de Recherches Internationales Servier, 92284, Suresnes, France
| | - Karl Brendel
- Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, 92284, Suresnes, France
| | - Audrey Delmas
- Division of Clinical Pharmacokinetics and Pharmacometrics, Institut de Recherches Internationales Servier, 92284, Suresnes, France
| | - Stéphanie Malasse
- Division of Biostatistics, Institut de Recherches Internationales Servier, 92284, Suresnes, France
| | - Jean-Charles Soria
- Drug Development Department DITEP, Institut Gustave Roussy, 94805, Villejuif, France; Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Orsay, 91405, France
| |
Collapse
|
184
|
Mesarosova L, Ochodnicky P, Leemans JC, Florquin S, Krenek P, Klimas J. High glucose induces HGF-independent activation of Met receptor in human renal tubular epithelium. J Recept Signal Transduct Res 2017; 37:535-542. [PMID: 28819999 DOI: 10.1080/10799893.2017.1365902] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT The role of hepatocyte growth factor (HGF) in diabetic kidney damage remains controversial. OBJECTIVE To test the hypothesis that high glucose levels activate pathways related to HGF and its receptor Met and that this could participate in glucose-induced renal cell damage. MATERIALS AND METHODS HK2 cells, a human proximal tubule epithelial cell line, were stimulated with high glucose for 48 hours. Levels of pMet/Met, pEGFR/EGFR, pSTAT3/STAT3, pAkt/Akt and pERK1/2/ERK1/2 were studied by immunoblotting. Absence of HGF was verified by qRT-PCR and ELISA. RESULTS High glucose level activated Met and its downstream pathways STAT3, Akt and ERK independently of HGF. High glucose induced an integrin ligand fibronectin. HGF-independent Met phosphorylation was prevented by inhibition of integrin α5β1, Met inhibitor crizotinib, Src inhibitors PP2 and SU5565, but not by EGFR inhibitor AG1478. High glucose increased the expression of TGFβ-1, CTGF and the tubular damage marker KIM-1 and increased apoptosis of HK2 cells, effects inhibited by crizotinib. CONCLUSION High glucose activated Met receptor in HK2 cells independently of HGF, via induction of integrin α5β1 and downstream signaling. This mode of Met activation was associated with tubular cell damage and apoptosis and it may represent a novel pathogenic mechanism and a treatment target in diabetic nephropathy.
Collapse
Affiliation(s)
- Lucia Mesarosova
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Peter Ochodnicky
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Jaklien C Leemans
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Sandrine Florquin
- b Department of Pathology , Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Peter Krenek
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| | - Jan Klimas
- a Department of Pharmacology and Toxicology, Faculty of Pharmacy , Comenius University in Bratislava , Bratislava , Slovakia
| |
Collapse
|
185
|
A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. Int J Mol Sci 2017; 18:ijms18081786. [PMID: 28817103 PMCID: PMC5578174 DOI: 10.3390/ijms18081786] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a key event that governs tumor progression and metastasis. It is controlled by the complicated and coordinated actions of pro-angiogenic factors and their receptors that become upregulated during tumorigenesis. Over the past several decades, vascular endothelial growth factor (VEGF) signaling has been identified as a central axis in tumor angiogenesis. The remarkable advent of recombinant antibody technology has led to the development of bevacizumab, a humanized antibody that targets VEGF and is a leading clinical therapy to suppress tumor angiogenesis. However, despite the clinical efficacy of bevacizumab, its significant side effects and drug resistance have raised concerns necessitating the identification of novel drug targets and development of novel therapeutics to combat tumor angiogenesis. This review will highlight the role and relevance of VEGF and other potential therapeutic targets and their receptors in angiogenesis. Simultaneously, we will also cover the current status of monoclonal antibodies being developed to target these candidates for cancer therapy.
Collapse
|
186
|
Hatogai K, Fujii S, Kojima T, Daiko H, Nomura S, Doi T, Kitano S, Ohtsu A, Takiguchi Y, Yoshino T, Ochiai A. Large-scale comprehensive immunohistochemical biomarker analyses in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2017; 143:2351-2361. [PMID: 28756492 DOI: 10.1007/s00432-017-2482-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a heterogeneous disease in the sense that the biological behavior is regulated by the activation of various signaling pathways. The aim of this study was to investigate the relationships between the expressions of various targetable proteins and the clinicopathological characteristics of ESCC patients. METHODS A total of 286 patients with ESCC who had undergone curative surgical resection without neoadjuvant therapy were enrolled in this study. The protein expressions of EGFR, HER2, MET, IGF1R, FGFR2, p53, and PD-L1 were immunohistochemically evaluated in a tissue microarray analysis. The relationships between the expression statuses of each of the above molecules, and the PD-L1 expression status as well as the clinicopathological characteristics, including the survival outcome were assessed. RESULTS The expression frequencies of EGFR, HER2, MET, IGF1R, FGFR2, p53, and PD-L1 were as follows: 90.9, 1.0, 2.4, 71.0, 16.1, 62.9 and 23.4%. The overlapping expressions of two or more receptor tyrosine kinases were observed in 72.0%. MET expression was the only poor prognostic factor of recurrence-free survival [hazard ratio (HR) 1.89, 95% confidence interval (CI) 1.15-3.11]; in contrast, PD-L1 was the only favorable prognostic factor for both recurrence-free survival (HR 0.57, 95% CI 0.38-0.87) and overall survival (HR 0.56, 95% CI 0.35-0.89). No correlation was observed between the expressions of PD-L1 and the other molecules. CONCLUSIONS This large cohort study demonstrated that multiple molecules were co-expressed in most of the ESCC cases, suggesting that combining molecular targeted agents for these co-expressed molecules should be considered.
Collapse
Affiliation(s)
- Ken Hatogai
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, Kashiwa, Chiba, Japan
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Atsushi Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Yuichi Takiguchi
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Takayuki Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Atsushi Ochiai
- Division of Pathology, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
187
|
Preferential Localization of MET Expression at the Invasion Front and in Spreading Cells Through Air Spaces in Non-Small Cell Lung Carcinomas. Am J Surg Pathol 2017; 41:414-422. [PMID: 28098570 DOI: 10.1097/pas.0000000000000810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The involvement of the HGF/MET pathway in acquisition of an invasive phenotype in non-small cell lung carcinomas (NSCLCs) suggests that MET inhibitors might prove effective against these cancers, but clinical trials have yielded conflicting results. The aim of our study was to evaluate how intratumoral heterogeneity (ITH) of MET staining affects the determination of MET status for therapeutic purposes. We analyzed 64 NSCLC samples, including 33 adenocarcinomas (ADCs) and 31 squamous cell carcinomas (SCCs). We used immunohistochemistry to detect MET and phospho-MET on whole slides and determined the MET SP44 immunoscore and the H-score. A high METMab score (2+/3+) was observed in 34% of NSCLCs and was more prevalent in ADCs (52%) than in SCCs (16%). We found ITH in 73% of ADCs and 77% of SCCs, with higher levels of MET and phospho-MET at the invasion front (in 52% of ADCs and 22% of SCCs) and in tumor cells spreading through air spaces in ADCs. Within-sample ITH was high in 40% of the ADCs and 29% of the SCCs. When different samples from the same tumor were compared, discordant assessments (high MET vs. low MET) were made for 12% of the ADCs and 10% of the SCCs. C-MET and phospho-MET overexpression occurred preferentially in ADCs and in areas involved in tumor progression, in support of the view that MET activation plays a role in the development of an invasive phenotype in NSCLC. To use MET status adequately as a biomarker, one must take the resulting high level of ITH into account.
Collapse
|
188
|
Gu W, Dai Y, Qiang H, Shi W, Liao C, Zhao F, Huang W, Qian H. Discovery of novel 2-substituted-4-(2-fluorophenoxy) pyridine derivatives possessing pyrazolone and triazole moieties as dual c-Met/VEGFR-2 receptor tyrosine kinase inhibitors. Bioorg Chem 2017; 72:116-122. [DOI: 10.1016/j.bioorg.2017.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
|
189
|
Synthesis and evaluation of a series of pyridine and pyrimidine derivatives as type II c-Met inhibitors. Bioorg Med Chem 2017; 25:3195-3205. [DOI: 10.1016/j.bmc.2017.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022]
|
190
|
Fan G, Zhang S, Gao Y, Greer PA, Tonks NK. HGF-independent regulation of MET and GAB1 by nonreceptor tyrosine kinase FER potentiates metastasis in ovarian cancer. Genes Dev 2017; 30:1542-57. [PMID: 27401557 PMCID: PMC4949327 DOI: 10.1101/gad.284166.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/07/2016] [Indexed: 12/29/2022]
Abstract
In this study, Fan et al. report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase FER. The findings show that levels of FER were elevated in ovarian cancer cell lines and that loss of FER impaired the metastasis of ovarian cancer cells in vivo, providing new insights into signaling events that underlie metastasis in ovarian cancer cells. Ovarian cancer cells disseminate readily within the peritoneal cavity, which promotes metastasis, and are often resistant to chemotherapy. Ovarian cancer patients tend to present with advanced disease, which also limits treatment options; consequently, new therapies are required. The oncoprotein tyrosine kinase MET, which is the receptor for hepatocyte growth factor (HGF), has been implicated in ovarian tumorigenesis and has been the subject of extensive drug development efforts. Here, we report a novel ligand- and autophosphorylation-independent activation of MET through the nonreceptor tyrosine kinase feline sarcoma-related (FER). We demonstrated that the levels of FER were elevated in ovarian cancer cell lines relative to those in immortalized normal surface epithelial cells and that suppression of FER attenuated the motility and invasive properties of these cancer cells. Furthermore, loss of FER impaired the metastasis of ovarian cancer cells in vivo. Mechanistically, we demonstrated that FER phosphorylated a signaling site in MET: Tyr1349. This enhanced activation of RAC1/PAK1 and promoted a kinase-independent scaffolding function that led to recruitment and phosphorylation of GAB1 and the specific activation of the SHP2–ERK signaling pathway. Overall, this analysis provides new insights into signaling events that underlie metastasis in ovarian cancer cells, consistent with a prometastatic role of FER and highlighting its potential as a novel therapeutic target for metastatic ovarian cancer.
Collapse
Affiliation(s)
- Gaofeng Fan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Siwei Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Yan Gao
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Peter A Greer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
191
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
Background Mesenchymal–epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. Results In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. Conclusions Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China. .,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China. .,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China. .,TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
192
|
Safaie Qamsari E, Safaei Ghaderi S, Zarei B, Dorostkar R, Bagheri S, Jadidi-Niaragh F, Somi MH, Yousefi M. The c-Met receptor: Implication for targeted therapies in colorectal cancer. Tumour Biol 2017; 39:1010428317699118. [DOI: 10.1177/1010428317699118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
c-Met (mesenchymal–epithelial transition factor) is a tyrosine kinase receptor activated by hepatocyte growth factor and regulates multiple biological processes, such as cell scattering, survival, and proliferation. Aberrant c-Met signaling has been implicated in a variety of cancer types, including colorectal cancer. c-Met is genetically altered through various mechanisms that is associated with colorectal cancer progression and metastasis. Especially, in colorectal cancer, preclinical evidence for the aberrant activation of the c-Met signaling exists. Accordingly, molecular targeting of c-Met receptor could be a promising strategy, in the treatment of colorectal cancer patients. Recently, it was also shown that crosstalk between c-Met and other cell surface receptors attributes to tumorigenesis and development of therapeutic resistance. Characterization of the molecular mechanisms through which c-Met crosstalks with other receptors in favor of tumor formation and progression remains to explore. This review will describe the mechanisms of aberrant c-Met signaling in colorectal cancer and discuss on additional roles for c-Met receptor through crosstalk with other tyrosine kinase receptors and cell surface proteins in colorectal cancer. Novel therapeutic approaches for c-Met pathway targeting will also be discussed.
Collapse
Affiliation(s)
- Elmira Safaie Qamsari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Safaei Ghaderi
- Department of Biotechnology, Faculty of Advanced Science & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
- Hybridoma Laboratory, Immunology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bahareh Zarei
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Bagheri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
193
|
Pei J, Chu T, Shao M, Teng J, Sha H, Gu A, Li R, Qian J, Mao W, Li Y, Han B. Potential Antitumor Activity of SIM-89 in Non-Small Cell Lung Cancer Cells. Yonsei Med J 2017; 58:581-591. [PMID: 28332364 PMCID: PMC5368144 DOI: 10.3349/ymj.2017.58.3.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/27/2022] Open
Abstract
PURPOSE c-Met and its ligand, hepatocyte growth factor (HGF), play a critical role in oncogenesis and metastatic progression. The aim of this study was to identify inhibited enzymogram and to test the antitumor activity of SIM-89 (a c-Met receptor tyrosine kinase inhibitor) in non-small cell lung cancer. MATERIALS AND METHODS Z'-LYTE kinase assay was employed to screen the kinase enzymogram, and mechanism of action (MOA) analysis was used to identify the inhibited kinases. Cell proliferation was then analyzed by CCK8 assay, and cell migration was determined by transwell assay. The gene expression and the phosphorylation of c-Met were examined by realtime-PCR and western blotting, respectively. Finally, the secretion of HGF was detected by ELISA assay. RESULTS c-Met, activated protein kinase (AMPK), and tyrosine kinase A (TRKA) were inhibited by SIM-89 with the IC₅₀ values of 297 nmol/L, 1.31 μmol/L, and 150.2 nmol/L, respectively. SIM-89 exerted adenosine triphosphate (ATP) competitive inhibition on c-Met. Moreover, the expressions of STAT1, JAK1, and c-Met in H460 cells were decreased by SIM-89 treatment, and c-Met phosphorylation was suppressed in A549, H441, H1299, and B16F10 cells by the treatment. In addition, SIM-89 treatment significantly decreased the level of HGF, which accounted for the activation of c-Met receptor tyrosine kinase. Finally, we showed cell proliferation inhibition and cell migration suppression in H460 and H1299 cells after SIM-89 treatment. CONCLUSION In conclusion, SIM-89 inhibits tumor cell proliferation, migration and HGF autocrine, suggesting it's potential antitumor activity.
Collapse
Affiliation(s)
- Jun Pei
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tianqing Chu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minhua Shao
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajun Teng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Sha
- Department of Basic Research, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Aiqing Gu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Li
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Qian
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Mao
- Department of Biology, East China Normal University, Shanghai, China
| | - Ying Li
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
194
|
Abstract
Gastric cancer represents a major cause of cancer mortality worldwide despite a declining incidence. New molecular classification schemes developed from genomic and molecular analyses of gastric cancer have provided a framework for understanding this heterogenous disease, and early findings suggest these classifications will be relevant for designing and implementing new targeted therapies. The success of targeted therapy and immunotherapy in breast cancer and melanoma, respectively, has not been duplicated in gastric cancer, but trastuzumab and ramucirumab have demonstrated efficacy in select populations. New markers that predict therapeutic response are needed to improve patient selection for both targeted and immunotherapies.
Collapse
Affiliation(s)
- Matthew S Strand
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, MO 63110, USA
| | - Albert Craig Lockhart
- Department of Medicine, Barnes-Jewish Hospital and Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8056, St Louis, MO 63110, USA
| | - Ryan C Fields
- Department of Surgery, Barnes-Jewish Hospital and Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, St Louis, MO 63110, USA.
| |
Collapse
|
195
|
Hepatocyte Growth Factor, a Key Tumor-Promoting Factor in the Tumor Microenvironment. Cancers (Basel) 2017; 9:cancers9040035. [PMID: 28420162 PMCID: PMC5406710 DOI: 10.3390/cancers9040035] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 01/13/2023] Open
Abstract
The tumor microenvironment plays a key role in tumor development and progression. Stromal cells secrete growth factors, cytokines and extracellular matrix proteins which promote growth, survival and metastatic spread of cancer cells. Fibroblasts are the predominant constituent of the tumor stroma and Hepatocyte Growth Factor (HGF), the specific ligand for the tyrosine kinase receptor c-MET, is a major component of their secretome. Indeed, cancer-associated fibroblasts have been shown to promote growth, survival and migration of cancer cells in an HGF-dependent manner. Fibroblasts also confer resistance to anti-cancer therapy through HGF-induced epithelial mesenchymal transition (EMT) and activation of pro-survival signaling pathways such as ERK and AKT in tumor cells. Constitutive HGF/MET signaling in cancer cells is associated with increased tumor aggressiveness and predicts poor outcome in cancer patients. Due to its role in tumor progression and therapeutic resistance, both HGF and MET have emerged as valid therapeutic targets. Several inhibitors of MET and HGF are currently being tested in clinical trials. Preclinical data provide a strong indication that inhibitors of HGF/MET signaling overcome both primary and acquired resistance to EGFR, HER2, and BRAF targeting agents. These findings support the notion that co-targeting of cancer cells and stromal cells is required to prevent therapeutic resistance and to increase the overall survival rate of cancer patients. HGF dependence has emerged as a hallmark of therapeutic resistance, suggesting that inhibitors of biological activity of HGF should be included into therapeutic regimens of cancer patients.
Collapse
|
196
|
Bahrami A, Shahidsales S, Khazaei M, Ghayour-Mobarhan M, Maftouh M, Hassanian SM, Avan A. C-Met as a potential target for the treatment of gastrointestinal cancer: Current status and future perspectives. J Cell Physiol 2017; 232:2657-2673. [DOI: 10.1002/jcp.25794] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Afsane Bahrami
- Molecular Medicine Group, Department of Modern Sciences and Technology; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Center, Faculty of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Soodabeh Shahidsales
- Cancer Research Center; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Khazaei
- Neurogenic Inflammatory Research Center and Department of Physiology; Mashhad University of Medical Sciences; Mashhad Iran
| | - Majid Ghayour-Mobarhan
- Metabolic syndrome Research Center; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Mina Maftouh
- Metabolic syndrome Research Center; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research Center; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
- Department of Medical Biochemistry; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| | - Amir Avan
- Metabolic syndrome Research Center; School of Medicine, Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
197
|
Sahu S, Sun W. Targeted therapy in biliary tract cancers-current limitations and potentials in the future. J Gastrointest Oncol 2017; 8:324-336. [PMID: 28480071 PMCID: PMC5401865 DOI: 10.21037/jgo.2016.09.16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
Biliary tract cancers (BTC)/Cholangiocarcinoma (CCA) is an aggressive biliary tract epithelial malignancy from varying locations within the biliary tree with cholangiocyte depreciation., including intrahepatic cholangiocarcinoma (iCCA) (iCCA), extrahepatic cholangiocarcinoma (eCCA) and gallbladder carcinoma (GBC). The disease is largely heterogeneous in etiology, epidemiology, and molecular profile. There are limited treatment options and low survival rates for those patients with advanced or metastatic disease. Systemic treatment is confined to cytotoxic chemotherapy with the combination of gemcitabine and cisplatin. Lack of a stereotype genetic signature makes difficult in identification of potential actionable target directly, which may also explain lack of obvious clinic benefit with target oriented agents from current studies. It is crucial to understand of BTC carcinogenesis, tumor-stroma interactions, and key molecular pathways, and herald to establish targeted, individualized therapies for the heterogeneous disease, and eventually to improve the survival and overall outcome of patients.
Collapse
Affiliation(s)
- Selley Sahu
- Division of Oncology, Department of Medicine Hematology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Weijing Sun
- Division of Oncology, Department of Medicine Hematology, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15232, USA
| |
Collapse
|
198
|
Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal Cells in Colon Cancer. Gastroenterology 2017; 152:964-979. [PMID: 28111227 DOI: 10.1053/j.gastro.2016.11.049] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/17/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
Mesenchymal cells in the intestine comprise a variety of cell types of diverse origins, functions, and molecular markers. They provide mechanical and structural support and have important functions during intestinal organogenesis, morphogenesis, and homeostasis. Recent studies of the human transcriptome have revealed their importance in the development of colorectal cancer, and studies from animal models have provided evidence for their roles in the pathogenesis of colitis-associated cancer and sporadic colorectal cancer. Mesenchymal cells in tumors, called cancer-associated fibroblasts, arise via activation of resident mesenchymal cell populations and the recruitment of bone marrow-derived mesenchymal stem cells and fibrocytes. Cancer-associated fibroblasts have a variety of activities that promote colon tumor development and progression; these include regulation of intestinal inflammation, epithelial proliferation, stem cell maintenance, angiogenesis, extracellular matrix remodeling, and metastasis. We review the intestinal mesenchymal cell-specific pathways that regulate these processes, with a focus on their roles in mediating interactions between inflammation and carcinogenesis. We also discuss how increasing our understanding of intestinal mesenchymal cell biology and function could lead to new strategies to identify and treat colitis-associated cancers.
Collapse
Affiliation(s)
| | - Charles K Pallangyo
- Muhimbili University of Health and Allied Sciences, School of Medicine, Dar es Salaam, Tanzania
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| | - George Kollias
- Biomedical Sciences Research Centre "Alexander Fleming," Vari, Greece; Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
199
|
Progress of antibody-based inhibitors of the HGF-cMET axis in cancer therapy. Exp Mol Med 2017; 49:e307. [PMID: 28336955 PMCID: PMC5382561 DOI: 10.1038/emm.2017.17] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/22/2016] [Indexed: 12/27/2022] Open
Abstract
Dysregulated receptor tyrosine kinase signaling in human cancer cells leads to tumor progression, invasion and metastasis. The receptor tyrosine kinase cMET is frequently overexpressed in cancer tissue, and activation of cMET signaling is related to drug resistance and the processes of carcinogenesis, invasion and metastasis. For that reason, cMET and its ligand, hepatocyte growth factor (HGF), are considered prime targets for the development of anticancer drugs. At least eight anti-cMET and four anti-HGF antibodies have been tested or are being tested in clinical trials. However, to date none of these HGF/cMET inhibitors have shown significant efficacy in clinical trials. Furthermore, no receptor tyrosine kinase inhibitors primarily targeting cMET have been approved. Given that neutralization of HGF or cMET does not cause significant adverse effects, inhibition of the HGF/cMET signaling pathway appears to be safe. In this review, we summarized the completed and ongoing clinical trials testing antibody- or protein-based anticancer drugs targeting cMET and HGF.
Collapse
|
200
|
Liu WT, Jing YY, Yu GF, Chen H, Han ZP, Yu DD, Fan QM, Ye F, Li R, Gao L, Zhao QD, Wu MC, Wei LX. Hepatic stellate cell promoted hepatoma cell invasion via the HGF/c-Met signaling pathway regulated by p53. Cell Cycle 2017; 15:886-94. [PMID: 27077227 DOI: 10.1080/15384101.2016.1152428] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The biological behaviors of hepatocellular carcinoma (HCC) are complex mainly due to heterogeneity of progressive genetic and epigenetic mutations as well as tumor environment. Hepatocyte growth factor (HGF)/c-Met signaling pathway is regarded to be a prototypical example for stromal-epithelial interactions during developmental morphogenesis, wound healing, organ regeneration and cancer progression. And p53 plays as an important regulator of Met-dependent cell motility and invasion. Present study showed that 2 HCC cell lines, Hep3B and HepG2, displayed different invasive capacity when treated with HGF which was secreted by hepatic stellate cells (HSCs). We found that HGF promoted Hep3B cells invasion and migration as well as epithelial-mesenchymal transition (EMT) occurrence because Hep3B was p53 deficient, which leaded to the c-Met over-expression. Then we found that HGF/c-Met promoted Hep3B cells invasion and migration by upregulating Snail expression. In conclusion, HGF/c-Met signaling is enhanced by loss of p53 expression, resulting in increased ability of invasion and migration by upregulating the expression of Snail.
Collapse
Affiliation(s)
- Wen-Ting Liu
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Ying-Ying Jing
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Guo-feng Yu
- c Oncology Department , Ji'an Hospital, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Hong Chen
- d Pathology Department , Funing Hospital of Traditional Chinese Medicine , Qinghuangdao , Hebei Province , China
| | - Zhi-peng Han
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Dan-Dan Yu
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Qing-Min Fan
- e Ultrasonography Department , The First Affiliated Hospital of Soochow University , Jiangsu , China
| | - Fei Ye
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Rong Li
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Lu Gao
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Qiu-Dong Zhao
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Meng-Chao Wu
- b Department of Comprehensive Treatment , Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Li-Xin Wei
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| |
Collapse
|