151
|
Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nat Struct Mol Biol 2016; 23:147-54. [PMID: 26727490 PMCID: PMC4973471 DOI: 10.1038/nsmb.3150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
Heat Shock Transcription Factor (HSF) family members function in stress protection and in human disease including proteopathies, neurodegeneration and cancer. The mechanisms that drive distinct post-translational modifications, co-factor recruitment and target gene activation for specific HSF paralogs are unknown. We present high-resolution crystal structures of the human HSF2 DNA-binding domain (DBD) bound to DNA, revealing an unprecedented view of HSFs that provides insights into their unique biology. The HSF2 DBD structures resolve a novel carboxyl-terminal helix that directs the coiled-coil domain to wrap around DNA, exposing paralog-specific sequences of the DBD surface, for differential post-translational modifications and co-factor interactions. We further demonstrate a direct interaction between HSF1 and HSF2 through their coiled-coil domains. Together, these features provide a new model for HSF structure as the basis for differential and combinatorial regulation to influence the transcriptional response to cellular stress.
Collapse
|
152
|
Ohama N, Kusakabe K, Mizoi J, Zhao H, Kidokoro S, Koizumi S, Takahashi F, Ishida T, Yanagisawa S, Shinozaki K, Yamaguchi-Shinozaki K. The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression. THE PLANT CELL 2016; 28:181-201. [PMID: 26715648 PMCID: PMC4746676 DOI: 10.1105/tpc.15.00435] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/13/2015] [Accepted: 12/26/2015] [Indexed: 05/19/2023]
Abstract
Group A1 heat shock transcription factors (HsfA1s) are the master regulators of the heat stress response (HSR) in plants. Upon heat shock, HsfA1s trigger a transcriptional cascade that is composed of many transcription factors. Despite the importance of HsfA1s and their downstream transcriptional cascade in the acquisition of thermotolerance in plants, the molecular basis of their activation remains poorly understood. Here, domain analysis of HsfA1d, one of several HsfA1s in Arabidopsis thaliana, demonstrated that the central region of HsfA1d is a key regulatory domain that represses HsfA1d transactivation activity through interaction with HEAT SHOCK PROTEIN70 (HSP70) and HSP90. We designated this region as the temperature-dependent repression (TDR) domain. We found that HSP70 dissociates from HsfA1d in response to heat shock and that the dissociation is likely regulated by an as yet unknown activation mechanism, such as HsfA1d phosphorylation. Overexpression of constitutively active HsfA1d that lacked the TDR domain induced expression of heat shock proteins in the absence of heat stress, thereby conferring potent thermotolerance on the overexpressors. However, transcriptome analysis of the overexpressors demonstrated that the constitutively active HsfA1d could not trigger the complete transcriptional cascade under normal conditions, thereby indicating that other factors are necessary to fully induce the HSR. These complex regulatory mechanisms related to the transcriptional cascade may enable plants to respond resiliently to various heat stress conditions.
Collapse
Affiliation(s)
- Naohiko Ohama
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuya Kusakabe
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Junya Mizoi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huimei Zhao
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kidokoro
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Koizumi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fuminori Takahashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya Ishida
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
153
|
Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 2015; 16:267. [PMID: 26631063 PMCID: PMC4668643 DOI: 10.1186/s13059-015-0825-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Background Mutations in myosin chaperones Unc45b and Hsp90aa1.1 as well as in the Unc45b-binding protein Smyd1b impair formation of myofibrils in skeletal muscle and lead to the accumulation of misfolded myosin. The concomitant transcriptional response involves up-regulation of the three genes encoding these proteins, as well as genes involved in muscle development. The transcriptional up-regulation of unc45b, hsp90aa1.1 and smyd1b is specific to zebrafish mutants with myosin folding defects, and is not triggered in other zebrafish myopathy models. Results By dissecting the promoter of unc45b, we identify a Heat shock factor 1 (Hsf1) binding element as a mediator of unc45b up-regulation in myofibers lacking myosin folding proteins. Loss-of-function of Hsf1 abolishes unc45b up-regulation in mutants with defects in myosin folding. Conclusions Taken together, our data show that skeletal muscle cells respond to defective myosin chaperones with a complex gene program and suggest that this response is mediated by Hsf1 activation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0825-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Urmas Roostalu
- Present address: Institute of Inflammation and Repair, Michael Smith Bldg, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany.
| |
Collapse
|
154
|
Miozzo F, Sabéran-Djoneidi D, Mezger V. HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes. J Mol Biol 2015; 427:3793-816. [DOI: 10.1016/j.jmb.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
155
|
Sanna V, Chamcheu JC, Pala N, Mukhtar H, Sechi M, Siddiqui IA. Nanoencapsulation of natural triterpenoid celastrol for prostate cancer treatment. Int J Nanomedicine 2015; 10:6835-46. [PMID: 26586945 PMCID: PMC4636169 DOI: 10.2147/ijn.s93752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Celastrol (CL), a triterpenoid extracted from the Chinese herb Tripterygium wilfordii, has recently attracted interest for its potential antitumor effects. However, unfavorable physicochemical and pharmacokinetics properties such as low solubility, poor bioavailability, and systemic toxicity, are limiting its therapeutic application. In this context, the development of innovative nanocarriers can be useful to overcome these issues, and nanoencapsulation would represent a powerful strategy. In this study, we developed novel CL-loaded poly(ε-caprolactone) nanoparticles (NPs), and investigated their antiproliferative efficacy on prostate cancer cells. CL-NPs were prepared using a nanoprecipitation method and fully characterized by physicochemical techniques. The antiproliferative effects on LNCaP, DU-145, and PC3 cell lines of CL-NPs, compared to those of free CL at different concentrations (0.5, 1.0, and 2.0 µM), were investigated. Moreover, fluorescence microscopy was utilized to examine the cellular uptake of the nanosystems. Furthermore, to elucidate impact of nanoencapsulation on the mechanism of action, Western analyses were conducted to explore apoptosis, migration, proliferation, and angiogenesis alteration of prostate cancer cells. The results confirmed that CL-NPs inhibit proliferation dose dependently in all prostate cancer cells, with inhibitory concentration50 less than 2 µM. In particular, the NPs significantly increased cytotoxicity at lower/medium dose (0.5 and 1.0 µM) on DU145 and PC3 cell lines with respect to free CL, with modulation of apoptotic and cell cycle machinery proteins. To date, this represents the first report on the development of biocompatible polymeric NPs encapsulating CL. Our findings offer new perspectives for the exploitation of developed CL-NPs as suitable prototypes for prostate cancer treatment.
Collapse
Affiliation(s)
- Vanna Sanna
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy ; Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| | | | - Nicolino Pala
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Mario Sechi
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy ; Laboratory of Nanomedicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
156
|
Kim E, Wang B, Sastry N, Masliah E, Nelson PT, Cai H, Liao FF. NEDD4-mediated HSF1 degradation underlies α-synucleinopathy. Hum Mol Genet 2015; 25:211-22. [PMID: 26503960 PMCID: PMC4706110 DOI: 10.1093/hmg/ddv445] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Cellular protein homeostasis is achieved by a delicate network of molecular chaperones and various proteolytic processes such as ubiquitin–proteasome system (UPS) to avoid a build-up of misfolded protein aggregates. The latter is a common denominator of neurodegeneration. Neurons are found to be particularly vulnerable to toxic stress from aggregation-prone proteins such as α-synuclein. Induction of heat-shock proteins (HSPs), such as through activated heat shock transcription factor 1 (HSF1) via Hsp90 inhibition, is being investigated as a therapeutic option for proteinopathic diseases. HSF1 is a master stress-protective transcription factor which activates genes encoding protein chaperones (e.g. iHsp70) and anti-apoptotic proteins. However, whether and how HSF1 is dysregulated during neurodegeneration has not been studied. Here, we discover aberrant HSF1 degradation by aggregated α-synuclein (or α-synuclein-induced proteotoxic stress) in transfected neuroblastoma cells. HSF1 dysregulation via α-synuclein was confirmed by in vivo assessment of mouse and in situ studies of human specimens with α-synucleinopathy. We demonstrate that elevated NEDD4 is implicated as the responsible ubiquitin E3 ligase for HSF1 degradation through UPS. Furthermore, pharmacologically induced SIRT1-mediated deacetylation can attenuate aberrant NEDD4-mediated HSF1 degradation. Indeed, we define the acetylation status of the Lys 80 residue located in the DNA-binding domain of HSF1 as a critical factor in modulating HSF1 protein stability in addition to its previously identified role in the transcriptional activity. Together with the finding that preserving HSF1 can alleviate α-synuclein toxicity, this study strongly suggests that aberrant HSF1 degradation is a key neurodegenerative mechanism underlying α-synucleinopathy.
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Pharmacology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 874 Union Avenue/Crowe 401, Memphis, TN 38163, USA
| | - Bin Wang
- Department of Pharmacology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 874 Union Avenue/Crowe 401, Memphis, TN 38163, USA
| | - Namratha Sastry
- Transgenics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter T Nelson
- Department of Neurology, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, USA and
| | - Huaibin Cai
- Transgenics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca-Fang Liao
- Department of Pharmacology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 874 Union Avenue/Crowe 401, Memphis, TN 38163, USA,
| |
Collapse
|
157
|
Talsness DM, Belanto JJ, Ervasti JM. Disease-proportional proteasomal degradation of missense dystrophins. Proc Natl Acad Sci U S A 2015; 112:12414-9. [PMID: 26392559 PMCID: PMC4603481 DOI: 10.1073/pnas.1508755112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 427-kDa protein dystrophin is expressed in striated muscle where it physically links the interior of muscle fibers to the extracellular matrix. A range of mutations in the DMD gene encoding dystrophin lead to a severe muscular dystrophy known as Duchenne (DMD) or a typically milder form known as Becker (BMD). Patients with nonsense mutations in dystrophin are specifically targeted by stop codon read-through drugs, whereas out-of-frame deletions and insertions are targeted by exon-skipping therapies. Both treatment strategies are currently in clinical trials. Dystrophin missense mutations, however, cause a wide range of phenotypic severity in patients. The molecular and cellular consequences of such mutations are not well understood, and there are no therapies specifically targeting this genotype. Here, we have modeled two representative missense mutations, L54R and L172H, causing DMD and BMD, respectively, in full-length dystrophin. In vitro, the mutation associated with the mild phenotype (L172H) caused a minor decrease in tertiary stability, whereas the L54R mutation associated with a severe phenotype had a more dramatic effect. When stably expressed in mammalian muscle cells, the mutations caused steady-state decreases in dystrophin protein levels inversely proportional to the tertiary stability and directly caused by proteasomal degradation. Both proteasome inhibitors and heat shock activators were able to increase mutant dystrophin to WT levels, establishing the new cell lines as a platform to screen for potential therapeutics personalized to patients with destabilized dystrophin.
Collapse
Affiliation(s)
- Dana M Talsness
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Joseph J Belanto
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
158
|
Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α. Proc Natl Acad Sci U S A 2015; 112:E5669-78. [PMID: 26438876 DOI: 10.1073/pnas.1516219112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In recent years an extensive effort has been made to elucidate the molecular pathways involved in metabolic signaling in health and disease. Here we show, surprisingly, that metabolic regulation and the heat-shock/stress response are directly linked. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a critical transcriptional coactivator of metabolic genes, acts as a direct transcriptional repressor of heat-shock factor 1 (HSF1), a key regulator of the heat-shock/stress response. Our findings reveal that heat-shock protein (HSP) gene expression is suppressed during fasting in mouse liver and in primary hepatocytes dependent on PGC-1α. HSF1 and PGC-1α associate physically and are colocalized on several HSP promoters. These observations are extended to several cancer cell lines in which PGC-1α is shown to repress the ability of HSF1 to activate gene-expression programs necessary for cancer survival. Our study reveals a surprising direct link between two major cellular transcriptional networks, highlighting a previously unrecognized facet of the activity of the central metabolic regulator PGC-1α beyond its well-established ability to boost metabolic genes via its interactions with nuclear hormone receptors and nuclear respiratory factors. Our data point to PGC-1α as a critical repressor of HSF1-mediated transcriptional programs, a finding with possible implications both for our understanding of the full scope of metabolically regulated target genes in vivo and, conceivably, for therapeutics.
Collapse
|
159
|
Abstract
Cells respond to elevated temperatures through a well-characterized heat-shock response that enables short-term survival, long-term adaptation and mitigation of macromolecular damage. New work reveals a cell non-autonomous layer of stress-response regulation between neurons and the gonad involving serotonin.
Collapse
|
160
|
Sun X, Crawford R, Liu C, Luo T, Hu B. Development-dependent regulation of molecular chaperones after hypoxia-ischemia. Neurobiol Dis 2015; 82:123-131. [PMID: 26070787 DOI: 10.1016/j.nbd.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 02/08/2023] Open
Abstract
Cellular stress response after hypoxia-Ischemia (HI) may be substantially different between immature and mature brains. To study this phenomenon, postnatal day 7 (P7) and P26 rats were subjected to HI followed by different periods of recovery. Nuclear accumulation of heat-shock transcription factor-1 (HSF1) and expression of molecular chaperone proteins and mRNAs were analyzed by in situ hybridization, Western blotting and confocal microscopy. Nuclear accumulation of HSF1 protein and induction of hsp70 mRNA occurred dramatically in P26 neurons, but minimally in P7 neurons and moderately in microglial cells after HI. Consistently, the level of HSF1 was significantly higher in P26 brain samples, compared with that in P7 brain. Translation of hsp70 mRNA into proteins in P26 mature neurons was seen at 4h and peaked at 24h, when some neurons had already died after HI. Induction of ER glucose-regulated protein-78 (grp78) and mitochondrial hsp60 mRNAs and proteins was moderate and occurred also only in P26 mature brain after HI. These results suggest that the cellular stress response after HI is development-dependent, being pronounced in mature but virtually negligible in neonatal neurons. Therefore, the effectiveness of therapeutic strategies targeting the stress pathway against HI may be significantly different between immature and mature brains. The delayed induction of molecular chaperones in mature brain may be somewhat late for protecting HI neurons from acute HI injury.
Collapse
Affiliation(s)
- Xin Sun
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA; Department of Neurology, The First Teaching Hospital, Jilin University, China
| | - Robert Crawford
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Chunli Liu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Tianfei Luo
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA
| | - Bingren Hu
- Shock Trauma and Anesthesiology Research Center, University of MD School of Medicine, USA.
| |
Collapse
|
161
|
Kitao Y, Ageta-Ishihara N, Takahashi R, Kinoshita M, Hori O. Transgenic supplementation of SIRT1 fails to alleviate acute loss of nigrostriatal dopamine neurons and gliosis in a mouse model of MPTP-induced parkinsonism. F1000Res 2015; 4:130. [PMID: 26167274 PMCID: PMC4482211 DOI: 10.12688/f1000research.6386.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Background Dopamine (DA) neuron-selective uptake and toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes parkinsonism in humans. Loss of DA neurons via mitochondrial damage and oxidative stress is reproduced by systemic injection of MPTP in animals, which serves as models of parkinsonism and Parkinson's disease (PD). This study aimed to test whether pan-neural supplementation of the longevity-related, pleiotropic deacetylase SIRT1, which confers partial tolerance to at least three models of stroke and neurodegeneration, could also alleviate MPTP-induced acute pathological changes in nigrostriatal DA neurons and neighboring glia. Results We employed a line of prion promoter-driven Sirt1-transgenic (Sirt1Tg) mice that chronically overexpress murine SIRT1 in the brain and spinal cord. Sirt1Tg and wild-type (WT) male littermates (3‒4 months old) were subjected to intraperitoneal injection of MPTP. Acute histopathological changes in the midbrain and striatum (caudoputamen) were assessed with serial coronal sections triply labeled for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP), and nuclear DNA. In the substantia nigra pars compacta (SNpc) of the midbrain, the number of TH-positive neurons and the reactive gliosis were comparable between the Sirt1Tg and WT littermates. In the striatum, the relative fluorescence intensity of TH-positive nerve terminals and the level of gliosis did not differ by the genotypes. Conclusions Sirt1Tg and WT littermate mice exhibited comparable acute histopathological reactions to the systemic injection of MPTP, loss of TH-positive neurons and reactive gliosis. Thus, the genetic supplementation of SIRT1 does not confer histologically recognizable protection on nigrostriatal DA neurons against acute toxicity of MPTP.
Collapse
Affiliation(s)
- Yasuko Kitao
- Department of Neuroanatomy, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan
| | - Natsumi Ageta-Ishihara
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan ; Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Makoto Kinoshita
- Department of Molecular Biology, Division of Biological Sciences, Nagoya University Graduate School of Science, Furo-cho, Chikusa, Nagoya 464-8602, Japan ; Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan ; Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| |
Collapse
|
162
|
Shah SP, Lonial S, Boise LH. When Cancer Fights Back: Multiple Myeloma, Proteasome Inhibition, and the Heat-Shock Response. Mol Cancer Res 2015; 13:1163-73. [PMID: 26013169 DOI: 10.1158/1541-7786.mcr-15-0135] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/13/2015] [Indexed: 01/01/2023]
Abstract
Multiple myeloma is a plasma cell malignancy with an estimated 26,850 new cases and 11,240 deaths in 2015 in the United States. Two main classes of agents are the mainstays of therapy-proteasome inhibitors (PI) and immunomodulatory drugs (IMiD). Other new targets are emerging rapidly, including monoclonal antibodies and histone deacetylase (HDAC) inhibitors. These therapeutic options have greatly improved overall survival, but currently only 15% to 20% of patients experience long-term progression-free survival or are cured. Therefore, improvement in treatment options is needed. One potential means of improving clinical options is to target resistance mechanisms for current agents. For example, eliminating the cytoprotective heat-shock response that protects myeloma cells from proteasome inhibition may enhance PI-based therapies. The transcription factor heat-shock factor 1 (HSF1) is the master regulator of the heat-shock response. HSF1 is vital in the proteotoxic stress response, and its activation is controlled by posttranslational modifications (PTM). This review details the mechanisms of HSF1 regulation and discusses leveraging that regulation to enhance PI activity.
Collapse
Affiliation(s)
- Shardule P Shah
- Department of Hematology and Medical Oncology, Winship, Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, Georgia
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship, Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, Georgia
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship, Cancer Institute of Emory University and the Emory University School of Medicine, Atlanta, Georgia. Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
163
|
Bai Y, Lu B, Sun Q. Pre-exposure to fine particulate matters may induce endotoxin tolerance in a mouse model. AUSTIN JOURNAL OF ENVIRONMENTAL TOXICOLOGY 2015; 1:1004. [PMID: 26900605 PMCID: PMC4757438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Exposure to low or moderate doses of lipopolysaccharides (LPS) renders the host tolerance to a subsequent lethal dose of LPS, which is termed as endotoxin tolerance. It is characterized as the decrease in production of pro-inflammatory cytokines and the increase in production of anti-inflammatory mediators in response to a second LPS challenge. The alteration of cytokine profile protects LPS-primed hosts against a normally lethal dose of subsequent LPS challenge. Nevertheless, whether other environmental factors also trigger endotoxin tolerance remains unclear. Both epidemiologic and experimental studies have provided a link between particulate matter and human health. Here, we speculated on the effect of fine particles priming on endotoxin tolerance in a mouse model.
Collapse
Affiliation(s)
- Yuntao Bai
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Bo Lu
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
164
|
Haider SA, Faisal M. Human aging in the post-GWAS era: further insights reveal potential regulatory variants. Biogerontology 2015; 16:529-41. [PMID: 25895066 DOI: 10.1007/s10522-015-9575-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/07/2015] [Indexed: 12/27/2022]
Abstract
Human aging involves a gradual decrease in cellular integrity that contributes to multiple complex disorders such as neurodegenerative disorders, cancer, diabetes, and cardiovascular diseases. Genome-wide association studies (GWAS) play a key role in discovering genetic variations that may contribute towards disease vulnerability. However, mostly disease-associated SNPs lie within non-coding part of the genome; majority of the variants are also present in linkage disequilibrium (LD) with the genome-wide significant SNPs (GWAS lead SNPs). Overall 600 SNPs were analyzed, out of which 291 returned RegulomeDB scores of 1-6. It was observed that just 4 out of those 291 SNPs show strong evidence of regulatory effects (RegulomeDB score <3), while none of them includes any GWAS lead SNP. Nevertheless, this study demonstrates that by combining ENCODE project data along with GWAS reported information will provide important insights on the impact of a genetic variant-moving from GWAS towards understanding disease pathways. It is noteworthy that both genome-wide significant SNPs as well as the SNPs in LD must be considered for future studies; this may prove to be crucial in deciphering the potential regulatory elements involved in complex disorders and aging in particular.
Collapse
Affiliation(s)
- Syed Aleem Haider
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
165
|
El Fatimy R, Miozzo F, Le Mouël A, Abane R, Schwendimann L, Sabéran-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 2015; 6:1043-61. [PMID: 25027850 PMCID: PMC4154132 DOI: 10.15252/emmm.201303311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.
Collapse
Affiliation(s)
- Rachid El Fatimy
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Federico Miozzo
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Anne Le Mouël
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Ryma Abane
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Leslie Schwendimann
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Aurélie de Thonel
- INSERM UMR 866, Dijon, France Faculty of Medicine and Pharmacy, Univ Burgundy, Dijon, France
| | - Illiasse Massaoudi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Liliana Paslaru
- Carol Davila University of Medicine and Pharmacy Fundeni Hospital, Bucharest, Romania
| | - Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Christians
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, CNRS, Villefranche-sur-mer, France Sorbonne Universités UPMC Univ Paris 06, Villefranche-sur-mer, France
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Valérie Mezger
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| |
Collapse
|
166
|
Ishikawa Y, Kawabata S, Sakurai H. HSF1 transcriptional activity is modulated by IER5 and PP2A/B55. FEBS Lett 2015; 589:1150-5. [PMID: 25816751 DOI: 10.1016/j.febslet.2015.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Heat shock factor 1 (HSF1) is the master transcriptional regulator of chaperone genes. HSF1 regulates the expression of the immediate-early response gene IER5, which encodes a protein that has roles in the stress response and cell proliferation. Here, we have shown that IER5 interacts with protein phosphatase 2A (PP2A) and its B55 regulatory subunits. Expression of IER5 and B55 in cells leads to HSF1 dephosphorylation and activation of HSF1 target genes. The B55 subunits directly bind to HSF1. These results suggest that IER5 functions as a positive feedback regulator of HSF1 and that this process involves PP2A/B55 and HSF1 dephosphorylation.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Shotaro Kawabata
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
167
|
Ortner V, Ludwig A, Riegel E, Dunzinger S, Czerny T. An artificial HSE promoter for efficient and selective detection of heat shock pathway activity. Cell Stress Chaperones 2015; 20:277-88. [PMID: 25168173 PMCID: PMC4326385 DOI: 10.1007/s12192-014-0540-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022] Open
Abstract
Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.
Collapse
Affiliation(s)
- Viktoria Ortner
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Alfred Ludwig
- Department of Agrarian Production, Genetics and Microbiology Research Group Public, University of Navarre, Pamplona, Navarre Spain
| | - Elisabeth Riegel
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Sarah Dunzinger
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| | - Thomas Czerny
- Department of Applied Life Sciences, University of Applied Sciences, FH Campus Wien, Helmut-Qualtinger-Gasse 2, A-1030, Vienna, Austria
| |
Collapse
|
168
|
Kaitsuka T, Matsushita M. Regulation of translation factor EEF1D gene function by alternative splicing. Int J Mol Sci 2015; 16:3970-9. [PMID: 25686034 PMCID: PMC4346937 DOI: 10.3390/ijms16023970] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/04/2015] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing is an exquisite mechanism that allows one coding gene to have multiple functions. The alternative splicing machinery is necessary for proper development, differentiation and stress responses in a variety of organisms, and disruption of this machinery is often implicated in human diseases. Previously, we discovered a long form of eukaryotic elongation factor 1Bδ (eEF1Bδ; this long-form eEF1Bδ results from alternative splicing of EEF1D transcripts and regulates the cellular stress response by transcriptional activation, not translational enhancement, of heat-shock responsive genes. In this review, we discuss the molecular function of EEF1D alternative splicing products and the estimated implication of human diseases.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| |
Collapse
|
169
|
|
170
|
Dayalan Naidu S, Kostov RV, Dinkova-Kostova AT. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol Sci 2014; 36:6-14. [PMID: 25465722 DOI: 10.1016/j.tips.2014.10.011] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 12/30/2022]
Abstract
Transcription factors heat shock factor (Hsf)1 and nuclear factor-erythroid 2 p45-related factor (Nrf)2 are critical for adaptation and survival. Each is maintained at low basal levels, but is robustly activated by various stimuli, including cysteine-reactive small molecules (inducers). Although each is regulated by distinct mechanisms, it is emerging that these transcription factors engage in crosstalk by sharing overlapping transcriptional targets, such as heat shock protein (HSP)70, p62, and activating transcription factor (ATF)3, and in certain cases, compensating for each other. Critically, activation of Hsf1 or Nrf2 affects the cellular redox balance by promoting the reduced state. Conversely, deletion of Hsf1 or Nrf2 is associated with oxidative stress and impaired mitochondrial function. Transient activation of Hsf1 and Nrf2 is cytoprotective, but their persistent upregulation may be detrimental, causing cardiomyopathy or accelerating carcinogenesis, and should be considered when designing strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| | - Rumen V Kostov
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee, Scotland, UK; Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
171
|
Ishikawa Y, Sakurai H. Heat-induced expression of the immediate-early gene IER5 and its involvement in the proliferation of heat-shocked cells. FEBS J 2014; 282:332-40. [PMID: 25355627 DOI: 10.1111/febs.13134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023]
Abstract
The serum-inducible and growth factor-inducible gene IER5 encodes a protein that acts as a regulator of cell proliferation. Expression of IER5 is also induced by treatment of cells with ionizing radiation and anticancer agents. In this study, we demonstrate the expression and function of IER5 in heat-shocked cells. Heat treatment causes robust expression of IER5 in a heat shock factor (HSF)1-dependent manner. HSF1 is the master transcriptional regulator of chaperone genes, and the IER5 promoter contains the binding sequence for HSF1 and is bound by heat-activated HSF1. Proteotoxic stressors, such as celastrol and MG132, are known to activate HSF1, and are potent inducers of HSF1 binding and IER5 expression. Overexpression of IER5 leads to upregulation of chaperone gene expression and to an increase in refolding of heat-denatured proteins. Cells expressing IER5 efficiently recover viability after heat challenge. These observations suggest that HSF1-mediated IER5 expression is involved in the expression of chaperone genes and in recovery from thermal stress.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Japan
| | | |
Collapse
|
172
|
Neef DW, Jaeger AM, Gomez-Pastor R, Willmund F, Frydman J, Thiele DJ. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep 2014; 9:955-66. [PMID: 25437552 DOI: 10.1016/j.celrep.2014.09.056] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 08/26/2014] [Accepted: 09/27/2014] [Indexed: 10/24/2022] Open
Abstract
Heat shock transcription factor 1 (HSF1) is an evolutionarily conserved transcription factor that protects cells from protein-misfolding-induced stress and apoptosis. The mechanisms by which cytosolic protein misfolding leads to HSF1 activation have not been elucidated. Here, we demonstrate that HSF1 is directly regulated by TRiC/CCT, a central ATP-dependent chaperonin complex that folds cytosolic proteins. A small-molecule activator of HSF1, HSF1A, protects cells from stress-induced apoptosis, binds TRiC subunits in vivo and in vitro, and inhibits TRiC activity without perturbation of ATP hydrolysis. Genetic inactivation or depletion of the TRiC complex results in human HSF1 activation, and HSF1A inhibits the direct interaction between purified TRiC and HSF1 in vitro. These results demonstrate a direct regulatory interaction between the cytosolic chaperone machine and a critical transcription factor that protects cells from proteotoxicity, providing a mechanistic basis for signaling perturbations in protein folding to a stress-protective transcription factor.
Collapse
Affiliation(s)
- Daniel W Neef
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex M Jaeger
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Felix Willmund
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Palo Alto, CA 94305, USA
| | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
173
|
Wang W, Sreekumar PG, Valluripalli V, Shi P, Wang J, Lin YA, Cui H, Kannan R, Hinton DR, MacKay JA. Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells. J Control Release 2014; 191:4-14. [PMID: 24780268 PMCID: PMC4222838 DOI: 10.1016/j.jconrel.2014.04.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/11/2014] [Accepted: 04/15/2014] [Indexed: 12/18/2022]
Abstract
αB-Crystallin is a protein chaperone with anti-apoptotic and anti-inflammatory activity that is apically secreted in exosomes by polarized human retinal pigment epithelium. A 20 amino acid mini-peptide derived from residues 73-92 of αB-crystallin protects human retinal pigment epithelial (RPE) cells from oxidative stress, a process involved in the progression of age-related macular degeneration (AMD). Unfortunately, due to its small size, its development as a therapeutic requires a robust controlled release system. To achieve this goal, the αB-crystallin peptide was re-engineered into a protein polymer nanoparticle/macromolecule with the purpose of increasing the hydrodynamic radius/molecular weight and enhancing potency via multivalency or an extended retention time. The peptide was recombinantly fused with two high molecular weight (~40kDa) protein polymers inspired by human tropoelastin. These elastin-like polypeptides (ELPs) include the following: (i) a soluble peptide called S96 and (ii) a diblock copolymer called SI that assembles multivalent nanoparticles at physiological temperature. Fusion proteins, cryS96 and crySI, were found to reduce aggregation of alcohol dehydrogenase and insulin, which demonstrates that ELP fusion did not diminish chaperone activity. Next their interaction with RPE cells was evaluated under oxidative stress. Unexpectedly, H2O2-induced stress dramatically enhanced cellular uptake and nuclear localization of both cryS96 and crySI ELPs. Accompanying uptake, both fusion proteins protected RPE cells from apoptosis, as indicated by reduced caspase 3 activation and TUNEL staining. This study demonstrates the in vitro feasibility of modulating the hydrodynamic radius for small peptide chaperones by seamless fusion with protein polymers; furthermore, they may have therapeutic applications in diseases associated with oxidative stress, such as AMD.
Collapse
Affiliation(s)
- Wan Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | | | - Vinod Valluripalli
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Pu Shi
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Jiawei Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, 21218, USA
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA 90033
| | - David R Hinton
- Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California Los Angeles, CA; 90033-9121
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
174
|
Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. Neurobiol Aging 2014; 35:2316-28. [DOI: 10.1016/j.neurobiolaging.2014.04.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 04/10/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022]
|
175
|
Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM, Singer RH, Nudler E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 2014; 3:e03164. [PMID: 25233275 PMCID: PMC4164936 DOI: 10.7554/elife.03164] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/14/2014] [Indexed: 01/26/2023] Open
Abstract
Translation elongation factor eEF1A has a well-defined role in protein synthesis. In this study, we demonstrate a new role for eEF1A: it participates in the entire process of the heat shock response (HSR) in mammalian cells from transcription through translation. Upon stress, isoform 1 of eEF1A rapidly activates transcription of HSP70 by recruiting the master regulator HSF1 to its promoter. eEF1A1 then associates with elongating RNA polymerase II and the 3'UTR of HSP70 mRNA, stabilizing it and facilitating its transport from the nucleus to active ribosomes. eEF1A1-depleted cells exhibit severely impaired HSR and compromised thermotolerance. In contrast, tissue-specific isoform 2 of eEF1A does not support HSR. By adjusting transcriptional yield to translational needs, eEF1A1 renders HSR rapid, robust, and highly selective; thus, representing an attractive therapeutic target for numerous conditions associated with disrupted protein homeostasis, ranging from neurodegeneration to cancer.
Collapse
Affiliation(s)
- Maria Vera
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Département de Biologie du Développement et Cellules Souches, Institut Pasteur, CNRS URA2578, Paris, France
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, United States
| | - Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
| | - Lowri A Griffiths
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Christian Muchardt
- Département de Biologie du Développement et Cellules Souches, Institut Pasteur, CNRS URA2578, Paris, France
| | - Catherine M Abbott
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, United States
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, United States
- Howard Hughes Medical Institute, New York University School of Medicine, New York, United States
| |
Collapse
|
176
|
Jaeger AM, Makley LN, Gestwicki JE, Thiele DJ. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. J Biol Chem 2014; 289:30459-30469. [PMID: 25204655 DOI: 10.1074/jbc.m114.591578] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer.
Collapse
Affiliation(s)
- Alex M Jaeger
- Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710
| | - Leah N Makley
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143
| | - Dennis J Thiele
- Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710; Departments of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710 and.
| |
Collapse
|
177
|
Pastukhov YF, Plaksina DV, Lapshina KV, Guzhova IV, Ekimova IV. Exogenous protein HSP70 blocks neurodegeneration in the rat model of the clinical stage of Parkinson's disease. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 457:225-7. [PMID: 25172587 DOI: 10.1134/s0012496614040139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 11/23/2022]
Affiliation(s)
- Yu F Pastukhov
- Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia,
| | | | | | | | | |
Collapse
|
178
|
Watanabe S, Ageta-Ishihara N, Nagatsu S, Takao K, Komine O, Endo F, Miyakawa T, Misawa H, Takahashi R, Kinoshita M, Yamanaka K. SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system. Mol Brain 2014; 7:62. [PMID: 25167838 PMCID: PMC4237944 DOI: 10.1186/s13041-014-0062-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/14/2014] [Indexed: 02/06/2023] Open
Abstract
Background Dominant mutations in superoxide dismutase 1 (SOD1) cause degeneration of motor neurons in a subset of inherited amyotrophic lateral sclerosis (ALS). The pathogenetic process mediated by misfolded and/or aggregated mutant SOD1 polypeptides is hypothesized to be suppressed by protein refolding. This genetic study is aimed to test whether mutant SOD1-mediated ALS pathology recapitulated in mice could be alleviated by overexpressing a longevity-related deacetylase SIRT1 whose substrates include a transcription factor heat shock factor 1 (HSF1), the master regulator of the chaperone system. Results We established a line of transgenic mice that chronically overexpress SIRT1 in the brain and spinal cord. While inducible HSP70 (HSP70i) was upregulated in the spinal cord of SIRT1 transgenic mice (PrP-Sirt1), no neurological and behavioral alterations were detected. To test hypothetical benefits of SIRT1 overexpression, we crossbred PrP-Sirt1 mice with two lines of ALS model mice: A high expression line that exhibits a severe phenotype (SOD1G93A-H) or a low expression line with a milder phenotype (SOD1G93A-L). The Sirt1 transgene conferred longer lifespan without altering the time of symptomatic onset in SOD1G93A-L. Biochemical analysis of the spinal cord revealed that SIRT1 induced HSP70i expression through deacetylation of HSF1 and that SOD1G93A-L/PrP-Sirt1 double transgenic mice contained less insoluble SOD1 than SOD1G93A-L mice. Parallel experiments showed that Sirt1 transgene could not rescue a more severe phenotype of SOD1G93A-H transgenic mice partly because their HSP70i level had peaked out. Conclusions The genetic supplementation of SIRT1 can ameliorate a mutant SOD1-linked ALS mouse model partly through the activation of the HSF1/HSP70i chaperone system. Future studies shall include testing potential benefits of pharmacological enhancement of the deacetylation activity of SIRT1 after the onset of the symptom.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Makoto Kinoshita
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikus, Nagoya 464-8601, Japan.
| | | |
Collapse
|
179
|
Margulis J, Finkbeiner S. Proteostasis in striatal cells and selective neurodegeneration in Huntington's disease. Front Cell Neurosci 2014; 8:218. [PMID: 25147502 PMCID: PMC4124811 DOI: 10.3389/fncel.2014.00218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/17/2014] [Indexed: 12/23/2022] Open
Abstract
Selective neuronal loss is a hallmark of neurodegenerative diseases, including Huntington’s disease (HD). Although mutant huntingtin, the protein responsible for HD, is expressed ubiquitously, a subpopulation of neurons in the striatum is the first to succumb. In this review, we examine evidence that protein quality control pathways, including the ubiquitin proteasome system, autophagy, and chaperones, are significantly altered in striatal neurons. These alterations may increase the susceptibility of striatal neurons to mutant huntingtin-mediated toxicity. This novel view of HD pathogenesis has profound therapeutic implications: protein homeostasis pathways in the striatum may be valuable targets for treating HD and other misfolded protein disorders.
Collapse
Affiliation(s)
- Julia Margulis
- Gladstone Institute of Neurological Disease, J. David Gladstone Institutes San Francisco, CA, USA ; Department of Neurology, University of California at San Francisco San Francisco, CA, USA ; Department of Physiology, University of California at San Francisco San Francisco, CA, USA
| | - Steven Finkbeiner
- Gladstone Institute of Neurological Disease, J. David Gladstone Institutes San Francisco, CA, USA ; Department of Neurology, University of California at San Francisco San Francisco, CA, USA ; Department of Physiology, University of California at San Francisco San Francisco, CA, USA ; Taube/Koret Center for Huntington's Disease Research San Francisco, CA, USA
| |
Collapse
|
180
|
The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice. J Neurosci 2014; 34:7253-65. [PMID: 24849358 DOI: 10.1523/jneurosci.4936-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased neuronal synthesis of transthyretin (TTR) may favorably impact on Alzheimer's disease (AD) because TTR has been shown to inhibit Aβ aggregation and detoxify cell-damaging conformers. The mechanism whereby hippocampal and cortical neurons from AD patients and APP23 AD model mice produce more TTR is unknown. We now show that TTR expression in SH-SY5Y human neuroblastoma cells, primary hippocampal neurons and the hippocampus of APP23 mice, is significantly enhanced by heat shock factor 1 (HSF1). Chromatin immunoprecipitation (ChIP) assays demonstrated occupation of TTR promoter heat shock elements by HSF1 in APP23 hippocampi, primary murine hippocampal neurons, and SH-SY5Y cells, but not in mouse liver, cultured human hepatoma (HepG2) cells, or AC16 cultured human cardiomyocytes. Treating SH-SY5Y human neuroblastoma cells with heat shock or the HSF1 stimulator celastrol increased TTR transcription in parallel with that of HSP40, HSP70, and HSP90. With both treatments, ChIP showed increased occupancy of heat shock elements in the TTR promoter by HSF1. In vivo celastrol increased the HSF1 ChIP signal in hippocampus but not in liver. Transfection of a human HSF1 construct into SH-SY5Y cells increased TTR transcription and protein production, which could be blocked by shHSF1 antisense. The effect is neuron specific. In cultured HepG2 cells, HSF1 was either suppressive or had no effect on TTR expression confirming the differential effects of HSF1 on TTR transcription in different cell types.
Collapse
|
181
|
Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease. Mol Neurobiol 2014; 51:209-19. [PMID: 24946750 DOI: 10.1007/s12035-014-8769-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation contributes to the Parkinson's disease (PD) pathology in multiple ways-the two most important being the activation of neuroinflammation and mitochondrial dysfunction. Our recent studies have shown the beneficial effects of a heat shock protein (HSP) inducer, carbenoxolone (Cbx), in reducing the aggregation of α-synuclein in a rotenone-based rat model of PD. The present study was designed to explore its ability to attenuate the α-synuclein-mediated alterations in neuroinflammation and mitochondrial functions. The PD model was generated by the rotenone administration (2 mg/kg b.wt.) to the male SD rats for a period of 5 weeks. Cbx (20 mg/kg b.wt.) co-administration was seen to reduce the activation of astrocytes incited by rotenone. Subsequently, the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited. Further, the expression level of various inflammatory mediators such as COX-2, iNOS, and NF-κB was also reduced following Cbx co-treatment. Cbx was also shown to reduce the rotenone-induced decline in activity of mitochondrial complexes-I, -II, and -IV. Protection of mitochondrial functions and reduction in neuroinflammation lead to the lesser production of ROS and subsequently reduced oxidative stress. This was reflected by the increase in both the cytosolic and mitochondrial GSH levels as well as SOD activity during Cbx co-treatment. Thus, Cbx reduces the inflammatory response and improves the mitochondrial dysfunctions by reducing α-synuclein aggregation. In addition, it also reduces the associated oxidative stress. Due to its ability to target the multiple pathways implicated in the PD, Cbx can serve as a highly beneficial prophylactic agent.
Collapse
|
182
|
Ryno LM, Genereux J, Naito T, Morimoto RI, Powers ET, Shoulders MD, Wiseman RL. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol 2014; 9:1273-83. [PMID: 24689980 PMCID: PMC4076015 DOI: 10.1021/cb500062n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/01/2014] [Indexed: 01/18/2023]
Abstract
The heat shock response is an evolutionarily conserved, stress-responsive signaling pathway that adapts cellular proteostasis in response to pathologic insult. In metazoans, the heat shock response primarily functions through the posttranslational activation of heat shock factor 1 (HSF1), a stress-responsive transcription factor that induces the expression of cytosolic proteostasis factors including chaperones, cochaperones, and folding enzymes. HSF1 is a potentially attractive therapeutic target to ameliorate pathologic imbalances in cellular proteostasis associated with human disease, although the underlying impact of stress-independent HSF1 activation on cellular proteome composition remains to be defined. Here, we employ a highly controllable, ligand-regulated HSF1 that activates HSF1 to levels compatible with those that could be achieved using selective small molecule HSF1 activators. Using a combination of RNAseq and quantitative proteomics, we define the impact of stress-independent HSF1 activation on the composition of the cellular proteome. We show that stress-independent HSF1 activation selectively remodels cytosolic proteostasis pathways without globally influencing the composition of the cellular proteome. Furthermore, we show that stress-independent HSF1 activation decreases intracellular aggregation of a model polyglutamine-containing protein and reduces the cellular toxicity of environmental toxins like arsenite that disrupt cytosolic proteostasis. Collectively, our results reveal a proteome-level view of stress-independent HSF1 activation, providing a framework to establish therapeutic approaches to correct pathologic imbalances in cellular proteostasis through the selective targeting of HSF1.
Collapse
Affiliation(s)
- Lisa M. Ryno
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Joseph
C. Genereux
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tadasuke Naito
- Department
of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard I. Morimoto
- Department
of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan T. Powers
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Matthew D. Shoulders
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - R. Luke Wiseman
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
183
|
Tadic V, Prell T, Lautenschlaeger J, Grosskreutz J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8:147. [PMID: 24910594 PMCID: PMC4039088 DOI: 10.3389/fncel.2014.00147] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/07/2014] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
Collapse
Affiliation(s)
- Vedrana Tadic
- Hans Berger Department of Neurology, Jena University HospitalJena, Germany
| | | | | | | |
Collapse
|
184
|
Thakur P, Nehru B. Modulatory effects of sodium salicylate on the factors affecting protein aggregation during rotenone induced Parkinson's disease pathology. Neurochem Int 2014; 75:1-10. [PMID: 24852355 DOI: 10.1016/j.neuint.2014.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 01/20/2023]
Abstract
Sodium salicylate (SS) confers neuroprotection in various models of Parkinson's disease (PD) but the mechanisms behind its protective actions are not clear. PD pathology is multifactorial involving numerous processes such as protein aggregation, dysfunction of protein degradation machinery and apoptosis. Detailed evaluation of effects of SS on these processes can provide an insight into the mechanism of neuroprotection by SS in PD pathology. In a rotenone (2mg/kg b.w.) based rat model of PD, SS (100mg/kg b.w.) was administered in conjunction. Drug treatments continued for 5 weeks after which various analyses were conducted using mid-brain tissue. IHC analysis revealed a decline in the aggregation of α-synuclein and ubiquitin with SS supplementation. These effects might be mediated by the elevation in HSF-1, HSP-40, and HSP-27 expression following SS co-treatment. This HSP upregulation helped in the improvement in proteasome activity as well as expression. Further, IHC analysis revealed that SS co-treatment prevented the activation of astrocytes caused by rotenone. Since astrocytes are involved in maintenance of glutathione (GSH) homeostasis, it resulted in a concomitant improvement in the GSH levels. As a result, decrease in apoptosis as indicated by caspase-9 and caspase-3 expression as well as TUNEL assay was also observed in the SS conjunction group. Our results indicate that besides being a known free radical scavenger and anti-inflammatory compound, SS can provide neuroprotection by differently upregulating the HSPs and reducing the protein aggregation burden.
Collapse
Affiliation(s)
- Poonam Thakur
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| | - Bimla Nehru
- Department of Biophysics, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
185
|
ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. Cell Death Differ 2014; 21:1262-74. [PMID: 24786827 DOI: 10.1038/cdd.2014.46] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/07/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023] Open
Abstract
Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Our previous studies found that the activation of insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II (ANG II)-induced cardiomyocyte apoptosis. However, the detailed mechanism by which ANG II regulates IGF-IIR in heart cells remains elusive. In this study, we found that ANG II activated its downstream kinase JNK to increase IGF-IIR expression through the ANG II receptor angiotensin type 1 receptor. JNK activation subsequently led to sirtuin 1 (SIRT1) degradation via the proteasome, thus preventing SIRT1 from deacetylating heat-shock transcription factor 1 (HSF1). The resulting increase in the acetylation of HSF1 impaired its ability to bind to the IGF-IIR promoter region (nt -748 to -585). HSF1 protected cardiomyocytes by acting as a repressor of IGF-IIR gene expression, and ANG II diminished this HSF1-mediated repression through enhanced acetylation, thus activating the IGF-IIR apoptosis pathway. Taken together, these results suggest that HSF1 represses IGF-IIR gene expression to protect cardiomyocytes. ANG II activates JNK to degrade SIRT1, resulting in HSF1 acetylation, which induces IGF-IIR expression and eventually results in cardiac hypertrophy and apoptosis. HSF1 could be a valuable target for developing treatments for cardiac diseases in hypertensive patients.
Collapse
|
186
|
Xu XL, Sun HP, Liu F, Jia JM, Guo XK, Pan Y, Huang HZ, Zhang XJ, You QD. Discovery and Bioevaluation of Novel Pyrazolopyrimidine Analogs as Competitive Hsp90 Inhibitors Through Shape-Based Similarity Screening. Mol Inform 2014; 33:293-306. [PMID: 27485776 DOI: 10.1002/minf.201300150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Hsp90 as a promising therapeutic target for the treatment of cancer has received great attention. Many Hsp90 inhibitors such as BIIB021 and CUDC-305 have been in clinical. In this paper shape-based similarity screening through ROCS overlays on the basis of CUDC-305, BIIB021, PU-H71 and PU-3 were performed to discover HSP90 inhibitors. A set of 19 novel pyrazolopyrimidine analogues was identified and evaluated on enzyme level and cell-based level as Hsp90 inhibitors. The compound HDI4-04 with IC50 0.35 µM in the Hsp90 ATP hydrolysis assay exhibited potent cytotoxicity against five human cancer cell lines. Western blot analysis and Hsp70 luciferase reporter assay further confirmed that HDI4-04 targeted the Hsp90 protein folding machinery. And according to the biological assay, the SAR was discussed and summarized, which will guide us for further optimization of these compounds.
Collapse
Affiliation(s)
- Xiao-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao-Peng Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271216
| | - Fang Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jian-Min Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiao-Ke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yang Pan
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hao-Ze Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiao-Jin Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271351. , .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China. , .,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China fax & tel: +86-25-83271216. ,
| |
Collapse
|
187
|
Thakur P, Nehru B. Long-term heat shock proteins (HSPs) induction by carbenoxolone improves hallmark features of Parkinson's disease in a rotenone-based model. Neuropharmacology 2014; 79:190-200. [DOI: 10.1016/j.neuropharm.2013.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/10/2013] [Accepted: 11/20/2013] [Indexed: 01/24/2023]
|
188
|
Abstract
Heat shock factor 1 (HSF1) protects neurons from death caused by the accumulation of misfolded proteins. It is believed that this protective effect is mediated by the transcriptional stimulation of genes encoding heat shock proteins (HSPs), a family of chaperones that refold or degrade misfolded proteins. Whether HSF1 is protective when neuronal death is not caused by protein misfolding has not been studied. Here, we report that HSF1 expression is necessary for the survival of rat neurons and that HSF1 mRNA and protein expression is reduced in neurons primed to die. Knock-down of HSF1 induces death of otherwise healthy neurons, whereas reestablishment of elevated levels of HSF1 protects neurons even when death is not due to accumulation of misfolded proteins. Neuroprotection by HSF1 does not require its trimerization, an event obligatory for the binding of HSF1 to heat shock elements within HSP gene promoters. Moreover, knock-down of HSP70 or blockade of HSP90 signaling does not reduce neuroprotection by HSF1. Although several neuroprotective molecules and signaling pathways, including CaMK, PKA, Casein kinase-II, and the Raf-MEK-ERK and PI-3K-Akt pathways, are not required for HSF1-mediated neuroprotection, protection is abrogated by inhibition of classical histone deacetylases (HDACs). We report that the novel mechanism of neuroprotection by HSF1 involves cooperation with SIRT1, an HDAC with well documented neuroprotective effects. Using a cell culture model of Huntington's disease, we show that HSF1 trimerization is not required for protection against mutant huntingtin-induced neurotoxicity, suggesting that HSF1 can protect neurons against both proteinopathic and nonproteinopathic death through a noncanonical pathway.
Collapse
|
189
|
Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 2014; 7:421-34. [PMID: 24719117 PMCID: PMC3974453 DOI: 10.1242/dmm.014563] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.
Collapse
Affiliation(s)
- Vaishali Kakkar
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melanie Meister-Broekema
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melania Minoia
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Serena Carra
- Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, via G. Campi 287, 41125 Modena, Italy
| | - Harm H. Kampinga
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
190
|
Salimgareeva MK, Sadovnikov SV, Farafontova EI, Zainullina LF, Vakhitov VA, Vakhitova YV. Cellular test systems for the search of transcription factors activity modulators. APPL BIOCHEM MICRO+ 2014; 50:194-199. [DOI: 10.1134/s000368381402015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
191
|
Zhang Y, Casas-Tinto S, Rincon-Limas DE, Fernandez-Funez P. Combined pharmacological induction of Hsp70 suppresses prion protein neurotoxicity in Drosophila. PLoS One 2014; 9:e88522. [PMID: 24523910 PMCID: PMC3921213 DOI: 10.1371/journal.pone.0088522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/07/2014] [Indexed: 11/18/2022] Open
Abstract
Prion diseases are rare and aggressive neurodegenerative disorders caused by the accumulation of misfolded, toxic conformations of the prion protein (PrP). Therapeutic strategies directed at reducing the levels of PrP offer the best chance of delaying or halting disease progression. The challenge, though, is to define pharmacologic targets that result in reduced PrP levels. We previously reported that expression of wild type hamster PrP in flies induces progressive locomotor dysfunction and accumulation of pathogenic PrP conformations, while co-expression of human Hsp70 delayed these changes. To validate the therapeutic potential of Hsp70, we treated flies with drugs known to induce Hsp70 expression, including the Hsp90 inhibitor 17-DMAG and the glucocorticoid dexamethasone. Although the individual treatment with these compounds produced no significant benefits, their combination significantly increased the level of inducible Hsp70, decreased the level of total PrP, reduced the accumulation of pathogenic PrP conformers, and improved locomotor activity. Thus, the combined action of two pharmacological activators of Hsp70 with distinct targets results in sustained high levels of inducible Hsp70 with improved behavioral output. These findings can have important therapeutic applications for the devastating prion diseases and other related proteinopathies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
| | - Sergio Casas-Tinto
- Department of Molecular, Cellular and developmental Neurobiology, Instituto Cajal, Madrid, Spain
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Neurosciences, Genetics Institute, and Center for Translational Research on Neurodegenerative Diseases, Gainesville, Florida, United States of America
- * E-mail: (DERL); (PFF)
| | - Pedro Fernandez-Funez
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Neurosciences, Genetics Institute, and Center for Translational Research on Neurodegenerative Diseases, Gainesville, Florida, United States of America
- Center for Movement Disorders and Neurorestoration, Gainesville, Florida, United States of America
- * E-mail: (DERL); (PFF)
| |
Collapse
|
192
|
Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl F. Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell 2014; 156:975-85. [DOI: 10.1016/j.cell.2014.01.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
193
|
Sakurai H, Sawai M, Ishikawa Y, Ota A, Kawahara E. Heat shock transcription factor HSF1 regulates the expression of the Huntingtin-interacting protein HYPK. Biochim Biophys Acta Gen Subj 2013; 1840:1181-7. [PMID: 24361604 DOI: 10.1016/j.bbagen.2013.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND The Huntingtin-interacting protein HYPK possesses chaperone-like activity. We hypothesized that the expression of HYPK could be regulated by heat shock factor HSF1, a transcriptional regulator of chaperone genes. METHODS HYPK expression in HeLa cells was assessed by RT-PCR and Western blot analysis. In vivo binding of HSF1 to the HYPK promoter was analyzed by chromatin immunoprecipitation assays. The requirement for HYPK in heat-shocked cells was examined using HYPK-knockdown cells. RESULTS Levels of HYPK mRNA were slightly increased by heat treatment; however, the levels decreased in HSF1-silenced cells. The HYPK promoter was bound by HSF1 in a heat-inducible manner; however, its core promoter activity was notably suppressed upon heat shock. When cells were exposed to heat shock, silencing HYPK caused a decrease in cell viability. CONCLUSIONS HYPK is a novel target gene of HSF1. HSF1 maintains HYPK expression in heat-shocked cells. GENERAL SIGNIFICANCE The maintenance of HYPK expression by HSF1 is necessary for the survival of cells under thermal stress conditions.
Collapse
Affiliation(s)
- Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| | - Maki Sawai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yukio Ishikawa
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Azumi Ota
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Ei Kawahara
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
194
|
Sawai M, Ishikawa Y, Ota A, Sakurai H. The proto-oncogeneJUNis a target of the heat shock transcription factor HSF1. FEBS J 2013; 280:6672-80. [DOI: 10.1111/febs.12570] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/06/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Maki Sawai
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| | - Yukio Ishikawa
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| | - Azumi Ota
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| | - Hiroshi Sakurai
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| |
Collapse
|
195
|
|
196
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
197
|
Genome-wide signatures of transcription factor activity: connecting transcription factors, disease, and small molecules. PLoS Comput Biol 2013; 9:e1003198. [PMID: 24039560 PMCID: PMC3764016 DOI: 10.1371/journal.pcbi.1003198] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 07/11/2013] [Indexed: 11/19/2022] Open
Abstract
Identifying transcription factors (TF) involved in producing a genome-wide transcriptional profile is an essential step in building mechanistic model that can explain observed gene expression data. We developed a statistical framework for constructing genome-wide signatures of TF activity, and for using such signatures in the analysis of gene expression data produced by complex transcriptional regulatory programs. Our framework integrates ChIP-seq data and appropriately matched gene expression profiles to identify True REGulatory (TREG) TF-gene interactions. It provides genome-wide quantification of the likelihood of regulatory TF-gene interaction that can be used to either identify regulated genes, or as genome-wide signature of TF activity. To effectively use ChIP-seq data, we introduce a novel statistical model that integrates information from all binding "peaks" within 2 Mb window around a gene's transcription start site (TSS), and provides gene-level binding scores and probabilities of regulatory interaction. In the second step we integrate these binding scores and regulatory probabilities with gene expression data to assess the likelihood of True REGulatory (TREG) TF-gene interactions. We demonstrate the advantages of TREG framework in identifying genes regulated by two TFs with widely different distribution of functional binding events (ERα and E2f1). We also show that TREG signatures of TF activity vastly improve our ability to detect involvement of ERα in producing complex diseases-related transcriptional profiles. Through a large study of disease-related transcriptional signatures and transcriptional signatures of drug activity, we demonstrate that increase in statistical power associated with the use of TREG signatures makes the crucial difference in identifying key targets for treatment, and drugs to use for treatment. All methods are implemented in an open-source R package treg. The package also contains all data used in the analysis including 494 TREG binding profiles based on ENCODE ChIP-seq data. The treg package can be downloaded at http://GenomicsPortals.org.
Collapse
|
198
|
Subset of heat-shock transcription factors required for the early response of Arabidopsis to excess light. Proc Natl Acad Sci U S A 2013; 110:14474-9. [PMID: 23918368 DOI: 10.1073/pnas.1311632110] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sunlight provides energy for photosynthesis and is essential for nearly all life on earth. However, too much or too little light or rapidly fluctuating light conditions cause stress to plants. Rapid changes in the amount of light are perceived as a change in the reduced/oxidized (redox) state of photosynthetic electron transport components in chloroplasts. However, how this generates a signal that is relayed to changes in nuclear gene expression is not well understood. We modified redox state in the reference plant, Arabidopsis thaliana, using either excess light or low light plus the herbicide DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), a well-known inhibitor of photosynthetic electron transport. Modification of redox state caused a change in expression of a common set of about 750 genes, many of which are known stress-responsive genes. Among the most highly enriched promoter elements in the induced gene set were heat-shock elements (HSEs), known motifs that change gene expression in response to high temperature in many systems. We show that HSEs from the promoter of the ASCORBATE PEROXIDASE 2 (APX2) gene were necessary and sufficient for APX2 expression in conditions of excess light, or under low light plus the herbicide. We tested APX2 expression phenotypes in overexpression and loss-of-function mutants of 15 Arabidopsis A-type heat-shock transcription factors (HSFs), and identified HSFA1D, HSFA2, and HSFA3 as key factors regulating APX2 expression in diverse stress conditions. Excess light regulates both the subcellular location of HSFA1D and its biochemical properties, making it a key early component of the excess light stress network of plants.
Collapse
|
199
|
San Sebastian W, Samaranch L, Kells AP, Forsayeth J, Bankiewicz KS. Gene therapy for misfolding protein diseases of the central nervous system. Neurotherapeutics 2013; 10:498-510. [PMID: 23700209 PMCID: PMC3701766 DOI: 10.1007/s13311-013-0191-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. Accordingly, most recent studies aim to prevent protein misfolding and/or aggregation as a strategy to treat these pathologies. For instance, state-of-the-art approaches, such as silencing protein overexpression by means of RNA interference, are being tested with positive outcomes in preclinical models of animals overexpressing the corresponding protein. Therapies designed to treat central nervous system diseases should provide accurate delivery of the therapeutic agent and long-term or chronic expression by means of a nontoxic delivery vehicle. After several years of technical advances and optimization, gene therapy emerges as a promising approach able to fulfill those requirements. In this review we will summarize the latest improvements achieved in gene therapy for central nervous system diseases associated with protein misfolding (e.g., amyotrophic lateral sclerosis, Alzheimer's, Parkinson's, Huntington's, and prion diseases), as well as the most recent approaches in this field to treat these pathologies.
Collapse
Affiliation(s)
- Waldy San Sebastian
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Lluis Samaranch
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Adrian P. Kells
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, San Francisco, CA USA
| |
Collapse
|
200
|
Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 2013; 38:378-85. [PMID: 23768628 DOI: 10.1016/j.tibs.2013.05.003] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/06/2013] [Accepted: 05/17/2013] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder for which no disease modifying treatments exist. Many molecular changes and cellular consequences that underlie HD are observed in other neurological disorders, suggesting that common pathological mechanisms and pathways may exist. Recent findings have enhanced our understanding of the way cells regulate and respond to expanded polyglutamine proteins such as mutant huntingtin. These studies demonstrate that in addition to effects on folding, aggregation, and clearance pathways, a general transcriptional mechanism also dictates the expression of polyglutamine proteins. Here, we summarize the key pathways and networks that are important in HD in the context of recent therapeutic advances and highlight how their interplay may be of relevance to other protein folding disorders.
Collapse
|