151
|
Lumkwana D, Peddie C, Kriel J, Michie LL, Heathcote N, Collinson L, Kinnear C, Loos B. Investigating the Role of Spermidine in a Model System of Alzheimer’s Disease Using Correlative Microscopy and Super-resolution Techniques. Front Cell Dev Biol 2022; 10:819571. [PMID: 35656544 PMCID: PMC9152225 DOI: 10.3389/fcell.2022.819571] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Spermidine has recently received major attention for its potential therapeutic benefits in the context of neurodegeneration, cancer, and aging. However, it is unclear whether concentration dependencies of spermidine exist, to differentially enhance autophagic flux. Moreover, the relationship between low or high autophagy activity relative to basal neuronal autophagy flux and subsequent protein clearance as well as cellular toxicity has remained largely unclear. Methods: Here, we used high-resolution imaging and biochemical techniques to investigate the effects of a low and of a high concentration of spermidine on autophagic flux, neuronal toxicity, and protein clearance in in vitro models of paraquat (PQ) induced neuronal toxicity and amyloid precursor protein (APP) overexpression, as well as in an in vivo model of PQ-induced rodent brain injury. Results: Our results reveal that spermidine induces autophagic flux in a concentration-dependent manner, however the detectable change in the autophagy response critically depends on the specificity and sensitivity of the method employed. By using correlative imaging techniques through Super-Resolution Structured Illumination Microscopy (SR-SIM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), we demonstrate that spermidine at a low concentration induces autophagosome formation capable of large volume clearance. In addition, we provide evidence of distinct, context-dependent protective roles of spermidine in models of Alzheimer’s disease. In an in vitro environment, a low concentration of spermidine protected against PQ-induced toxicity, while both low and high concentrations provided protection against cytotoxicity induced by APP overexpression. In the in vivo scenario, we demonstrate brain region-specific susceptibility to PQ-induced neuronal toxicity, with the hippocampus being highly susceptible compared to the cortex. Regardless of this, spermidine administered at both low and high dosages protected against paraquat-induced toxicity. Conclusions: Taken together, our results demonstrate that firstly, administration of spermidine may present a favourable therapeutic strategy for the treatment of Alzheimer’s disease and secondly, that concentration and dosage-dependent precision autophagy flux screening may be more critical for optimal autophagy and cell death control than previously thought.
Collapse
Affiliation(s)
- D. Lumkwana
- Microscopy and Imaging Translational Technology Platform, Cancer Research UK, University College London, London, United Kingdom
- *Correspondence: D. Lumkwana,
| | - C. Peddie
- Science Technology Platform, Electron Microscopy, Francis Crick Institute, London, United Kingdom
| | - J. Kriel
- Central Analytical Facilities, Electron Microscopy Unit, Stellenbosch University, Stellenbosch, South Africa
| | - L. L. Michie
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - N. Heathcote
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - L. Collinson
- Science Technology Platform, Electron Microscopy, Francis Crick Institute, London, United Kingdom
| | - C. Kinnear
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - B. Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
152
|
Infection Dynamics of ATG8 in Leishmania: Balancing Autophagy for Therapeutics. Molecules 2022; 27:molecules27103142. [PMID: 35630618 PMCID: PMC9147918 DOI: 10.3390/molecules27103142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
In many regions of the world, Leishmaniasis is a cause of substantial mortality and ailment. Due to impediment in available treatment, development of novel and effective treatments is indispensable. Significance of autophagy has been accentuated in infectious disease as well as in Leishmaniasis, and it is having capability to be manifested as a therapeutic target. By evincing autophagy as a novel therapeutic regime, this study emphasized on the critical role of ATG4.1-ATG8 and ATG5-ATG12 complexes in Leishmania species. The objective here was to identify ATG8 as a potential therapeutic target in Leishmania. R71T, P56E, R18P are the significant mutations which shows detrimental effect on ATG8 while Arg276, Arg73, Cys75 of ATG4.1 and Val88, Pro89, Glu116, Asn117, and Gly120 are interacting residues of ATG8. Along with this, we also bring into spotlight an enticing role of Thiabendazole derivatives that interferes with the survival mechanisms by targeting ATG8. Further, the study claims that thiabendazole can be a potential drug candidate to target autophagy process in the infectious disease Leishmaniasis.
Collapse
|
153
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
154
|
Rahman MA, Rahman MDH, Mamun-Or-Rashid ANM, Hwang H, Chung S, Kim B, Rhim H. Autophagy Modulation in Aggresome Formation: Emerging Implications and Treatments of Alzheimer's Disease. Biomedicines 2022; 10:1027. [PMID: 35625764 PMCID: PMC9138936 DOI: 10.3390/biomedicines10051027] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases in the world, which is characterized by memory dysfunction and the formation of tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The formation of senile plaques involving tau hyperphosphorylation, fibrillar Aβ, and neurofibrillary tangles (NFTs) is used as a pathological marker of AD and eventually produces aggregation or misfolded protein. Importantly, it has been found that the failure to degrade these aggregate-prone proteins leads to pathological consequences, such as synaptic impairment, cytotoxicity, neuronal atrophy, and memory deficits associated with AD. Recently, increasing evidence has suggested that the autophagy pathway plays a role as a central cellular protection system to prevent the toxicity induced by aggregation or misfolded proteins. Moreover, it has also been revealed that AD-related protein aggresomes could be selectively degraded by autophagosome and lysosomal fusion through the autophagy pathway, which is known as aggrephagy. Therefore, the regulation of autophagy serve as a useful approach to modulate the formation of aggresomes associated with AD. This review focuses on the recent improvements in the application of natural compounds and small molecules as a potential therapeutic approach for AD prevention and treatment via aggrephagy.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - M D Hasanur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - A N M Mamun-Or-Rashid
- Anti-Aging Medical Research Center and Glycation Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University, Kyoto 602-8566, Japan
| | - Hongik Hwang
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Sooyoung Chung
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 1-5, Hoegidong, Dongdaemungu, Seoul 02447, Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Korea
| |
Collapse
|
155
|
Wang X, Wang X, Cong P, Wu L, Ma Y, Wang Z, Jiang T, Xu J. Sea cucumber ether-phospholipids improve hepatic steatosis and enhance hypothalamic autophagy in high-fat diet-fed mice. J Nutr Biochem 2022; 106:109032. [DOI: 10.1016/j.jnutbio.2022.109032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
156
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
157
|
Zhang Q, Cao S, Qiu F, Kang N. Incomplete autophagy: Trouble is a friend. Med Res Rev 2022; 42:1545-1587. [PMID: 35275411 DOI: 10.1002/med.21884] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Incomplete autophagy is an impaired self-eating process of intracellular macromolecules and organelles in which accumulated autophagosomes do not fuse with lysosomes for degradation, resulting in the blockage of autophagic flux. In this review, we summarized the literature over the past decade describing incomplete autophagy, and found that different from the double-edged sword effect of general autophagy on promoting cell survival or death, incomplete autophagy plays a crucial role in disrupting cellular homeostasis, and promotes only cell death. What matters is that incomplete autophagy is closely relevant to the pathogenesis and progression of various human diseases, which, meanwhile, intimately linking to the pharmacologic and toxicologic effects of several compounds. Here, we comprehensively reviewed the latest progress of incomplete autophagy on molecular mechanisms and signaling pathways. Moreover, implications of incomplete autophagy for pharmacotherapy are also discussed, which has great relevance for our understanding of the distinctive role of incomplete autophagy in cellular physiology and disease. Consequently, targeting incomplete autophagy may contribute to the development of novel generation therapeutic agents for diverse human diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shijie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Department of Medicinal Chemistry, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Ning Kang
- Department of Biochemistry, School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
158
|
Yang L, Liu C, Zhang C, Shang R, Zhang Y, Wu S, Long Y. LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine. Bioengineered 2022; 13:7221-7237. [PMID: 35259061 PMCID: PMC8973888 DOI: 10.1080/21655979.2022.2040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy-related complication. Dysregulation of long non-coding RNAs (lncRNAs) contributes to the pathogenesis of PE. The current study sought to investigate the effect of lncRNA small nucleolar RNA host gene 5 (SNHG5) on trophoblast autophagy in PE. A PE mouse model was established, followed by detection of parameters such as blood pressure, proteinuria, triglycerides, total cholesterol, low-density lipoprotein, and high-density lipoprotein, observation of alterations of mouse placenta and kidney, and detection of B-cell chronic lymphocytic leukemia/lymphoma-2, Bcl-2-associated X protein, and SNHG5 expression patterns. The expressions of LC3, Beclin-1, and p62 in the placenta of PE mice were detected. Moreover, the SNHG5 expression was downregulated in the established HTR-8/SVneo trophoblast model, followed by evaluation of cell proliferation, apoptosis, and autophagy. After combination treatment with 3-MA (an autophagy inhibitor) and si-SNHG5, the behaviors of HTR-8/SVneo cells were observed. The binding relations between SNHG5 and miR-31-5p, and miR-31-5p and SPARC were verified. The expressions of miR-31-5p and SPARC in the placenta of mice and trophoblasts were determined. Our results demonstrated a poor expression of lncRNA SNHG5 in PE mice. SNHG5 overexpression reduced the PE phenotype and tissue damage in mice. SNHG5 silencing reduced the proliferation, migration, and invasion of trophoblasts, but elevated apoptosis and autophagy. SNHG5 sponged miR-31-5p to promote SPARC transcription. Additionally, miR-31-5p knockdown or 3-MA treatment reverted the stimulative effect of SNHG5 silencing on trophoblast autophagy. Collectively, our study demonstrated that lncRNA SNHG5 alleviated the PE phenotype and inhibited trophoblast autophagy by sponging miR-31-5p and promoting SPARC transcription.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Chao Liu
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Chao Zhang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Ruotian Shang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Yichen Zhang
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Shiyuan Wu
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| | - Yan Long
- Department of Gynecology & Obstetrics, Beijing Friendship Hospital, Capital Medical University, Beijing, Xicheng, China
| |
Collapse
|
159
|
Mohsen S, Sobash PT, Algwaiz GF, Nasef N, Al-Zeidaneen SA, Karim NA. Autophagy Agents in Clinical Trials for Cancer Therapy: A Brief Review. Curr Oncol 2022; 29:1695-1708. [PMID: 35323341 PMCID: PMC8946974 DOI: 10.3390/curroncol29030141] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Autophagy has been of novel interest since it was first demonstrated to have effect in Burkitt's lymphoma. Since that time, the autophagy agents chloroquine and hydroxychloroquine have become the only FDA (Food and Drug Administration)-approved autophagy inhibitors. While not approved for cancer therapy, there are ongoing clinical trials to evaluate their safety and efficacy. Pevonedistat has emerged as a novel inhibitor through the neddylation pathway and is an autophagy activator. This paper summarizes and presents current clinical trials for hydroxychloroquine (HCQ), chloroquine (CQ), and Pevonedistat for the clinician.
Collapse
Affiliation(s)
- Samiha Mohsen
- Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Philip T. Sobash
- Department of Internal Medicine, White River Health System, Batesville, AR 72501, USA;
| | - Ghada Fahad Algwaiz
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Al Mathar Ash Shamali, Riyadh 11564, Saudi Arabia;
| | - Noor Nasef
- College of Arts and Sciences, The Ohio State University, Columbus, OH 72501, USA;
| | - Safaa Abed Al-Zeidaneen
- Department of Allied Medical Science, Al-Balqa’ Applied University, As-Salt 2PF8+XM, Jordan;
| | - Nagla Abdel Karim
- Department of Hematology and Oncology, Medical College of Georgia, Augusta, GA 30912, USA
| |
Collapse
|
160
|
Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer 2022; 22:157-173. [PMID: 35013601 PMCID: PMC10399972 DOI: 10.1038/s41568-021-00427-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Resistance to therapeutic treatment and metastatic progression jointly determine a fatal outcome of cancer. Cancer metastasis and therapeutic resistance are traditionally studied as separate fields using non-overlapping strategies. However, emerging evidence, including from in vivo imaging and in vitro organotypic culture, now suggests that both programmes cooperate and reinforce each other in the invasion niche and persist upon metastatic evasion. As a consequence, cancer cell subpopulations exhibiting metastatic invasion undergo multistep reprogramming that - beyond migration signalling - supports repair programmes, anti-apoptosis processes, metabolic adaptation, stemness and survival. Shared metastasis and therapy resistance signalling are mediated by multiple mechanisms, such as engagement of integrins and other context receptors, cell-cell communication, stress responses and metabolic reprogramming, which cooperate with effects elicited by autocrine and paracrine chemokine and growth factor cues present in the activated tumour microenvironment. These signals empower metastatic cells to cope with therapeutic assault and survive. Identifying nodes shared in metastasis and therapy resistance signalling networks should offer new opportunities to improve anticancer therapy beyond current strategies, to eliminate both nodular lesions and cells in metastatic transit.
Collapse
Affiliation(s)
- Felix Weiss
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands
| | - Douglas Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands.
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Center, Utrecht, Netherlands.
| |
Collapse
|
161
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C, Vera M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem 2022; 298:101796. [PMID: 35248532 PMCID: PMC9065632 DOI: 10.1016/j.jbc.2022.101796] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
All cells possess an internal stress response to cope with environmental and pathophysiological challenges. Upon stress, cells reprogram their molecular functions to activate a survival mechanism known as the heat shock response, which mediates the rapid induction of molecular chaperones such as the heat shock proteins (HSPs). This potent production overcomes the general suppression of gene expression and results in high levels of HSPs to subsequently refold or degrade misfolded proteins. Once the damage or stress is repaired or removed, cells terminate the production of HSPs and resume regular functions. Thus, fulfillment of the stress response requires swift and robust coordination between stress response activation and completion that is determined by the status of the cell. In recent years, single-cell fluorescence microscopy techniques have begun to be used in unravelling HSP-gene expression pathways, from DNA transcription to mRNA degradation. In this review, we will address the molecular mechanisms in different organisms and cell types that coordinate the expression of HSPs with signaling networks that act to reprogram gene transcription, mRNA translation, and decay and ensure protein quality control.
Collapse
|
162
|
Chawla K, Subramanian G, Rahman T, Fan S, Chakravarty S, Gujja S, Demchak H, Chakravarti R, Chattopadhyay S. Autophagy in Virus Infection: A Race between Host Immune Response and Viral Antagonism. IMMUNO 2022; 2:153-169. [PMID: 35252965 PMCID: PMC8893043 DOI: 10.3390/immuno2010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Virus-infected cells trigger a robust innate immune response and facilitate virus replication. Here, we review the role of autophagy in virus infection, focusing on both pro-viral and anti-viral host responses using a select group of viruses. Autophagy is a cellular degradation pathway operated at the basal level to maintain homeostasis and is induced by external stimuli for specific functions. The degradative function of autophagy is considered a cellular anti-viral immune response. However, autophagy is a double-edged sword in viral infection; viruses often benefit from it, and the infected cells can also use it to inhibit viral replication. In addition to viral regulation, autophagy pathway proteins also function in autophagy-independent manners to regulate immune responses. Since viruses have co-evolved with hosts, they have developed ways to evade the anti-viral autophagic responses of the cells. Some of these mechanisms are also covered in our review. Lastly, we conclude with the thought that autophagy can be targeted for therapeutic interventions against viral diseases.
Collapse
Affiliation(s)
- Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Tia Rahman
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shreyas Gujja
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Hayley Demchak
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
163
|
Sirasanagandla SR, Sofin RS, Al-Huseini I, Das S. Role of Bisphenol A in Autophagy Modulation: Understanding the Molecular Concepts and Therapeutic Options. Mini Rev Med Chem 2022; 22:2213-2223. [DOI: 10.2174/1389557522666220214094055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Bisphenol A (4,4′-isopropylidenediphenol) is an organic compound, commonly used in the plastic bottles, packaging containers, beverages and resin industry. The adverse effects of bisphenol A were studied in various systems of the body. Autophagy is a lysosomal degradation process meant for the regeneration of new cells. The role of bisphenol A on autophagy modulation in the pathogenesis of diseases is still debatable. Few research studies showed that bisphenol A-induced adverse effects were associated with autophagy dysregulation, while few showed the activation of autophagy by bisphenol A. Such contrasting views make the subject more interesting and debatable. In the present review, we discuss the different steps of autophagy, genes involved, and the effect of bisphenol A in autophagy modulation on different systems of the body. We also discuss the methods for monitoring autophagy and the roles of drugs such as chloroquine, verteporfin, and rapamycin in autophagy. Proper understanding of the role of bisphenol A in the modulation of autophagy may be important for future treatment and drug discovery.
Collapse
Affiliation(s)
- Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - R.G. Sumesh Sofin
- Department of Physics, College of Science, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
164
|
Park K, Lee MS. Current Status of Autophagy Enhancers in Metabolic Disorders and Other Diseases. Front Cell Dev Biol 2022; 10:811701. [PMID: 35237600 PMCID: PMC8882819 DOI: 10.3389/fcell.2022.811701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy is pivotal in the maintenance of organelle function and intracellular nutrient balance. Besides the role of autophagy in the homeostasis and physiology of the individual tissues and whole organism in vivo, dysregulated autophagy has been incriminated in the pathogenesis of a variety of diseases including metabolic diseases, neurodegenerative diseases, cardiovascular diseases, inflammatory or immunological disorders, cancer and aging. Search for autophagy modulators has been widely conducted to amend dysregulation of autophagy or pharmacologically modulate autophagy in those diseases. Current data support the view that autophagy modulation could be a new modality for treatment of metabolic syndrome associated with lipid overload, human-type diabetes characterized by deposition of islet amyloid or other diseases including neurodegenerative diseases, infection and cardiovascular diseases. While clinically available bona fide autophagy modulators have not been developed yet, it is expected that on-going investigation will lead to the development of authentic autophagy modulators that can be safely administered to patients in the near future and will open a new horizon for treatment of incurable or difficult diseases.
Collapse
|
165
|
Neill T, Iozzo RV. The Role of Decorin Proteoglycan in Mitophagy. Cancers (Basel) 2022; 14:804. [PMID: 35159071 PMCID: PMC8834502 DOI: 10.3390/cancers14030804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycans are emerging as critical regulators of intracellular catabolism. This rise in prominence has transformed our basic understanding and alerted us to the existence of non-canonical pathways, independent of nutrient deprivation, that potently control the autophagy downstream of a cell surface receptor. As a member of the small leucine-rich proteoglycan gene family, decorin has single-handedly pioneered the connection between extracellular matrix signaling and autophagy regulation. Soluble decorin evokes protracted endothelial cell autophagy via Peg3 and breast carcinoma cell mitophagy via mitostatin by interacting with VEGFR2 or the MET receptor tyrosine kinase, respectively. In this paper, we give a mechanistic perspective of the vital factors underlying the nutrient-independent, SLRP-dependent programs utilized for autophagic and/or mitophagic progression in breast cancer. Future protein therapies based on decorin (or fellow proteoglycan members) will represent a quantum leap forward in transforming autophagic progression into a powerful tool to control intracellular cell catabolism from the outside.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
166
|
Lu X, Zhang J, Li YQ, Liu QX, Zhou D, Deng XF, Qiu Y, Chen Q, Li MY, Liu XQ, Dai JG, Zheng H. Plasmodium Circumsporozoite Protein Enhances the Efficacy of Gefitinib in Lung Adenocarcinoma Cells by Inhibiting Autophagy via Proteasomal Degradation of LC3B. Front Cell Dev Biol 2022; 10:830046. [PMID: 35186935 PMCID: PMC8851824 DOI: 10.3389/fcell.2022.830046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Almost all lung adenocarcinoma (LUAD) patients with EGFR mutant will develop resistance to EGFR-TKIs, which limit the long-term clinical application of these agents. Accumulating evidence shows one of the main reasons for resistance to EGFR-TKIs is induction of autophagy in tumor cells. Our previous study found that circumsporozoite protein (CSP) in Plasmodium can suppress autophagy in host hepatocytes. However, it is unknown whether CSP-mediated inhibition of autophagy could improve the anti-tumor effect of EGFR-TKIs. Methods: We constructed A549 and H1975 cell lines with stable overexpression of CSP (OE-CSP cells). CCK-8, Lactate Dehydrogenase (LDH), flow cytometry, and colony analysis were performed to observe the effect of CSP overexpression on cell viability, apoptosis rate, and colony formation ratio. The sensitizing effect of CSP on gefitinib was evaluated in vivo using a subcutaneous tumor model in nude mice and immunohistochemical assay. The role of CSP in regulation of autophagy was investigated by laser confocal microscopy assay and western blotting. A transcriptome sequencing assay and real-time polymerase chain reaction were used to determine the levels of mRNA for autophagy-related proteins. Cycloheximide (CHX), MG132, TAK-243, and immunoprecipitation assays were used to detect and confirm proteasomal degradation of LC3B. Results: OE-CSP A549 and H1975 cells were more sensitive to gefitinib, demonstrating significant amounts of apoptosis and decreased viability. In the OE-CSP group, autophagy was significantly inhibited, and there was a decrease in LC3B protein after exposure to gefitinib. Cell viability and colony formed ability were recovered when OE-CSP cells were exposed to rapamycin. In nude mice with xenografts of LUAD cells, inhibition of autophagy by CSP resulted in suppression of cell growth, and more marked apoptosis during exposure to gefitinib. CSP promoted ubiquitin-proteasome degradation of LC3B, leading to inhibition of autophagy in LUAD cells after treatment with gefitinib. When LUAD cells were treated with ubiquitin activating enzyme inhibitor TAK-243, cell viability, apoptosis, and growth were comparable between the OE-CSP group and a control group both in vivo and in vitro. Conclusion: CSP can inhibit gefitinib-induced autophagy via proteasomal degradation of LC3B, which suggests that CSP could be used as an autophagy inhibitor to sensitize EGFR-TKIs.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xu-Feng Deng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, China
| | - Man-Yuan Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao-Qing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
167
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
168
|
Pak M, Bozkurt S, Pınarbaşı A, Öz Arslan D, Aksungar FB. Effects of Prolonged Intermittent Fasting Model on Energy Metabolism and Mitochondrial Functions in Neurons. Ann Neurosci 2022; 29:21-31. [PMID: 35875426 PMCID: PMC9305913 DOI: 10.1177/09727531211072303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Calorie restriction (CR) during daily nutrition has been shown to affect the prognosis of many chronic diseases such as metabolic syndrome, diabetes, and aging. As an alternative nutrition model, prolonged intermittent fasting (PF) in humans is defined by the absence of food for more than 12 h. In our previous human studies, CR and PF models were compared and it was concluded that the two models might have differences in signal transduction mechanisms. We have investigated the effects of these models on neurons at the molecular level in this study. Methods: Neurons (SH-SY5Y) were incubated with normal medium (N), calorie-restricted medium (CR), fasting medium (PF), and glucose-free medium (G0) for 16 h. Simultaneously, ketone (beta-hydroxybutyrate; bOHB) was added to other experiment flasks containing the same media. Concentrations of lactate, lactate dehydrogenase (LDH), bOHB, and glucose were measured to demonstrate the changes in the energy metabolism together with the mitochondrial functions of cells. Citrate synthase activity and flow cytometric mitochondrial functions were investigated. Results: At the end of incubations, lactate and LDH levels were decreased and mitochondrial activity was increased in all ketone-added groups (P < .01) regardless of the glucose concentration in the environment. In the fasting model, these differences were more prominent. Conclusion: Our results demonstrated that neurons use ketones regardless of the amount of glucose, and bOHB-treated cells had positive changes in mitochondrial function. We conclude that the presence of bOHB might reverse neuron damage and that exogenous ketone treatment may be beneficial in the treatment of neurological diseases in the future.
Collapse
Affiliation(s)
- Meltem Pak
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Süleyman Bozkurt
- Department of Biophysics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Arzu Pınarbaşı
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Devrim Öz Arslan
- Department of Biophysics, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Fehime Benli Aksungar
- Department of Medical Biochemistry, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| |
Collapse
|
169
|
Ma X, Ji C. Remote Ischemic Conditioning: A Potential Treatment for Chronic Cerebral Hypoperfusion. Eur Neurol 2022; 85:253-259. [PMID: 35104816 DOI: 10.1159/000521803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is a clinical syndrome, which is characterized by significantly decreased cerebral blood flow (CBF). CCH is a common consequence of cerebrovascular and cardiovascular diseases and the elderly. CCH results in a series of pathological damages, increasing cell death, autophagy dysfunction, amyloid β (Aβ) peptide accumulation, blood-brain barrier (BBB) disruption, and endothelial damage, which are found in CCH models. In addition, CCH is a prominent risk factor of cognitive impairment, such as vascular dementia, and CCH contributes to the occurrence and development of Alzheimer's disease. Therefore, the treatment of patients with CCH is of great value. It has been confirmed that remote ischemic conditioning (RIC) is a safe, promising treatment for acute and chronic cerebrovascular diseases. RIC significantly increases CBF in both CCH models and patients, inhibits neuronal apoptosis, reduces Aβ deposition, protects BBB integrity and endothelial function, alleviates neuroinflammation, improves cognitive impairment, and exerts neuroprotection. SUMMARY With the development of animal models, the pathophysiological mechanisms of CCH and RIC are increasingly revealed. Key Messages: We discuss the mechanisms related to hypoperfusion in the brain and explore the potential treatment of RIC for CCH to promote its transformation and application in humans.
Collapse
Affiliation(s)
- Xiao Ma
- Department of General Practice Medicine, Dalian Municipal Central Hospital, Dalian, China
| | - Chenhua Ji
- Department of General Practice Medicine, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
170
|
Wu L, Shen B, Li J, Zhang H, Zhang K, Yang Y, Zu Z, Shen D, Luo M. STAT3 exerts pro-tumor and anti-autophagy roles in cervical cancer. Diagn Pathol 2022; 17:13. [PMID: 35057825 PMCID: PMC8772194 DOI: 10.1186/s13000-021-01182-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
STAT3 plays an important role in cervical cancer. LC3B, the most potential molecular biomarker of autophagy that may promote or inhibit cancer progression, can be downregulated by STAT3. However the role of STAT3 in the autophagy of cervical cancer remains unclear.
Purpose
This study aimed to evaluate the relationship between STAT3 and LC3B in protein level, and verify whether STAT3 promotes proliferation, migration and plate colony formation by inhibiting autophagy of cervical cancer cells through bcl2-beclin1 axis.
Results
STAT3 was overexpressed in cervical cancer tissues, and negatively correlated with the expression level of LC3B. STAT3 knockout or knockdown significantly increased the autophagy level and decreased proliferation, migration, plate colony formation and subcutaneous tumorigenesis of cervical cancer cells in vitro and in vivo. STAT3 is known to mediate autophagy through Bcl2-Beclin1 complex. Bcl2 was positively whereas Beclin1 negatively correlated with STAT3 expression, indicating that Bcl2-Beclin1 complex involved in this transition.
Conclusion
STAT3 may upregulate the autophagy level of cervical cancer cells through the Bcl2-Beclin1 axis. This indicates that STAT3 may be an important prognostic and therapeutic target for cervical cancer.
Collapse
|
171
|
Tian H, Chen X, Liao J, Yang T, Cheng S, Mei Z, Ge J. Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials. J Cell Mol Med 2022; 26:1000-1012. [PMID: 35040556 PMCID: PMC8831937 DOI: 10.1111/jcmm.17189] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial damage is a critical contributor to stroke‐induced injury, and mitochondrial quality control (MQC) is the cornerstone of restoring mitochondrial homeostasis and plays an indispensable role in alleviating pathological process of stroke. Mitochondria quality control promotes neuronal survival via various adaptive responses for preserving mitochondria structure, morphology, quantity and function. The processes of mitochondrial fission and fusion allow for damaged mitochondria to be segregated and facilitate the equilibration of mitochondrial components such as DNA, proteins and metabolites. The process of mitophagy is responsible for the degradation and recycling of damaged mitochondria. This review aims to offer a synopsis of the molecular mechanisms involved in MQC for recapitulating our current understanding of the complex role that MQC plays in the progression of stroke. Speculating on the prospect that targeted manipulation of MQC mechanisms may be exploited for the rationale design of novel therapeutic interventions in the ischaemic stroke and haemorrhagic stroke. In the review, we highlight the potential of MQC as therapeutic targets for stroke treatment and provide valuable insights for clinical strategies.
Collapse
Affiliation(s)
- Heyan Tian
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jun Liao
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-cerebral Disease, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
172
|
Neuroprotective Effects of Resveratrol in In vivo and In vitro Experimental Models of Parkinson's Disease: a Systematic Review. Neurotox Res 2022; 40:319-345. [PMID: 35013904 DOI: 10.1007/s12640-021-00450-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is currently the second most common neurodegenerative disease, being characterized by motor and non-motor symptoms. The therapeutic options available for its treatment are limited, do not slow the progression of the disease, and have serious side effects. For this reason, many studies have sought to find compounds with neuroprotective properties that bring additional benefits to current therapy. In this context, resveratrol is a phenolic compound, found in many plant species, capable of crossing the blood-brain barrier and having multiple biological properties. Experimental studies in vitro and in vivo have shown that it can prevent or slow the progression of a variety of diseases, including PD. In this systematic review, we summarize the effects of resveratrol in experimental in vivo and in vitro models of PD and discuss the molecular mechanisms involved in its action. The bibliographic search was performed in the databases of PubMed, Web of Science, SciELO, and Google Scholar, and based on the inclusion criteria, 41 articles were selected and discussed. Most of the included studies have demonstrated neuroprotective effects of resveratrol. In general, resveratrol prevented behavioral and/or neurological disorders, improved antioxidant defenses, reduced neuroinflammatory processes, and inhibited apoptosis. In summary, this systematic review offers important scientific evidence of neuroprotective effects of resveratrol in PD and also provide valuable information about its mechanism of action that can support future clinical studies.
Collapse
|
173
|
Liao HY, Wang ZQ, Ran R, Zhou KS, Ma CW, Zhang HH. Biological Functions and Therapeutic Potential of Autophagy in Spinal Cord Injury. Front Cell Dev Biol 2022; 9:761273. [PMID: 34988074 PMCID: PMC8721099 DOI: 10.3389/fcell.2021.761273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway that maintains metabolism and homeostasis by eliminating protein aggregates and damaged organelles. Many studies have reported that autophagy plays an important role in spinal cord injury (SCI). However, the spatiotemporal patterns of autophagy activation after traumatic SCI are contradictory. Most studies show that the activation of autophagy and inhibition of apoptosis have neuroprotective effects on traumatic SCI. However, reports demonstrate that autophagy is strongly associated with distal neuronal death and the impaired functional recovery following traumatic SCI. This article introduces SCI pathophysiology, the physiology and mechanism of autophagy, and our current review on its role in traumatic SCI. We also discuss the interaction between autophagy and apoptosis and the therapeutic effect of activating or inhibiting autophagy in promoting functional recovery. Thus, we aim to provide a theoretical basis for the biological therapy of SCI.
Collapse
Affiliation(s)
- Hai-Yang Liao
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhi-Qiang Wang
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Ran
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Chun-Wei Ma
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, Lanzhou, China.,Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
174
|
Kalra P, Khan H, Kaur A, Singh TG. Mechanistic Insight on Autophagy Modulated Molecular Pathways in Cerebral Ischemic Injury: From Preclinical to Clinical Perspective. Neurochem Res 2022; 47:825-843. [PMID: 34993703 DOI: 10.1007/s11064-021-03500-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022]
Abstract
Cerebral ischemia is one of the most devastating brain injuries and a primary cause of acquired and persistent disability worldwide. Despite ongoing therapeutic interventions at both the experimental and clinical levels, options for stroke-related brain injury are still limited. Several evidence suggests that autophagy is triggered in response to cerebral ischemia, therefore targeting autophagy-related signaling pathways can provide a new direction for the therapeutic implications in the ischemic injury. Autophagy is a highly conserved lysosomal-dependent pathway that degrades and recycles damaged or non-essential cellular components to maintain neuronal homeostasis. But, whether autophagy activation promotes cell survival against ischemic injury or, on the contrary, causes neuronal death is still under debate. We performed an extensive literature search from PubMed, Bentham and Elsevier for various aspects related to molecular mechanisms and pathobiology involved in autophagy and several pre-clinical studies justifiable further in the clinical trials. Autophagy modulates various downstream molecular cascades, i.e., mTOR, NF-κB, HIF-1, PPAR-γ, MAPK, UPR, and ROS pathways in cerebral ischemic injury. In this review, the various approaches and their implementation in the translational research in ischemic injury into practices has been covered. It will assist researchers in finding a way to cross the unbridgeable chasm between the pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
175
|
Zeng Q, Ma X, Song Y, Chen Q, Jiao Q, Zhou L. Targeting regulated cell death in tumor nanomedicines. Am J Cancer Res 2022; 12:817-841. [PMID: 34976215 PMCID: PMC8692918 DOI: 10.7150/thno.67932] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/21/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicines hold great potential in anticancer therapy by modulating the biodistribution of nanomaterials and initiating targeted oxidative stress damage, but they are also limited by the inherent self-protection mechanism and the evolutionary treatment resistance of cancer cells. New emerging explorations of regulated cell death (RCD), including processes related to autophagy, ferroptosis, pyroptosis, and necroptosis, substantially contribute to the augmented therapeutic efficiency of tumors by increasing the sensitivity of cancer cells to apoptosis. Herein, paradigmatic studies of RCD-mediated synergistic tumor nanotherapeutics are introduced, such as regulating autophagy-enhanced photodynamic therapy (PDT), targeting ferroptosis-sensitized sonodynamic therapy (SDT), inducing necroptosis-augmented photothermal therapy (PTT), and initiating pyroptosis-collaborative chemodynamic therapy (CDT), and the coordination mechanisms are discussed in detail. Multiangle analyses addressing the present challenges and upcoming prospects of RCD-based nanomedicines have also been highlighted and prospected for their further strengthening and the broadening of their application scope. It is believed that up-and-coming coadjutant therapeutic methodologies based on RCDs will considerably impact precision nanomedicine for cancer.
Collapse
|
176
|
Sun C, Rosenstock TR, Cohen MA, Sarkar S. Autophagy Dysfunction as a Phenotypic Readout in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Diseases. Methods Mol Biol 2022; 2549:103-136. [PMID: 34490597 DOI: 10.1007/7651_2021_420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Autophagy is an evolutionarily conserved catabolic pathway for the degradation of cytoplasmic constituents in eukaryotic cells. It is the primary disposal route for selective removal of undesirable cellular materials like aggregation-prone proteins and damaged organelles for maintaining cellular homeostasis, and for bulk degradation of intracellular macromolecules and recycling the breakdown products for providing energy homeostasis during starvation. These functions of autophagy are attributed to cellular survival and thus pertinent for human health; however, malfunction of this process is detrimental to the cells, particularly for post-mitotic neurons. Thus, basal autophagy is vital for maintaining neuronal homeostasis, whereas autophagy dysfunction contributes to neurodegeneration. Defective autophagy has been demonstrated in several neurodegenerative diseases wherein pharmacological induction of autophagy is beneficial in many of these disease models. Elucidating the mechanisms underlying defective autophagy is imperative for the development of therapies targeting this process. Disease-affected human neuronal cells can be established from patient-derived human induced pluripotent stem cells (hiPSCs) that provide a clinically relevant platform for studying disease mechanisms and drug discovery. Thus, modeling autophagy dysfunction as a phenotypic readout in patient-derived neurons provides a more direct platform for investigating the mechanisms underlying defective autophagy and evaluating the therapeutic efficacy of autophagy inducers. Toward this, several hiPSC-derived neuronal cell models of neurodegenerative diseases have been employed. In this review, we highlight the key methodologies pertaining to hiPSC maintenance and neuronal differentiation, and studying autophagy at an endogenous level in hiPSC-derived neuronal cells.
Collapse
Affiliation(s)
- Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tatiana R Rosenstock
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
177
|
Gong RH, Yang DJ, Kwan HY, Lyu AP, Chen GQ, Bian ZX. Cell death mechanisms induced by synergistic effects of halofuginone and artemisinin in colorectal cancer cells. Int J Med Sci 2022; 19:175-185. [PMID: 34975311 PMCID: PMC8692125 DOI: 10.7150/ijms.66737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Our previous study found that the combination of halofuginone (HF) and artemisinin (ATS) synergistically arrest colorectal cancer (CRC) cells at the G1/G0 phase of the cell cycle; however, it remains unclear whether HF-ATS induces cell death. Here we report that HF-ATS synergistically induced caspase-dependent apoptosis in CRC cells. Specifically, both in vitro and in vivo experiments showed that HF or HF-ATS induces apoptosis via activation of caspase-9 and caspase-8 while only caspase-9 is involved in ATS-induced apoptosis. Furthermore, we found HF or HF-ATS induces autophagy; ATS can't induce autophagy until caspase-9 is blocked. Further analyzing the crosstalk between autophagic and caspase activation in CRC cells, we found autophagy is essential for activation of caspase-8, and ATS switches to activate capase-8 via induction of autophagy when caspase-9 is inhibited. When apoptosis is totally blocked, HF-ATS switches to induce autophagic cell death. This scenario was then confirmed in studies of chemoresistance CRC cells with defective apoptosis. Our results indicate that HF-ATS induces cell death via interaction between apoptosis and autophagy in CRC cells. These results highlight the value of continued investigation into the potential use of this combination in cancer therapy.
Collapse
Affiliation(s)
- Rui-Hong Gong
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Da-Jian Yang
- Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China
| | - Hiu-Yee Kwan
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Ai-Ping Lyu
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| | - Guo-Qing Chen
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen 518057, China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
- Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong S.A.R., China
| | - Zhao-Xiang Bian
- Centre for Cancer and Inflammation Research (CCIR), School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R., China
| |
Collapse
|
178
|
Periasamy VS, Athinarayanan J, Ramankutty G, Akbarsha MA, Alshatwi AA. Plumbagin triggers redox-mediated autophagy through the LC3B protein in human papillomavirus-positive cervical cancer cells. Arch Med Sci 2022; 18:171-182. [PMID: 35154538 PMCID: PMC8826961 DOI: 10.5114/aoms.2020.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/20/2019] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION In this study, we analyzed the effect of plumbagin (PL) on cultured SiHa cervical cancer cells using fluorescence microscopy and flow cytometry techniques to identify the mode of cell death and to elucidate whether cells die through apoptosis or non-apoptosis. MATERIAL AND METHODS The cell death was analyzed using MTT assay. The cellular morphological changes were assessed using acridine orange/ethidium bromide dual staining. DNA damage and cell cycle progression were analyzed using a comet assay and flow cytometry respectively. RESULTS Morphological and cytological features revealed that PL induced autophagic cell death in cancer cells. The results of a cell cycle analysis indicated that the proportion of cells in sub-G0 phase increased. Translocation of LC-3B protein from the cytoplasm to the autophagosome was found in 31% of PL-treated cells, suggesting that PL provoked autophagic cell death. In this study, it was observed that plumbagin treatment caused cleavage of DNA in SiHa cancer cells, and morphological analysis provided very strong evidence supporting the occurrence of autophagic cell death as a result of plumbagin treatment. CONCLUSIONS In addition, a Cytoscape-based protein-PL interaction network analysis provided very strong evidence in support of the specific mode of cell death in the context of autophagy, which has also been one of the desired endpoints in human papillomavirus-positive cervical cancer therapy and apoptotic cell death-resistant cancer treatment. Thus, this study is the first to test PL against the SiHa cervical cancer cell line, providing leads for further testing on non-apoptotic cell death for application in cervical cancer management.
Collapse
Affiliation(s)
- Vaiyapuri Subbarayan Periasamy
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Jegan Athinarayanan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | | - Mohammad A. Akbarsha
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Mahatma Gandhi-Doerenkamp Center (MGDC) for Alternatives to Use of Animals in Life Science Education, Bharathidasan University, Tiruchirappalli, India
| | - Ali A. Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
179
|
Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JD, Girardin SE, Philpott DJ. How autophagy controls the intestinal epithelial barrier. Autophagy 2022; 18:86-103. [PMID: 33906557 PMCID: PMC8865220 DOI: 10.1080/15548627.2021.1909406] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease.Abbreviations: AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; atg16l1[ΔIEC] mice: mice with a specific deletion of Atg16l1 in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing E. coli; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.
Collapse
Affiliation(s)
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Stephen E. Girardin
- Department of Immunology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| |
Collapse
|
180
|
Xing J, Liao Y, Zhang H, Zhang W, Zhang Z, Zhang J, Wang D, Tang D. Impacts of MicroRNAs Induced by the Gut Microbiome on Regulating the Development of Colorectal Cancer. Front Cell Infect Microbiol 2022; 12:804689. [PMID: 35493741 PMCID: PMC9047021 DOI: 10.3389/fcimb.2022.804689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Although a dysfunctional gut microbiome is strongly linked to colorectal cancer (CRC), our knowledge of the mediators between CRC and the microbiome is limited. MicroRNAs (miRNAs) affect critical cellular processes, such as apoptosis, proliferation, and differentiation, and contribute to the regulation of CRC progression. Increasingly, studies found that miRNAs can significantly mediate bidirectional interactions between the host and the microbiome. Notably, miRNA expression is regulated by the gut microbiome, which subsequently affects the host transcriptome, thereby influencing the development of CRC. This study typically focuses on the specific functions of the microbiome in CRC and their effect on CRC-related miRNA production and reviews the role of several bacteria on miRNA, including Fusobacterium nucleatum, Escherichia coli, enterotoxigenic Bacteroides fragilis, and Faecalibacterium prausnitzii. Based on the important roles of miRNAs and the gut microbiome in CRC, strategies for modulating miRNA expression and regulating the gut microbiome composition need to be applied, such as bioactive dietary components and fecal microorganism transplantation.
Collapse
Affiliation(s)
- Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Jie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Yangzhou, China
- *Correspondence: Dong Tang,
| |
Collapse
|
181
|
Nelfinavir Induces Cytotoxicity towards High-Grade Serous Ovarian Cancer Cells, Involving Induction of the Unfolded Protein Response, Modulation of Protein Synthesis, DNA Damage, Lysosomal Impairment, and Potentiation of Toxicity Caused by Proteasome Inhibition. Cancers (Basel) 2021; 14:cancers14010099. [PMID: 35008264 PMCID: PMC8750028 DOI: 10.3390/cancers14010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) accounts for 70% of all ovarian-cancer-related deaths. Mainstay treatment with platinum-based drugs following surgery results in favorable outcomes in the majority of patients; however, in >80% of cases, the disease relapses with eventual drug resistance. As such, urgent development of improved alternative therapies is necessary for HGSOC patients with lower life expectancy. Rapid repurposing of market available drugs for cancer therapy is a cost-effective alternative to bypass the decade-long traditional drug development pipeline. Among potential drug-repurposing candidates, nelfinavir (NFV)—an anti-infective agent to treat acquired immunodeficiency syndrome (AIDS)—has shown anti-cancer effects against diverse cancers; however, its remedial benefits against HGSOC are unknown. In this study, we explored how NFV targets HGSOC cells obtained from patients at platinum-sensitive and -resistant stages. We observed beneficial efficacy elicited by NFV against HGSOC in both disease conditions through multiple mechanistic avenues, suggesting positive drug-repurposing prospects. Abstract High-grade serous ovarian cancer (HGSOC) is a significant cause of mortality among women worldwide. Traditional treatment consists of platinum-based therapy; however, rapid development of platinum resistance contributes to lower life expectancy, warranting newer therapies to supplement the current platinum-based protocol. Repurposing market-available drugs as cancer therapeutics is a cost- and time-effective way to avail new therapies to drug-resistant patients. The anti-HIV agent nelfinavir (NFV) has shown promising toxicity against various cancers; however, its role against HGSOC is unknown. Here, we studied the effect of NFV against HGSOC cells obtained from patients along disease progression and carrying different sensitivities to platinum. NFV triggered, independently of platinum sensitivity, a dose-dependent reduction in the HGSOC cell number and viability, and a parallel increase in hypo-diploid DNA content. Moreover, a dose-dependent reduction in clonogenic survival of cells escaping the acute toxicity was indicative of long-term residual damage. In addition, dose- and time-dependent phosphorylation of H2AX indicated NFV-mediated DNA damage, which was associated with decreased survival and proliferation signals driven by the AKT and ERK pathways. NFV also mediated a dose-dependent increase in endoplasmic reticulum stress-related molecules associated with long-term inhibition of protein synthesis and concurrent cell death; such events were accompanied by a proapoptotic environment, signaled by increased phospho-eIF2α, ATF4, and CHOP, increased Bax/Bcl-2 ratio, and cleaved executer caspase-7. Finally, we show that NFV potentiates the short-term cell cycle arrest and long-term toxicity caused by the proteasome inhibitor bortezomib. Overall, our in vitro study demonstrates that NFV can therapeutically target HGSOC cells of differential platinum sensitivities via several mechanisms, suggesting its prospective repurposing benefit considering its good safety profile.
Collapse
|
182
|
Cui J, Zhao S, Li Y, Zhang D, Wang B, Xie J, Wang J. Regulated cell death: discovery, features and implications for neurodegenerative diseases. Cell Commun Signal 2021; 19:120. [PMID: 34922574 PMCID: PMC8684172 DOI: 10.1186/s12964-021-00799-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Regulated cell death (RCD) is a ubiquitous process in living organisms that is essential for tissue homeostasis or to restore biological balance under stress. Over the decades, various forms of RCD have been reported and are increasingly being found to involve in human pathologies and clinical outcomes. We focus on five high-profile forms of RCD, including apoptosis, pyroptosis, autophagy-dependent cell death, necroptosis and ferroptosis. Cumulative evidence supports that not only they have different features and various pathways, but also there are extensive cross-talks between modes of cell death. As the understanding of RCD pathway in evolution, development, physiology and disease continues to improve. Here we review an updated classification of RCD on the discovery and features of processes. The prominent focus will be placed on key mechanisms of RCD and its critical role in neurodegenerative disease. Video abstract.
Collapse
Affiliation(s)
- Juntao Cui
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Suhan Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- School of Clinical Medicine, Qingdao University, Qingdao, 266071 China
| | - Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Bingjing Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071 China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
183
|
The Autophagy Inhibitor Chloroquine, Alone or in Combination with mTOR Inhibitors, Displays Anti-Tumor Effects in In Vitro and In Vivo Lung Carcinoid Models. Cancers (Basel) 2021; 13:cancers13246327. [PMID: 34944946 PMCID: PMC8699234 DOI: 10.3390/cancers13246327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Neuroendocrine neoplasms of the lung (lung carcinoids) are often diagnosed when they are not surgically curable, and treatment options are limited. One of the approved options for treating inoperable tumors is everolimus, an mTOR inhibitor. Activation of mTOR inhibits autophagy, which is a cell survival mechanism; everolimus may paradoxically encourage cancer cell survival via stimulation of autophagy. Chloroquine, a known antimalarial compound, inhibits autophagy. Our research is focused on the hypothesis that autophagy plays a key role in the development of tumor resistance to everolimus, and that chloroquine addition to an mTOR inhibitor increases their inhibitory effect on tumor growth. In this study, we examined the effects of chloroquine alone or in combination with mTOR inhibitors on lung neuroendocrine tumor models (cell lines and mice). We have shown that chloroquine alone suppresses tumor cells’ viability and proliferation and increases their cytotoxicity and apoptosis; these effects are augmented when chloroquine is added to mTOR inhibitors. Apparently, chloroquine suppresses tumor cell growth in lung neuroendocrine neoplasms models, potentiating the effects of the mTOR inhibitors, and implying that more research is warranted to unravel its possible role in the clinical setting, in patients with advanced lung neuroendocrine neoplasms. Abstract (1) Background: Neuroendocrine neoplasms of the lung (LNENs, lung carcinoids) are often diagnosed at an advanced stage when they are not surgically curable, and treatment options are limited. One of the approved options for treating inoperable tumors is everolimus—an mTOR inhibitor (mTORi). Activation of mTOR, among many other effects, inhibits autophagy, which is a cell survival mechanism in general, and in tumor cells in particular. Everolimus may paradoxically encourage cancer cell survival. In practice, the drug inhibits tumor development. Chloroquine (CQ) is a known antimalarial compound that inhibits autophagy. Our research is focused on the hypothesis that autophagy plays a key role in the development of tumor resistance to mTORi, and that the addition of autophagy inhibitors to mTORi exerts a synergistic effect on suppressing tumor cell proliferation. We have recently demonstrated that the combination of CQ with different mTORi increases their potency compared with mTORi alone in both in vitro and in vivo models of pancreatic NENs. In this study, we examined the effects of CQ and mTORi on in vitro and in vivo LNEN models. Aims: Testing the effects of CQ together with mTORi on cell proliferation, apoptosis, and autophagy in in vitro and in vivo LNEN models. (2) Methods: The NCI-H727 LNEN cells were treated with CQ ± mTORi. Cells’ viability and proliferation were measured using XTT and Ki-67 FACS staining. The effects of the treatments on the mTOR pathway and autophagy were examined using Western blotting. Cytotoxicity was measured using a cytotoxicity kit; apoptosis was measured by PI FACS staining and Western blotting. We further established an LNEN subcutaneous murine xenograft model and evaluated the effects of the drugs on tumor growth. (3) Results: CQ alone suppressed LNEN cells’ viability and proliferation and increased their cytotoxicity and apoptosis; these effects were augmented when CQ was added to an mTORi. We also showed the possible mechanisms for these results: on the one hand we could see a decrease in P62 levels and the absence of LC3-II (both inversely related to autophagy) following treatment with the mTORi, and on the other hand we could demonstrate an increase in their levels when CQ was added. The effect was less apparent in the murine xenograft model. (4) Conclusions: By inhibiting autophagy and inducing apoptosis, CQ suppresses tumor cell growth in LNENs. CQ potentiates mTORi effects, implying that further studies are needed in order to elucidate its possible role in tumor inhibition in patients with LNENs.
Collapse
|
184
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|
185
|
Zheng D, Chen S, Cai K, Lei L, Wu C, Sun C, Deng Y, Yu C. Prodigiosin inhibits cholangiocarcinoma cell proliferation and induces apoptosis via suppressing SNAREs-dependent autophagy. Cancer Cell Int 2021; 21:658. [PMID: 34886869 PMCID: PMC8662868 DOI: 10.1186/s12935-021-02355-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Prodigiosin (PG), a natural red pigment produced by numerous bacterial species, has been a eye-catching research point in recent years for its anticancer activity. However, the role of PG in the cancer biology of cholangiocarcinoma (CCA) remains vague. Methods The proliferation of CCA cells was detected by Cell Counting Kit-8(CCK-8), Colony formation assay and 5-ethynyl-2′-deoxyuridine (EdU) assay. Cell apoptosis was evaluated by flow cytometry assay and western blot assay. The effects of PG or SNAREs on cell autophagy were measured by autophagy flux assay and western blot assay. Xenograft mouse models were used to assess the role of PG in CCA cells in vivo. Results PG could inhibit the proliferation and viability of CCA cells in a concentration- and time-dependent manner via suppressing the late stage of autophagy. Mechanistically, PG inhibits the fusion of autophagosomes and lysosomes by blocking STX17 and SNAP29, components of soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNAREs)complex. When STX17 and SNAP29 were overexpressed, the inhibitory effect of PG on CCA cells autophagy was relieved. In addition, PG showed obvious inhibitory effects on cancer cell viability but no toxic effects on organs in xenotransplantation models. Conclusion Taken together, our results demonstrated that PG inhibits CCA cell proliferation via suppressing SNAREs-dependent autophagy, implying that PG could be a potential chemotherapy drug for advanced CCA.
Collapse
Affiliation(s)
- Dijie Zheng
- Guizhou Medical University, Guiyang, 550004, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Shiyu Chen
- Guizhou Medical University, Guiyang, 550004, China.,School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Kun Cai
- Guizhou Medical University, Guiyang, 550004, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Linhan Lei
- Guizhou Medical University, Guiyang, 550004, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Chunchen Wu
- Guizhou Medical University, Guiyang, 550004, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Chengyi Sun
- Guizhou Medical University, Guiyang, 550004, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China.,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China
| | - Yazhu Deng
- Guizhou Medical University, Guiyang, 550004, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, China. .,Department of General Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Chao Yu
- Guizhou Medical University, Guiyang, 550004, China. .,School of Clinical Medicine, Guizhou Medical University, Guiyang, China. .,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China. .,Guizhou Provincial Institute of Hepatobiliary, Pancreatic and Splenic Diseases, Guiyang, China. .,Key Laboratory of Liver, Gallbladder, Pancreas and Spleen of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
186
|
Khing TM, Choi WS, Kim DM, Po WW, Thein W, Shin CY, Sohn UD. The effect of paclitaxel on apoptosis, autophagy and mitotic catastrophe in AGS cells. Sci Rep 2021; 11:23490. [PMID: 34873207 PMCID: PMC8648765 DOI: 10.1038/s41598-021-02503-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Paclitaxel is an anti-microtubule agent that has been shown to induce cell death in gastric cancer. However, the detailed mechanism of action is unclear. In this study, we reveal that the paclitaxel-induced cell death mechanism involves mitotic catastrophe, autophagy and apoptosis in AGS cells. Paclitaxel induced intrinsic apoptosis by activating caspase-3, caspase-9 and PARP. In addition, the significant increase in autophagy marker LC3B-II, together with Atg5, class III PI3K and Beclin-1, and the down-regulation of p62 following paclitaxel treatment verified that paclitaxel induced autophagy. Further experiments showed that paclitaxel caused mitotic catastrophe, cell cycle arrest of the accumulated multinucleated giant cells at the G2/M phase and induction of cell death in 24 h. Within 48 h, the arrested multinucleated cells escaped mitosis by decreasing cell division regulatory proteins and triggered cell death. Cells treated with paclitaxel for 48 h were grown in fresh medium for 24 h and checked for CDC2, CDC25C and lamin B1 protein expressions. These proteins had decreased significantly, indicating that the remaining cells became senescent. In conclusion, it is suggested that paclitaxel-induced mitotic catastrophe is an integral part of the cell death mechanism, in addition to apoptosis and autophagy, in AGS cells.
Collapse
Affiliation(s)
- Tin Myo Khing
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Won Seok Choi
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Min Kim
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wah Wah Po
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wynn Thein
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chang Yell Shin
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Uy Dong Sohn
- Laboratory of Signaling and Pharmacological Activity, Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
187
|
Li J, Sun Q, Qiu X, Zhang J, Zheng Y, Luo L, Tan X. Downregulation of AMPK dependent FOXO3 and TFEB involves in the inhibition of autophagy in diabetic cataract. Curr Eye Res 2021; 47:555-564. [PMID: 34872443 DOI: 10.1080/02713683.2021.2009516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Autophagy plays a crucial role in intracellular quality control of crystalline lens and AMPK has regulatory effect on autophagy. However, whether AMPK regulated autophagy is involved in diabetic cataract (DC) progression remains unknown. This study aims to investigate the AMPK-FOXO3 and AMPK-TFEB induced autophagy activity in DC patients. MATERIALS AND METHODS First, anterior capsule specimens from DC and age-related cataract (ARC) patients were obtained to compare the expression difference of autophagy-related genes. The phosphorylation levels of AMPK, AKT, and mTOR and the expression of FOXO3 and TFEB were measured. Then, human lens epithelial cells (LECs, SRA 01/04) were cultured with 30 mM or 5.5 mM glucose, and AMPK activator (AICAR) and inhibitor (Compound C) were applied to further investigate the regulatory role of AMPK on autophagy. RESULTS Compared with ARC patients, the expression of autophagy-related genes ATG5, FYCO1, ATG8, ATG12, Beclin1, and ULK1 in anterior capsules LECs of DC patients were significantly down-regulated. Meanwhile, AMPK and AMPK-dependent transcription factors, FOXO3 and TFEB were also inhibited. Similar results were found in high glucose (HG) treated SRA 01/04 model. Notably, this down-regulation of autophagy activity was rescued by AICAR in vitro, which was manifested by inhibition of AKT and mTOR phosphorylation and up-regulation of FOXO3, TFEB, Beclin1 and LC3B-II expression. CONCLUSIONS Down-regulation of AMPK-FOXO3 and AMPK-TFEB induced autophagy activity was found in both LECs of anterior capsule from DC patients and SRA 01/04 cells under HG condition, which may be the underlying mechanism of DC formation. Thus, targeting AMPK-induced autophagy may be a potential therapeutic approach for diabetic cataract.
Collapse
Affiliation(s)
- Jiani Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiaozhang Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiaqing Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxing Zheng
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuhua Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
188
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
189
|
Wang L, Wang Y, Zhao W, Lin K, Li W, Wang G, Zhang Q. Library Screening to Identify Highly-Effective Autophagy Inhibitors for Improving Photothermal Cancer Therapy. NANO LETTERS 2021; 21:9476-9484. [PMID: 34730354 DOI: 10.1021/acs.nanolett.1c02825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The small molecular inhibitor-associated downregulation of autophagy can remarkably enhance the efficiency of photothermal cancer therapy. To identify a more effective autophagy inhibitor, we screened a library of 20 compounds and found chloroquine, hydroxychloroquine, dauricine, and daurisoline were more efficient than the others to improve the photothermal killing of cancer cells. Interestingly, the four agents all disturb the autophagosome formation and fusion process, indicating it is a promising target to enhance cancer therapeutic efficiency. Among the four agents, daurisoline was identified to be the most efficient one. It reduced the viability of cancer cells treated by low-energy photothermal therapy from 86.27% to 32.92%. Finally, the combination treatment mediated by nanodrugs loaded with daurisoline and indocyanine green was more efficient than the individual modalities, resulting in complete inhibition of tumor growth. The study gives new inspiration to autophagy modulation-associated photothermal therapy and other therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Li Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University; School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Wei Zhao
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University; School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, P. R. China
| | - Wei Li
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
190
|
Huang H, Ouyang Q, Zhu M, Yu H, Mei K, Liu R. mTOR-mediated phosphorylation of VAMP8 and SCFD1 regulates autophagosome maturation. Nat Commun 2021; 12:6622. [PMID: 34785650 PMCID: PMC8595342 DOI: 10.1038/s41467-021-26824-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin (mTORC1) has been shown to regulate autophagy at different steps. However, how mTORC1 regulates the N-ethylmaleimide-sensitive protein receptor (SNARE) complex remains elusive. Here we show that mTORC1 inhibits formation of the SNARE complex (STX17-SNAP29-VAMP8) by phosphorylating VAMP8, thereby blocking autophagosome-lysosome fusion. A VAMP8 phosphorylation mimic mutant is unable to promote autophagosome-lysosome fusion in vitro. Furthermore, we identify SCFD1, a Sec1/Munc18-like protein, that localizes to the autolysosome and is required for SNARE complex formation and autophagosome-lysosome fusion. VAMP8 promotes SCFD1 recruitment to autolysosomes when dephosphorylated. Consistently, phosphorylated VAMP8 or SCFD1 depletion inhibits autophagosome-lysosome fusion, and expression of phosphomimic VAMP8 leads to increased lipid droplet accumulation when expressed in mouse liver. Thus, our study supports that mTORC1-mediated phosphorylation of VAMP8 blocks SCFD1 recruitment, thereby inhibiting STX17-SNAP29-VAMP8 complex formation and autophagosome-lysosome fusion. Autophagy relies on coordinated fusion of organelle membranes, although the interplay between the regulatory machinery is not well studied. Here, the authors show that SNARE complex formation is inhibited by mTORC1 phosphorylation of VAMP8, which prevents autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Hong Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing Agricultural University, Nanjing, China
| | - Qinqin Ouyang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing Agricultural University, Nanjing, China
| | - Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjing, China
| | - Rong Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China. .,School of Life Sciences, Nanjing Agricultural University, Nanjing, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China. .,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
191
|
Hydroxychloroquine induces matrix metalloproteinase 1 expression and apoptosis in neurofibromatosis type 1 Schwann cells. J Dermatol Sci 2021; 104:142-145. [PMID: 34763989 DOI: 10.1016/j.jdermsci.2021.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/05/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022]
|
192
|
Ramachandran S, Kaushik IS, Srivastava SK. Pimavanserin: A Novel Autophagy Modulator for Pancreatic Cancer Treatment. Cancers (Basel) 2021; 13:cancers13225661. [PMID: 34830816 PMCID: PMC8616166 DOI: 10.3390/cancers13225661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic tumors exhibit high basal autophagy compared to that of other cancers. Several studies including those from our laboratory reported that enhanced autophagy leads to apoptosis in cancer cells. In this study, we evaluated the autophagy and apoptosis inducing effects of Pimavanserin tartrate (PVT). Autophagic effects of PVT were determined by Acridine Orange assay and Transmission Electron Microscopy analysis. Clinical significance of ULK1 in normal and pancreatic cancer patients was evaluated by R2 and GEPIA cancer genomic databases. Modulation of proteins in autophagy signaling was assessed by Western blotting and Immunofluorescence. Apoptotic effects of PVT was evaluated by Annexin-V/APC assay. Subcutaneous xenograft pancreatic tumor model was used to evaluate the autophagy-mediated apoptotic effects of PVT in vivo. Autophagy was induced upon PVT treatment in pancreatic ducal adenocarcinoma (PDAC) cells. Pancreatic cancer patients exhibit reduced levels of autophagy initiator gene, ULK1, which correlated with reduced patient survival. Interestingly, PVT induced the expression of autophagy markers ULK1, FIP200, Atg101, Beclin-1, Atg5, LC3A/B, and cleavage of caspase-3, an indicator of apoptosis in several PDAC cells. ULK1 agonist LYN-1604 enhanced the autophagic and apoptotic effects of PVT. On the other hand, autophagy inhibitors chloroquine and bafilomycin blocked the autophagic and apoptotic effects of PVT in PDAC cells. Notably, chloroquine abrogated the growth suppressive effects of PVT by 25% in BxPC3 tumor xenografts in nude mice. Collectively, our results indicate that PVT mediated pancreatic tumor growth suppression was associated with induction of autophagy mediated apoptosis.
Collapse
|
193
|
Yu M, Lun J, Zhang H, Wang L, Zhang G, Zhang H, Fang J. Targeting UPR branches, a potential strategy for enhancing efficacy of cancer chemotherapy. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1417-1427. [PMID: 34664059 DOI: 10.1093/abbs/gmab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer cells are often exposed to cell intrinsic stresses and environmental perturbations that may lead to accumulation of unfolded and/or misfolded proteins in the lumen of endoplasmic reticulum (ER), a cellular condition known as ER stress. In response to ER stress, the cells elicit an adaptive process called unfolded protein response (UPR) to cope with the stress, supporting cellular homeostasis and survival. The ER stress sensors inositol requiring protein 1α (IRE1α), eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, also called PERK), and activating transcription factor 6 (ATF6) constitute the three branches of UPR to resolve ER stress. IRE1α, PERK, and ATF6 play an important role in tumor cell growth and survival. They are also involved in chemotherapy resistance of cancers. These have generated widespread interest in targeting these UPR branches for cancer treatment. In this review, we provide an overview of the role of IRE1α, PERK, and ATF6 in cancer progression and drug resistance and we summarize the research advances in targeting these UPR branches to enhance the efficacy of chemotherapy of cancers.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Hongwei Zhang
- Oncology Department, Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250014, China
| | - Lei Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| | - Haisheng Zhang
- Center for Cancer Targeted Therapies, Signet Therapeutics Inc., Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Cancer Institute of Qingdao University, Qingdao 266061, China
| |
Collapse
|
194
|
Tripathi-Giesgen I, Behrends C, Alpi AF. The ubiquitin ligation machinery in the defense against bacterial pathogens. EMBO Rep 2021; 22:e52864. [PMID: 34515402 PMCID: PMC8567218 DOI: 10.15252/embr.202152864] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is an important part of the host cellular defense program during bacterial infection. This is in particular evident for a number of bacteria including Salmonella Typhimurium and Mycobacterium tuberculosis which—inventively as part of their invasion strategy or accidentally upon rupture of seized host endomembranes—become exposed to the host cytosol. Ubiquitylation is involved in the detection and clearance of these bacteria as well as in the activation of innate immune and inflammatory signaling. Remarkably, all these defense responses seem to emanate from a dense layer of ubiquitin which coats the invading pathogens. In this review, we focus on the diverse group of host cell E3 ubiquitin ligases that help to tailor this ubiquitin coat. In particular, we address how the divergent ubiquitin conjugation mechanisms of these ligases contribute to the complexity of the anti‐bacterial coating and the recruitment of different ubiquitin‐binding effectors. We also discuss the activation and coordination of the different E3 ligases and which strategies bacteria evolved to evade the activities of the host ubiquitin system.
Collapse
Affiliation(s)
- Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, München, Germany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
195
|
Chen Y, Zou J, Cheng F, Li W. Treatment-Free Remission in Chronic Myeloid Leukemia and New Approaches by Targeting Leukemia Stem Cells. Front Oncol 2021; 11:769730. [PMID: 34778088 PMCID: PMC8581243 DOI: 10.3389/fonc.2021.769730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
The therapeutic landscape for chronic myeloid leukemia (CML) has improved significantly with the approval of tyrosine kinase inhibitors (TKIs) for therapeutic use. Most patients with optimal responses to TKIs can have a normal life expectancy. Treatment-free remission (TFR) after discontinuing TKI has increasingly become a new goal for CML treatment. However, TKI only "control" CML, and relapse after discontinuation has become a key factor hindering patient access to attempt TFR. In this study, we reviewed studies on TKI discontinuation, including both first and second-generation TKI. We also reviewed predictors of relapse, new monitoring methods, and strategies targeting leukemic stem cells.
Collapse
Affiliation(s)
| | | | | | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
196
|
Lee SH, Cho WJ, Najy AJ, Saliganan AD, Pham T, Rakowski J, Loughery B, Ji CH, Sakr W, Kim S, Kato I, Chung WK, Kim HE, Kwon YT, Kim HRC. p62/SQSTM1-induced caspase-8 aggresomes are essential for ionizing radiation-mediated apoptosis. Cell Death Dis 2021; 12:997. [PMID: 34697296 PMCID: PMC8546074 DOI: 10.1038/s41419-021-04301-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/03/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022]
Abstract
The autophagy–lysosome pathway and apoptosis constitute vital determinants of cell fate and engage in a complex interplay in both physiological and pathological conditions. Central to this interplay is the archetypal autophagic cargo adaptor p62/SQSTM1/Sequestosome-1 which mediates both cell survival and endoplasmic reticulum stress-induced apoptosis via aggregation of ubiquitinated caspase-8. Here, we investigated the role of p62-mediated apoptosis in head and neck squamous cell carcinoma (HNSCC), which can be divided into two groups based on human papillomavirus (HPV) infection status. We show that increased autophagic flux and defective apoptosis are associated with radioresistance in HPV(-) HNSCC, whereas HPV(+) HNSCC fail to induce autophagic flux and readily undergo apoptotic cell death upon radiation treatments. The degree of radioresistance and tumor progression of HPV(-) HNSCC respectively correlated with autophagic activity and cytosolic levels of p62. Pharmacological activation of the p62-ZZ domain using small molecule ligands sensitized radioresistant HPV(-) HNSCC cells to ionizing radiation by facilitating p62 self-polymerization and sequestration of cargoes leading to apoptosis. The self-polymerizing activity of p62 was identified as the essential mechanism by which ubiquitinated caspase-8 is sequestered into aggresome-like structures, without which irradiation fails to induce apoptosis in HNSCC. Our results suggest that harnessing p62-dependent sequestration of ubiquitinated caspase-8 provides a novel therapeutic avenue in patients with radioresistant tumors.
Collapse
Affiliation(s)
- Su Hyun Lee
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Won Jin Cho
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Abdo J Najy
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Allen-Dexter Saliganan
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Tri Pham
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Joseph Rakowski
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Division of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Brian Loughery
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Chang Hoon Ji
- Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Wael Sakr
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Weon Kuu Chung
- Department of Radiation Oncology, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Harold E Kim
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.,Division of Radiation Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Yong Tae Kwon
- Cellular Degradation Biology Research Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea. .,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea. .,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Hyeong-Reh C Kim
- Department of Pathology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI, 48201, USA.
| |
Collapse
|
197
|
Hoffmann N, Peters J. Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis. Pharmacol Res 2021; 173:105922. [PMID: 34607004 DOI: 10.1016/j.phrs.2021.105922] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
The (pro)renin receptor [(P)RR, Atp6ap2] was initially discovered as a membrane-bound binding partner of prorenin and renin. A soluble (P)RR has additional paracrine effects and is involved in metabolic syndrome and kidney damage. Meanwhile it is clear that most of the effects of the (P)RR are independent of prorenin. In the kidney, (P)RR plays an important role in renal dysfunction by activating proinflammatory and profibrotic molecules. In the brain, (P)RR is expressed in cardiovascular regulatory nuclei and is linked to hypertension. (P)RR is known to be an essential component of the v-ATPase as a key accessory protein and plays an important role in kidney, brain and heart via regulating the pH of the extracellular space and intracellular compartments. V-ATPase and (P)RR together act on WNT and mTOR signalling pathways, which are responsible for cellular homeostasis and autophagy. (P)RR through its role in v-ATPase assembly and function is also important for fast recycling endocytosis by megalin. In the kidney, megalin together with v-ATPase and (P)RR is crucial for endocytic uptake of components of the RAS and their intracellular processing. In the brain, (P)RR, v-ATPases and megalin are important regulators both during development and in the adult. All three proteins are associated with diseases such as XLMR, XMRE, X-linked parkinsonism and epilepsy, cognitive disorders with Parkinsonism, spasticity, intellectual disability, and Alzheimer's Disease which are characterized by impaired neuronal function and/or neuronal loss. The present review focusses on the relevant effects of Atp6ap2 without assigning them necessarily to the RAS. Mechanistically, many effects can be well explained by the role of Atp6ap2 for v-ATPase assembly and function. Furthermore, application of a soluble (P)RR analogue as new therapeutic option is discussed.
Collapse
Affiliation(s)
- Nadin Hoffmann
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany
| | - Jörg Peters
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15A, 17475, Greifswald, Germany.
| |
Collapse
|
198
|
Li XJ, Zhang YY, Fu YH, Zhang H, Li HX, Li QF, Li HL, Tan RK, Jiang CX, Jiang W, Li ZX, Luo C, Lu BX, Dang YJ. Gossypol, a novel modulator of VCP, induces autophagic degradation of mutant huntingtin by promoting the formation of VCP/p97-LC3-mHTT complex. Acta Pharmacol Sin 2021; 42:1556-1566. [PMID: 33495516 PMCID: PMC8463700 DOI: 10.1038/s41401-020-00605-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by toxic aggregates of mutant huntingtin protein (mHTT) in the brain. Decreasing mHTT is a potential strategy for therapeutic purpose of HD. Valosin-containing protein (VCP/p97) is a crucial regulator of proteostasis, which regulates the degradation of damaged protein through proteasome and autophagy pathway. Since VCP has been implicated in pathogenesis of HD as well as other neurodegenerative diseases, small molecules that specifically regulate the activity of VCP may be of therapeutic benefits for HD patients. In this study we established a high-throughput screening biochemical assay for VCP ATPase activity measurement and identified gossypol, a clinical approved drug in China, as a novel modulator of VCP. Gossypol acetate dose-dependently inhibited the enzymatic activity of VCP in vitro with IC50 of 6.53±0.6 μM. We further demonstrated that gossypol directly bound to the interface between the N and D1 domains of VCP. Gossypol acetate treatment not only lowered mHTT levels and rescued HD-relevant phenotypes in HD patient iPS-derived Q47 striatal neurons and HD knock-in mouse striatal cells, but also improved motor function deficits in both Drosophila and mouse HD models. Taken together, gossypol acetate acted through a gain-of-function way to induce the formation of VCP-LC3-mHTT ternary complex, triggering autophagic degradation of mHTT. This study reveals a new strategy for treatment of HD and raises the possibility that an existing drug can be repurposed as a new treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-jing Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Yuan-yuan Zhang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Yu-hua Fu
- grid.8547.e0000 0001 0125 2443Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Hao Zhang
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - He-xuan Li
- grid.8547.e0000 0001 0125 2443Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Quan-fu Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Hai-ling Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Ren-ke Tan
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Chen-xiao Jiang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Wei Jiang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Zeng-xia Li
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Cheng Luo
- grid.9227.e0000000119573309Drug Discovery and Design Center, The Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Bo-xun Lu
- grid.8547.e0000 0001 0125 2443Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yong-jun Dang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| |
Collapse
|
199
|
Gupta A, Kumar J, Rahaman A, Singh AK, Bhadra S. Functionalization of C(sp3)-H bonds adjacent to heterocycles catalyzed by earth abundant transition metals. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
200
|
Zhou F, Gao J, Tang Y, Zou Z, Jiao S, Zhou Z, Xu H, Xu ZP, Yu H, Xu Z. Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD-L1 Expression for Circumventing Immune Resistance of Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102668. [PMID: 34463392 DOI: 10.1002/adma.202102668] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/11/2021] [Indexed: 01/07/2023]
Abstract
Immune evasion is the major obstacle for T-cell-based cancer immunotherapy. The insufficient expression of the tumor-rejection antigen causes the intrinsic immune resistance and high expression of programmed death ligand 1 (PD-L1) induced by interferon gamma (IFN-γ), which accounts for the inducible immune resistance. To deal with both the intrinsic and inducible immune resistance of cancer, a multifunctional prodrug nanovesicle is sequentially developed. It is first sorted out that doxycycline (Doxy) efficiently inhibits autophagy of the tumor cells, and increases the surface level of major histocompatibility complex class I (MHC-I). Then, chameleon-inspired prodrug nanovesicles are engineered for tumor-targeted delivery of Doxy. The prodrug nanovesicles integrating a sheddable poly(ethylene glycol) shell and CRGDK ligand are kept stable during blood circulation, while exposing the targeting ligand in the tumor, which significantly inhibits autophagy, elicits MHC-I expression, increases tumor antigen presentation, recruits more tumor-infiltrating T lymphocytes, and suppresses FN-γ-induced intratumoral PD-L1 expression. After a proof of concept for overcoming intrinsic and inducible immune evasion, the prodrug nanovesicles are applied to validate the efficacy of cancer immunotherapy in two tumor-bearing mouse models. This research thus provides a novel targeting strategy for reducing tumor immune resistance and potentiating tumor immunotherapy.
Collapse
Affiliation(s)
- Fengqi Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yang Tang
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifeng Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Huixiong Xu
- Tongji University Cancer Center, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|