151
|
The NLRP3 Inflammasome and Its Role in the Pathogenicity of Leukemia. Int J Mol Sci 2021; 22:ijms22031271. [PMID: 33525345 PMCID: PMC7865748 DOI: 10.3390/ijms22031271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation contributes to the development and progression of various tumors. Especially where the inflammation is mediated by cells of the innate immune system, the NLRP3 inflammasome plays an important role, as it senses and responds to a variety of exogenous and endogenous pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18 and for the induction of a type of inflammatory cell death known as pyroptosis. Overactivation of the NLRP3 inflammasome can be a driver of various diseases. Since leukemia is known to be an inflammation-driven cancer and IL-1β is produced in elevated levels by leukemic cells, research on NLRP3 in the context of leukemia has increased in recent years. In this review, we summarize the current knowledge on leukemia-promoting inflammation and, in particular, the role of the NLRP3 inflammasome in different types of leukemia. Furthermore, we examine a connection between NLRP3, autophagy and leukemia.
Collapse
|
152
|
Tayari MM, Santos HGD, Kwon D, Bradley TJ, Thomassen A, Chen C, Dinh Y, Perez A, Zelent A, Morey L, Cimmino L, Shiekhattar R, Swords RT, Watts JM. Clinical Responsiveness to All-trans Retinoic Acid Is Potentiated by LSD1 Inhibition and Associated with a Quiescent Transcriptome in Myeloid Malignancies. Clin Cancer Res 2021; 27:1893-1903. [PMID: 33495312 DOI: 10.1158/1078-0432.ccr-20-4054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In preclinical studies, the lysine-specific histone demethylase 1A (LSD1) inhibitor tranylcypromine (TCP) combined with all-trans retinoic acid (ATRA) induces differentiation and impairs survival of myeloid blasts in non-acute promyelocytic leukemia acute myeloid leukemia (AML). We conducted a phase I clinical trial (NCT02273102) to evaluate the safety and activity of ATRA plus TCP in patients with relapsed/refractory AML and myelodysplasia (MDS). PATIENTS AND METHODS Seventeen patients were treated with ATRA and TCP (three dose levels: 10 mg twice daily, 20 mg twice daily, and 30 mg twice daily). RESULTS ATRA-TCP had an acceptable safety profile. The MTD of TCP was 20 mg twice daily. Best responses included one morphologic leukemia-free state, one marrow complete remission with hematologic improvement, two stable disease with hematologic improvement, and two stable disease. By intention to treat, the overall response rate was 23.5% and clinical benefit rate was 35.3%. Gene expression profiling of patient blasts showed that responding patients had a more quiescent CD34+ cell phenotype at baseline, including decreased MYC and RARA expression, compared with nonresponders that exhibited a more proliferative CD34+ phenotype, with gene expression enrichment for cell growth signaling. Upon ATRA-TCP treatment, we observed significant induction of retinoic acid-target genes in responders but not nonresponders. We corroborated this in AML cell lines, showing that ATRA-TCP synergistically increased differentiation capacity and cell death by regulating the expression of key gene sets that segregate patients by their clinical response. CONCLUSIONS These data indicate that LSD1 inhibition sensitizes AML cells to ATRA and may restore ATRA responsiveness in subsets of patients with MDS and AML.
Collapse
Affiliation(s)
- Mina M Tayari
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Helena G Dos Santos
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Deukwoo Kwon
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Terrence J Bradley
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Amber Thomassen
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Charles Chen
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Yvonne Dinh
- Department of Immuno-Oncology, Oncology Division, IQVIA Biotech, Miami, Florida
| | - Aymee Perez
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Arthur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, Warsaw, Poland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ronan T Swords
- Medical Director, AbbVie Pharmaceuticals, Chicago, Illinois
| | - Justin M Watts
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
153
|
Ye L, Gao L, Cheng Q, Guo F, He L, Yuan T, Zhu M, Ma Y, Pan M, Chu X, Ding M, Yu G. Intermediate dose cytarabine improves survival and relapse-free rate compared with standard-dose cytarabine as post-remission treatment for acute myeloid leukemia: A retrospection study. Medicine (Baltimore) 2021; 100:e24273. [PMID: 33546048 PMCID: PMC7837979 DOI: 10.1097/md.0000000000024273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022] Open
Abstract
The exact dose of cytarabine still remain controversial for the management of patients with acute myeloid leukemia (AML) after complete remission (CR), but recent studies favor lower doses. This study aimed to investigate the toxic effects of single-intermediate dose (ID) cytarabine in patients with AML after achieving CR, compared with standard-dose cytarabine.In this retrospective study, AML patients who achieved CR after consolidation therapy before enrollment between 07/2008 and 05/2019 were included. All patients were divided into single-ID cytarabine and standard-dose cytarabine. The Kaplan-Meier method was used to compare overall survival (OS) and relapse-free time (RFS). Cox regression models were used to assess factors independently associated with OS and RFS. The toxic side effects of hematology and non-hematology were observed.52 patients were enrolled. There were 33 in ID group, 19 in Standard dose group. The 3-year RFS rate (40.4% vs 22.2%, P = .031) was better in the ID group than in the standard-dose group, while the 3-year OS rate was not different between the 2 groups (50.2% vs 27.8%, P = .074). Treatment stratage of ID cytarabine chemotherapy significantly improve the prognosis of AML regardless of patient age, risk grade, WBC count. There were no significant differences between the 2 groups in grade 3 to 4 bone marrow suppression, gastrointestinal symptoms, blood transfusion, infections.Patients with AML receiving ID cytarabine showed better survival and similar toxicity profiles compared with patients who received standard-dose cytarabine.
Collapse
|
154
|
Unraveling the Role of Innate Lymphoid Cells in AcuteMyeloid Leukemia. Cancers (Basel) 2021; 13:cancers13020320. [PMID: 33477248 PMCID: PMC7830843 DOI: 10.3390/cancers13020320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Acute myeloid leukemia (AML) is an aggressive form of cancer found in the blood and bone marrow with poor survival rates. Patients with AML are known to have many defects in their immune system which render immune cells unable to detect and/or kill cancer cells. Natural Killer (NK) cells are innate immune effector cells responsible for surveying the body to eliminate cancer cells as well as alert other immune cells to help clear the cancer cells. NK cells have developmental and functional defects in AML patients. While advances have been made to understand these NK cell defects in the setting of AML, the role of other closely related and recently discovered members of the innate lymphoid cell (ILC) family is much less clear. The ILC family is comprised of NK cells, ILC1s, ILC2s, and ILC3s, and due in part to their recent discovery, non-NK ILCs are just now beginning to be investigated in the setting of AML. By better understanding how AML alters the normal function of these cell types, and how the alteration regulates AML growth, we may be able to target and tailor new forms of therapy for patients. Abstract Over the past 50 years, few therapeutic advances have been made in treating acute myeloid leukemia (AML), an aggressive form of blood cancer, despite vast improvements in our ability to classify the disease. Emerging evidence suggests the immune system is important in controlling AML progression and in determining prognosis. Natural killer (NK) cells are important cytotoxic effector cells of the innate lymphoid cell (ILC) family that have been shown to have potent anti-leukemic functions. Recent studies are now revealing impairment or dysregulation of other ILCs in various types of cancers, including AML, which limits the effectiveness of NK cells in controlling cancer progression. NK cell development and function are inhibited in AML patients, which results in worse clinical outcomes; however, the specific roles of other ILC populations in AML are just now beginning to be unraveled. In this review, we summarize what is known about the role of ILC populations in AML.
Collapse
|
155
|
Gu W, Liu T, Fan D, Zhang J, Xia Y, Meng F, Xu Y, Cornelissen JJ, Liu Z, Zhong Z. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia. J Control Release 2021; 329:706-716. [DOI: 10.1016/j.jconrel.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
|
156
|
Zhang C, Liu T, Luo P, Gao L, Liao X, Ma L, Jiang Z, Liu D, Yang Z, Jiang Q, Wang Y, Tan X, Luo S, Wang Y, Shi C. Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia-targeted imaging and therapy. SCIENCE ADVANCES 2021; 7:7/1/eabb6104. [PMID: 33523835 PMCID: PMC7775779 DOI: 10.1126/sciadv.abb6104] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/04/2020] [Indexed: 05/11/2023]
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy with frequent disease relapse. The biggest challenge for AML therapy is the lack of methods to target and kill the heterogeneous leukemia cells, which lead to disease relapse. Here, we describe a near-infrared (NIR) fluorescent dye, IR-26, which preferentially accumulates in the mitochondria of AML cells, depending on the hyperactive glycolysis of malignant cell, and simultaneously impairs oxidative phosphorylation (OXPHOS) to exert targeted therapeutic effects for AML cells. In particular, IR-26 also exhibits potential for real-time monitoring of AML cells with an in vivo flow cytometry (IVFC) system. Therefore, IR-26 represents a novel all-in-one agent for the integration of AML targeting, detection, and therapy, which may help to monitor disease progression and treatment responses, prevent unnecessary delays in administering upfront therapy, and improve therapeutic efficiency to the residual AML cells, which are responsible for disease relapse.
Collapse
Affiliation(s)
- Chi Zhang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xingyun Liao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhongyong Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dengqun Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zeyu Yang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qingzhi Jiang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xu Tan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
157
|
van Gils N, Verhagen HJMP, Rutten A, Menezes RX, Tsui ML, Vermue E, Dekens E, Brocco F, Denkers F, Kessler FL, Ossenkoppele GJ, Janssen JJWM, Smit L. IGFBP7 activates retinoid acid-induced responses in acute myeloid leukemia stem and progenitor cells. Blood Adv 2020; 4:6368-6383. [PMID: 33351133 PMCID: PMC7756998 DOI: 10.1182/bloodadvances.2020002812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) in combination with low doses of arsenic trioxide or chemotherapy leads to exceptionally high cure rates (>90%). ATRA forces APL cells into differentiation and cell death. Unfortunately, ATRA-based therapy has not been effective among any other acute myeloid leukemia (AML) subtype, and long-term survival rates remain unacceptably low; only 30% of AML patients survive 5 years after diagnosis. Here, we identified insulin-like growth factor binding protein 7 (IGFBP7) as part of ATRA-induced responses in APL cells. Most importantly, we observed that addition of recombinant human IGFBP7 (rhIGFBP7) increased ATRA-driven responses in a subset of non-APL AML samples: those with high RARA expression. In nonpromyelocytic AML, rhIGFBP7 treatment induced a transcriptional program that sensitized AML cells for ATRA-induced differentiation, cell death, and inhibition of leukemic stem/progenitor cell survival. Furthermore, the engraftment of primary AML in mice was significantly reduced following treatment with the combination of rhIGFBP7 and ATRA. Mechanistically, we showed that the synergism of ATRA and rhIGFBP7 is due, at least in part, to reduction of the transcription factor GFI1. Together, these results suggest a potential clinical utility of IGFBP7 and ATRA combination treatment to eliminate primary AML (leukemic stem/progenitor) cells and reduce relapse in AML patients.
Collapse
Affiliation(s)
- Noortje van Gils
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Han J M P Verhagen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Arjo Rutten
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Renee X Menezes
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Mei-Ling Tsui
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Eline Vermue
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Esmée Dekens
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Fabio Brocco
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Fedor Denkers
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Floortje L Kessler
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| |
Collapse
|
158
|
Xiao Y, Ming X, Wu J. Hsa_circ_0002483 regulates miR-758-3p/MYC axis to promote acute myeloid leukemia progression. Hematol Oncol 2020; 39:243-253. [PMID: 33283885 DOI: 10.1002/hon.2829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
Circular RNAs are relevant to progression of acute myeloid leukemia (AML). Nevertheless, how and whether hsa_circ_0002483 (circ_0002483) participates in AML progression are largely uncertain. The bone marrow samples were harvested from 31 AML patients or 31 normal subjects. Circ_0002483, microRNA (miR)-758-3p and myelocytomatosis oncogene (MYC) abundances were examined via quantitative reverse transcription polymerase chain reaction and Western blot. Cell proliferation, cycle process and apoptosis were analyzed via Cell Counting Kit-8, flow cytometry, caspase 3 activity and related protein levels. Target relationship was investigated by dual-luciferase reporter assay and RNA immunoprecipitation. Circ_0002483 expression was elevated in AML patients and cells. Circ_0002483 silence constrained AML cell proliferation and facilitated cell cycle arrest and apoptosis. miR-758-3p was reduced in AML and decreased via circ_0002483. miR-758-3p down-regulation mitigated the inhibitive influence of circ_0002483 interference on AML progression. MYC was decreased by miR-758-3p, and circ_0002483 could regulate MYC expression by miR-758-3p. miR-758-3p overexpression restrained cell proliferation and promoted cycle arrest and apoptosis via decreasing MYC. Circ_0002483 knockdown repressed AML cell proliferation and promoted cycle arrest and apoptosis via controlling miR-758-3p/MYC axis.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Jiaying Wu
- Department of Hematology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
159
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
160
|
Song MZ, Mao YM, Wu J, Pan HF, Ye QL. Increased circulating basic fibroblast growth factor levels in acute myeloid leukemia: a meta-analysis. ACTA ACUST UNITED AC 2020; 25:186-193. [PMID: 32441581 DOI: 10.1080/16078454.2020.1766865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Basic fibroblast growth factor (bFGF) plays an important role in the pathogenesis of acute myeloid leukemia (AML). Whether the levels of circulating bFGF are increased or not in untreated AML patients is still not clear. In order to acquire a more definite evaluation, a meta-analysis was performed.Material and methods: We searched PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, and VIP databases for possible eligible articles. Forest plot was used to present the combined effect values and 95% confidence intervals (CI) through the random-effect model. Subgroup analysis was performed based on sample size, sample type, and region. All statistical analysis was performed in STATA12.0 software.Results: After excluding the articles that did not meet the inclusion criteria, 11 studies that met the inclusion conditions were included in this meta-analysis. Overall, AML patients probably had higher circulating levels of bFGF (SMD = 1.15, 95% CI: 0.35-1.94). The results of sensitivity analysis indicated that the results were stable. Moreover, the trim and fill analysis showed that publication bias had little effect and the results were relatively robust. In addition, AML patients with N < 30 group, serum group, and Asia group (all P < 0.05) had higher circulating bFGF levels, whereas other subgroups showed no significant change.Conclusion: The results of current meta-analysis revealed that AML patients had higher circulating bFGF levels, and it was associated with sample type, sample size, and region. Considering the possible pathogenic role of bFGF in AML, drug development targeting bFGF is very promising for AML patients.
Collapse
Affiliation(s)
- Ming-Zhu Song
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Jun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, People's Republic of China
| | - Qian-Ling Ye
- Department of Hematology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
161
|
Sezaki M, Hayashi Y, Wang Y, Johansson A, Umemoto T, Takizawa H. Immuno-Modulation of Hematopoietic Stem and Progenitor Cells in Inflammation. Front Immunol 2020; 11:585367. [PMID: 33329562 PMCID: PMC7732516 DOI: 10.3389/fimmu.2020.585367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Lifelong blood production is maintained by bone marrow (BM)-residing hematopoietic stem cells (HSCs) that are defined by two special properties: multipotency and self-renewal. Since dysregulation of either may lead to a differentiation block or extensive proliferation causing dysplasia or neoplasia, the genomic integrity and cellular function of HSCs must be tightly controlled and preserved by cell-intrinsic programs and cell-extrinsic environmental factors of the BM. The BM had been long regarded an immune-privileged organ shielded from immune insults and inflammation, and was thereby assumed to provide HSCs and immune cells with a protective environment to ensure blood and immune homeostasis. Recently, accumulating evidence suggests that hemato-immune challenges such as autoimmunity, inflammation or infection elicit a broad spectrum of immunological reactions in the BM, and in turn, influence the function of HSCs and BM environmental cells. Moreover, in analogy with the emerging concept of “trained immunity”, certain infection-associated stimuli are able to train HSCs and progenitors to produce mature immune cells with enhanced responsiveness to subsequent challenges, and in some cases, form an inflammatory or infectious memory in HSCs themselves. In this review, we will introduce recent findings on HSC and hematopoietic regulation upon exposure to various hemato-immune stimuli and discuss how these challenges can elicit either beneficial or detrimental outcomes on HSCs and the hemato-immune system, as well as their relevance to aging and hematologic malignancies.
Collapse
Affiliation(s)
- Maiko Sezaki
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Hayashi
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Alban Johansson
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
162
|
TET2/IDH1/2/WT1 and NPM1 Mutations Influence the RUNX1 Expression Correlations in Acute Myeloid Leukemia. ACTA ACUST UNITED AC 2020; 56:medicina56120637. [PMID: 33255417 PMCID: PMC7760270 DOI: 10.3390/medicina56120637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Background and objectives: Mutational analysis has led to a better understanding of acute myeloid leukemia (AML) biology and to an improvement in clinical management. Some of the most important mutations that affect AML biology are represented by mutations in genes related to methylation, more specifically: TET2, IDH1, IDH2 and WT1. Because it has been shown in numerous studies that mutations in these genes lead to similar expression profiles and phenotypes in AML, we decided to assess if mutations in any of those genes interact with other genes important for AML. Materials and Methods: We downloaded the clinical data, mutational profile and expression profile from the TCGA LAML dataset via cBioPortal. Data were analyzed using classical statistical methods and functional enrichment analysis software represented by STRING and GOrilla. Results: The first step we took was to assess the 196 AML cases that had a mutational profile available and observe the mutations that overlapped with TET2/IDH1/2/WT1 mutations. We observed that RUNX1 mutations significantly overlap with TET2/IDH1/2/WT1 mutations. Because of this, we decided to further investigate the role of RUNX1 mutations in modulating the level of RUNX1 mRNA and observed that RUNX1 mutant cases presented higher levels of RUNX1 mRNA. Because there were only 16 cases of RUNX1 mutant samples and that mutations in this gene determined a change in mRNA expression, we further observed the correlation between RUNX1 and other mRNAs in subgroups regarding the presence of hypermethylating mutations and NPM1. Here, we observed that both TET2/IDH1/2/WT1 and NPM1 mutations increase the number of genes negatively correlated with RUNX1 and that these genes were significantly linked to myeloid activation. Conclusions: In the current study, we have shown that NPM1 and TET2/IDH1/2/WT1 mutations increase the number of negative correlations of RUNX1 with other transcripts involved in myeloid differentiation.
Collapse
|
163
|
Shen J, Lu Z, Wang J, Zhang T, Yang J, Li Y, Liu G, Zhang X. Advances of Nanoparticles for Leukemia Treatment. ACS Biomater Sci Eng 2020; 6:6478-6489. [PMID: 33320613 DOI: 10.1021/acsbiomaterials.0c01040] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leukemia is a liquid tumor caused by a hematopoietic stem cell malignant clone, which seriously affects the normal function of the hematopoietic system. Conventional drugs have poor therapeutic effects due to their poor specificity and stability. With the development of nanotechnology, nonviral nanoparticles bring hope for the efficient treatment of leukemia. Nanoparticles are easily modified. They can be designed to target lesion sites and control drug release. Thereby, nanoparticles can improve the effects of drugs and reduce side effects. This review mainly focuses on and summarizes the current research progress of nanoparticles to deliver different leukemia therapeutic drugs, as to demonstrate the potential of nanoparticles in leukemia treatment.
Collapse
Affiliation(s)
- Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhiguo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jianze Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tianlu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Guiying Liu
- Department of Pediatrics, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, PR China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| |
Collapse
|
164
|
Noh JY, Seo H, Lee J, Jung H. Immunotherapy in Hematologic Malignancies: Emerging Therapies and Novel Approaches. Int J Mol Sci 2020; 21:E8000. [PMID: 33121189 PMCID: PMC7663624 DOI: 10.3390/ijms21218000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy is extensively investigated for almost all types of hematologic tumors, from preleukemic to relapse/refractory malignancies. Due to the emergence of technologies for target cell characterization, antibody design and manufacturing, as well as genome editing, immunotherapies including gene and cell therapies are becoming increasingly elaborate and diversified. Understanding the tumor immune microenvironment of the target disease is critical, as is reducing toxicity. Although there have been many successes and newly FDA-approved immunotherapies for hematologic malignancies, we have learned that insufficient efficacy due to disease relapse following treatment is one of the key obstacles for developing successful therapeutic regimens. Thus, combination therapies are also being explored. In this review, immunotherapies for each type of hematologic malignancy will be introduced, and novel targets that are under investigation will be described.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Huiyun Seo
- Center for Genome Engineering, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Korea;
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 34141, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
165
|
Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nat Med 2020; 26:1852-1858. [PMID: 33106665 DOI: 10.1038/s41591-020-1089-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is the most common diagnosed leukemia. In older adults, AML confers an adverse outcome1,2. AML originates from a dominant mutation, then acquires collaborative transformative mutations leading to myeloid transformation and clinical/biological heterogeneity. Currently, AML treatment is initiated rapidly, precluding the ability to consider the mutational profile of a patient's leukemia for treatment decisions. Untreated patients with AML ≥ 60 years were prospectively enrolled on the ongoing Beat AML trial (ClinicalTrials.gov NCT03013998 ), which aims to provide cytogenetic and mutational data within 7 days (d) from sample receipt and before treatment selection, followed by treatment assignment to a sub-study based on the dominant clone. A total of 487 patients with suspected AML were enrolled; 395 were eligible. Median age was 72 years (range 60-92 years; 38% ≥75 years); 374 patients (94.7%) had genetic and cytogenetic analysis completed within 7 d and were centrally assigned to a Beat AML sub-study; 224 (56.7%) were enrolled on a Beat AML sub-study. The remaining 171 patients elected standard of care (SOC) (103), investigational therapy (28) or palliative care (40); 9 died before treatment assignment. Demographic, laboratory and molecular characteristics were not significantly different between patients on the Beat AML sub-studies and those receiving SOC (induction with cytarabine + daunorubicin (7 + 3 or equivalent) or hypomethylation agent). Thirty-day mortality was less frequent and overall survival was significantly longer for patients enrolled on the Beat AML sub-studies versus those who elected SOC. A precision medicine therapy strategy in AML is feasible within 7 d, allowing patients and physicians to rapidly incorporate genomic data into treatment decisions without increasing early death or adversely impacting overall survival.
Collapse
|
166
|
Lu J, Wu X, Wang L, Li T, Sun L. Long noncoding RNA LINC00467 facilitates the progression of acute myeloid leukemia by targeting the miR-339/SKI pathway. Leuk Lymphoma 2020; 62:428-437. [PMID: 33054480 DOI: 10.1080/10428194.2020.1832667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A growing body of evidence indicates that long non-coding RNA (lncRNA) is involved in the development and progression of many diseases. It has been reported that lncRNA LINC00467 is disregulated in multiple tumors, while its role in acute myeloid leukemia (AML) is still unknown. Here, we find that LINC00467 expression is significantly increased in AML specimens and cell lines. Further investigations show that knockdown of LINC00467 inhibits the malignant phenotypes of AML cells. Consistently, LINC00467 knockdown slows AML progression in immunodeficient mice. Interestingly, microRNA-339 (miR-339) is upregulated and its target gene SKI, an oncogene, is downregulated in AML cells after LINC00467 knockdown. More importantly, inhibition of miR-339 can largely abolish the effect of LINC00467 knockdown on AML cells. Collectively, our data demonstrate that LINC00467 plays an important role in the pathogenesis of AML by targeting the miR-339/SKI pathway, which provides a new sight for the subsequent treatment of AML.
Collapse
Affiliation(s)
- Jun Lu
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Xifeng Wu
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Lijuan Wang
- Department of Hematology, Qingdao Binhai University Affiliated Hospital, Qingdao, China
| | - Tantan Li
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| | - Ling Sun
- Department of Hematology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan City People's Hospital, Jinan, China
| |
Collapse
|
167
|
Pinheiro LHS, Trindade LD, Costa FDO, Silva NDL, Sandes AF, Nunes MAP, Correa CB, Almeida CAC, da Cruz GS, de Lyra Junior DP, Schimieguel DM. Aberrant Phenotypes in Acute Myeloid Leukemia and Its Relationship with Prognosis and Survival: A Systematic Review and Meta-Analysis. Int J Hematol Oncol Stem Cell Res 2020; 14:274-288. [PMID: 33603989 PMCID: PMC7876425 DOI: 10.18502/ijhoscr.v14i4.4484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/14/2020] [Indexed: 01/03/2023] Open
Abstract
Background: The aim of this review was to evaluate the influence of aberrant phenotypes in prognosis and survival in acute myeloid leukemia (AML) patients by multiparametric flow cytometry. Materials and Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a review of PubMed, Scopus, Science Direct and Web of Science was carried out through 1998 to 2016, conducted by two reviewers independently, evaluating titles, abstracts and full-texts of the selected studies. Results: Ten studies were included on this review, in which the aberrant phenotype expression of 17 markers were detected in AML patients. From these, 11 aberrant phenotypes were associated with prognosis, which eight had shown negative impact on prognosis: CD7, CD56, CD15, CD2, CD3, CD90low, CD123high, CD117high, and three others were associated with good prognosis: CD19, CD98high and CD117+/CD15+. Meta-analysis showed that aberrant expression of CD56 as a poor prognostic marker with unfavorable outcomes is implicated in decreased overall survival in AML patients in 28 months (95% CI: 0.62 to 0.92). Conclusion: This was observed when there was association between CD56 expression and other prognostic factors, influencing on patients' management care and treatment.
Collapse
Affiliation(s)
| | - Louise Dantas Trindade
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Nathanielly de Lima Silva
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Alex Freire Sandes
- Department of Medicine, Hematology Course, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Cristiane Bani Correa
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | - Dulce Marta Schimieguel
- Department of Pharmacy, Laboratory of Hematology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
168
|
Guan J, Liu P, Wang A, Wang B. Long non‑coding RNA ZEB2‑AS1 affects cell proliferation and apoptosis via the miR‑122‑5p/PLK1 axis in acute myeloid leukemia. Int J Mol Med 2020; 46:1490-1500. [PMID: 32700753 PMCID: PMC7447321 DOI: 10.3892/ijmm.2020.4683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease featured by the clonal accumulation of immature myeloid cells. Zinc finger E‑box binding homeobox 2 (ZEB2)‑antisense RNA 1 (AS1) has been verified to participate in the progression of several types of cancer, including AML. However, the potential mechanisms of ZEB2‑AS1 in AML have not yet been fully elucidated. The present study aimed to elucidate the role and regulatory mechanisms of ZEB2‑AS1 in AML. The expression of ZEB2‑AS1, microRNA‑122‑5p (miRNA/miR‑122‑5p) and polo‑like kinase 1 (PLK1) was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in AML tissues or cells. Cell proliferation and apoptosis were examined by methyl thiazolyl tetrazolium (MTT) assay and apoptosis assay, respectively. The protein levels were examined by western blot analysis. The targeted sequence between miR‑122‑5p and ZEB2‑AS1 or PLK1 was predicted using an online database and verified by dual‑luciferase reporter assay. A mouse tumor xenograft model was established to confirm the effects of ZEB2‑AS1 on tumor growth in vivo. The results revealed that the expression levels of ZEB2‑AS1 and PLK1 were upregulated, while those of miR‑122‑5p were downregulated in AML tissues and cells. The knockdown of ZEB2‑AS1 inhibited proliferation and induced apoptosis in vitro, and inhibited tumor growth in vivo. By experimental verification, ZEB2‑AS1 was found to negatively regulate miR‑122‑5p expression and PLK1 was found to be a target gene of miR‑122‑5p. Furthermore, ZEB2‑AS1 was verified to regulate the expression of PLK1 by sponging miR‑122‑5p in AML cells. On the whole, the findings of the present study demonstrate that ZEB2‑AS1 promotes cell proliferation and inhibits apoptosis, at least partly by targeting PLK1 mediated by miR‑122‑5p in AML cells.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/physiology
- Cell Division
- Cell Line, Tumor
- Child
- Child, Preschool
- Female
- Gene Knockdown Techniques
- Genes, Reporter
- Heterografts
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Nude
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- MicroRNAs/physiology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/physiology
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/physiology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- RNA, Neoplasm/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Jianmin Guan
- Department of Internal Medicine, Heze Medical College
| | - Ping Liu
- Department of Hematology, Heze Municipal Hospital
| | - Aixia Wang
- Department of Pharmacy, Chinese Medicine Hospital of Mudan District
| | - Bo Wang
- Department of Blood Transfusion, Heze Municipal Hospital, Heze, Shandong 274000, P.R. China
| |
Collapse
|
169
|
Lee BZ, Lee IS, Pham CH, Jeong SK, Lee S, Hong K, Yoo HM. Apoptosis in Leukemic Cells Induced by Anti-proliferative Coumarin Isolated from the Stem Bark of Fraxinus rhynchophylla. J Microbiol Biotechnol 2020; 30:1214-1221. [PMID: 32699201 PMCID: PMC9728376 DOI: 10.4014/jmb.2006.06022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Esculetin 6-O-β-D-arabinofuranosyl-(1→6)-β-D-glucopyranoside (EAG) is a coumarin glycoside isolated from the stem bark of Fraxinus rhynchophylla. This study scrutinized the anti-proliferative activity of EAG on blood cancer-derived Jurkat leukemic cells. Cell viability assays in leukemic cancer cells determined that EAG possesses potent anti-proliferative effects. Moreover, treatment with EAG increased the proportion of apoptotic cells, resulted in cell cycle arrest being induced at the subG0/ G1 phase, and reduced the proportion of cells present in the S phase. In addition, mitochondrial membrane potential was reduced by EAG in Jurkat cells. Additionally, EAG triggered apoptosis that was mediated by the downregulation of BCL-XL, p-IκBα, and p-p65 expressions in addition to the upregulation of cleaved Caspase 3 and BAX expressions. These findings revealed that the toxic effect of EAG was mediated by intracellular signal transduction pathways that involved a mechanism in which reactive oxygen species (ROS) were upregulated. Thus, this study concludes that EAG could potentially serve as a therapeutic agent for leukemia.
Collapse
Affiliation(s)
- Beom Zoo Lee
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea,Chemland Co., Ltd., Gunpo IT Valley, Gunpo 15850, Republic of Korea
| | - Ik Soo Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chau Ha Pham
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea,Department of Microbiology and Molecular Biology, Chungnam National University (CNU), Daejeon 34134, Republic of Korea
| | - Soon-Kyu Jeong
- Chemland Co., Ltd., Gunpo IT Valley, Gunpo 15850, Republic of Korea
| | - Sulhae Lee
- Chemland Co., Ltd., Gunpo IT Valley, Gunpo 15850, Republic of Korea
| | - KwangWon Hong
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea,Corresponding authors K.W.H. Phone: +82-31-961-5140 Fax: +82-2-2260-3369 E-mail:
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea,H.M.Y. Phone: +82-42-868-5362 Fax: +82-42-868-5801 E-mail:
| |
Collapse
|
170
|
Guo Y, Sun H, Zhang D, Zhao Y, Shi M, Yang M, Xing S, Fu X, Bin T, Lu B, Wu S, Xu X, Xu X, Chen Y, Zhao ZJ. Development of a highly sensitive method for detection of FLT3D835Y. Biomark Res 2020; 8:30. [PMID: 32817792 PMCID: PMC7424998 DOI: 10.1186/s40364-020-00210-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/05/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a malignant hematological neoplasm of myeloid progenitor cells. Mutations of FLT3 in its tyrosine kinase domain (FLT3-TKD) are found in ~ 8% of patients with AML, with D835Y as the most common substitution. This mutation activates survival signals that drives the disease and is resistant to the first generation FLT3 inhibitors. Development of a highly sensitive method to detect FLT3D835Y is important to direct therapeutic options, predict prognosis, and monitor minimal residual disease in patients with AML. Methods and results In the present study, we developed a highly sensitive FLT3D835Y detection method by using the restriction fragment nested allele-specific PCR technique. The method consists of three steps: 1) initial amplification of DNA samples with PCR primers surrounding the FLT3D835Y mutation site, 2) digestion of the PCR products with restriction enzyme EcoRV that only cleaves the wild type allele, and 3) detection of FLT3D835Y by allele-specific PCR with nested primers. We were able to detect FLT3D835Y with a sensitivity of 0.001% by using purified plasmid DNAs and blood cell DNAs containing known proportions of FLT3D835Y. We analyzed blood cell DNA samples from 64 patients with AML and found six FLT3D835Y-positive cases, two of which could not be detected by conventional DNA sequencing methods. Importantly, the method was able to detect FLT3D835Y in a sample collected from a relapsed patient while the patient was in complete remission with negative MRD determined by flow cytometry. Therefore, our RFN-AS-PCR detected MRD after treatment that was missed by flow cytometry and Sanger DNA sequencing, by conventional methods. Conclusions We have developed a simple and highly sensitive method that will allow for detection of FLT3D835Y at a very low level. This method may have major clinical implications for treatment of AML.
Collapse
Affiliation(s)
- Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China.,Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK 73104 USA
| | - Honghua Sun
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China.,Clinical laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Mingxia Shi
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Hematology Research Center of Yunnan Province, Kunming, 650032 China
| | - Ming Yang
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012 China
| | - Shu Xing
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012 China
| | - Xueqi Fu
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012 China
| | - Ting Bin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Shunjie Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Xiaojun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China, Shenzhen, 518107 Guangdong China
| | - Xuesong Xu
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, Jilin, 130033 China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 Guangdong China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 451, Oklahoma City, OK 73104 USA
| |
Collapse
|
171
|
Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Sanchez-Correa B, Guerrero B, Bergua JM, Arcos MJ, Bañas H, Casas-Avilés I, Sanchez-Garcia J, Serrano J, Martin C, Duran E, Alonso C, Solana R, Tarazona R. Characterization of the DNAM-1, TIGIT and TACTILE Axis on Circulating NK, NKT-Like and T Cell Subsets in Patients with Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12082171. [PMID: 32764229 PMCID: PMC7464787 DOI: 10.3390/cancers12082171] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/25/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) remains a major clinical challenge due to poor overall survival, which is even more dramatic in elderly patients. TIGIT, an inhibitory receptor that interacts with CD155 and CD112 molecules, is considered as a checkpoint in T and NK cell activation. This receptor shares ligands with the co-stimulatory receptor DNAM-1 and with TACTILE. The aim of this work was to analyze the expression of DNAM-1, TIGIT and TACTILE in NK cells and T cell subsets in AML patients. Methods: We have studied 36 patients at the time of diagnosis of AML and 20 healthy volunteers. The expression of DNAM-1, TIGIT and TACTILE in NK cells and T cells, according to the expression of CD3 and CD56, was performed by flow cytometry. Results: NK cells, CD56− T cells and CD56+ T (NKT-like) cells from AML patients presented a reduced expression of DNAM-1 compared with healthy volunteers. An increased expression of TIGIT was observed in mainstream CD56− T cells. No differences were observed in the expression of TACTILE. Simplified presentation of incredibly complex evaluations (SPICE) analysis of the co-expression of DNAM-1, TIGIT and TACTILE showed an increase in NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE. Low percentages of DNAM-1−TIGIT+TACTILE+ NK cells and DNAM-1− TIGIT+TACTILE+ CD56− T cells were associated with a better survival of AML patients. Conclusions: The expression of DNAM-1 is reduced in NK cells and in CD4+ and CD8+ T cells from AML patients compared with those from healthy volunteers. An increased percentage of NK and T cells lacking DNAM-1 and co-expressing TIGIT and TACTILE is associated with patient survival, supporting the role of TIGIT as a novel candidate for checkpoint blockade.
Collapse
Affiliation(s)
- Isabel Valhondo
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Fakhri Hassouneh
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Nelson Lopez-Sejas
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Alejandra Pera
- Department of Immunolgy and Allergy, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain;
| | - Beatriz Sanchez-Correa
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Beatriz Guerrero
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| | - Juan M. Bergua
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Maria Jose Arcos
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Helena Bañas
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Ignacio Casas-Avilés
- Department of Hematology, Hospital San Pedro de Alcantara, 10003 Caceres, Spain; (J.M.B.); (M.J.A.); (H.B.); (I.C.-A.)
| | - Joaquin Sanchez-Garcia
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain; (J.S.-G.); (J.S.); (C.M.)
| | - Josefina Serrano
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain; (J.S.-G.); (J.S.); (C.M.)
| | - Carmen Martin
- Department of Hematology, Reina Sofia University Hospital, 14004 Córdoba, Spain; (J.S.-G.); (J.S.); (C.M.)
| | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, 10003 Cáceres, Spain;
| | - Corona Alonso
- Department of Immunolgy and Allergy, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Immunology and Allergology, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Correspondence: (C.A.); (R.S.); Tel.: +34-957-011-536 (C.A. & R.S.)
| | - Rafael Solana
- Department of Immunolgy and Allergy, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Immunology and Allergology, Reina Sofia University Hospital, 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Córdoba, Spain
- Correspondence: (C.A.); (R.S.); Tel.: +34-957-011-536 (C.A. & R.S.)
| | - Raquel Tarazona
- Immunology Unit, University of Extremadura, 10003 Cáceres, Spain; (I.V.); (F.H.); (N.L.-S.); (B.S.-C.); (B.G.); (R.T.)
| |
Collapse
|
172
|
Mirali S, Schimmer AD. The role of mitochondrial proteases in leukemic cells and leukemic stem cells. Stem Cells Transl Med 2020; 9:1481-1487. [PMID: 32761807 PMCID: PMC7695628 DOI: 10.1002/sctm.20-0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/13/2022] Open
Abstract
The biological function of most mitochondrial proteases has not been well characterized. Moreover, most of the available information on the normal function of these proteases has been derived from studies in model organisms. Recently, the mitochondrial proteases caseinolytic protease P (CLPP) and neurolysin (NLN) have been identified as therapeutic targets in acute myeloid leukemia (AML). Both proteases are overexpressed in approximately 40% of AML patients. Mechanistically, CLPP and NLN maintain the integrity of the mitochondrial respiratory chain: CLPP cleaves defective respiratory chain proteins, while NLN promotes the formation of respiratory chain supercomplexes. In this review, we highlight the functional consequences of inhibiting and activating mitochondrial proteases and discuss their potential as therapeutic targets in AML.
Collapse
Affiliation(s)
- Sara Mirali
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
173
|
Forgione MO, McClure BJ, Yeung DT, Eadie LN, White DL. MLLT10 rearranged acute leukemia: Incidence, prognosis, and possible therapeutic strategies. Genes Chromosomes Cancer 2020; 59:709-721. [PMID: 32720323 DOI: 10.1002/gcc.22887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/22/2022] Open
Abstract
Rearrangements of the MLLT10 gene occur in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), most commonly T-lineage ALL (T-ALL), in patients of all ages. MLLT10 rearranged (MLLT10r) acute leukemia presents a complex diagnostic and therapeutic challenge due to frequent presentation of immature or mixed phenotype, and a lack of consensus regarding optimal therapy. Cases of MLLT10r AML or T-ALL bearing immature phenotype are at high risk of poor outcome, but the underlying molecular mechanisms and sensitivity to targeted therapies remain poorly characterized. This review addresses the incidence and prognostic significance of MLLT10r in acute leukemia, and how the aberrant gene expression profile of this disease can inform potential targeted therapeutic strategies. Understanding the underlying genomics of MLLT10r acute leukemia, both clinically and molecularly, will improve prognostic stratification and accelerate the development of targeted therapeutic strategies, to improve patient outcomes.
Collapse
Affiliation(s)
- Michelle O Forgione
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Barbara J McClure
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - David T Yeung
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Department of Haematology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Laura N Eadie
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Deborah L White
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Faculty of Science, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia
- Australian Genomics Health Alliance (AGHA), The Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Australian and New Zealand Children's Oncology Group (ANZCHOG), Hudson Institute, Clayton, Victoria, Australia
| |
Collapse
|
174
|
Ruckert MT, Brouwers-Vos AZ, Nagano LFP, Schuringa JJ, Silveira VS. HUWE1 cooperates with RAS activation to control leukemia cell proliferation and human hematopoietic stem cells differentiation fate. Cancer Gene Ther 2020; 27:830-833. [PMID: 32647137 DOI: 10.1038/s41417-020-0198-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/02/2020] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is a poor prognosis hematopoietic malignance characterized by abnormal proliferation and differentiation of hematopoietic stem cells (HSCs). Although advances in treatment have greatly improved survival rates in young patients, in the elderly population, ~70% of patients present poor prognosis. A pan-cancer analysis on the TCGA cohort showed that AML has the second higher HUWE1 expression in tumor samples among all cancer types. In addition, pathway enrichment analysis pointed to RAS signaling cascade as one of the most important pathways associated to HUWE1 expression in this particular AML cohort. In silico analysis for biological processes enrichment also revealed that HUWE1 expression is correlated with 13 genes involved in myeloid differentiation. Therefore, to understand the role of HUWE1 in human hematopoietic stem and progenitor cells (HSPC) we constitutively expressed KRASG12V oncogene concomitantly to HUWE1 knockdown in stromal co-cultures. The results showed that, in the context of KRASG12V, HUWE1 significantly reduces cell cumulative growth and changes myeloid differentiation profile of HSPCs. Overall, these observations suggest that HUWE1 might contribute to leukemic cell proliferation and impact myeloid differentiation of human HSCs, thus providing new venues for RAS-driven leukemia targeted therapy approach.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annet Z Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Luis Fernando P Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
175
|
TRIB3 destabilizes tumor suppressor PPARα expression through ubiquitin-mediated proteasome degradation in acute myeloid leukemia. Life Sci 2020; 257:118021. [PMID: 32621919 DOI: 10.1016/j.lfs.2020.118021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
AIMS Tribbles homolog 3 (TRIB3) is emerging as a multifunctional oncoprotein associated with various cellular events in different tumors. However, the regulatory mechanism of TRIB3 in acute myeloid leukemia (AML) remains unknown. This study aims to investigate the molecular mechanisms and uncover the functions of TRIB3 in AML. METHODS Western blotting and quantitative real-time PCR were used to analyze the expression levels of TRIB3, peroxisome proliferator-activated receptor α (PPARα), apoptosis markers and autophagy markers in AML cells. Flow cytometry was used to assess cell apoptosis. The interaction of TRIB3 and PPARα was evaluated by immunofluorescence, coimmunoprecipitation, and in vivo ubiquitination assays. KEY FINDINGS We demonstrated that downregulating TRIB3 in leukemic cells effectively induced apoptosis and autophagy by regulating the degradation of PPARα. Mechanistically, TRIB3 interacted with PPARα and contributed to its destabilization by promoting its ubiquitination. When PPARα was activated by its specific agonist clofibrate, the apoptosis and autophagy of AML cells were significantly enhanced. These results were confirmed by rescue experiments. Blocking PPARα expression using the PPARα inhibitor GW6471 reversed the functional influence of TRIB3 on AML cells. SIGNIFICANCE The aim of this study is to provide evidence of the degradation of PPARα by TRIB3 via ubiquitin-dependent proteasomal degradation. This process meditates the progression of AML and prolongs the survival of leukemic cells. As a result, these data indicate that TRIB3 is a novel and promising therapeutic target for AML treatment.
Collapse
|
176
|
Yamashita M, Dellorusso PV, Olson OC, Passegué E. Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer 2020; 20:365-382. [PMID: 32415283 PMCID: PMC7658795 DOI: 10.1038/s41568-020-0260-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
Haematopoiesis is governed by haematopoietic stem cells (HSCs) that produce all lineages of blood and immune cells. The maintenance of blood homeostasis requires a dynamic response of HSCs to stress, and dysregulation of these adaptive-response mechanisms underlies the development of myeloid leukaemia. Leukaemogenesis often occurs in a stepwise manner, with genetic and epigenetic changes accumulating in pre-leukaemic HSCs prior to the emergence of leukaemic stem cells (LSCs) and the development of acute myeloid leukaemia. Clinical data have revealed the existence of age-related clonal haematopoiesis, or the asymptomatic clonal expansion of mutated blood cells in the elderly, and this phenomenon is connected to susceptibility to leukaemic transformation. Here we describe how selection for specific mutations that increase HSC competitive fitness, in conjunction with additional endogenous and environmental changes, drives leukaemic transformation. We review the ways in which LSCs take advantage of normal HSC properties to promote survival and expansion, thus underlying disease recurrence and resistance to conventional therapies, and we detail our current understanding of leukaemic 'stemness' regulation. Overall, we link the cellular and molecular mechanisms regulating HSC behaviour with the functional dysregulation of these mechanisms in myeloid leukaemia and discuss opportunities for targeting LSC-specific mechanisms for the prevention or cure of malignant diseases.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Paul V Dellorusso
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Oakley C Olson
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
177
|
Muhamad NA, Mohd Dali NS, Mohd Yacob A, Kassim MSA, Lodz NA, Abdul Wahid SF, Aris T. Effect and safety of gemtuzumab ozogamicin for the treatment of patients with acute myeloid leukaemia: a systematic review protocol. BMJ Open 2020; 10:e032503. [PMID: 32540885 PMCID: PMC7299015 DOI: 10.1136/bmjopen-2019-032503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Acute myeloid leukaemia (AML) is a type of cancer in which the bone marrow makes abnormal myeloblasts (a type of white blood cell), red blood cells or platelets. Gemtuzumab ozogamicin (GO) holds promise as a new agent that also could be efficacious in newly diagnosed AML with acceptable toxicity. This paper describes the design of a protocol to conduct a systematic review of published studies assessing GO for the treatment of AML. METHOD AND ANALYSIS We will conduct a systematic review of randomised controlled trials that investigate the effect and safety of GO for the treatment of patients with AML. We will search for any eligible articles from selected electronic databases. We will follow the Preferred Reporting Items for Systematic reviews and Meta-Analysis for study selection and reporting. We will use The Cochrane Handbook for Systematic Reviews of Interventions and Meta-Analysis as guidance to select eligible studies. All data will be extracted using a standardised data extraction form. ETHICS AND DISSEMINATION There was no patient involved in this study, therefore no ethical consideration is needed. The findings of this study will be disseminated in a peer-reviewed journal and any relevant conference presentation. PROSPERO REGISTRATION NUMBER CRD42019123286.
Collapse
Affiliation(s)
- Nor A Muhamad
- Sector for Evidence-Based, National Institutes of Health Malaysia, Shah Alam, Selangor, Malaysia
- Institute for Public Health, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Nor S Mohd Dali
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Aliza Mohd Yacob
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd S A Kassim
- Institute for Public Health, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - Noor A Lodz
- Institute for Public Health, National Institutes of Health, Shah Alam, Selangor, Malaysia
| | - S F Abdul Wahid
- Cell Therapy Centre, Pusat Perubatan Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Tahir Aris
- Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
178
|
Targeting Actomyosin Contractility Suppresses Malignant Phenotypes of Acute Myeloid Leukemia Cells. Int J Mol Sci 2020; 21:ijms21103460. [PMID: 32422910 PMCID: PMC7279019 DOI: 10.3390/ijms21103460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Actomyosin-mediated contractility is required for the majority of force-driven cellular events such as cell division, adhesion, and migration. Under pathological conditions, the role of actomyosin contractility in malignant phenotypes of various solid tumors has been extensively discussed, but the pathophysiological relevance in hematopoietic malignancies has yet to be elucidated. In this study, we found enhanced actomyosin contractility in diverse acute myeloid leukemia (AML) cell lines represented by highly expressed non-muscle myosin heavy chain A (NMIIA) and increased phosphorylation of the myosin regulatory light chain. Genetic and pharmacological inhibition of actomyosin contractility induced multivalent malignancy- suppressive effects in AML cells. In this context, perturbed actomyosin contractility enhances AML cell apoptosis through cytokinesis failure and aryl hydrocarbon receptor activation. Moreover, leukemic oncogenes were downregulated by the YAP/TAZ-mediated mechanotransduction pathway. Our results provide a theoretical background for targeting actomyosin contractility to suppress the malignancy of AML cells.
Collapse
|
179
|
The Influence of Methylating Mutations on Acute Myeloid Leukemia: Preliminary Analysis on 56 Patients. Diagnostics (Basel) 2020; 10:diagnostics10050263. [PMID: 32365516 PMCID: PMC7277399 DOI: 10.3390/diagnostics10050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this disease presents, several efforts have been made to better classify it and offer a tailored treatment to each subtype. This has been formally done by the World Health Organization (WHO) with the AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not currently included in the WHO AML classification, as in the case of some mutations that influence methylation. In this regard, the present study aimed to determine if some of the mutations that influence DNA methylation can be clustered together regarding methylation, expression, and clinical profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction, and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2, ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed from the analysis, thus including a total of 57 AML patients. We observed that regarding expression, methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high degree of similarity, indicating the equivalence that these mutations present between themselves. Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML. Moreover, when comparing the hypermethylating group with the hypomethylating one, we also observed important differences regarding expression, methylation, and clinical profile. In the current manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations and suggest that those should be clustered together in further classifications. The hypermethylating and hypomethylating groups formed above were shown to be different from each other considering overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript, we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents.
Collapse
|
180
|
Kristensen D, Nielsen LB, Roug AS, Kristensen TCC, El-Galaly TC, Nørgaard JM, Marcher CW, Schöllkopf C, Theilgaard-Mönch K, Severinsen MT. The prognostic effect of smoking status on intensively treated acute myeloid leukaemia - A Danish nationwide cohort study. Br J Haematol 2020; 190:236-243. [PMID: 32316076 PMCID: PMC7496881 DOI: 10.1111/bjh.16667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
With rising life expectancy, the importance of patient-related prognostic factors and how to integrate such data into clinical decision-making becomes increasingly important. The aim of this study was to evaluate the prognostic impact of smoking status in patients with acute myeloid leukaemia (AML) treated with intensive chemotherapy. We conducted a nationwide cohort study based on data obtained from the Danish National Leukaemia Registry (DNLR). The study comprised Danish patients aged 18-75 years, diagnosed with AML between 1 January 2000 and 31 December 2012. Medical records were reviewed and data on smoking status were collected. A total of 1040 patients (median age 59 years) were included, and 602 patients (58·9%) were categorised as ever-smokers and the remaining as never-smokers. Kaplan-Meier survival estimates revealed that ever-smokers had a significant shorter median overall survival (OS) at 17·2 months [95% CI (14·9;19·1)] compared to never-smokers at 24·5 months (95% CI [19·2;30·7]). Multivariate analysis revealed smoking status as a significant prognostic factor for inferior OS with a hazard ratio (HR) of 1·22 [95% CI (1·04;1·44)]. In conclusion, smoking status was found to be associated with inferior OS in intensively treated AML patients.
Collapse
Affiliation(s)
- Daniel Kristensen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Lars B Nielsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne S Roug
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Tarec C El-Galaly
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Jan M Nørgaard
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus W Marcher
- Department of Haematology, Odense University Hospital, Odense, Denmark
| | | | - Kim Theilgaard-Mönch
- Department of Haematology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | |
Collapse
|
181
|
Alves J, Dexheimer GM, Reckzigel L, Goettert M, Biolchi V, Abujamra AL. Changes in IDH2, TET2 and KDM2B Gene Expression After Treatment With Classic Chemotherapeutic Agents and Decitabine in Myelogenous Leukemia Cell Lines. J Hematol 2020; 8:89-101. [PMID: 32300452 PMCID: PMC7153660 DOI: 10.14740/jh531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 11/11/2022] Open
Abstract
Background Hematological malignancies are a heterogeneous group of tumors with increased proliferative and auto-replicative capacity. Despite treatment advances, post-treatment quality of life remains highly affected. Studies addressing the molecular mechanisms of these diseases are critical for the development of effective, rapid and selective therapies, since few therapeutic strategies succeed in being effective without triggering high-grade toxicities or debilitating late effects. Our aim of this study was to verify changes in the expression of genes involved in the malignant phenotype of hematological malignancies, by treating human cell lines in vitro with classic chemotherapeutic agents and the demethylating agent, decitabine. Methods KASUMI-1 and K-562 human myeloid leukemia cell lines were plated at a density of 3 × 104 cells/well and treated with increasing concentrations of different chemotherapeutic agents commonly used in the clinical setting. After 24 and 48 h of treatment, cell viability was tested, and RNA was extracted. Complementary DNA (cDNA) was synthesized and quantitative real-time polymerase chain reaction (qPCR) was performed to evaluate the gene expression of IDH2, TET2 and KDM2B. Results A modulation in gene expression was observed before and after treatment with classic chemotherapeutic agents. It was possible to demonstrate a difference in gene expression when cells were treated with chemotherapeutic agents or decitabine alone when compared to chemotherapeutic agents in association with decitabine. Conclusions The genes tested, and the modulation of their expression during in vitro treatments suggest that IDH2, TET2, and KDM2B should be further investigated as potential biomarkers for ongoing treatment response and follow-up for patients diagnosed with hematological malignancies of the myeloid lineage.
Collapse
Affiliation(s)
- Jayse Alves
- Graduate Program in Biotechnology, Univates, Lajeado, R.S., 95914-014, Brazil
| | | | - Laura Reckzigel
- Biological and Health Sciences Center, Univates, Lajeado, R.S., 95914-014, Brazil
| | - Marcia Goettert
- Graduate Program in Biotechnology, Univates, Lajeado, R.S., 95914-014, Brazil
| | - Vanderlei Biolchi
- Biological and Health Sciences Center, Univates, Lajeado, R.S., 95914-014, Brazil
| | - Ana Lucia Abujamra
- Graduate Program in Biotechnology, Univates, Lajeado, R.S., 95914-014, Brazil
| |
Collapse
|
182
|
Zhang Y, Xiao L. Identification and validation of a prognostic 8-gene signature for acute myeloid leukemia. Leuk Lymphoma 2020; 61:1981-1988. [PMID: 32268820 DOI: 10.1080/10428194.2020.1742898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the present study, we aimed to identify some genes closely related to AML prognosis and investigate their potential roles. RNA-seq data of AML samples were accessed from the TCGA database and then analyzed in the Wilcox test. AML survival-related genes were selected and an 8-gene signature-based risk score model was in turn constructed (including TET3, S100A4, BATF, CLEC11A, PTP4A3, SPATS2L, SDHA, and ATOX1 8 feature genes) using the multivariate Cox regression analysis. Kaplan-Meier analysis was performed on the 8 genes in the training set (p = 2.826e - 11) and the test set (p = 2.213e - 2), and there was a remarkable difference in survival between the high and low-risk samples. Meanwhile, ROC analysis was conducted and revealed the relative higher accuracy of the risk score model applied in both the training set (1-year AUC = 0.864; 3-year AUC = 0.85) and test set (1-year AUC = 0.685; 3-year AUC = 0.678). Our study helps to extend our knowledge of the potential methods for AML prognosis.HighlightsA prognostic 8-gene (including TET3, CLEC11A, ATOX1, S100A4, BATF, PTP4A3, SPATS2L and SDHA 8) signature for acute myeloid leukemia (AML) was identified and validated.The influence of the expression of single gene in the model on the survival risk of AML patients was confirmed and the risk rate of 8 single-gene was compared.
Collapse
Affiliation(s)
- Yanli Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Longyan Xiao
- Department of Hematology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
183
|
Mishra P, Agrawal N, Bhurani D, Agarwal NB. Invasive Fungal Infections in Patients with Acute Myeloid Leukemia Undergoing Intensive Chemotherapy. Indian J Hematol Blood Transfus 2020; 36:64-70. [PMID: 32174692 DOI: 10.1007/s12288-019-01165-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023] Open
Abstract
Patients with hematological malignancies are severely immunocompromised and are at high risk of invasive fungal infection (IFI), particularly those undergoing remission-induction chemotherapy for acute myeloid leukemia (AML). IFIs are a major cause of morbidity and mortality in such patients. We planned to study the incidence of IFI in patients with AML undergoing intensive chemotherapy and receiving antifungal prophylaxis. We retrospectively reviewed consecutive 46 patients with non-M3 AML, who received induction chemotherapy and systemic antifungal prophylaxis. None of the patients had IFI at the time of initiation of the chemotherapy. Patients were monitored for the occurrence of IFI using high-resolution computerized tomography of the chest or para-nasal sinus and test for galactomannan antigen on serum or broncho-alveolar lavage and were followed up for 90 days. Of the 46 patients on intensive chemotherapies, 41, 4 and 1 patients were started on posaconazole, amphotericin B and voriconazole prophylaxis, respectively. The occurrence of possible and probable IFI was observed in 16 and 4 patients respectively, in which 19 patients were on posaconazole and 1 patient was on amphotericin-B prophylaxis. Overall mortality in the study population was 11 (23.9%). Four out of 20 patients died with IFI but none of the death was attributable to IFI. IFI still remains a significant cause of morbidity and mortality in patients with AML despite universal use of antifungal prophylaxis. With effective pharmacotherapy, the mortality due to IFI is preventable. Appropriate antifungal prophylaxis strategy still needs to be developed through larger and prospective studies.
Collapse
Affiliation(s)
- Pinki Mishra
- 1Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Narendra Agrawal
- 2Department of Hemato-Oncology and Bone Marrow Transplant, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India
| | - Dinesh Bhurani
- 2Department of Hemato-Oncology and Bone Marrow Transplant, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India
| | - Nidhi Bharal Agarwal
- 1Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
184
|
Zhang X, Xu Y, Wang J, Zhao S, Li J, Huang X, Xu H, Zhang X, Suo S, Lv Y, Zhang Y, Yu W. miR-221-3p Delivered by BMMSC-Derived Microvesicles Promotes the Development of Acute Myelocytic Leukemia. Front Bioeng Biotechnol 2020; 8:81. [PMID: 32117949 PMCID: PMC7033425 DOI: 10.3389/fbioe.2020.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The study aims to investigate the effects of miR-221-3p in bone marrow mesenchymal stem cell (BMMSC)-derived microvesicles (MVs) on cell cycle, proliferation and invasion of acute myelocytic leukemia (AML). Methods: Bioinformatics was used to predict differentially expressed miRNAs (DEmiRNAs) in AML. The morphology of BMMSC-derived MVs was observed under an electron microscope, and the positional relation of MVs and OCI-AML2 cells was observed by a fluorescence microscope. MTT, Transwell, and flow cytometry assays were used to analyze the effects of MVs on OCI-AML2 cells. The targeted relationship between miR-221-3p and CDKN1C was detected by dual luciferase assay. Results: It was verified that miR-221-3p promoted the proliferation, invasion and migration of OCI-AML2 cells, and induced the cell cycle arrest in G1/S phase as well as inhibited cell apoptosis. Further studies showed that MVs promoted the proliferation, migration and invasion of AML, and induced the cell cycle arrest in G1/S phase through miR-221-3p. It was confirmed that miR-221-3p can directly target CDKN1C to regulate cell cycle, proliferation and invasion of AML. Conclusion: miR-221-3p in BMMSC-derived MVs regulated AML cell cycle, cell proliferation and invasion through targeting CDKN1C. miR-221-3p and CDKN1C were considered to be potential targets and biomarkers for the treatment of AML in clinic.
Collapse
Affiliation(s)
- Xuewu Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yu Xu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Shuqi Zhao
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Jianhu Li
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xin Huang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Huan Xu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Shanshan Suo
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yi Zhang
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| |
Collapse
|
185
|
Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The Unfolded Protein Response: A Novel Therapeutic Target in Acute Leukemias. Cancers (Basel) 2020; 12:cancers12020333. [PMID: 32024211 PMCID: PMC7072709 DOI: 10.3390/cancers12020333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.
Collapse
Affiliation(s)
- Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-209-1580
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, Italy; (F.C.); (C.E.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - James A. McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| |
Collapse
|
186
|
Elgamal OA, Mehmood A, Jeon JY, Carmichael B, Lehman A, Orwick SJ, Truxall J, Goettl VM, Wasmuth R, Tran M, Mitchell S, Lapalombella R, Eathiraj S, Schwartz B, Stegmaier K, Baker SD, Hertlein E, Byrd JC. Preclinical efficacy for a novel tyrosine kinase inhibitor, ArQule 531 against acute myeloid leukemia. J Hematol Oncol 2020; 13:8. [PMID: 31992353 PMCID: PMC6988309 DOI: 10.1186/s13045-019-0821-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is the most common type of adult leukemia. Several studies have demonstrated that oncogenesis in AML is enhanced by kinase signaling pathways such as Src family kinases (SFK) including Src and Lyn, spleen tyrosine kinase (SYK), and bruton's tyrosine kinase (BTK). Recently, the multi-kinase inhibitor ArQule 531 (ARQ 531) has demonstrated potent inhibition of SFK and BTK that translated to improved pre-clinical in vivo activity as compared with the irreversible BTK inhibitor ibrutinib in chronic lymphocytic leukemia (CLL) models. Given the superior activity of ARQ 531 in CLL, and recognition that this molecule has a broad kinase inhibition profile, we pursued its application in pre-clinical models of AML. METHODS The potency of ARQ 531 was examined in vitro using FLT3 wild type and mutated (ITD) AML cell lines and primary samples. The modulation of pro-survival kinases following ARQ 531 treatment was determined using AML cell lines. The effect of SYK expression on ARQ 531 potency was evaluated using a SYK overexpressing cell line (Ba/F3 murine cells) constitutively expressing FLT3-ITD. Finally, the in vivo activity of ARQ 531 was evaluated using MOLM-13 disseminated xenograft model. RESULTS Our data demonstrate that ARQ 531 treatment has anti-proliferative activity in vitro and impairs colony formation in AML cell lines and primary AML cells independent of the presence of a FLT3 ITD mutation. We demonstrate decreased phosphorylation of oncogenic kinases targeted by ARQ 531, including SFK (Tyr416), BTK, and fms-related tyrosine kinase 3 (FLT3), ultimately leading to changes in down-stream targets including SYK, STAT5a, and ERK1/2. Based upon in vitro drug synergy data, we examined ARQ 531 in the MOLM-13 AML xenograft model alone and in combination with venetoclax. Despite ARQ 531 having a less favorable pharmacokinetics profile in rodents, we demonstrate modest single agent in vivo activity and synergy with venetoclax. CONCLUSIONS Our data support consideration of the application of ARQ 531 in combination trials for AML targeting higher drug concentrations in vivo.
Collapse
Affiliation(s)
- Ola A Elgamal
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Abeera Mehmood
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jae Yoon Jeon
- Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Bridget Carmichael
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Amy Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Shelley J Orwick
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jean Truxall
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ronni Wasmuth
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Minh Tran
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Shaneice Mitchell
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA
| | | | | | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston Children's Hospital, Boston, MA, USA
| | - Sharyn D Baker
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA.,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA
| | - Erin Hertlein
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA.
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, 455 Wiseman Hall, 400 West 12th Avenue, Columbus, OH, 43210, USA. .,Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
187
|
Pagel JM, Othus M, Garcia-Manero G, Fang M, Radich JP, Rizzieri DA, Marcucci G, Strickland SA, Litzow MR, Savoie ML, Spellman SR, Confer DL, Chell JW, Brown M, Medeiros BC, Sekeres MA, Lin TL, Uy GL, Powell BL, Bayer RL, Larson RA, Stone RM, Claxton D, Essell J, Luger SM, Mohan SR, Moseley A, Erba HP, Appelbaum FR. Rapid Donor Identification Improves Survival in High-Risk First-Remission Patients With Acute Myeloid Leukemia. JCO Oncol Pract 2020; 16:e464-e475. [PMID: 32048933 DOI: 10.1200/jop.19.00133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Patients with acute myeloid leukemia with high-risk cytogenetics in first complete remission (CR1) achieve better outcomes if they undergo allogeneic hematopoietic cell transplantation (HCT) compared with consolidation chemotherapy alone. However, only approximately 40% of such patients typically proceed to HCT. METHODS We used a prospective organized approach to rapidly identify donors to improve the allogeneic HCT rate in adults with high-risk acute myeloid leukemia in CR1. Newly diagnosed patients had cytogenetics obtained at enrollment, and those with high-risk cytogenetics underwent expedited HLA typing and were encouraged to be referred for consultation with a transplantation team with the goal of conducting an allogeneic HCT in CR1. RESULTS Of 738 eligible patients (median age, 49 years; range, 18-60 years of age), 159 (22%) had high-risk cytogenetics and 107 of these patients (67%) achieved CR1. Seventy (65%) of the high-risk patients underwent transplantation in CR1 (P < .001 compared with the historical rate of 40%). Median time to HCT from CR1 was 77 days (range, 20-356 days). In landmark analysis, overall survival (OS) among patients who underwent transplantation was significantly better compared with that of patients who did not undergo transplantation (2-year OS, 48% v 35%, respectively [P = .031]). Median relapse-free survival after transplantation in the high-risk cohort who underwent transplantation in CR1 (n = 70) was 11.5 months (range, 4-47 months), and median OS after transplantation was 14 months (range, 4-44 months). CONCLUSION Early cytogenetic testing with an organized effort to identify a suitable allogeneic HCT donor led to a CR1 transplantation rate of 65% in the high-risk group, which, in turn, led to an improvement in OS when compared with the OS of patients who did not undergo transplantation.
Collapse
Affiliation(s)
| | - Megan Othus
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Min Fang
- Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | | | | | | | | | | | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | - Dennis L Confer
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN.,National Marrow Donor Program, Minneapolis, MN
| | - Jeffrey W Chell
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN.,National Marrow Donor Program, Minneapolis, MN
| | - Maria Brown
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN
| | | | | | | | - Geoffrey L Uy
- Washington University School of Medicine, St Louis, MO
| | - Bayard L Powell
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - Ruthee-Lu Bayer
- Monter Cancer Center, Northwell Health System, Lake Success, NY
| | | | | | - David Claxton
- Pennsylvania State Milton S. Hershey Medical Center, Hershey, PA
| | | | - Selina M Luger
- University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA
| | | | | | | | | |
Collapse
|
188
|
Ha YN, Song S, Orlikova-Boyer B, Cerella C, Christov C, Kijjoa A, Diederich M. Petromurin C Induces Protective Autophagy and Apoptosis in FLT3-ITD-Positive AML: Synergy with Gilteritinib. Mar Drugs 2020; 18:md18010057. [PMID: 31963113 PMCID: PMC7024157 DOI: 10.3390/md18010057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) remains inefficient due to drug resistance and relapse, particularly in patients with FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD). Marine-derived natural products have recently been used for drug development against AML. We show in this study that petromurin C, which was isolated from the culture extract of the marine-derived fungus Aspergillus candidus KUFA0062, isolated from the marine sponge Epipolasis sp., induces early autophagy followed by apoptotic cell death via activation of the intrinsic cell death pathway concomitant with mitochondrial stress and downregulation of Mcl-1 in FLT3-ITD mutated MV4-11 cells. Moreover, petromurin C synergized with the clinically-used FLT3 inhibitor gilteritinib at sub-toxic concentrations. Altogether, our results provide preliminary indications that petromurin C provides anti-leukemic effects alone or in combination with gilteritinib.
Collapse
MESH Headings
- Aniline Compounds/administration & dosage
- Aniline Compounds/pharmacology
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Aquatic Organisms/chemistry
- Autophagy/drug effects
- Biological Products/administration & dosage
- Biological Products/pharmacology
- Cell Line, Tumor
- Down-Regulation/drug effects
- Drug Resistance, Neoplasm
- Drug Synergism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Pyrazines/administration & dosage
- Pyrazines/pharmacology
- Signal Transduction/drug effects
- U937 Cells
- Zebrafish
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- You Na Ha
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
| | - Sungmi Song
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
| | - Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; (B.O.-B.); (C.C.)
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg; (B.O.-B.); (C.C.)
| | - Christo Christov
- Service d’Histologie, Faculté de Médicine, Université de Lorraine, INSERM U1256 NGERE, 54000 Nancy, France;
| | - Anake Kijjoa
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros do Porto de Lexões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Korea; (Y.N.H.); (S.S.)
- Correspondence: ; Tel.: +82-2-880-8919
| |
Collapse
|
189
|
Zhang YM, Zhang Y, Ni X, Gao L, Qiu HY, Zhang YS, Tang GS, Chen J, Zhang WP, Wang JM, Yang JM, Hu XX. [Effect of consolidation before allogeneic hematopoietic stem cell transplantation for non-favorable acute myeloid leukemia patients with first complete remisson and negative minimal residual disease]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:16-22. [PMID: 32023749 PMCID: PMC7357906 DOI: 10.3760/cma.j.issn.0253-2727.2020.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/23/2022]
Abstract
Objective: To probe the prognostic value of consolidation chemotherapy in non-favorable acute myeloid leukemia (AML) patients who were candidates for allogeneic hematopoietic stem cell transplantation (allo-HSCT) with first complete remission (CR(1)) and negative minimal residual disease (MRD(-)) . Methods: A retrospective analysis was conducted on 155 patients with non-favorable AML who received allo-HSCT in CR(1)/MRD(-) from January 2010 to March 2019. The survival data were compared between patients who received and those not received pre-transplant consolidation chemotherapy. Results: A total of 102 patients received pre-transplant consolidation chemotherapy (consolidation group) , and 53 cases directly proceeded to allo-HSCT when CR(1)/MRD(-) was achieved (nonconsolidation group) . The median ages were 39 (18-56) years old and 38 (19-67) years old, respectively. Five-year post-transplant overall survival [ (59.3±7.5) % vs (62.2±6.9) %, P=0.919] and relapse-free survival [ (53.0±8.9) % vs (61.6±7.0) %, P=0.936] were not significantly different between the two groups (consolidation vs nonconsolidation) . There was a weak relationship between consolidation therapy and cumulative incidence of relapse [consolidation: (21.9±5.4) % vs nonconsolidation: (18.3±6.0) %, P=0.942], as well as non-relapse mortality [consolidation: (22.4±4.3) % vs nonconsolidation: (28.4±6.5) %,P=0.464]. Multivariate analysis indicated that pre-transplant consolidation and the consolidation courses (< 2 vs ≥2 courses) did not have an impact on allo-HSCT outcomes. Conclusion: Allo-HSCT for candidate patients without further consolidation when CR(1)/MRD(-) was attained was feasible.
Collapse
Affiliation(s)
- Y M Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - Y Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - X Ni
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - L Gao
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - H Y Qiu
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - Y S Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - G S Tang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - J Chen
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - W P Zhang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - J M Wang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - J M Yang
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| | - X X Hu
- Department of Hematology, Changhai Hospital, the Naval Medical University; Institute of Hematologic Disease of Chinese PLA, Shanghai 200433, China
| |
Collapse
|
190
|
CDK2 suppression synergizes with all-trans-retinoic acid to overcome the myeloid differentiation blockade of AML cells. Pharmacol Res 2020; 151:104545. [DOI: 10.1016/j.phrs.2019.104545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/03/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
|
191
|
Liu J, Zhu Z, Liu Y, Wei L, Li B, Mao F, Zhang J, Wang Y, Liu Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci 2019; 242:117228. [PMID: 31881227 DOI: 10.1016/j.lfs.2019.117228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
AIMS Berberine (BBR) is reported to induce apoptosis and inhibit migration of leukemic cells, but the underlying pharmacological mechanisms have not been fully revealed. This study aims to investigate the possible mechanisms from the perspective of autophagy. MAIN METHODS P-53-null leukemic cell lines Jurkat and U937 were used for the in vitro study. MDC staining was used for observation of autophagy in leukemic cells, and Western blot analysis was for determination of the expression levels of autophagy-associated proteins. Apoptosis of the leukemic cells was detected by flow cytometry. Cellular location of MDM2 was observed with immunofluorescence staining. Ubiquitination of MDM2 was assessed by immunoprecipitation. Male 6-8-week-old NOD/SCID mice were used for evaluating the effect of BBR on chemotherapy sensitivity in vivo. KEY FINDINGS BBR induced autophagy in p53-null leukemic cells, which was inhibited by autophagy inhibitors 3-methyladenine. 3-methyladenine also inhibited BBR-induced apoptosis in leukemic cells. In addition, BBR not only decreased MDM2 mRNA expression, but also enhanced MDM2 self-ubiquitination in leukemic cells. Forced overexpression of MDM2 reversed the effect of BBR on autophagy and apoptosis. Furthermore, BBR promoted doxorubicin-induced autophagy and cell death in the leukemic cells and overexpression of MDM2 suppressed these effects. In vivo, BBR combined with doxorubicin achieved better therapeutic effect than doxorubicin alone. SIGNIFICANCE MDM2 inhibits autophagy and apoptosis in leukemic cells in a p53-independent manner. BBR induces autophagy in p53-null leukemic cells through downregulating MDM2 expression at both transcriptional and post-transcriptional levels, which may contribute to the anti-cancer effect of BBR in leukemia.
Collapse
Affiliation(s)
- Jian Liu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhenjing Zhu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yueyao Liu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Linlin Wei
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Bai Li
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Fengxia Mao
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ju Zhang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yingchao Wang
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
192
|
Gado MM, Mousa NO, Badawy MA, El Taweel MA, Osman A. Assessment of the Diagnostic Potential of miR-29a-3p and miR-92a-3p as Circulatory Biomarkers in Acute Myeloid Leukemia. Asian Pac J Cancer Prev 2019; 20:3625-3633. [PMID: 31870103 PMCID: PMC7173384 DOI: 10.31557/apjcp.2019.20.12.3625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Acute myeloid leukemia (AML) is a set of Myeloproliferative neoplasms that are identified by excessive growth of myeloid blasts and production of abnormal blood cells. AML is the most common type of acute leukemia that occurs in adults. In addition, AML progresses rapidly and is considered a fatal disease. Thus, there is an urgent need to find new targets for molecularly designed therapies. In This study, we evaluated the circulatory levels of microRNA-29a-3p (miR-29a-3p) and miR-92a-3p beside exploring the expression pattern of their target gene myeloid cell leukemia sequence1 (MCL1) to investigate the role of these molecules in AML pathophysiology and to assess their ability to diagnose AML patients. Methods: 40 adult AML patients along with 20 healthy subjects were enrolled in this study. Plasma were separated from venous blood samples, collected on EDTA, of all individuals were used to assess circulating miRNAs’ levels. In the meantime, total RNA was extracted from isolated leukocytes and was used to quantify target mRNA transcript levels. Results: Our data revealed that the circulating levels of miR-29a-3p and miR-92a-3p exhibited significant reduction in 90% and 100% of AML patients, respectively, when compared to the control group (p<0.001). On the other hand, the transcript level of the target gene of these miRNAs, MCL1, showed a sharp increase in 77.5% (p<0.001) of AML patients, along with a negative correlation with its regulatory miRNAs, miR-29a-3p and miR-92a-3p. Conclusion: Our data validates the negative regulatory role of miR-29a-3p and miR-92a-3p to the expression levels of MCL1 in peripheral blood and indicates that these miRNAs can be used as non-invasive diagnostic markers. Furthermore, our study highlights the therapeutic potential of miR-29a-3p and miR-92a-3p to target and downregulate a very important gene (MCL1), which is highly implicated in the pathogenesis of AML.
Collapse
Affiliation(s)
- Marwa M Gado
- Biotechnology/Biomolecular Chemistry program, Chemistry Department, faculty of Science, Cairo University, Giza, Egypt
| | - Nahla O Mousa
- Biotechnology/Biomolecular Chemistry program, Chemistry Department, faculty of Science, Cairo University, Giza, Egypt.,Biotechnology Program, Biology Department, The American University in Cairo, Cairo, Egypt
| | - M A Badawy
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Maha A El Taweel
- Clinical Pathology Department, National Cancer institute, Cairo university, Giza, Egypt
| | - Ahmed Osman
- 5Biochemistry Department, faculty of science, Ain Shams university, Abbasyia, Cairo, Egypt.,Biotechnology Program, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab, Alexandria, Egypt
| |
Collapse
|
193
|
Richardson DR, Foster MC, Coombs CC, Zeidner JF. Advances in Genomic Profiling and Risk Stratification in Acute Myeloid Leukemia. Semin Oncol Nurs 2019; 35:150957. [PMID: 31759819 PMCID: PMC10246438 DOI: 10.1016/j.soncn.2019.150957] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To review the current state of molecular and genetic profiling of acute myeloid leukemia (AML) and its implications. DATA SOURCE Peer-reviewed journal articles. CONCLUSION Significant advances in the understanding of the pathology of acute myeloid leukemia have led to refined risk stratification of patients and application of novel targeted therapies based on genetic profiles. Minimal residual disease testing allows for highly sensitive disease surveillance that can be used to predict relapse and assess treatment response. IMPLICATIONS FOR NURSING PRACTICE Accurate prognostication and therapeutic decision-making for patients with acute myeloid leukemia is dependent on molecular profiling. Being knowledgeable of the implications of minimal residual disease testing is critical for patient-centered care.
Collapse
Affiliation(s)
- Daniel R Richardson
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC; The Cecil G. Sheps Center for Health Services Research, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Matthew C Foster
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Catherine C Coombs
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Joshua F Zeidner
- UNC Lineberger Comprehensive Cancer Center, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
194
|
Dorman HR, Close D, Wingert BM, Camacho CJ, Johnston PA, Smithgall TE. Discovery of Non-peptide Small Molecule Allosteric Modulators of the Src-family Kinase, Hck. Front Chem 2019; 7:822. [PMID: 31850311 PMCID: PMC6893557 DOI: 10.3389/fchem.2019.00822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/12/2019] [Indexed: 01/18/2023] Open
Abstract
The eight mammalian Src-family tyrosine kinases are dynamic, multi-domain structures, which adopt distinct “open” and “closed” conformations. In the closed conformation, the regulatory SH3 and SH2 domains pack against the back of the kinase domain, providing allosteric control of kinase activity. Small molecule ligands that engage the regulatory SH3-SH2 region have the potential to modulate Src-family kinase activity for therapeutic advantage. Here we describe an HTS-compatible fluorescence polarization assay to identify small molecules that interact with the unique-SH3-SH2-linker (U32L) region of Hck, a Src-family member expressed exclusively in cells of myeloid lineage. Hck has significant potential as a drug target in acute myeloid leukemia, an aggressive form of cancer with substantial unmet clinical need. The assay combines recombinant Hck U32L protein with a fluorescent probe peptide that binds to the SH3 domain in U32L, resulting in an increased FP signal. Library compounds that interact with the U32L protein and interfere with probe binding reduce the FP signal, scoring as hits. Automated 384-well high-throughput screening of 60,000 compounds yielded Z'-factor coefficients > 0.7 across nearly 200 assay plates, and identified a series of hit compounds with a shared pyrimidine diamine substructure. Surface plasmon resonance assays confirmed direct binding of hit compounds to the Hck U32L target protein as well as near-full-length Hck. Binding was not observed with the individual SH3 and SH2 domains, demonstrating that these compounds recognize a specific three-dimensional conformation of the regulatory regions. This conclusion is supported by computational docking studies, which predict ligand contacts with a pocket formed by the juxtaposition of the SH3 domain, the SH3-SH2 domain connector, and the SH2-kinase linker. Each of the four validated hits stimulated recombinant, near-full-length Hck activity in vitro, providing evidence for allosteric effects on the kinase domain. These results provide a path to discovery and development of chemical scaffolds to target the regulatory regions of Hck and other Src family kinases as a new approach to pharmacological kinase control.
Collapse
Affiliation(s)
- Heather R Dorman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David Close
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Bentley M Wingert
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, United States
| | - Thomas E Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
195
|
Zhi Y, Wang Z, Yao C, Li B, Heng H, Cai J, Xiang L, Wang Y, Lu T, Lu S. Design and Synthesis of 4-(Heterocyclic Substituted Amino)-1 H-Pyrazole-3-Carboxamide Derivatives and Their Potent Activity against Acute Myeloid Leukemia (AML). Int J Mol Sci 2019; 20:ijms20225739. [PMID: 31731727 PMCID: PMC6887723 DOI: 10.3390/ijms20225739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/20/2023] Open
Abstract
Fms-like receptor tyrosine kinase 3 (FLT3) has been emerging as an attractive target for the treatment of acute myeloid leukemia (AML). By modifying the structure of FN-1501, a potent FLT3 inhibitor, 24 novel 1H-pyrazole-3-carboxamide derivatives were designed and synthesized. Compound 8t showed strong activity against FLT3 (IC50: 0.089 nM) and CDK2/4 (IC50: 0.719/0.770 nM), which is more efficient than FN-1501(FLT3, IC50: 2.33 nM; CDK2/4, IC50: 1.02/0.39 nM). Compound 8t also showed excellent inhibitory activity against a variety of FLT3 mutants (IC50 < 5 nM), and potent anti-proliferative effect within the nanomolar range on acute myeloid leukemia (MV4-11, IC50: 1.22 nM). In addition, compound 8t significantly inhibited the proliferation of most human cell lines of NCI60 (GI50 < 1 μM for most cell lines). Taken together, these results demonstrated the potential of 8t as a novel compound for further development into a kinase inhibitor applied in cancer therapeutics.
Collapse
Affiliation(s)
- Yanle Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China;
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China;
- Collaborative Innovation Center for Respiratory Disease Diagnosis, Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhijie Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Chao Yao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Baoquan Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Hao Heng
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Jiongheng Cai
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Li Xiang
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China;
| | - Yue Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
- Correspondence: (T.L.); (S.L.); Tel.: +86-25-83271555 (T.L.); +86-25-86185153 (S.L.)
| | - Shuai Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; (Z.W.); (C.Y.); (B.L.); (H.H.); (J.C.); (Y.W.)
- Correspondence: (T.L.); (S.L.); Tel.: +86-25-83271555 (T.L.); +86-25-86185153 (S.L.)
| |
Collapse
|
196
|
Soleymannejad M, Sheikhha MH, Neamatzadeh H. Association of Mouse Double Minute 2 -309T>G Polymorphism with Acute Myeloid Leukemia in an Iranian Population: A Case- Control Study. Asian Pac J Cancer Prev 2019; 20:3037-3041. [PMID: 31653152 PMCID: PMC6982679 DOI: 10.31557/apjcp.2019.20.10.3037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Genetic factors play a substantial role in acute myeloid leukemia (AML) etiology. Overexpression of the mousedouble minute 2 (MDM2) gene has been explored in many tumors. However, the role of MDM2 -309T>G (rs2279744) polymorphism in AML remains unclear. We have performed this study to examine the association of MDM2 -309T>G with AML in an Iranian population. Methods: We have examined the association of N MDM2 -309T>G polymorphism in 73 cases diagnosed with AML and 80 healthy controls by tetra-primer amplification refractory mutation system (ARMS) PCR assay. Odds ratios (OR) and 95% confidence intervals (CI) were calculated on the risk genotypes and alleles. Results: The TT, GG and GG genotypes of MDM2 -309T>G polymorphism in patients were 32.9%, 23.2% and 43.9%, while in controls were 86.2%, 7.5% and 6.3%, respectively. Moreover, Frequency of mutant allele (G) was 55.6% in cases with AML and 10.0% in controls. The mutant homozygote genotype (GG) was associated with an increased susceptibility to AML (OR 1.471; 95% CI: 1.062-1.844; p=0.004). Conclusion: Our results showed that the MDM2 -309T>G polymorphism was significantly associated with increased risk of AML in the Iranian population. Thus, the MDM2 -309T>G polymorphism might be useful genetic susceptibility factors in the pathogenesis of AML.
Collapse
Affiliation(s)
- Mona Soleymannejad
- Department of Biology, Ashkezar Branch, Islamic Azad University, Yazd, Iran
| | | | - Hossein Neamatzadeh
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
197
|
Konuma T, Kondo T, Mizuno S, Doki N, Aoki J, Fukuda T, Tanaka M, Sawa M, Katayama Y, Uchida N, Ozawa Y, Morishige S, Matsuoka KI, Ichinohe T, Onizuka M, Kanda J, Atsuta Y, Yanada M. Conditioning Intensity for Allogeneic Hematopoietic Cell Transplantation in Acute Myeloid Leukemia Patients with Poor-Prognosis Cytogenetics in First Complete Remission. Biol Blood Marrow Transplant 2019; 26:463-471. [PMID: 31562960 DOI: 10.1016/j.bbmt.2019.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
The optimal intensity of conditioning regimen may be dependent on not only age and comorbidities but also disease characteristics and risk of relapse after allogeneic hematopoietic cell transplantation (HCT). We, therefore, analyzed the transplant outcomes of 840 adult patients with cytogenetically poor-risk acute myeloid leukemia (AML) in first complete remission (CR1) who received first allogeneic HCT with either myeloablative conditioning (MAC; n = 652) or reduced-intensity conditioning (RIC; n = 188) between 2006 and 2017. The median age at HCT was 50.5 years (range: 16 to 77 years). The multivariate analysis showed that patients receiving MAC had a significantly higher overall survival and lower leukemia-related mortality than those receiving RIC (P = .011 and P = .025, respectively). In the subgroup analysis, these results applied to patients aged 16 to 59 years, with HCT-comorbidity index scores ≥3, and with cytogenetic remission. Among MAC regimens, there was a trend for worse survival and nonrelapse mortality with the busulfan/fludarabine-based regimen compared with the total body irradiation (TBI) ≥8 Gy-based regimen (P = .082 and P = .062, respectively), whereas the busulfan/cyclophosphamide-based regimen and the fludarabine/melphalan-based regimen had similar outcomes with the TBI-based regimen. These data suggest that MAC is preferable to RIC for patients with cytogenetically poor-risk AML undergoing allogeneic HCT in CR1.
Collapse
Affiliation(s)
- Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Jun Aoki
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Masashi Sawa
- Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan
| | - Yuta Katayama
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Naoyuki Uchida
- Department of Hematology, Toranomon Hospital, Tokyo, Japan
| | - Yukiyasu Ozawa
- Department of Hematology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi, Japan
| | - Satoshi Morishige
- Division of Hematology and Oncology, Kurume University School of Medicine, Kurume, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Makoto Onizuka
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan; Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, Nagoya, Japan
| | | |
Collapse
|
198
|
Barbosa K, Li S, Adams PD, Deshpande AJ. The role of TP53 in acute myeloid leukemia: Challenges and opportunities. Genes Chromosomes Cancer 2019; 58:875-888. [DOI: 10.1002/gcc.22796] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Sha Li
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Peter D. Adams
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program Sanford Burnham Prebys Medical Discovery Institute La Jolla California
| |
Collapse
|
199
|
Allogeneic haemopoietic transplantation for acute myeloid leukaemia in second complete remission: a registry report by the Acute Leukaemia Working Party of the EBMT. Leukemia 2019; 34:87-99. [PMID: 31363160 DOI: 10.1038/s41375-019-0527-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/15/2019] [Accepted: 06/06/2019] [Indexed: 11/08/2022]
Abstract
Allogeneic haemopoietic cell transplant (allo-HCT) may be curative in acute myeloid leukaemia (AML) in second complete remission (CR2) but the impact of reduced intensity (RIC) versus myeloablative conditioning (MAC) is uncertain. The Acute Leukaemia Working Party of the European Society for Blood and Bone Marrow Transplantation Registry studied an AML CR2 cohort characterised by age ≥ 18 years, first allo-HCT 2007-2016, available cytogenetic profile at diagnosis, donors who were matched family, volunteer unrelated with HLA antigen match 10/10 or 9/10 or haplo-identical. The 1879 eligible patients included 1010 (54%) MAC allo-HCT recipients. In patients <50 years (y), two year outcomes for MAC vs RIC allo-HCT were equivalent with leukaemia-free survival (LFS) 54% for each, overall survival (OS), 61% vs 62%, non-relapse mortality (NRM) 18% vs 15% and graft versus host disease relapse-free survival (GRFS) 38% vs 42%. In patients ≥50 y, 2 y outcomes for MAC vs RIC allo-HCT were equivalent for LFS 52% vs 49%, OS 58% vs 55% and GRFS 42.4% vs 36%. However, NRM was significantly inferior after MAC allo-HCT, 27% vs 19% (P = 0.01) despite worse cGVHD after RIC-allo (32% vs 39%). These data support the need for ongoing prospective study of conditioning intensity and GVHD mitigation in AML.
Collapse
|
200
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|