151
|
Georgel PT. The danger of epigenetics misconceptions (epigenetics and stuff…). Biochem Cell Biol 2015; 93:626-9. [DOI: 10.1139/bcb-2015-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Within the past two decades, the fields of chromatin structure and function and transcription regulation research started to fuse and overlap, as evidence mounted to support a very strong regulatory role in gene expression that was associated with histone post-translational modifications, DNA methylation, as well as various chromatin-associated proteins (the pillars of the “Epigenetics” building). The fusion and convergence of these complementary fields is now often simply referred to as “Epigenetics”. During these same 20 years, numerous new research groups have started to recognize the importance of chromatin composition, conformation, and its plasticity. However, as the field started to grow exponentially, its growth came with the spreading of several important misconceptions, which have unfortunately led to improper or hasty conclusions. The goal of this short “opinion” piece is to attempt to minimize future misinterpretations of experimental results and ensure that the right sets of experiment are used to reach the proper conclusion, at least as far as epigenetic mechanisms are concerned.
Collapse
Affiliation(s)
- Philippe T. Georgel
- Department of Biological Sciences, Marshall University, 1 John Marshall Drive, Huntington, WV 25755, USA
- Cell Differentiation and Development Center, Marshall University, Huntington, WV 25755, USA
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV 25755, USA
| |
Collapse
|
152
|
|
153
|
Next-Generation Sequencing Approaches in Cancer: Where Have They Brought Us and Where Will They Take Us? Cancers (Basel) 2015; 7:1925-58. [PMID: 26404381 PMCID: PMC4586802 DOI: 10.3390/cancers7030869] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/15/2015] [Indexed: 12/20/2022] Open
Abstract
Next-generation sequencing (NGS) technologies and data have revolutionized cancer research and are increasingly being deployed to guide clinicians in treatment decision-making. NGS technologies have allowed us to take an “omics” approach to cancer in order to reveal genomic, transcriptomic, and epigenomic landscapes of individual malignancies. Integrative multi-platform analyses are increasingly used in large-scale projects that aim to fully characterize individual tumours as well as general cancer types and subtypes. In this review, we examine how NGS technologies in particular have contributed to “omics” approaches in cancer research, allowing for large-scale integrative analyses that consider hundreds of tumour samples. These types of studies have provided us with an unprecedented wealth of information, providing the background knowledge needed to make small-scale (including “N of 1”) studies informative and relevant. We also take a look at emerging opportunities provided by NGS and state-of-the-art third-generation sequencing technologies, particularly in the context of translational research. Cancer research and care are currently poised to experience significant progress catalyzed by accessible sequencing technologies that will benefit both clinical- and research-based efforts.
Collapse
|
154
|
Summerer D. N 6-Methyladenin: ein potentieller epigenetischer Marker in eukaryontischen Genomen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
155
|
How to Isolate a Plant's Hypomethylome in One Shot. BIOMED RESEARCH INTERNATIONAL 2015; 2015:570568. [PMID: 26421293 PMCID: PMC4573423 DOI: 10.1155/2015/570568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 11/17/2022]
Abstract
Genome assembly remains a challenge for large and/or complex plant genomes due to their abundant repetitive regions resulting in studies focusing on gene space instead of the whole genome. Thus, DNA enrichment strategies facilitate the assembly by increasing the coverage and simultaneously reducing the complexity of the whole genome. In this paper we provide an easy, fast, and cost-effective variant of MRE-seq to obtain a plant's hypomethylome by an optimized methyl filtration protocol followed by next generation sequencing. The method is demonstrated on three plant species with knowingly large and/or complex (polyploid) genomes: Oryza sativa, Picea abies, and Crocus sativus. The identified hypomethylomes show clear enrichment for genes and their flanking regions and clear reduction of transposable elements. Additionally, genomic sequences around genes are captured including regulatory elements in introns and up- and downstream flanks. High similarity of the results obtained by a de novo assembly approach with a reference based mapping in rice supports the applicability for studying and understanding the genomes of nonmodel organisms. Hence we show the high potential of MRE-seq in a wide range of scenarios for the direct analysis of methylation differences, for example, between ecotypes, individuals, within or across species harbouring large, and complex genomes.
Collapse
|
156
|
Elucidating the mechanisms of transcription regulation during heart development by next-generation sequencing. J Hum Genet 2015. [PMID: 26202577 DOI: 10.1038/jhg.2015.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dysregulation of transcription is associated with the pathogenesis of cardiovascular diseases, including congenital heart diseases and heart failure. However, it remains unclear how transcription factors regulate transcription in the heart and which genes are associated with cardiovascular diseases in humans. Development of genome-wide analyses using next-generation sequencers provides powerful methods to determine how these transcription factors and chromatin regulators control gene expressions and to identify causative genes in cardiovascular diseases. These technologies have revealed that transcription during heart development is elaborately regulated by multiple cardiac transcription factors. In this review, we discuss the recent progress toward understanding the molecular mechanisms of how transcriptional dysregulation leads to cardiovascular diseases.
Collapse
|
157
|
Abstract
N(6) -methyladenine (6mA) is known to be an epigenetic mark in bacterial genomes. Three studies have now demonstrated the existence of significant levels of 6mA in the genomes of several phylogenetically distinct eukaryotes, along with findings that suggest that 6mA may act as a dynamic epigenetic mark in the regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Daniel Summerer
- Department of Chemistry and Konstanz Research School, Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany).
| |
Collapse
|
158
|
Kubik G, Summerer D. Deciphering Epigenetic Cytosine Modifications by Direct Molecular Recognition. ACS Chem Biol 2015; 10:1580-9. [PMID: 25897631 DOI: 10.1021/acschembio.5b00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Epigenetic modification at the 5-position of cytosine is a key regulatory element of mammalian gene expression with important roles in genome stability, development, and disease. The repertoire of cytosine modifications has long been confined to only 5-methylcytosine (mC) but has recently been expanded by the discovery of 5-hydroxymethyl-, 5-formyl-, and 5-carboxylcytosine. These are key intermediates of active mC demethylation but may additionally represent new epigenetic marks with distinct biological roles. This leap in chemical complexity of epigenetic cytosine modifications has not only created a pressing need for analytical approaches that enable unraveling of their functions, it has also created new challenges for such analyses with respect to sensitivity and selectivity. The crucial step of any such approach that defines its analytic potential is the strategy used for the actual differentiation of the cytosine 5-modifications from one another, and this selectivity can in principle be provided either by chemoselective conversions or by selective, molecular recognition events. While the former strategy has been particularly successful for accurate genomic profiling of cytosine modifications in vitro, the latter strategy provides interesting perspectives for simplified profiling of natural, untreated DNA, as well as for emerging applications such as single cell analysis and the monitoring of cytosine modification in vivo. We here review analytical techniques for the deciphering of epigenetic cytosine modifications with an emphasis on approaches that are based on the direct molecular recognition of these modifications in DNA.
Collapse
Affiliation(s)
- Grzegorz Kubik
- Department of Chemistry,
Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Daniel Summerer
- Department of Chemistry,
Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
159
|
Altorok N, Kahaleh B. Epigenetics and systemic sclerosis. Semin Immunopathol 2015; 37:453-62. [DOI: 10.1007/s00281-015-0504-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/16/2015] [Indexed: 12/29/2022]
|
160
|
Abstract
DNA methylation is a chemical modification that occurs predominantly on CG dinucleotides in mammalian genomes. However, recent studies have revealed that non-CG methylation (mCH) is abundant and nonrandomly distributed in the genomes of pluripotent cells and brain cells, and is present at lower levels in many other human cells and tissues. Surprisingly, mCH in pluripotent cells is distinct from that in brain cells in terms of sequence specificity and association with transcription, indicating the existence of different mCH pathways. In addition, several recent studies have begun to reveal the biological significance of mCH in diverse cellular processes. In reprogrammed somatic cells, mCH marks megabase-scale regions that have failed to revert to the pluripotent epigenetic state. In myocytes, promoter mCH accumulation is associated with the transcriptional response to environmental factors. In brain cells, mCH accumulates during the establishment of neural circuits and is associated with Rett syndrome. In this review, we summarize the current understanding of mCH and its possible functional consequences in different biological contexts.
Collapse
Affiliation(s)
- Yupeng He
- Bioinformatics Program, University of California, San Diego, La Jolla, California 92093
| | | |
Collapse
|
161
|
Vinkers CH, Kalafateli AL, Rutten BPF, Kas MJ, Kaminsky Z, Turner JD, Boks MPM. Traumatic stress and human DNA methylation: a critical review. Epigenomics 2015; 7:593-608. [DOI: 10.2217/epi.15.11] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animal studies have identified persistent and functional effects of traumatic stress on the epigenome. This review discusses the clinical evidence for trauma-induced changes in DNA methylation across the life span in humans. Studies are reviewed based on reports of trauma exposure during the prenatal period (13 studies), early life (20 studies), and adulthood (ten studies). Even though it is apparent that traumatic stress influences the human epigenome, there are significant drawbacks in the existing human literature. These include a lack of longitudinal studies, methodological heterogeneity, selection of tissue type, and the influence of developmental stage and trauma type on methylation outcomes. These issues are discussed in order to present a way in which future studies can gain more insight into the functional relevance of trauma-related DNA methylation changes. Epigenetic studies investigating the detrimental effects of traumatic stress have great potential for an improved detection and treatment of trauma-related psychiatric disorders.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | - Aimilia Lydia Kalafateli
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, The Netherlands
- John B Pierce Laboratory, Department of Neurobiology, Yale Medical School, New Haven, CT 06519, USA
| | - Bart PF Rutten
- Department of Psychiatry & Neuropsychology, School for Mental Health & Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martien J Kas
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, Utrecht, The Netherlands
| | - Zachary Kaminsky
- The Mood Disorders Center, Department of Psychiatry & Behavioral Sciences, Johns Hopkins School of Medicine, Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, MD 21205, USA
| | - Jonathan D Turner
- Institute of Immunology, Centre de Recherche Public de la Santé/Laboratoire National de Santé, Luxembourg, Grand-Duchy of Luxembourg
| | - Marco PM Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Centre Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
162
|
Shukla A, Sehgal M, Singh TR. Hydroxymethylation and its potential implication in DNA repair system: A review and future perspectives. Gene 2015; 564:109-18. [DOI: 10.1016/j.gene.2015.03.075] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/21/2015] [Accepted: 03/05/2015] [Indexed: 12/22/2022]
|
163
|
Yang Y, Sebra R, Pullman BS, Qiao W, Peter I, Desnick RJ, Geyer CR, DeCoteau JF, Scott SA. Quantitative and multiplexed DNA methylation analysis using long-read single-molecule real-time bisulfite sequencing (SMRT-BS). BMC Genomics 2015; 16:350. [PMID: 25943404 PMCID: PMC4422326 DOI: 10.1186/s12864-015-1572-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/23/2015] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation has essential roles in transcriptional regulation, imprinting, X chromosome inactivation and other cellular processes, and aberrant CpG methylation is directly involved in the pathogenesis of human imprinting disorders and many cancers. To address the need for a quantitative and highly multiplexed bisulfite sequencing method with long read lengths for targeted CpG methylation analysis, we developed single-molecule real-time bisulfite sequencing (SMRT-BS). Results Optimized bisulfite conversion and PCR conditions enabled the amplification of DNA fragments up to ~1.5 kb, and subjecting overlapping 625–1491 bp amplicons to SMRT-BS indicated high reproducibility across all amplicon lengths (r = 0.972) and low standard deviations (≤0.10) between individual CpG sites sequenced in triplicate. Higher variability in CpG methylation quantitation was correlated with reduced sequencing depth, particularly for intermediately methylated regions. SMRT-BS was validated by orthogonal bisulfite-based microarray (r = 0.906; 42 CpG sites) and second generation sequencing (r = 0.933; 174 CpG sites); however, longer SMRT-BS amplicons (>1.0 kb) had reduced, but very acceptable, correlation with both orthogonal methods (r = 0.836-0.897 and r = 0.892-0.927, respectively) compared to amplicons less than ~1.0 kb (r = 0.940-0.951 and r = 0.948-0.963, respectively). Multiplexing utility was assessed by simultaneously subjecting four distinct CpG island amplicons (702–866 bp; 325 CpGs) and 30 hematological malignancy cell lines to SMRT-BS (average depth of 110X), which identified a spectrum of highly quantitative methylation levels across all interrogated CpG sites and cell lines. Conclusions SMRT-BS is a novel, accurate and cost-effective targeted CpG methylation method that is amenable to a high degree of multiplexing with minimal clonal PCR artifacts. Increased sequencing depth is necessary when interrogating longer amplicons (>1.0 kb) and the previously reported bisulfite sequencing PCR bias towards unmethylated DNA should be considered when measuring intermediately methylated regions. Coupled with an optimized bisulfite PCR protocol, SMRT-BS is capable of interrogating ~1.5 kb amplicons, which theoretically can cover ~91% of CpG islands in the human genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1572-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Yang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Benjamin S Pullman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Wanqiong Qiao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - C Ronald Geyer
- Cancer Stem Cell Research Group, University of Saskatchewan, Saskatoon, SK, S7N 4H4, Canada.
| | - John F DeCoteau
- Cancer Stem Cell Research Group, University of Saskatchewan, Saskatoon, SK, S7N 4H4, Canada.
| | - Stuart A Scott
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
164
|
Li Q, Suzuki M, Wendt J, Patterson N, Eichten SR, Hermanson PJ, Green D, Jeddeloh J, Richmond T, Rosenbaum H, Burgess D, Springer NM, Greally JM. Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 2015; 43:e81. [PMID: 25813045 PMCID: PMC4499119 DOI: 10.1093/nar/gkv244] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/10/2015] [Indexed: 11/14/2022] Open
Abstract
We present a capture-based approach for bisulfite-converted DNA that allows interrogation of pre-defined genomic locations, allowing quantitative and qualitative assessments of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) at CG dinucleotides and in non-CG contexts (CHG, CHH) in mammalian and plant genomes. We show the technique works robustly and reproducibly using as little as 500 ng of starting DNA, with results correlating well with whole genome bisulfite sequencing data, and demonstrate that human DNA can be tested in samples contaminated with microbial DNA. This targeting approach will allow cell type-specific designs to maximize the value of 5mC and 5hmC sequencing.
Collapse
Affiliation(s)
- Qing Li
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave, Saint Paul, MN 55108, USA
| | - Masako Suzuki
- Center for Epigenomics and Division of Computational Genetics, Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jennifer Wendt
- Roche-NimbleGen, 500 South Rosa Road, Madison, WI 53711, USA
| | - Nicole Patterson
- Center for Epigenomics and Division of Computational Genetics, Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven R Eichten
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave, Saint Paul, MN 55108, USA
| | - Peter J Hermanson
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave, Saint Paul, MN 55108, USA
| | - Dawn Green
- Roche-NimbleGen, 500 South Rosa Road, Madison, WI 53711, USA
| | | | - Todd Richmond
- Roche-NimbleGen, 500 South Rosa Road, Madison, WI 53711, USA
| | - Heidi Rosenbaum
- Roche-NimbleGen, 500 South Rosa Road, Madison, WI 53711, USA
| | - Daniel Burgess
- Roche-NimbleGen, 500 South Rosa Road, Madison, WI 53711, USA
| | - Nathan M Springer
- Department of Plant Biology, University of Minnesota, 1445 Gortner Ave, Saint Paul, MN 55108, USA
| | - John M Greally
- Center for Epigenomics and Division of Computational Genetics, Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
165
|
Spiers H, Hannon E, Schalkwyk LC, Smith R, Wong CCY, O'Donovan MC, Bray NJ, Mill J. Methylomic trajectories across human fetal brain development. Genome Res 2015; 25:338-52. [PMID: 25650246 PMCID: PMC4352878 DOI: 10.1101/gr.180273.114] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Epigenetic processes play a key role in orchestrating transcriptional regulation during development. The importance of DNA methylation in fetal brain development is highlighted by the dynamic expression of de novo DNA methyltransferases during the perinatal period and neurodevelopmental deficits associated with mutations in the methyl-CpG binding protein 2 (MECP2) gene. However, our knowledge about the temporal changes to the epigenome during fetal brain development has, to date, been limited. We quantified genome-wide patterns of DNA methylation at ∼ 400,000 sites in 179 human fetal brain samples (100 male, 79 female) spanning 23 to 184 d post-conception. We identified highly significant changes in DNA methylation across fetal brain development at >7% of sites, with an enrichment of loci becoming hypomethylated with fetal age. Sites associated with developmental changes in DNA methylation during fetal brain development were significantly underrepresented in promoter regulatory regions but significantly overrepresented in regions flanking CpG islands (shores and shelves) and gene bodies. Highly significant differences in DNA methylation were observed between males and females at a number of autosomal sites, with a small number of regions showing sex-specific DNA methylation trajectories across brain development. Weighted gene comethylation network analysis (WGCNA) revealed discrete modules of comethylated loci associated with fetal age that are significantly enriched for genes involved in neurodevelopmental processes. This is, to our knowledge, the most extensive study of DNA methylation across human fetal brain development to date, confirming the prenatal period as a time of considerable epigenomic plasticity.
Collapse
Affiliation(s)
- Helen Spiers
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Rebecca Smith
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Chloe C Y Wong
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University School of Medicine, Cardiff CF24 4HQ, United Kingdom
| | - Nicholas J Bray
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Jonathan Mill
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, United Kingdom; University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, United Kingdom;
| |
Collapse
|
166
|
Ulahannan N, Greally JM. Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics Chromatin 2015; 8:5. [PMID: 25788985 PMCID: PMC4363328 DOI: 10.1186/1756-8935-8-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022] Open
Abstract
The number of different assays that has been published to study DNA methylation is extensive, complemented by recently described assays that test modifications of cytosine other than the most abundant 5-methylcytosine (5mC) variant. In this review, we describe the considerations involved in choosing how to study 5mC throughout the genome, with an emphasis on the common application of testing for epigenetic dysregulation in human disease. While microarray studies of 5mC continue to be commonly used, these lack the additional qualitative information from sequencing-based approaches that is increasingly recognized to be valuable. When we test the representation of functional elements in the human genome by several current assay types, we find that no survey approach interrogates anything more than a small minority of the nonpromoter cis-regulatory sites where DNA methylation variability is now appreciated to influence gene expression and to be associated with human disease. However, whole-genome bisulphite sequencing (WGBS) adds a substantial representation of loci at which DNA methylation changes are unlikely to be occurring with transcriptional consequences. Our assessment is that the most effective approach to DNA methylation studies in human diseases is to use targeted bisulphite sequencing of the cis-regulatory loci in a cell type of interest, using a capture-based or comparable system, and that no single design of a survey approach will be suitable for all cell types.
Collapse
Affiliation(s)
- Netha Ulahannan
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| | - John M Greally
- Department of Genetics, Albert Einstein College of Medicine, Center for Epigenomics and Division of Computational Genetics, 1301 Morris Park Avenue, Bronx, NY 10461 USA
| |
Collapse
|
167
|
Abstract
5-Hydroxymethylcytosine (hmC), the sixth base of the mammalian genome, is increasingly recognized as an epigenetic mark with important biological functions. We report engineered, programmable transcription-activator-like effectors (TALEs) as the first DNA-binding receptor molecules that provide direct, individual selectivities for cytosine (C), 5-methylcytosine (mC), and hmC at user-defined DNA sequences. Given the wide applicability of TALEs for programmable targeting of DNA sequences in vitro and in vivo, this provides broad perspectives for epigenetic research.
Collapse
Affiliation(s)
- Grzegorz Kubik
- Department of Chemistry, Zukunftskolleg, and Konstanz Research School Chemical Biology, University of Konstanz , Universitätsstraße 10, 78457 Konstanz, Germany
| | | | | |
Collapse
|
168
|
Rodríguez López CM, Wilkinson MJ. Epi-fingerprinting and epi-interventions for improved crop production and food quality. FRONTIERS IN PLANT SCIENCE 2015; 6:397. [PMID: 26097484 PMCID: PMC4456566 DOI: 10.3389/fpls.2015.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/18/2015] [Indexed: 05/05/2023]
Abstract
Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimize environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype × Environment interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality.
Collapse
Affiliation(s)
- Carlos M. Rodríguez López
- *Correspondence: Carlos M. Rodríguez López, Plant Research Centre, School of Agriculture, Food and Wine, Faculty of Sciences, University of Adelaide, Waite Campus, PMB1, Glen Osmond, Adelaide, SA 5064, Australia
| | | |
Collapse
|
169
|
Corley MJ, Zhang W, Zheng X, Lum-Jones A, Maunakea AK. Semiconductor-based sequencing of genome-wide DNA methylation states. Epigenetics 2015; 10:153-66. [PMID: 25602802 PMCID: PMC4622511 DOI: 10.1080/15592294.2014.1003747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/15/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022] Open
Abstract
Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) is a widely used approach to study DNA methylation genome-wide. Here, we developed a MeDIP-Seq protocol compatible with the Ion Torrent semiconductor-based sequencing platform that is low cost, rapid, and scalable. We applied this protocol to demonstrate MeDIP-Seq on the Ion Torrent platform provides adequate coverage of CpG cytosines, the methylation states of which we validated at single-base resolution on the Infinium HumanMethylation450 BeadChip array, and accurately identifies sites of differential DNA methylation. Furthermore, we applied an integrative approach to further investigate and confirm the role of DNA methylation in alternative splicing and to profile 5mC and 5hmC variants of DNA methylation in normal human brain tissue that is localized over distinct genomic regions. These applications of MeDIP-Seq on the Ion Torrent platform have broad utility and add to the current methodologies for profiling genome-wide DNA methylation states in normal and disease conditions.
Collapse
Affiliation(s)
- Michael J Corley
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Wei Zhang
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Xin Zheng
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Annette Lum-Jones
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| | - Alika K Maunakea
- Department of Native Hawaiian Health; John A. Burns School of Medicine; University of Hawaii; Honolulu, HI USA
| |
Collapse
|
170
|
Shen L, Inoue A, He J, Liu Y, Lu F, Zhang Y. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 2014; 15:459-471. [PMID: 25280220 PMCID: PMC4201500 DOI: 10.1016/j.stem.2014.09.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
With the exception of imprinted genes and certain repeats, DNA methylation is globally erased during preimplantation development. Recent studies have suggested that Tet3-mediated oxidation of 5-methylcytosine (5mC) and DNA replication-dependent dilution both contribute to global paternal DNA demethylation, but demethylation of the maternal genome occurs via replication. Here we present genome-scale DNA methylation maps for both the paternal and maternal genomes of Tet3-depleted and/or DNA replication-inhibited zygotes. In both genomes, we found that inhibition of DNA replication blocks DNA demethylation independently from Tet3 function and that Tet3 facilitates DNA demethylation largely by coupling with DNA replication. For both genomes, our data indicate that replication-dependent dilution is the major contributor to demethylation, but Tet3 plays an important role, particularly at certain loci. Our study thus defines the respective functions of Tet3 and DNA replication in paternal DNA demethylation and reveals an unexpected contribution of Tet3 to demethylation of the maternal genome.
Collapse
Affiliation(s)
- Li Shen
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Azusa Inoue
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Jin He
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yuting Liu
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Falong Lu
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|