151
|
Evans AC, Thadani NN, Suh J. Biocomputing nanoplatforms as therapeutics and diagnostics. J Control Release 2016; 240:387-393. [PMID: 26826305 PMCID: PMC4965337 DOI: 10.1016/j.jconrel.2016.01.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/18/2022]
Abstract
Biocomputing nanoplatforms are designed to detect and integrate single or multiple inputs under defined algorithms, such as Boolean logic gates, and generate functionally useful outputs, such as delivery of therapeutics or release of optically detectable signals. Using sensing modules composed of small molecules, polymers, nucleic acids, or proteins/peptides, nanoplatforms have been programmed to detect and process extrinsic stimuli, such as magnetic fields or light, or intrinsic stimuli, such as nucleic acids, enzymes, or pH. Stimulus detection can be transduced by the nanomaterial via three different mechanisms: system assembly, system disassembly, or system transformation. The increasingly sophisticated suite of biocomputing nanoplatforms may be invaluable for a multitude of applications, including medical diagnostics, biomedical imaging, environmental monitoring, and delivery of therapeutics to target cell populations.
Collapse
Affiliation(s)
- A C Evans
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - N N Thadani
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - J Suh
- Department of Bioengineering, Rice University, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
152
|
Abstract
The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
153
|
Toward a world of theranostic medication: Programming biological sentinel systems for therapeutic intervention. Adv Drug Deliv Rev 2016; 105:66-76. [PMID: 27189230 DOI: 10.1016/j.addr.2016.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022]
Abstract
Theranostic systems support diagnostic and therapeutic functions in a single integrated entity and enable precise spatiotemporal control of the generation of therapeutic molecules according to the individual patient's disease state, thereby maximizing the therapeutic outcome and minimizing side effects. These systems can also incorporate reporter systems equipped with a disease-sensing module that can be used to estimate the efficacy of treatment in vivo. Among these reporter systems, biological sentinel systems, such as viruses, bacteria, and mammalian cells, have great potential for use in the development of novel theranostic systems because of their ability to sense a variety of disease markers and secrete various therapeutic molecules. Furthermore, recent advances in biotechnology and synthetic biology have made it possible to treat these biological systems as true programmable entities capable of conducting complex operations, to accurately identify each individual patient's disease state. In this review, we introduce the basic design principles of these rapidly expanding classes of biological sentinel system-based theranostic agents, with a focus on recent advances, and we also discuss potential enabling technologies that can further improve these systems and provide more sophisticated therapeutic interventions in the near future. In addition, we consider the possibility of synergistic use of theranostic agents that use different modalities and discuss the prospects for next-generation theranostic agents.
Collapse
|
154
|
MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016; 105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
155
|
Wagner HJ, Sprenger A, Rebmann B, Weber W. Upgrading biomaterials with synthetic biological modules for advanced medical applications. Adv Drug Deliv Rev 2016; 105:77-95. [PMID: 27179764 DOI: 10.1016/j.addr.2016.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 03/02/2016] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
One key aspect of synthetic biology is the development and characterization of modular biological building blocks that can be assembled to construct integrated cell-based circuits performing computational functions. Likewise, the idea of extracting biological modules from the cellular context has led to the development of in vitro operating systems. This principle has attracted substantial interest to extend the repertoire of functional materials by connecting them with modules derived from synthetic biology. In this respect, synthetic biological switches and sensors, as well as biological targeting or structure modules, have been employed to upgrade functions of polymers and solid inorganic material. The resulting systems hold great promise for a variety of applications in diagnosis, tissue engineering, and drug delivery. This review reflects on the most recent developments and critically discusses challenges concerning in vivo functionality and tolerance that must be addressed to allow the future translation of such synthetic biology-upgraded materials from the bench to the bedside.
Collapse
|
156
|
Abstract
Embryonic pluripotency can be recapitulated in vitro by a spectrum of pluripotent stem cell states stabilized with different culture conditions. Their distinct spatiotemporal characteristics provide an unprecedented tool for the study of early human development. The newly unveiled ability of some stem cell types for crossing xeno-barriers will facilitate the generation of interspecies chimeric embryos from distant species, including humans. When combined with efficient zygote genome editing technologies, xenogeneic human pluripotent stem cells may also open new frontiers for regenerative medicine applications, including the possibility of generating human organs in animals via interspecies chimeric complementation.
Collapse
|
157
|
Abstract
The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.
Collapse
Affiliation(s)
- Eli Zamir
- a Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology , Dortmund , Germany
| |
Collapse
|
158
|
Synthetic biology — application-oriented cell engineering. Curr Opin Biotechnol 2016; 40:139-148. [DOI: 10.1016/j.copbio.2016.04.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/02/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
|
159
|
Del Vecchio D, Dy AJ, Qian Y. Control theory meets synthetic biology. J R Soc Interface 2016; 13:rsif.2016.0380. [PMID: 27440256 DOI: 10.1098/rsif.2016.0380] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.
Collapse
Affiliation(s)
- Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron J Dy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yili Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
160
|
Preston MA, Pimentel B, Bermejo-Rodríguez C, Dionne I, Turnbull A, de la Cueva-Méndez G. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells. ACS Synth Biol 2016; 5:540-6. [PMID: 26230535 DOI: 10.1021/acssynbio.5b00096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far.
Collapse
Affiliation(s)
- Mark A. Preston
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - Belén Pimentel
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | | | - Isabelle Dionne
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - Alice Turnbull
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
| | - Guillermo de la Cueva-Méndez
- MRC Cancer Cell Unit. Hutchison/MRC Research Centre, Hills Road, Cambridge CB2 0XZ, U.K
- Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Parque Tecnológico de Andalucı́a, C/Severo Ochoa 35, 29590 Campanillas, Málaga, Spain
| |
Collapse
|
161
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
162
|
Cellular heterogeneity mediates inherent sensitivity-specificity tradeoff in cancer targeting by synthetic circuits. Proc Natl Acad Sci U S A 2016; 113:8133-8. [PMID: 27385823 DOI: 10.1073/pnas.1604391113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synthetic gene circuits are emerging as a versatile means to target cancer with enhanced specificity by combinatorial integration of multiple expression markers. Such circuits must also be tuned to be highly sensitive because escape of even a few cells might be detrimental. However, the error rates of decision-making circuits in light of cellular variability in gene expression have so far remained unexplored. Here, we measure the single-cell response function of a tunable logic AND gate acting on two promoters in heterogeneous cell populations. Our analysis reveals an inherent tradeoff between specificity and sensitivity that is controlled by the AND gate amplification gain and activation threshold. We implement a tumor-mimicking cell-culture model of cancer cells emerging in a background of normal ones, and show that molecular parameters of the synthetic circuits control specificity and sensitivity in a killing assay. This suggests that, beyond the inherent tradeoff, synthetic circuits operating in a heterogeneous environment could be optimized to efficiently target malignant state with minimal loss of specificity.
Collapse
|
163
|
Braguy J, Zurbriggen MD. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:118-38. [PMID: 27227549 DOI: 10.1111/tpj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 05/15/2023]
Abstract
Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of interconnectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks.
Collapse
Affiliation(s)
- Justine Braguy
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Universitätstrasse 1, Building 26.12.U1.25, Düsseldorf, 40225, Germany
| |
Collapse
|
164
|
Schukur L, Fussenegger M. Engineering of synthetic gene circuits for (re-)balancing physiological processes in chronic diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:402-22. [DOI: 10.1002/wsbm.1345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Lina Schukur
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering; ETH Zurich; Basel Switzerland
- Faculty of Science; University of Basel; Basel Switzerland
| |
Collapse
|
165
|
Li J, Zhuang C, Liu Y, Chen M, Chen Y, Chen Z, He A, Lin J, Zhan Y, Liu L, Xu W, Zhao G, Guo Y, Wu H, Cai Z, Huang W. Synthetic tetracycline-controllable shRNA targeting long non-coding RNA HOXD-AS1 inhibits the progression of bladder cancer. J Exp Clin Cancer Res 2016; 35:99. [PMID: 27328915 PMCID: PMC4915162 DOI: 10.1186/s13046-016-0372-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been proved to act as key molecules in cancer development and progression. Dysregulation of lncRNAs is discovered in various tumor tissues and cancer cells where they can serve as oncogenes or tumor suppressors. Long non-coding RNA HOXD-AS (HOXD cluster antisense RNA 1) has recently been identified to be involved in the development of several cancers including neuroblastoma, adenocarcinomas and breast cancer. However, the role of HOXD-AS1 in bladder cancer remains unknown. METHODS The synthetic tetracycline-controllable shRNA was used to modulate the level of HOXD-AS1 by adding different concentrations of doxycycline (dox). RT-qPCR was used to detect the expression level of HOXD-AS1. Cell proliferation was determined by CCK-8 assay and EdU incorporation experiment when HOXD-AS1 was knocked down. We used wound-healing assay for detecting the effect of HOXD-AS1 on cell migration. Eventually, cell apoptosis was determined by caspase 3 ELISA assay and flow cytometry assay. RESULTS In this study, we found that the expression level of HOXD-AS1 was significantly increased in bladder cancer tissues and cells. Furthermore, high expression of HOXD-AS1 was significantly related to tumor size, histological grade and TNM stage. In vitro assays confirmed that knockdown of HOXD-AS1 suppressed cell proliferation/migration and increased the rate of apoptotic cell in bladder cancer cells. At last, we used the important element of synthetic biology, tetracycline(tet)-controllable switch, to construct tet-controllable shRNA vectors which can modulate the expression of HOXD-AS1 in a dosage-dependent manner. CONCLUSIONS Our research suggested that high expression of HOXD-AS1 may be involved in the bladder cancer carcinogenesis through inhibiting the phenotypes and activating endogenous cancer-related molecular pathways. Therefore, HOXD-AS1 may act as an oncogene and provide a potential attractive therapeutic target for bladder cancer. In addition, the synthetic tetracycline-controllable shRNA may provide a novel method for cancer research in vitro assays.
Collapse
Affiliation(s)
- Jianfa Li
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Chengle Zhuang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, People's Republic of China
| | - Yuchen Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
| | - Mingwei Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Anhui Medical University, Hefei, 230000, Anhui Province, People's Republic of China
| | - Yincong Chen
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Zhicong Chen
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Anbang He
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Anhui Medical University, Hefei, 230000, Anhui Province, People's Republic of China
| | - Junhao Lin
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Yonghao Zhan
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Li Liu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China
| | - Wen Xu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
| | - Guoping Zhao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Centerat Shanghai, Shanghai, 200000, People's Republic of China
| | - Yinglu Guo
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, People's Republic of China
| | - Hanwei Wu
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China
| | - Zhiming Cai
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China.
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China.
- Anhui Medical University, Hefei, 230000, Anhui Province, People's Republic of China.
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, People's Republic of China.
| | - Weiren Huang
- Key Laboratory of Medical Reprogramming Technology, Shenzhen Second People's Hospital, Clinical Institute of Shantou University Medical College, First Affiliated Hospital of Shenzhen University, Shenzhen, 518039, Guangdong Province, People's Republic of China.
- Shantou University Medical College, Shantou, 515041, Guangdong Province, People's Republic of China.
- Anhui Medical University, Hefei, 230000, Anhui Province, People's Republic of China.
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, 100034, People's Republic of China.
| |
Collapse
|
166
|
A dual molecular analogue tuner for dissecting protein function in mammalian cells. Nat Commun 2016; 7:11742. [PMID: 27230261 PMCID: PMC4895048 DOI: 10.1038/ncomms11742] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/16/2022] Open
Abstract
Loss-of-function studies are fundamental for dissecting gene function. Yet, methods
to rapidly and effectively perturb genes in mammalian cells, and particularly in
stem cells, are scarce. Here we present a system for simultaneous conditional
regulation of two different proteins in the same mammalian cell. This system
harnesses the plant auxin and jasmonate hormone-induced degradation pathways, and is
deliverable with only two lentiviral vectors. It combines RNAi-mediated silencing of
two endogenous proteins with the expression of two exogenous proteins whose
degradation is induced by external ligands in a rapid, reversible, titratable and
independent manner. By engineering molecular tuners for NANOG, CHK1, p53 and NOTCH1
in mammalian stem cells, we have validated the applicability of the system and
demonstrated its potential to unravel complex biological processes. Loss-of-function approaches are fundamental for dissecting the roles
played by genes but methods to simultaneously perturb several proteins in the same
mammalian cell are scarce. Here the authors harness the plant auxin and jasmonate
hormone-degradation pathways and RNAi technology, to control the levels of two proteins
and validate its application in stem cells.
Collapse
|
167
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
168
|
Chakravarti D, Cho JH, Weinberg BH, Wong NM, Wong WW. Synthetic biology approaches in cancer immunotherapy, genetic network engineering, and genome editing. Integr Biol (Camb) 2016; 8:504-17. [PMID: 27068224 DOI: 10.1039/c5ib00325c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Investigations into cells and their contents have provided evolving insight into the emergence of complex biological behaviors. Capitalizing on this knowledge, synthetic biology seeks to manipulate the cellular machinery towards novel purposes, extending discoveries from basic science to new applications. While these developments have demonstrated the potential of building with biological parts, the complexity of cells can pose numerous challenges. In this review, we will highlight the broad and vital role that the synthetic biology approach has played in applying fundamental biological discoveries in receptors, genetic circuits, and genome-editing systems towards translation in the fields of immunotherapy, biosensors, disease models and gene therapy. These examples are evidence of the strength of synthetic approaches, while also illustrating considerations that must be addressed when developing systems around living cells.
Collapse
Affiliation(s)
- Deboki Chakravarti
- Department of Biomedical Engineering, and Biological Design Center, Boston University, Boston, Ma, USA.
| | | | | | | | | |
Collapse
|
169
|
Abstract
The invention of the Kalman filter is a crowning achievement of filtering theory-one that has revolutionized technology in countless ways. By dealing effectively with noise, the Kalman filter has enabled various applications in positioning, navigation, control, and telecommunications. In the emerging field of synthetic biology, noise and context dependency are among the key challenges facing the successful implementation of reliable, complex, and scalable synthetic circuits. Although substantial further advancement in the field may very well rely on effectively addressing these issues, a principled protocol to deal with noise-as provided by the Kalman filter-remains completely missing. Here we develop an optimal filtering theory that is suitable for noisy biochemical networks. We show how the resulting filters can be implemented at the molecular level and provide various simulations related to estimation, system identification, and noise cancellation problems. We demonstrate our approach in vitro using DNA strand displacement cascades as well as in vivo using flow cytometry measurements of a light-inducible circuit in Escherichia coli.
Collapse
|
170
|
Chubukov V, Mukhopadhyay A, Petzold CJ, Keasling JD, Martín HG. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2016; 2:16009. [PMID: 28725470 PMCID: PMC5516863 DOI: 10.1038/npjsba.2016.9] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/01/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023] Open
Abstract
The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.
Collapse
Affiliation(s)
- Victor Chubukov
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Héctor García Martín
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
171
|
Ollé-Vila A, Duran-Nebreda S, Conde-Pueyo N, Montañez R, Solé R. A morphospace for synthetic organs and organoids: the possible and the actual. Integr Biol (Camb) 2016; 8:485-503. [PMID: 27032985 DOI: 10.1039/c5ib00324e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efforts in evolutionary developmental biology have shed light on how organs are developed and why evolution has selected some structures instead of others. These advances in the understanding of organogenesis along with the most recent techniques of organotypic cultures, tissue bioprinting and synthetic biology provide the tools to hack the physical and genetic constraints in organ development, thus opening new avenues for research in the form of completely designed or merely altered settings. Here we propose a unifying framework that connects the concept of morphospace (i.e. the space of possible structures) with synthetic biology and tissue engineering. We aim for a synthesis that incorporates our understanding of both evolutionary and architectural constraints and can be used as a guide for exploring alternative design principles to build artificial organs and organoids. We present a three-dimensional morphospace incorporating three key features associated to organ and organoid complexity. The axes of this space include the degree of complexity introduced by developmental mechanisms required to build the structure, its potential to store and react to information and the underlying physical state. We suggest that a large fraction of this space is empty, and that the void might offer clues for alternative ways of designing and even inventing new organs.
Collapse
Affiliation(s)
- Aina Ollé-Vila
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
172
|
Muthumani K, Block P, Flingai S, Muruganantham N, Chaaithanya IK, Tingey C, Wise M, Reuschel EL, Chung C, Muthumani A, Sarangan G, Srikanth P, Khan AS, Vijayachari P, Sardesai NY, Kim JJ, Ugen KE, Weiner DB. Rapid and Long-Term Immunity Elicited by DNA-Encoded Antibody Prophylaxis and DNA Vaccination Against Chikungunya Virus. J Infect Dis 2016; 214:369-78. [PMID: 27001960 PMCID: PMC4936642 DOI: 10.1093/infdis/jiw111] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
Background. Vaccination and passive antibody therapies are critical for controlling infectious diseases. Passive antibody administration has limitations, including the necessity for purification and multiple injections for efficacy. Vaccination is associated with a lag phase before generation of immunity. Novel approaches reported here utilize the benefits of both methods for the rapid generation of effective immunity. Methods. A novel antibody-based prophylaxis/therapy entailing the electroporation-mediated delivery of synthetic DNA plasmids encoding biologically active anti–chikungunya virus (CHIKV) envelope monoclonal antibody (dMAb) was designed and evaluated for antiviral efficacy, as well as for the ability to overcome shortcomings inherent with conventional active vaccination and passive immunotherapy. Results. One intramuscular injection of dMAb produced antibodies in vivo more rapidly than active vaccination with an anti-CHIKV DNA vaccine. This dMAb neutralized diverse CHIKV clinical isolates and protected mice from viral challenge. Combination of dMAb and the CHIKV DNA vaccine afforded rapid and long-lived protection. Conclusions. A DNA-based dMAb strategy induced rapid protection against an emerging viral infection. This method can be combined with DNA vaccination as a novel strategy to provide both short- and long-term protection against this emerging infectious disease. These studies have implications for pathogen treatment and control strategies.
Collapse
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Peter Block
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania
| | - Seleeke Flingai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Nagarajan Muruganantham
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands
| | - Itta Krishna Chaaithanya
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands
| | - Colleen Tingey
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania
| | - Megan Wise
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Emma L Reuschel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Christopher Chung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| | - Abirami Muthumani
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania
| | - Gopalsamy Sarangan
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Padma Srikanth
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Chennai, India
| | - Amir S Khan
- Inovio Pharmaceutics Inc., Plymouth Meeting, Pennsylvania
| | - Paluru Vijayachari
- Regional Medical Research Centers, Indian Council of Medical Research, Port Blair, Andaman & Nicobar Islands
| | | | - J Joseph Kim
- Inovio Pharmaceutics Inc., Plymouth Meeting, Pennsylvania
| | - Kenneth E Ugen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa
| | - David B Weiner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania The Wistar Institute, Philadelphia, Pennsylvania
| |
Collapse
|
173
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
174
|
Genske A, Engel-Glatter S. Rethinking risk assessment for emerging technology first-in-human trials. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2016; 19:125-139. [PMID: 26276449 DOI: 10.1007/s11019-015-9660-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent progress in synthetic biology (SynBio) has enabled the development of novel therapeutic opportunities for the treatment of human disease. In the near future, first-in-human trials (FIH) will be indicated. FIH trials mark a key milestone in the translation of medical SynBio applications into clinical practice. Fostered by uncertainty of possible adverse events for trial participants, a variety of ethical concerns emerge with regards to SynBio FIH trials, including 'risk' minimization. These concerns are associated with any FIH trial, however, due to the novelty of the approach, they become more pronounced for medical applications of emerging technologies (emTech) like SynBio. To minimize potential harm for trial participants, scholars, guidelines, regulations and policy makers alike suggest using 'risk assessment' as evaluation tool for such trials. Conversely, in the context of emTech FIH trials, we believe it to be at least questionable to contextualize uncertainty of potential adverse events as 'risk' and apply traditional risk assessment methods. Hence, this issue needs to be discussed to enable alterations of the evaluation process before the translational phase of SynBio applications begins. In this paper, we will take the opportunity to start the debate and highlight how a misunderstanding of the concept of risk, and the possibilities and limitations of risk assessment, respectively, might impair decision-making by the relevant regulatory authorities and research ethics committees, and discuss possible solutions to tackle the issue.
Collapse
Affiliation(s)
- Anna Genske
- Forschungsstelle Ethik/CERES (Cologne Center for Ethics, Rights, Economics, and Social Sciences of Health), Universität zu Köln, Albertus Magnus-Platz, 50923, Köln, Germany
| | - Sabrina Engel-Glatter
- Institut für Bio- und Medizinethik, Universität Basel, Bernoullistrasse 28, 4056, Basel, Switzerland.
| |
Collapse
|
175
|
Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell 2016; 164:770-9. [PMID: 26830879 PMCID: PMC4752902 DOI: 10.1016/j.cell.2016.01.011] [Citation(s) in RCA: 672] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/03/2016] [Accepted: 01/08/2016] [Indexed: 01/07/2023]
Abstract
T cells can be re-directed to kill cancer cells using chimeric antigen receptors (CARs) or T cell receptors (TCRs). This approach, however, is constrained by the rarity of tumor-specific single antigens. Targeting antigens also found on bystander tissues can cause life-threatening adverse effects. A powerful way to enhance ON-target activity of therapeutic T cells is to engineer them to require combinatorial antigens. Here, we engineer a combinatorially activated T cell circuit in which a synthetic Notch receptor for one antigen induces the expression of a CAR for a second antigen. These dual-receptor AND-gate T cells are only armed and activated in the presence of dual antigen tumor cells. These T cells show precise therapeutic discrimination in vivo-sparing single antigen "bystander" tumors while efficiently clearing combinatorial antigen "disease" tumors. This type of precision dual-receptor circuit opens the door to immune recognition of a wider range of tumors. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Kole T Roybal
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Levi J Rupp
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Leonardo Morsut
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Whitney J Walker
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Krista A McNally
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Jason S Park
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Wendell A Lim
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, San Francisco, CA 94158, USA.
| |
Collapse
|
176
|
Srivastava SK, Medina-Sánchez M, Koch B, Schmidt OG. Medibots: Dual-Action Biogenic Microdaggers for Single-Cell Surgery and Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:832-7. [PMID: 26619085 DOI: 10.1002/adma.201504327] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/07/2015] [Indexed: 05/03/2023]
Abstract
An innovative concept for the fabrication of dual-action microrobots capable of performing single-cell microsurgery along with a site-directed drug-delivery feature is presented. These multi-action plant-derived biocompatible "medibots" can play a pivotal role in understanding micromotor interactions at the cellular level, aiming toward the destruction of harmful cells (like cancer) among others in living systems.
Collapse
Affiliation(s)
- Sarvesh Kumar Srivastava
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Mariana Medina-Sánchez
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Britta Koch
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069, Dresden, Germany
| |
Collapse
|
177
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous Virus Genome Recoding as a Tool to Impact Viral Fitness. Trends Microbiol 2016; 24:134-147. [DOI: 10.1016/j.tim.2015.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/28/2023]
|
178
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
179
|
Morsut L, Roybal KT, Xiong X, Gordley RM, Coyle SM, Thomson M, Lim WA. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 2016; 164:780-91. [PMID: 26830878 DOI: 10.1016/j.cell.2016.01.012] [Citation(s) in RCA: 627] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/12/2023]
Abstract
The Notch protein is one of the most mechanistically direct transmembrane receptors-the intracellular domain contains a transcriptional regulator that is released from the membrane when engagement of the cognate extracellular ligand induces intramembrane proteolysis. We find that chimeric forms of Notch, in which both the extracellular sensor module and the intracellular transcriptional module are replaced with heterologous protein domains, can serve as a general platform for generating novel cell-cell contact signaling pathways. Synthetic Notch (synNotch) pathways can drive user-defined functional responses in diverse mammalian cell types. Because individual synNotch pathways do not share common signaling intermediates, the pathways are functionally orthogonal. Thus, multiple synNotch receptors can be used in the same cell to achieve combinatorial integration of environmental cues, including Boolean response programs, multi-cellular signaling cascades, and self-organized cellular patterns. SynNotch receptors provide extraordinary flexibility in engineering cells with customized sensing/response behaviors to user-specified extracellular cues.
Collapse
Affiliation(s)
- Leonardo Morsut
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Kole T Roybal
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Xin Xiong
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Russell M Gordley
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Scott M Coyle
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Matthew Thomson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Wendell A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| |
Collapse
|
180
|
Jusiak B, Cleto S, Perez-Piñera P, Lu TK. Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology. Trends Biotechnol 2016; 34:535-547. [PMID: 26809780 DOI: 10.1016/j.tibtech.2015.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/26/2022]
Abstract
One of the goals of synthetic biology is to build regulatory circuits that control cell behavior, for both basic research purposes and biomedical applications. The ability to build transcriptional regulatory devices depends on the availability of programmable, sequence-specific, and effective synthetic transcription factors (TFs). The prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR) system, recently harnessed for transcriptional regulation in various heterologous host cells, offers unprecedented ease in designing synthetic TFs. We review how CRISPR can be used to build synthetic gene circuits and discuss recent advances in CRISPR-mediated gene regulation that offer the potential to build increasingly complex, programmable, and efficient gene circuits in the future.
Collapse
Affiliation(s)
- Barbara Jusiak
- Research Laboratory of Electronics, Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sara Cleto
- Research Laboratory of Electronics, Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Pablo Perez-Piñera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy K Lu
- Research Laboratory of Electronics, Synthetic Biology Center, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
181
|
Ciechonska M, Grob A, Isalan M. From noise to synthetic nucleoli: can synthetic biology achieve new insights? Integr Biol (Camb) 2016; 8:383-93. [PMID: 26751735 DOI: 10.1039/c5ib00271k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."
Collapse
Affiliation(s)
- Marta Ciechonska
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
182
|
Manzoni R, Urrios A, Velazquez-Garcia S, de Nadal E, Posas F. Synthetic biology: insights into biological computation. Integr Biol (Camb) 2016; 8:518-32. [DOI: 10.1039/c5ib00274e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Synthetic biology attempts to rationally engineer biological systems in order to perform desired functions. Our increasing understanding of biological systems guides this rational design, while the huge background in electronics for building circuits defines the methodology.
Collapse
Affiliation(s)
- Romilde Manzoni
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Arturo Urrios
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Silvia Velazquez-Garcia
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Eulàlia de Nadal
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| | - Francesc Posas
- Cell Signaling Research Group
- Departament de Ciències Experimentals i de la Salut
- Universitat Pompeu Fabra (UPF)
- E-08003 Barcelona
- Spain
| |
Collapse
|
183
|
Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 2015; 34:492-503. [PMID: 26721629 DOI: 10.1016/j.biotechadv.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom.
| |
Collapse
|
184
|
Pu J, Chronis I, Ahn D, Dickinson BC. A Panel of Protease-Responsive RNA Polymerases Respond to Biochemical Signals by Production of Defined RNA Outputs in Live Cells. J Am Chem Soc 2015; 137:15996-9. [PMID: 26652972 DOI: 10.1021/jacs.5b10290] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA is an attractive biomolecule for biosensing and engineering applications due to its information storage capacity and ability to drive gene expression or knockdown. However, methods to link chemical signals to the production of specific RNAs are lacking. Here, we develop protease-responsive RNA polymerases (PRs) as a strategy to encode multiple specific proteolytic events in defined sequences of RNA in live mammalian cells. This work demonstrates that RNAP-based molecular recording devices can be deployed for multimodal analyses of biochemical activities or to trigger gene circuits using measured signaling events.
Collapse
Affiliation(s)
- Jinyue Pu
- Department of Chemistry, The University of Chicago , 5801 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Ian Chronis
- Department of Chemistry, The University of Chicago , 5801 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Daniel Ahn
- Department of Chemistry, The University of Chicago , 5801 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago , 5801 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
185
|
Schukur L, Geering B, Charpin-El Hamri G, Fussenegger M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci Transl Med 2015; 7:318ra201. [PMID: 26676608 DOI: 10.1126/scitranslmed.aac4964] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by a relapsing-remitting disease course and correlated with increased expression of proinflammatory cytokines, such as tumor necrosis factor (TNF) and interleukin 22 (IL22). Psoriasis is hard to treat because of the unpredictable and asymptomatic flare-up, which limits handling of skin lesions to symptomatic treatment. Synthetic biology-based gene circuits are uniquely suited for the treatment of diseases with complex dynamics, such as psoriasis, because they can autonomously couple the detection of disease biomarkers with the production of therapeutic proteins. We designed a mammalian cell synthetic cytokine converter that quantifies psoriasis-associated TNF and IL22 levels using serially linked receptor-based synthetic signaling cascades, processes the levels of these proinflammatory cytokines with AND-gate logic, and triggers the corresponding expression of therapeutic levels of the anti-inflammatory/psoriatic cytokines IL4 and IL10, which have been shown to be immunomodulatory in patients. Implants of microencapsulated cytokine converter transgenic designer cells were insensitive to simulated bacterial and viral infections as well as psoriatic-unrelated inflammation. The designer cells specifically prevented the onset of psoriatic flares, stopped acute psoriasis, improved psoriatic skin lesions and restored normal skin-tissue morphology in mice. The antipsoriatic designer cells were equally responsive to blood samples from psoriasis patients, suggesting that the synthetic cytokine converter captures the clinically relevant cytokine range. Implanted designer cells that dynamically interface with the patient's metabolism by detecting specific disease metabolites or biomarkers, processing their blood levels with synthetic circuits in real time, and coordinating immediate production and systemic delivery of protein therapeutics may advance personalized gene- and cell-based therapies.
Collapse
Affiliation(s)
- Lina Schukur
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Barbara Geering
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland. Faculty of Science, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
186
|
Abstract
Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell-cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity.
Collapse
Affiliation(s)
| | - Pablo Carbonell
- Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Department of Experimental and Health Sciences (DCEXS), Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
187
|
Butali A, Mossey P, Tiffin N, Adeyemo W, Eshete M, Mumena C, Audu R, Onwuamah C, Agbenorku P, Ogunlewe M, Adebola A, Olasoji H, Aregbesola B, Braimah R, Oladugba A, Onah I, Adebiyi E, Olaitan P, Abdur-Rahman L, Adeyemo A. Multidisciplinary approach to genomics research in Africa: the AfriCRAN model. Pan Afr Med J 2015; 21:229. [PMID: 26523171 PMCID: PMC4607986 DOI: 10.11604/pamj.2015.21.229.7380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
This article is an outcome of the African Craniofacial Anomalies Research Network (AfriCRAN) Human Hereditary and Health (H3A) grant planning meeting in 2012 in Lagos, Nigeria. It describes the strengths of a multidisciplinary team approach to solving complex genetic traits in the craniofacial region. It also highlights the different components and argues for the composition of similar teams to fast track the discovery of disease genes, diagnostic tools, improved clinical treatment and ultimately prevention of diseases.
Collapse
Affiliation(s)
- Azeez Butali
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, IA. U.S.A
| | - Peter Mossey
- Department of Orthodontics, University of Dundee, Scotland. UK
| | - Nikki Tiffin
- South African National Bioinformatics Institute, University of the Western Cape, Private Bag, X17, Bellville 7535, South Africa
| | - Wasiu Adeyemo
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos. Nigeria
| | - Mekonen Eshete
- Department of surgery School of Medicine Faculty of health sciences Addis Ababa University, Addis Ababa. Ethiopia
| | - Chrispinanus Mumena
- Department of Oral and Maxillofacial Surgery, Kigali Health Institute, P.O. Box 3286, Kigali, Rwanda
| | - Rosemary Audu
- Human Virology Laboratory, Nigerian Institute of Medical Research, 6, Edmond Crescent, P.M.B. 2013, Yaba, Lagos, Nigeria
| | - Chika Onwuamah
- Human Virology Laboratory, Nigerian Institute of Medical Research, 6, Edmond Crescent, P.M.B. 2013, Yaba, Lagos, Nigeria
| | - Pius Agbenorku
- Department of Plastic Surgery, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, P.O. Box 448, KNUST, Kumasi, Ghana
| | - Mobolanle Ogunlewe
- Department of Oral and Maxillofacial Surgery, College of Medicine, University of Lagos, Lagos. Nigeria
| | - Adetokunbo Adebola
- Department of Oral and Maxillofacial Surgery, Aminu Kano University Teaching Hospital, Kano. Nigeria
| | - Hecto Olasoji
- Department of Oral and Maxillofacial Surgery, University of Maiduguri Teaching Hospital, Maiduguri. Nigeria
| | - Babatunde Aregbesola
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife. Nigeria
| | - Ramat Braimah
- Department of Oral and Maxillofacial Surgery, Obafemi Awolowo University, Ile-Ife. Nigeria
| | | | - Ifeanyichukwu Onah
- Department of Plastic Surgery, National Orthopedic hospital, Enugu. Nigeria
| | - Ezekiel Adebiyi
- Department of Computer and Information Sciences and Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Peter Olaitan
- Department of Plastic and Reconstructive Surgery, Ladoke Akintola University Ogbomosho. Nigeria
| | | | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
188
|
Discriminating direct and indirect connectivities in biological networks. Proc Natl Acad Sci U S A 2015; 112:12893-8. [PMID: 26420864 DOI: 10.1073/pnas.1507168112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Reverse engineering of biological pathways involves an iterative process between experiments, data processing, and theoretical analysis. Despite concurrent advances in quality and quantity of data as well as computing resources and algorithms, difficulties in deciphering direct and indirect network connections are prevalent. Here, we adopt the notions of abstraction, emulation, benchmarking, and validation in the context of discovering features specific to this family of connectivities. After subjecting benchmark synthetic circuits to perturbations, we inferred the network connections using a combination of nonparametric single-cell data resampling and modular response analysis. Intriguingly, we discovered that recovered weights of specific network edges undergo divergent shifts under differential perturbations, and that the particular behavior is markedly different between topologies. Our results point to a conceptual advance for reverse engineering beyond weight inference. Investigating topological changes under differential perturbations may address the longstanding problem of discriminating direct and indirect connectivities in biological networks.
Collapse
|
189
|
Helma J, Cardoso MC, Muyldermans S, Leonhardt H. Nanobodies and recombinant binders in cell biology. J Cell Biol 2015; 209:633-44. [PMID: 26056137 PMCID: PMC4460151 DOI: 10.1083/jcb.201409074] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes.
Collapse
Affiliation(s)
- Jonas Helma
- Department of Biology II, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich and Center for Integrated Protein Science Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
190
|
Furukawa K, Hohmann S. A fungicide-responsive kinase as a tool for synthetic cell fate regulation. Nucleic Acids Res 2015; 43:7162-70. [PMID: 26138483 PMCID: PMC4538845 DOI: 10.1093/nar/gkv678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/19/2015] [Indexed: 01/22/2023] Open
Abstract
Engineered biological systems that precisely execute defined tasks have major potential for medicine and biotechnology. For instance, gene- or cell-based therapies targeting pathogenic cells may replace time- and resource-intensive drug development. Engineering signal transduction systems is a promising, yet presently underexplored approach. Here, we exploit a fungicide-responsive heterologous histidine kinase for pathway engineering and synthetic cell fate regulation in the budding yeast Saccharomyces cerevisiae. Rewiring the osmoregulatory Hog1 MAPK signalling system generates yeast cells programmed to execute three different tasks. First, a synthetic negative feedback loop implemented by employing the fungicide-responsive kinase and a fungicide-resistant derivative reshapes the Hog1 activation profile, demonstrating how signalling dynamics can be engineered. Second, combinatorial integration of different genetic parts including the histidine kinases, a pathway activator and chemically regulated promoters enables control of yeast growth and/or gene expression in a two-input Boolean logic manner. Finally, we implemented a genetic ‘suicide attack’ system, in which engineered cells eliminate target cells and themselves in a specific and controllable manner. Taken together, fungicide-responsive kinases can be applied in different constellations to engineer signalling behaviour. Sensitizing engineered cells to existing chemicals may be generally useful for future medical and biotechnological applications.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Stefan Hohmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
191
|
Development of New Modular Genetic Tools for Engineering the Halophilic Archaeon Halobacterium salinarum. PLoS One 2015; 10:e0129215. [PMID: 26061363 PMCID: PMC4465625 DOI: 10.1371/journal.pone.0129215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i) the E. coli’s specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii) the resistance marker and (iii) the replication origin, which are specific to H. salinarum and (iv) the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.
Collapse
|
192
|
Xie M, Fussenegger M. Mammalian designer cells: Engineering principles and biomedical applications. Biotechnol J 2015; 10:1005-18. [PMID: 26010998 DOI: 10.1002/biot.201400642] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 12/15/2022]
Abstract
Biotechnology is a widely interdisciplinary field focusing on the use of living cells or organisms to solve established problems in medicine, food production and agriculture. Synthetic biology, the science of engineering complex biological systems that do not exist in nature, continues to provide the biotechnology industry with tools, technologies and intellectual property leading to improved cellular performance. One key aspect of synthetic biology is the engineering of deliberately reprogrammed designer cells whose behavior can be controlled over time and space. This review discusses the most commonly used techniques to engineer mammalian designer cells; while control elements acting on the transcriptional and translational levels of target gene expression determine the kinetic and dynamic profiles, coupling them to a variety of extracellular stimuli permits their remote control with user-defined trigger signals. Designer mammalian cells with novel or improved biological functions not only directly improve the production efficiency during biopharmaceutical manufacturing but also open the door for cell-based treatment strategies in molecular and translational medicine. In the future, the rational combination of multiple sets of designer cells could permit the construction and regulation of higher-order systems with increased complexity, thereby enabling the molecular reprogramming of tissues, organisms or even populations with highest precision.
Collapse
Affiliation(s)
- Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Life Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
193
|
Che XH, Chen YC, Chen CL, Ye XL, Zhu H. Non-hormonal targets underlying endometriosis: A focus on molecular mechanisms. Mol Reprod Dev 2015; 82:410-31. [PMID: 25982890 DOI: 10.1002/mrd.22493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Xiao-hang Che
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
- College of Chemistry and Bio-engineering; Yichun University; Yichun China
- Cancer Institute; Yinzhou People's Hospital; Ningbo China
| | - Yi-chen Chen
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
| | - Chun-lin Chen
- College of Chemistry and Bio-engineering; Yichun University; Yichun China
| | - Xiao-lei Ye
- Division of Drugs and Pharmacology; Ningbo Institute of Medical Sciences; Ningbo China
- Cancer Institute; Yinzhou People's Hospital; Ningbo China
| | - Hong Zhu
- Division of Obstetrics and Gynecology; Affiliated Hospital of Ningbo University School of Medicine; Ningbo China
| |
Collapse
|
194
|
Abstract
Lineage tracing is a powerful tool to track cells in vivo and provides enhanced spatial, temporal, and kinetic resolution of the mechanisms that underlie tissue renewal and repair. The data obtained from novel mouse models engineered for lineage tracing has started to transform our understanding of the changes in cell fate that underlie renal pathophysiology, the role of stem and/or progenitor cells in kidney development, and the mechanisms of kidney regeneration. The complexity of the genetic systems that are engineered for lineage tracing requires careful analysis and interpretation. In this Review we emphasize that close attention in lineage tracing studies must be paid to the specificity of the promoter, the use of drug-controlled activation of Cre recombinase as a genetic switch, and the type of reporter that should be engineered into lineage tracing genetic constructs. We evaluate the optimal experimental conditions required to achieve the pre-specified aims of the study and discuss the novel genetic techniques that are becoming available to study putative renal progenitor cells and the mechanisms of kidney regeneration.
Collapse
|
195
|
Wang H, Ye H, Xie M, Daoud El-Baba M, Fussenegger M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res 2015; 43:e91. [PMID: 25943548 PMCID: PMC4538802 DOI: 10.1093/nar/gkv326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/31/2015] [Indexed: 12/24/2022] Open
Abstract
Synthetic biology has significantly advanced the rational design of trigger-inducible gene switches that program cellular behavior in a reliable and predictable manner. Capitalizing on genetic componentry, including the repressor PmeR and its cognate operator OPmeR, that has evolved in Pseudomonas syringae pathovar tomato DC3000 to sense and resist plant-defence metabolites of the paraben class, we have designed a set of inducible and repressible mammalian transcription-control devices that could dose-dependently fine-tune transgene expression in mammalian cells and mice in response to paraben derivatives. With an over 60-years track record as licensed preservatives in the cosmetics industry, paraben derivatives have become a commonplace ingredient of most skin-care products including shower gels, cleansing toners and hand creams. As parabens can rapidly reach the bloodstream of mice following topical application, we used this feature to percutaneously program transgene expression of subcutaneous designer cell implants using off-the-shelf commercial paraben-containing skin-care cosmetics. The combination of non-invasive, transdermal and orthogonal trigger-inducible remote control of transgene expression may provide novel opportunities for dynamic interventions in future gene and cell-based therapies.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Haifeng Ye
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, 200241 Shanghai, China
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Marie Daoud El-Baba
- Département Génie Biologique, Institut Universitaire de Technologie, F-69622 Villeurbanne Cedex, France
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland Faculty of Science, University of Basel, CH-4058 Basel, Switzerland
| |
Collapse
|
196
|
Bloom RJ, Winkler SM, Smolke CD. Synthetic feedback control using an RNAi-based gene-regulatory device. J Biol Eng 2015; 9:5. [PMID: 25897323 PMCID: PMC4403951 DOI: 10.1186/s13036-015-0002-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/20/2015] [Indexed: 11/21/2022] Open
Abstract
Background Homeostasis within mammalian cells is achieved through complex molecular networks that can respond to changes within the cell or the environment and regulate the expression of the appropriate genes in response. The development of biological components that can respond to changes in the cellular environment and interface with endogenous molecules would enable more sophisticated genetic circuits and greatly advance our cellular engineering capabilities. Results Here we describe a platform that combines a ligand-responsive ribozyme switch and synthetic miRNA regulators to create an OFF genetic control device based on RNA interference (RNAi). We developed a mathematical model to highlight important design parameters in programming the quantitative performance of RNAi-based OFF control devices. By modifying the ribozyme switch integrated into the system, we demonstrated RNAi-based OFF control devices that respond to small molecule and protein ligands, including the oncogenic protein E2F1. We utilized the OFF control device platform to build a negative feedback control system that acts as a proportional controller and maintains target intracellular protein levels in response to increases in transcription rate. Conclusions Our work describes a novel genetic device that increases the level of silencing from a miRNA in the presence of a ligand of interest, effectively creating an RNAi-based OFF control device. The OFF switch platform has the flexibility to be used to respond to both small molecule and protein ligands. Finally, the RNAi-based OFF switch can be used to implement a negative feedback control system, which maintains target protein levels around a set point level. The described RNAi-based OFF control device presents a powerful tool that will enable researchers to engineer homeostasis in mammalian cells. Electronic supplementary material The online version of this article (doi:10.1186/s13036-015-0002-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan J Bloom
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305 USA
| | - Sally M Winkler
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305 USA
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, 443 Via Ortega, MC 4245, Stanford, CA 94305 USA
| |
Collapse
|
197
|
Stein V, Alexandrov K. Synthetic protein switches: design principles and applications. Trends Biotechnol 2015; 33:101-10. [DOI: 10.1016/j.tibtech.2014.11.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
198
|
Geering B, Fussenegger M. Synthetic immunology: modulating the human immune system. Trends Biotechnol 2015; 33:65-79. [DOI: 10.1016/j.tibtech.2014.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/30/2022]
|
199
|
Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. CRISPR-Cas9-based photoactivatable transcription system. ACTA ACUST UNITED AC 2015; 22:169-74. [PMID: 25619936 DOI: 10.1016/j.chembiol.2014.12.011] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 01/05/2023]
Abstract
Targeted endogenous gene activation is necessary for understanding complex gene networks and has great potential in medical and industrial applications. The CRISPR-Cas system offers simple and powerful tools for this purpose. However, these CRISPR-Cas-based tools for activating user-defined genes are unable to offer precise temporal control of gene expression, despite the fact that many biological phenomena are regulated by highly dynamic patterns of gene expression. Here we created a light-inducible, user-defined, endogenous gene activation system based on CRISPR-Cas9. We demonstrated that this CRISPR-Cas9-based transcription system can allow rapid and reversible targeted gene activation by light. In addition, using this system, we have exemplified photoactivation of multiple user-defined endogenous genes in mammalian cells. The present CRISPR-Cas9-based transcription system offers simple and versatile approaches for precise endogenous gene activation in basic biological research and biotechnology applications.
Collapse
Affiliation(s)
- Yuta Nihongaki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shun Yamamoto
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Fuun Kawano
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hideyuki Suzuki
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
200
|
Andries O, Kitada T, Bodner K, Sanders NN, Weiss R. Synthetic biology devices and circuits for RNA-based ‘smart vaccines’: a propositional review. Expert Rev Vaccines 2015; 14:313-31. [DOI: 10.1586/14760584.2015.997714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|