151
|
Wu XM, Qian C, Zhou YF, Yan YC, Luo QQ, Yung WH, Zhang FL, Jiang LR, Qian ZM, Ke Y. Bi-directionally protective communication between neurons and astrocytes under ischemia. Redox Biol 2017; 13:20-31. [PMID: 28551085 PMCID: PMC5447396 DOI: 10.1016/j.redox.2017.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong 226001, China
| | - Christopher Qian
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yu-Fu Zhou
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Yick-Chun Yan
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Qian-Qian Luo
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China; Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong 226001, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Fa-Li Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Li-Rong Jiang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Zhong Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
152
|
Justice JA, Schulien AJ, He K, Hartnett KA, Aizenman E, Shah NH. Disruption of K V2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience 2017; 354:158-167. [PMID: 28461216 DOI: 10.1016/j.neuroscience.2017.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
As the predominant mediator of the delayed rectifier current, KV2.1 is an important regulator of neuronal excitability. KV2.1, however, also plays a well-established role in apoptotic cell death. Apoptogenic stimuli induce syntaxin-dependent trafficking of KV2.1, resulting in an augmented delayed rectifier current that acts as a conduit for K+ efflux required for pro-apoptotic protease/nuclease activation. Recent evidence suggests that KV2.1 somato-dendritic clusters regulate the formation of endoplasmic reticulum-plasma membrane junctions that function as scaffolding sites for plasma membrane trafficking of ion channels, including KV2.1. However, it is unknown whether KV2.1 somato-dendritic clusters are required for apoptogenic trafficking of KV2.1. By overexpression of a protein derived from the C-terminus of the cognate channel KV2.2 (KV2.2CT), we induced calcineurin-independent disruption of KV2.1 somato-dendritic clusters in rat cortical neurons, without altering the electrophysiological properties of the channel. We observed that KV2.2CT-expressing neurons are less susceptible to oxidative stress-induced cell death. Critically, expression of KV2.2CT effectively blocked the increased current density of the delayed rectifier current associated with oxidative injury, supporting a vital role of KV2.1-somato-dendritic clusters in apoptogenic increases in KV2.1-mediated currents.
Collapse
Affiliation(s)
- Jason A Justice
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Anthony J Schulien
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kai He
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Karen A Hartnett
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Niyathi H Shah
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
153
|
Tauskela JS, Bourourou M, Blondeau N. Tackling issues in the path toward clinical translation in brain conditioning: Potential offered by nutraceuticals. Brain Circ 2017; 3:78-86. [PMID: 30276308 PMCID: PMC6126266 DOI: 10.4103/bc.bc_8_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Brief periods of ischemia have been shown in many experimental setups to provide tolerance against ischemia in multiple organs including the brain, when administered before (preconditioning) or even after (postconditioning) the normally lethal ischemia. In addition to these so-called ischemic conditionings, many pharmacological and natural agents (e.g., chemicals and nutraceuticals) can also act as potent pre- and post-conditioners. Deriving from the original concept of ischemic preconditioning, these various conditioning paradigms may be promising as clinical-stage therapies for prevention of ischemic-related injury, especially stroke. As no proven experimentally identified strategy has translated into clinical success, the experimental induction of neuroprotection using these various conditioning paradigms has raised several questions, even before considering translation to clinical studies in humans. The first aim of the review is to consider key questions on preclinical studies of pre- or post-conditioning modalities including those induced by chemical or nutraceuticals. Second, we make the argument that several key issues can be addressed by a novel concept, nutraceutical preconditioning. Specifically, α-linolenic acid (alpha-linolenic acid [ALA] an omega-3 polyunsaturated fatty acid), contained in plant-derived edible products, is essential in the daily diet, and a body of work has identified ALA as a pre- and post-conditioner of the brain. Nutritional intervention and functional food development are an emerging direction for preventing stroke damage, offering the potential to improving clinical outcomes through activation of the endogenous protective mechanisms known collectively as conditioning.
Collapse
Affiliation(s)
- Joseph S Tauskela
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Miled Bourourou
- University of Côte d'Azur, Centre National de la Recherche Scientifique, IPMC, UMR7275 Sophia Antipolis, F-06560, France
| | - Nicolas Blondeau
- University of Côte d'Azur, Centre National de la Recherche Scientifique, IPMC, UMR7275 Sophia Antipolis, F-06560, France
| |
Collapse
|
154
|
Kelch-like ECH-associated Protein 1-dependent Nuclear Factor-E2–related Factor 2 Activation in Relation to Antioxidation Induced by Sevoflurane Preconditioning. Anesthesiology 2017; 126:507-521. [PMID: 28045693 DOI: 10.1097/aln.0000000000001485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background
The authors have reported that antioxidative effects play a crucial role in the volatile anesthetic-induced neuroprotection. Accumulated evidence shows that endogenous antioxidation could be up-regulated by nuclear factor-E2–related factor 2 through multiple pathways. However, whether nuclear factor-E2–related factor 2 activation is modulated by sevoflurane preconditioning and, if so, what is the signaling cascade underlying upstream of this activation are still unknown.
Methods
Sevoflurane preconditioning in mice was performed with sevoflurane (2.5%) 1 h per day for five consecutive days. Focal cerebral ischemia/reperfusion injury was induced by middle cerebral artery occlusion. Expression of nuclear factor-E2–related factor 2, kelch-like ECH-associated protein 1, manganese superoxide dismutase, thioredoxin-1, and nicotinamide adenine dinucleotide phosphate quinolone oxidoreductase-1 was detected (n = 6). The antioxidant activities and oxidative product expression were also examined. To determine the role of kelch-like ECH-associated protein 1 inhibition-dependent nuclear factor-E2–related factor 2 activation in sevoflurane preconditioning-induced neuroprotection, the kelch-like ECH–associated protein 1-nuclear factor-E2–related factor 2 signal was modulated by nuclear factor-E2–related factor 2 knockout, kelch-like ECH-associated protein 1 overexpression lentivirus, and kelch-like ECH-associated protein 1 deficiency small interfering RNA (n = 8). The infarct volume, neurologic scores, and cellular apoptosis were assessed.
Results
Sevoflurane preconditioning elicited neuroprotection and increased nuclear factor-E2–related factor 2 nuclear translocation, which in turn up-regulated endogenous antioxidation and reduced oxidative injury. Sevoflurane preconditioning reduced kelch-like ECH-associated protein 1 expression. Nuclear factor-E2–related factor 2 ablation abolished neuroprotection and reversed sevoflurane preconditioning by mediating the up-regulation of antioxidants. Kelch-like ECH-associated protein 1 overexpression reversed nuclear factor-E2–related factor 2 up-regulation and abolished the neuroprotection induced by sevoflurane preconditioning. Kelch-like ECH-associated protein 1 small interfering RNA administration improved nuclear factor-E2–related factor 2 expression and the outcome of mice subjected to ischemia/reperfusion injury.
Conclusions
Kelch-like ECH-associated protein 1 down-regulation–dependent nuclear factor-E2–related factor 2 activation underlies the ability of sevoflurane preconditioning to activate the endogenous antioxidant response, which elicits its neuroprotection.
Collapse
|
155
|
Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-Inducible Factor-1α Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci 2017; 11:20. [PMID: 28289375 PMCID: PMC5326762 DOI: 10.3389/fncel.2017.00020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcription factor that facilitates cellular adaptation to hypoxia and ischemia. Long-standing evidence suggests that one isotype of HIF, HIF-1α, is involved in the pathogenesis of various solid tumors and cardiac diseases. However, the role of HIF-1α in retina remains poorly understood. HIF-1α has been recognized as neuroprotective in cerebral ischemia in the past two decades. Additionally, an increasing number of studies has shown that HIF-1α and its target genes contribute to retinal neuroprotection. This review will focus on recent advances in the studies of HIF-1α and its target genes that contribute to retinal neuroprotection. A thorough understanding of the function of HIF-1α and its target genes may lead to identification of novel therapeutic targets for treating degenerative retinal diseases including glaucoma, age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Honghua Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Department of Ophthalmology, General Hospital of Guangzhou Military Command of PLAGuangzhou, China
| | - Naihong Yan
- Department of Ophthalmology and Ophthalmic Laboratories, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University Chengdu, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University Guangzhou, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China; Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical SchoolPiscataway, NJ, USA
| |
Collapse
|
156
|
Li H, Sun J, Zhang D, Omire-Mayor D, Lewin PA, Tong S. Low-intensity (400 mW/cm 2, 500 kHz) pulsed transcranial ultrasound preconditioning may mitigate focal cerebral ischemia in rats. Brain Stimul 2017; 10:695-702. [PMID: 28279642 DOI: 10.1016/j.brs.2017.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/10/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Preconditioning methods, which could increase tolerance of brain to subsequent ischemic injuries with a small dose of non-injury stimuli, have gained attention. Capitalizing on noninvasiveness and safety of ultrasound modality, the pulsed transcranial ultrasound stimulation (pTUS) approach may provide a novel treatment for patients with high risk of stroke. OBJECTIVE This study's goal was to investigate whether the risk of stroke could be minimized or eliminated by prior exposure to low-intensity, pulsed transcranial ultrasound stimulation (pTUS). METHODS Rats were randomly assigned to control (n = 12) and pTUS preconditioning (pTUS-PC) groups (n = 14). The animals in pTUS-PC group were exposed to transcranial ultrasound stimulation before the induction of photothrombotic stroke, whereas control animals were handled identically but without the ultrasound stimulation. Cerebral blood flow was monitored using laser speckle imaging in both groups during stroke induction, as well as 24 and 48 h after stroke, respectively. Also, infarct volumes and edema were measured at 48 h after stroke. RESULTS pTUS-PC rats had smaller ischemic areas during stroke induction, and 24 and 48 h after the stroke, and smaller infarct volume (1.770 ± 0.169%) than the controls (3.215 ± 0.401%) (p < 0.01). Moreover, the pTUS-PC group experienced lower volume of brain edema than the control group (pTUS-PC rats: 6.658 ± 1.183%; control rats: 12.48 ± 1.386%, p < 0.01). CONCLUSION These results support the hypothesis that transcranial ultrasound stimulation applied before photothrombosis could provide neuroprotection by increasing the brain's tolerance to subsequently induced focal ischemic injury.
Collapse
Affiliation(s)
- Hangdao Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daqu Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daryl Omire-Mayor
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA
| | - Peter A Lewin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA19104, USA.
| | - Shanbao Tong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
157
|
Schurman LD, Lichtman AH. Endocannabinoids: A Promising Impact for Traumatic Brain Injury. Front Pharmacol 2017; 8:69. [PMID: 28261100 PMCID: PMC5314139 DOI: 10.3389/fphar.2017.00069] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/02/2017] [Indexed: 02/01/2023] Open
Abstract
The endogenous cannabinoid (endocannabinoid) system regulates a diverse array of physiological processes and unsurprisingly possesses considerable potential targets for the potential treatment of numerous disease states, including two receptors (i.e., CB1 and CB2 receptors) and enzymes regulating their endogenous ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonyl glycerol (2-AG). Increases in brain levels of endocannabinoids to pathogenic events suggest this system plays a role in compensatory repair mechanisms. Traumatic brain injury (TBI) pathology remains mostly refractory to currently available drugs, perhaps due to its heterogeneous nature in etiology, clinical presentation, and severity. Here, we review pre-clinical studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system to ameliorate TBI pathology. Specifically, manipulations of endocannabinoid degradative enzymes (e.g., fatty acid amide hydrolase, monoacylglycerol lipase, and α/β-hydrolase domain-6), CB1 and CB2 receptors, and their endogenous ligands have shown promise in modulating cellular and molecular hallmarks of TBI pathology such as; cell death, excitotoxicity, neuroinflammation, cerebrovascular breakdown, and cell structure and remodeling. TBI-induced behavioral deficits, such as learning and memory, neurological motor impairments, post-traumatic convulsions or seizures, and anxiety also respond to manipulations of the endocannabinoid system. As such, the endocannabinoid system possesses potential drugable receptor and enzyme targets for the treatment of diverse TBI pathology. Yet, full characterization of TBI-induced changes in endocannabinoid ligands, enzymes, and receptor populations will be important to understand that role this system plays in TBI pathology. Promising classes of compounds, such as the plant-derived phytocannabinoids, synthetic cannabinoids, and endocannabinoids, as well as their non-cannabinoid receptor targets, such as TRPV1 receptors, represent important areas of basic research and potential therapeutic interest to treat TBI.
Collapse
Affiliation(s)
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, RichmondVA, USA
| |
Collapse
|
158
|
Shen Z, Zheng Y, Wu J, Chen Y, Wu X, Zhou Y, Yuan Y, Lu S, Jiang L, Qin Z, Chen Z, Hu W, Zhang X. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window. Autophagy 2017; 13:473-485. [PMID: 28103118 PMCID: PMC5361599 DOI: 10.1080/15548627.2016.1274596] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prompt reperfusion after cerebral ischemia is critical for neuronal survival. Any strategies that extend the limited reperfusion window will be of great importance. Acidic postconditioning (APC) is a mild acidosis treatment that involves inhaling CO2 during reperfusion following ischemia. APC attenuates ischemic brain injury although the underlying mechanisms have not been elucidated. Here we report that APC reinforces ischemia-reperfusion-induced mitophagy in middle cortical artery occlusion (MCAO)-treated mice, and in oxygen-glucose deprivation (OGD)-treated brain slices and neurons. Inhibition of mitophagy compromises neuroprotection conferred by APC. Furthermore, mitophagy and neuroprotection are abolished in Park2 knockout mice, indicating that APC-induced mitophagy is facilitated by the recruitment of PARK2 to mitochondria. Importantly, in MCAO mice, APC treatment extended the effective reperfusion window from 2 to 4 h, and this window was further extended to 6 h by exogenously expressing PARK2. Taken together, we found that PARK2-dependent APC-induced mitophagy renders the brain resistant to ischemic injury. APC treatment could be a favorable strategy to extend the thrombolytic time window for stroke therapy.
Collapse
Affiliation(s)
- Zhe Shen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Yanrong Zheng
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Jiaying Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Ying Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Xiaoli Wu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Yiting Zhou
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Yang Yuan
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Shousheng Lu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Lei Jiang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Zhenghong Qin
- b Department of Pharmacology and Laboratory of Aging and Nervous Diseases , Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, School of Pharmaceutical Science, Soochow University , Suzhou , China
| | - Zhong Chen
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Weiwei Hu
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| | - Xiangnan Zhang
- a Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences , Department of Pharmacology , Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University , Hangzhou , China
| |
Collapse
|
159
|
Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H, Ding Y, Ji X. Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol 2017; 157:79-91. [PMID: 28110083 DOI: 10.1016/j.pneurobio.2017.01.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/08/2017] [Accepted: 01/13/2017] [Indexed: 01/05/2023]
Abstract
Sublethal hypoxic or ischemic events can improve the tolerance of tissues, organs, and even organisms from subsequent lethal injury caused by hypoxia or ischemia. This phenomenon has been termed hypoxic or ischemic preconditioning (HPC or IPC) and is well established in the heart and the brain. This review aims to discuss HPC and IPC with respect to their historical development and advancements in our understanding of the neurochemical basis for their neuroprotective role. Through decades of collaborative research and studies of HPC and IPC in other organ systems, our understanding of HPC and IPC-induced neuroprotection has expanded to include: early- (phosphorylation targets, transporter regulation, interfering RNA) and late- (regulation of genes like EPO, VEGF, and iNOS) phase changes, regulators of programmed cell death, members of metabolic pathways, receptor modulators, and many other novel targets. The rapid acceleration in our understanding of HPC and IPC will help facilitate transition into the clinical setting.
Collapse
Affiliation(s)
- Sijie Li
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Adam Hafeez
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Fatima Noorulla
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xiaokun Geng
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Guo Shao
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Guowei Lu
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Heng Zhao
- Department of Neurosurgery, Stanford University, CA, USA
| | - Yuchuan Ding
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxic Conditioning Translational Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
160
|
E2-25K SUMOylation inhibits proteasome for cell death during cerebral ischemia/reperfusion. Cell Death Dis 2016; 7:e2573. [PMID: 28032866 PMCID: PMC5261013 DOI: 10.1038/cddis.2016.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) causes brain damage accompanied by ubiquitin accumulation and impairment of proteasome activity. In this study, we report that E2-25K, an E2-conjugating enzyme, is SUMOylated during oxidative stress and regulates cerebral I/R-induced damage. Knockdown of E2-25K expression protects against oxygen/glucose deprivation and reoxygenation (OGD/R)-induced neuronal cell death, whereas ectopic expression of E2-25K stimulates it. Compared with the control mice, cerebral infarction lesions and behavioral/neurological disorders are ameliorated in E2-25K knockout mice during middle cerebral artery occlusion and reperfusion. In particular, E2-25K is SUMOylated at Lys14 under oxidative stress, OGD/R and I/R to prompt cell death. Further, E2-25K downregulates the proteasome subunit S5a to impair proteasome complex and thus restrain proteasome activity under oxidative stress. This proteasome inhibitory activity of E2-25K is dependent on its SUMOylation. These results suggest that E2-25K has a crucial role in oxidative stress and cerebral I/R-induced damage through inhibiting proteasome via its SUMOylation.
Collapse
|
161
|
Yang X, Wu Q, Zhang L, Feng L. Inhibition of Histone Deacetylase 3 (HDAC3) Mediates Ischemic Preconditioning and Protects Cortical Neurons against Ischemia in Rats. Front Mol Neurosci 2016; 9:131. [PMID: 27965534 PMCID: PMC5124709 DOI: 10.3389/fnmol.2016.00131] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/11/2016] [Indexed: 01/22/2023] Open
Abstract
Brain ischemic preconditioning (PC) provides vital insights into the endogenous protection against stroke. Genomic and epigenetic responses to PC condition the brain into a state of ischemic tolerance. Notably, PC induces the elevation of histone acetylation, consistent with evidence that histone deacetylase (HDAC) inhibitors protect the brain from ischemic injury. However, less is known about the specific roles of HDACs in this process. HDAC3 has been implicated in several neurodegenerative conditions. Deletion of HDAC3 confers protection against neurotoxicity and neuronal injury. Here, we hypothesized that inhibition of HDAC3 may contribute to the neuronal survival elicited by PC. To address this notion, PC and transient middle cerebral artery occlusion (MCAO) were conducted in Sprague-Dawley rats. Additionally, primary cultured cortical neurons were used to identify the modulators and effectors of HDAC3 involved in PC. We found that nuclear localization of HDAC3 was significantly reduced following PC in vivo and in vitro. Treatment with the HDAC3-specific inhibitor, RGFP966, mimicked the neuroprotective effects of PC 24 h and 7 days after MCAO, causing a reduced infarct volume and less Fluoro-Jade C staining. Improved functional outcomes were observed in the neurological score and rotarod test. We further showed that attenuated recruitment of HDAC3 to promoter regions following PC potentiates transcriptional initiation of genes including Hspa1a, Bcl2l1, and Prdx2, which may underlie the mechanism of protection. In addition, PC-activated calpains were implicated in the cleavage of HDAC3. Pretreatment with calpeptin blockaded the attenuated nuclear distribution of HDAC3 and the protective effect of PC in vivo. Collectively, these results demonstrate that the inhibition of HDAC3 preconditions the brain against ischemic insults, indicating a new approach to evoke endogenous protection against stroke.
Collapse
Affiliation(s)
- Xiaoyu Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Qimei Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
162
|
Harston GWJ, Okell TW, Sheerin F, Schulz U, Mathieson P, Reckless I, Shah K, Ford GA, Chappell MA, Jezzard P, Kennedy J. Quantification of Serial Cerebral Blood Flow in Acute Stroke Using Arterial Spin Labeling. Stroke 2016; 48:123-130. [PMID: 27879446 PMCID: PMC5175999 DOI: 10.1161/strokeaha.116.014707] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/31/2022]
Abstract
Supplemental Digital Content is available in the text. Background and Purpose— Perfusion-weighted imaging is used to select patients with acute ischemic stroke for intervention, but knowledge of cerebral perfusion can also inform the understanding of ischemic injury. Arterial spin labeling allows repeated measurement of absolute cerebral blood flow (CBF) without the need for exogenous contrast. The aim of this study was to explore the relationship between dynamic CBF and tissue outcome in the month after stroke onset. Methods— Patients with nonlacunar ischemic stroke underwent ≤5 repeated magnetic resonance imaging scans at presentation, 2 hours, 1 day, 1 week, and 1 month. Imaging included vessel-encoded pseudocontinuous arterial spin labeling using multiple postlabeling delays to quantify CBF in gray matter regions of interest. Receiver–operator characteristic curves were used to predict tissue outcome using CBF. Repeatability was assessed in 6 healthy volunteers and compared with contralateral regions of patients. Diffusion-weighted and T2-weighted fluid attenuated inversion recovery imaging were used to define tissue outcome. Results— Forty patients were included. In contralateral regions of patients, there was significant variation of CBF between individuals, but not between scan times (mean±SD: 53±42 mL/100 g/min). Within ischemic regions, mean CBF was lowest in ischemic core (17±23 mL/100 g/min), followed by regions of early (21±26 mL/100 g/min) and late infarct growth (25±35 mL/100 g/min; ANOVA P<0.0001). Between patients, there was marked overlap in presenting and serial CBF values. Conclusions— Knowledge of perfusion dynamics partially explained tissue fate. Factors such as metabolism and tissue susceptibility are also likely to influence tissue outcome.
Collapse
Affiliation(s)
- George W J Harston
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.).
| | - Thomas W Okell
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Fintan Sheerin
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Ursula Schulz
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Phil Mathieson
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Ian Reckless
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Kunal Shah
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Gary A Ford
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Michael A Chappell
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - Peter Jezzard
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| | - James Kennedy
- From the Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, United Kingdom (G.W.J.H., J.K.); Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom (T.W.O., M.A.C., P.J.); Department of Neuroradiology (F.S.) and Acute Stroke Service (U.S., P.M., I.R., K.S., G.A.F., J.K.), Oxford University Hospitals NHS Foundation Trust, United Kingdom; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, United Kingdom (M.A.C.)
| |
Collapse
|
163
|
Bonova P, Nemethova M, Matiasova M, Bona M, Gottlieb M. Blood cells serve as a source of factor-inducing rapid ischemic tolerance in brain. Eur J Neurosci 2016; 44:2958-2965. [DOI: 10.1111/ejn.13422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/07/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| | - Miroslava Nemethova
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| | - Milina Matiasova
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| | - Martin Bona
- Department of Anatomy; Faculty of Medicine; Pavol Jozef Safarik University; Kosice Slovakia
| | - Miroslav Gottlieb
- Institute of Neurobiology; Slovak Academy of Sciences; Soltesovej 4/6 Kosice SK-040 01 Slovakia
| |
Collapse
|
164
|
Ren C, Li S, Wang B, Han R, Li N, Gao J, Li X, Jin K, Ji X. Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain. Behav Brain Res 2016; 340:87-93. [PMID: 27780723 DOI: 10.1016/j.bbr.2016.10.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE We tested the hypothesis that limb remote ischemic conditioning (LRIC) treatment promotes arteriogenesis and increases Notch signaling activity during stroke recovery. METHODS Adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO). LRIC was applied after the onset of focal ischemia (per-conditioning), followed by repeated short episodes of remote ischemia 24h after reperfusion (post-conditioning). Cerebral blood flow (CBF) was measured by Laser Doppler Flowmetry. Immunohistochemistry was used to reveal α-smooth muscle actin (α-SMA) immunopositive cells in the arteries of the brain. The cerebral angioarchitecture was visualized with a latex perfusion technique. RESULTS LRIC treatment significantly elevated local cerebral blood flow and increased arteriogenesis as indicated by increased arterial diameter and vascular smooth muscle cell proliferation in the ischemic brain. The increased arteriogenesis significantly correlated with the functional outcome after stroke. Furthermore, LRIC treatment upregulated the expressions of Notch1 and Notch intracellular domain (NICD) in arteries surrounding the ischemic area. CONCLUSION These results suggest that the therapeutic effects of LRIC may involve the promotion of arteriogenesis during the recovery phase after focal cerebral ischemia and that Notch1 signaling seems to be an important player in limb remote ischemia-mediated arteriogenesis.
Collapse
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, TX 76107, USA; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Sijie Li
- Emergency Department, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Brian Wang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Rongrong Han
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Jinhuan Gao
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaohua Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China; Center for Stroke, Beijing Institute for Brain Disorder, Beijing 100069, China
| | - Kunlin Jin
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China.
| |
Collapse
|
165
|
Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote Limb Ischemic Conditioning at Two Cuff Inflation Pressures Yields Learning Enhancements in Healthy Adults. J Mot Behav 2016; 49:337-348. [PMID: 27732431 DOI: 10.1080/00222895.2016.1204268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The authors tested whether 2 doses of remote limb ischemic conditioning (RLIC), induced via blood pressure cuff inflation, enhanced motor and cognitive learning to an equal extent, and explored a panel of blood biomarkers of RLIC. Thirty-two young adults were randomized to 3 groups and underwent a 7-day protocol of RLIC/sham followed by motor and cognitive training, with follow-up. Both RLIC groups had greater motor learning and a trend toward greater cognitive learning compared with the sham group. RLIC at the lower inflation pressure was as effective as RLIC with the higher inflation pressure. No significant candidate blood biomarkers were found. RLIC could be a well-tolerated method to enhance learning and improve rehabilitation outcomes in people with neurological conditions.
Collapse
Affiliation(s)
- Kendra M Cherry-Allen
- a Program in Physical Therapy , Washington University School of Medicine , St. Louis , Missouri
| | - Jeff M Gidday
- b Department of Neurological Surgery , Washington University School of Medicine , St. Louis , Missouri.,c Department of Cell Biology and Physiology , Washington University School of Medicine , St. Louis , Missouri.,d Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , St. Louis , Missouri.,e Department of Ophthalmology , Louisiana State University School of Medicine , New Orleans
| | - Jin-Moo Lee
- f Department of Neurology , Washington University School of Medicine , St. Louis , Missouri
| | - Tamara Hershey
- f Department of Neurology , Washington University School of Medicine , St. Louis , Missouri.,g Department of Psychiatry , Washington University School of Medicine , St. Louis , Missouri.,h Department of Radiology , Washington University School of Medicine , St. Louis , Missouri
| | - Catherine E Lang
- a Program in Physical Therapy , Washington University School of Medicine , St. Louis , Missouri.,f Department of Neurology , Washington University School of Medicine , St. Louis , Missouri.,i Program in Occupational Therapy , Washington University School of Medicine , St. Louis , Missouri
| |
Collapse
|
166
|
Orellana JA. Physiological Functions of Glial Cell Hemichannels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:93-108. [DOI: 10.1007/978-3-319-40764-7_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
167
|
Doeppner TR, Doehring M, Kaltwasser B, Majid A, Lin F, Bähr M, Kilic E, Hermann DM. Ischemic Post-Conditioning Induces Post-Stroke Neuroprotection via Hsp70-Mediated Proteasome Inhibition and Facilitates Neural Progenitor Cell Transplantation. Mol Neurobiol 2016; 54:6061-6073. [PMID: 27699598 DOI: 10.1007/s12035-016-0137-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/16/2016] [Indexed: 01/06/2023]
Abstract
In view of the failure of pharmacological therapies, alternative strategies promoting post-stroke brain repair are needed. Post-conditioning is a potentially promising therapeutic strategy, which induces acute neuroprotection against ischemic injury. To elucidate longer lasting actions of ischemic post-conditioning, mice were exposed to a 60-min stroke and post-conditioning by an additional 10-min stroke that was induced 10 min after reperfusion onset. Animals were sacrificed 24 h or 28 days post-stroke. Post-conditioning reduced infarct volume and neurological deficits 24 h post-stroke, enhancing blood-brain barrier integrity, reducing brain leukocyte infiltration, and reducing oxidative stress. On the molecular level, post-conditioning yielded increased Hsp70 expression, whereas nuclear factor (NF)-κB and proteasome activities were decreased. Reduced infarct volume and proteasome inhibition were reversed by Hsp70 knockdown, suggesting a critical role of the Hsp70 proteasome pathway in ischemic post-conditioning. The survival-promoting effects of ischemic post-conditioning, however, were not sustainable as neuroprotection and neurological recovery were lost 28 days post-stroke. Although angioneurogenesis was not increased by post-conditioning, the favorable extracellular milieu facilitated intracerebral transplantation of neural progenitor cells 6 h post-stroke, resulting in persisted neuroprotection and neurological recovery. Thus, post-conditioning might support brain repair processes, but in view of its transient, neuroprotection is unlikely useful as stroke therapy in its current form.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany. .,Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey. .,Department of Neurology, University of Göttingen Medical School, Göttingen, Germany.
| | - Maria Doehring
- Oberhavel Kliniken, Department of Internal Medicine, Oranienburg, Germany
| | - Britta Kaltwasser
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fengyan Lin
- Cancer Center, The First Affiliated Hospital, Jilin University, Changchun, Jilin, China
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, Göttingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany
| |
Collapse
|
168
|
Abstract
Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon in which a brief period of cerebral ischemia confers transient tolerance to subsequent ischemic challenge. Research on IPC has implicated cellular, molecular, and systemic elements of the immune response in this phenomenon. Potent molecular mediators of IPC include innate immune signaling pathways such as Toll-like receptors and type 1 interferons. Brain ischemia results in release of pro- and anti-inflammatory cytokines and chemokines that orchestrate the neuroinflammtory response, resolution of inflammation, and transition to neurological recovery and regeneration. Cellular mediators of IPC include microglia, the resident central nervous system immune cells, astrocytes, and neurons. All of these cell types engage in cross-talk with each other using a multitude of signaling pathways that modulate activation/suppression of each of the other cell types in response to ischemia. As the postischemic neuroimmune response evolves over time there is a shift in function toward provision of trophic support and neuroprotection. Peripheral immune cells infiltrate the central nervous system en masse after stroke and are largely detrimental, with a few subtypes having beneficial, protective effects, though the role of these immune cells in IPC is largely unknown. The role of neural progenitor cells in IPC-mediated neuroprotection is another active area of investigation as is the role of microglial proliferation in this setting. A mechanistic understanding of these molecular and cellular mediators of IPC may not only facilitate more effective direct application of IPC to specific clinical scenarios, but also, more broadly, reveal novel targets for therapeutic intervention in stroke.
Collapse
Affiliation(s)
- Ashley McDonough
- Department of Neurology, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
169
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
170
|
Anttila V, Haapanen H, Yannopoulos F, Herajärvi J, Anttila T, Juvonen T. Review of remote ischemic preconditioning: from laboratory studies to clinical trials. SCAND CARDIOVASC J 2016; 50:355-361. [PMID: 27595164 DOI: 10.1080/14017431.2016.1233351] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In remote ischemic preconditioning (RIPC) short periods of non-lethal ischemia followed by reperfusion of tissue or organ prepare remote tissue or organ to resist a subsequent more severe ischemia-reperfusion injury. The signaling mechanism of RIPC can be humoral communication, neuronal stimulation, systemic modification of circulating immune cells, and activation of hypoxia inducible genes. Despite promising evidence from experimental studies, the clinical effects of RIPC have been controversial. Heterogeneity of inclusion and exclusion criteria and confounding factors such as comedication, anesthesia, comorbidities, and other risk factors may have influenced the efficacy of RIPC. Although the cardioprotective pathways of RIPC are more widely studied, there is also evidence of benefits in CNS, kidney and liver protection. Future research should explore the potential of RIPC, not only in cardiac protection, but also in patients with threatening ischemia of the brain, organ transplantation of the heart, liver and kidney and extensive cardiovascular surgery. RIPC is generally well-tolerated, safe, effective, and easily feasible. It has a great prospect for ischemic protection of the heart and other organs.
Collapse
Affiliation(s)
- Vesa Anttila
- a Heart Center, Turku University Hospital , Turku , Finland
| | - Henri Haapanen
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Fredrik Yannopoulos
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Johanna Herajärvi
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tuomas Anttila
- b Research Unit of Surgery, Anesthesia and Intensive Care , University of Oulu and MRC Oulu , Oulu , Finland
| | - Tatu Juvonen
- c Department of Cardiac Surgery , Heart and Lung Center HUCH , Helsinki , Finland
| |
Collapse
|
171
|
Park SM, Park CW, Lee TK, Cho JH, Park JH, Lee JC, Chen BH, Shin BN, Ahn JH, Tae HJ, Shin MC, Ohk TG, Cho JH, Won MH, Choi SY, Kim IH. Effect of ischemic preconditioning on antioxidant status in the gerbil hippocampal CA1 region after transient forebrain ischemia. Neural Regen Res 2016; 11:1081-9. [PMID: 27630689 PMCID: PMC4994448 DOI: 10.4103/1673-5374.187039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Ischemic preconditioning (IPC) is a condition of sublethal transient global ischemia and exhibits neuroprotective effects against subsequent lethal ischemic insult. We, in this study, examined the neuroprotective effects of IPC and its effects on immunoreactive changes of antioxidant enzymes including superoxide dismutase (SOD) 1 and SOD2, catalase (CAT) and glutathione peroxidase (GPX) in the gerbil hippocampal CA1 region after transient forebrain ischemia. Pyramidal neurons of the stratum pyramidale (SP) in the hippocampal CA1 region of animals died 5 days after lethal transient ischemia without IPC (8.6% (ratio of remanent neurons) of the sham-operated group); however, IPC prevented the pyramidal neurons from subsequent lethal ischemic injury (92.3% (ratio of remanent neurons) of the sham-operated group). SOD1, SOD2, CAT and GPX immunoreactivities in the sham-operated animals were easily detected in pyramidal neurons in the stratum pyramidale (SP) of the hippocampal CA1 region, while all of these immunoreactivities were rarely detected in the stratum pyramidale at 5 days after lethal transient ischemia without IPC. Meanwhile, their immunoreactivities in the sham-operated animals with IPC were similar to (SOD1, SOD2 and CAT) or higher (GPX) than those in the sham-operated animals without IPC. Furthermore, their immunoreactivities in the stratum pyramidale of the ischemia-operated animals with IPC were steadily maintained after lethal ischemia/reperfusion. Results of western blot analysis for SOD1, SOD2, CAT and GPX were similar to immunohistochemical data. In conclusion, IPC maintained or increased the expression of antioxidant enzymes in the stratum pyramidale of the hippocampal CA1 region after subsequent lethal transient forebrain ischemia and IPC exhibited neuroprotective effects in the hippocampal CA1 region against transient forebrain ischemia.
Collapse
Affiliation(s)
- Seung Min Park
- Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, South Korea; Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Taek Geun Ohk
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
172
|
Nguyen TVV, Frye JB, Zbesko JC, Stepanovic K, Hayes M, Urzua A, Serrano G, Beach TG, Doyle KP. Multiplex immunoassay characterization and species comparison of inflammation in acute and non-acute ischemic infarcts in human and mouse brain tissue. Acta Neuropathol Commun 2016; 4:100. [PMID: 27600707 PMCID: PMC5011964 DOI: 10.1186/s40478-016-0371-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022] Open
Abstract
This study provides a parallel characterization of the cytokine and chemokine response to stroke in the human and mouse brain at different stages of infarct resolution. The study goal was to address the hypothesis that chronic inflammation may contribute to stroke-related dementia. We used C57BL/6 and BALB/c mice to control for strain related differences in the mouse immune response. Our data indicate that in both mouse strains, and humans, there is increased granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-12 p70 (IL-12p70), interferon gamma-induced protein-10 (IP-10), keratinocyte chemoattractant/interleukin-8 (KC/IL-8), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), regulated on activation, normal T cell expressed and secreted (RANTES), and Tumor necrosis factor-α (TNF-α) in the infarct core during the acute time period. Nevertheless, correlation and two-way ANOVA analyses reveal that despite this substantial overlap between species, there are still significant differences, particularly in the regulation of granulocyte colony-stimulating factor (G-CSF), which is increased in mice but not in humans. In the weeks after stroke, during the stage of liquefactive necrosis, there is significant resolution of the inflammatory response to stroke within the infarct. However, CD68+ macrophages remain present, and levels of IL-6 and MCP-1 remain chronically elevated in infarcts from both mice and humans. Furthermore, there is a chronic T cell response within the infarct in both species. This response is differentially polarized towards a T helper 1 (Th1) response in C57BL/6 mice, and a T helper 2 (Th2) response in BALB/c mice, suggesting that the chronic inflammatory response to stroke may follow a different trajectory in different patients. To control for the fact that the average age of the patients used in this study was 80 years, they were of both sexes, and many had suffered from multiple strokes, we also present findings that reveal how the chronic inflammatory response to stroke is impacted by age, sex, and multiple strokes in mice. Our data indicate that the chronic cytokine and chemokine response to stroke is not substantially altered in 18-month old compared to 3-month old C57BL/6 mice, although T cell infiltration is attenuated. We found a significant correlation in the chronic cytokine response to stroke in males and females. However, the chronic cytokine response to stroke was mildly exacerbated by a recurrent stroke in both C57BL/6 and BALB/c mice.
Collapse
|
173
|
Hippocampal neurogenesis response: What can we expect from two different models of hypertension? Brain Res 2016; 1646:199-206. [DOI: 10.1016/j.brainres.2016.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 01/17/2023]
|
174
|
Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem 2016; 139:1019-1055. [PMID: 27365148 DOI: 10.1111/jnc.13724] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/23/2016] [Accepted: 06/23/2016] [Indexed: 12/11/2022]
Abstract
The adenosine modulation system mostly operates through inhibitory A1 (A1 R) and facilitatory A2A receptors (A2A R) in the brain. The activity-dependent release of adenosine acts as a brake of excitatory transmission through A1 R, which are enriched in glutamatergic terminals. Adenosine sharpens salience of information encoding in neuronal circuits: high-frequency stimulation triggers ATP release in the 'activated' synapse, which is locally converted by ecto-nucleotidases into adenosine to selectively activate A2A R; A2A R switch off A1 R and CB1 receptors, bolster glutamate release and NMDA receptors to assist increasing synaptic plasticity in the 'activated' synapse; the parallel engagement of the astrocytic syncytium releases adenosine further inhibiting neighboring synapses, thus sharpening the encoded plastic change. Brain insults trigger a large outflow of adenosine and ATP, as a danger signal. A1 R are a hurdle for damage initiation, but they desensitize upon prolonged activation. However, if the insult is near-threshold and/or of short-duration, A1 R trigger preconditioning, which may limit the spread of damage. Brain insults also up-regulate A2A R, probably to bolster adaptive changes, but this heightens brain damage since A2A R blockade affords neuroprotection in models of epilepsy, depression, Alzheimer's, or Parkinson's disease. This initially involves a control of synaptotoxicity by neuronal A2A R, whereas astrocytic and microglia A2A R might control the spread of damage. The A2A R signaling mechanisms are largely unknown since A2A R are pleiotropic, coupling to different G proteins and non-canonical pathways to control the viability of glutamatergic synapses, neuroinflammation, mitochondria function, and cytoskeleton dynamics. Thus, simultaneously bolstering A1 R preconditioning and preventing excessive A2A R function might afford maximal neuroprotection. The main physiological role of the adenosine modulation system is to sharp the salience of information encoding through a combined action of adenosine A2A receptors (A2A R) in the synapse undergoing an alteration of synaptic efficiency with an increased inhibitory action of A1 R in all surrounding synapses. Brain insults trigger an up-regulation of A2A R in an attempt to bolster adaptive plasticity together with adenosine release and A1 R desensitization; this favors synaptotocity (increased A2A R) and decreases the hurdle to undergo degeneration (decreased A1 R). Maximal neuroprotection is expected to result from a combined A2A R blockade and increased A1 R activation. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,FMUC-Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
175
|
Su D, Ma J, Zhang Z, Tian Y, Shen B. Protective Effects of UCF-101 on Cerebral Ischemia-Reperfusion (CIR) is Depended on the MAPK/p38/ERK Signaling Pathway. Cell Mol Neurobiol 2016; 36:907-914. [PMID: 26429193 DOI: 10.1007/s10571-015-0275-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
This study was aimed to investigate the treatment mechanisms of 5-[5-(2-nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (UCF-101) in cerebral ischemia-reperfusion (CIR) model rats. Total of 54 healthy male Wistar rats were randomly assigned into three groups, namely sham group, vehicle group, and UCF-101 group. The CIR-injured model was established by right middle cerebral artery occlusion and reperfusion. Neurological function was assessed by an investigator according to the Longa neurologic deficit scores. Meanwhile, the cerebral tissue morphology and apoptotic neurons were evaluated by H&E and TUNEL staining, respectively. Additionally, the expressions of caspase 3, p-p38, and p-ERK were detected by immunohistochemistry or/and Western blotting assays. As results, neurologic deficit and pathological damage were obviously enhanced and TUNEL positive neurons were significantly increased in CIR-injured rats, as compared with those in sham group. Furthermore, the expressions of caspase 3, p-p38, and p-ERK were also significantly increased in vehicle group than those in sham group (P < 0.05). However, UCF-101 treatment could markedly weaken the neurologic deficit with lower scores and improve pathological condition. After UCF-101 treatment, TUNEL positive neurons as well as the expression of caspase 3 were significantly decreased than those in vehicle group (P < 0.05). Besides, p-p38 was decreased while p-ERK was increased in UCF-101 group than those in vehicle group (P < 0.05). Therefore, we concluded that the protective effects of UCF-101 might be associated with apoptosis process and MAPK signaling pathway in the CIR-injured model.
Collapse
Affiliation(s)
- Danying Su
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, 150000, Harbin, People's Republic of China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, 150000, Harbin, People's Republic of China.
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, 150000, Harbin, People's Republic of China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, 150000, Harbin, People's Republic of China
| | - Baozhong Shen
- Department of Imaging, The Fourth Affiliated Hospital Harbin Medical University, No. 37 Yiyuan Str, Nangang District, 150001, Harbin, People's Republic of China.
| |
Collapse
|
176
|
Bain AR, Ainslie PN, Hoiland RL, Barak OF, Cavar M, Drvis I, Stembridge M, MacLeod DM, Bailey DM, Dujic Z, MacLeod DB. Cerebral oxidative metabolism is decreased with extreme apnoea in humans; impact of hypercapnia. J Physiol 2016; 594:5317-28. [PMID: 27256521 DOI: 10.1113/jp272404] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The present study describes the cerebral oxidative and non-oxidative metabolism in man during a prolonged apnoea (ranging from 3 min 36 s to 7 min 26 s) that generates extremely low levels of blood oxygen and high levels of carbon dioxide. The cerebral oxidative metabolism, measured from the product of cerebral blood flow and the radial artery-jugular venous oxygen content difference, was reduced by ∼29% at the termination of apnoea, although there was no change in the non-oxidative metabolism. A subset study with mild and severe hypercapnic breathing at the same level of hypoxia suggests that hypercapnia can partly explain the cerebral metabolic reduction near the apnoea breakpoint. A hypercapnia-induced oxygen-conserving response may protect the brain against severe oxygen deprivation associated with prolonged apnoea. ABSTRACT Prolonged apnoea in humans is reflected in progressive hypoxaemia and hypercapnia. In the present study, we explore the cerebral metabolic responses under extreme hypoxia and hypercapnia associated with prolonged apnoea. We hypothesized that the cerebral metabolic rate for oxygen (CMRO2 ) will be reduced near the termination of apnoea, attributed in part to the hypercapnia. Fourteen elite apnoea-divers performed a maximal apnoea (range 3 min 36 s to 7 min 26 s) under dry laboratory conditions. In a subset study with the same divers, the impact of hypercapnia on cerebral metabolism was determined using varying levels of hypercapnic breathing, against the background of similar hypoxia. In both studies, the CMRO2 was calculated from the product of cerebral blood flow (ultrasound) and the radial artery-internal jugular venous oxygen content difference. Non-oxidative cerebral metabolism was calculated from the ratio of oxygen and carbohydrate (lactate and glucose) metabolism. The CMRO2 was reduced by ∼29% (P < 0.01, Cohen's d = 1.18) near the termination of apnoea compared to baseline, although non-oxidative metabolism remained unaltered. In the subset study, in similar backgrounds of hypoxia (arterial O2 tension: ∼38.4 mmHg), severe hypercapnia (arterial CO2 tension: ∼58.7 mmHg), but not mild-hypercapnia (arterial CO2 tension: ∼46.3 mmHg), depressed the CMRO2 (∼17%, P = 0.04, Cohen's d = 0.87). Similarly to the apnoea, there was no change in the non-oxidative metabolism. These data indicate that hypercapnia can partly explain the reduction in CMRO2 near the apnoea breakpoint. This hypercapnic-induced oxygen conservation may protect the brain against severe hypoxaemia associated with prolonged apnoea.
Collapse
Affiliation(s)
- Anthony R Bain
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada. ,
| | - Philip N Ainslie
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Otto F Barak
- School of Medicine, University of Split, Split, Croatia.,Faculty of Medicine, University of Novi Sad, Serbia
| | - Marija Cavar
- School of Medicine, University of Split, Split, Croatia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | | | | | - Damian M Bailey
- Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Zeljko Dujic
- School of Medicine, University of Split, Split, Croatia
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
177
|
Buch ER, Liew SL, Cohen LG. Plasticity of Sensorimotor Networks: Multiple Overlapping Mechanisms. Neuroscientist 2016; 23:185-196. [PMID: 26985069 DOI: 10.1177/1073858416638641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Redundancy is an important feature of the motor system, as abundant degrees of freedom are prominent at every level of organization across the central and peripheral nervous systems, and musculoskeletal system. This basic feature results in a system that is both flexible and robust, and which can be sustainably adapted through plasticity mechanisms in response to intrinsic organismal changes and dynamic environments. While much early work of motor system organization has focused on synaptic-based plasticity processes that are driven via experience, recent investigations of neuron-glia interactions, epigenetic mechanisms and large-scale network dynamics have revealed a plethora of plasticity mechanisms that support motor system organization across multiple, overlapping spatial and temporal scales. Furthermore, an important role of these mechanisms is the regulation of intrinsic variability. Here, we review several of these mechanisms and discuss their potential role in neurorehabilitation.
Collapse
Affiliation(s)
- Ethan R Buch
- 1 National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA.,share joint first-authorship
| | - Sook-Lei Liew
- 2 University of Southern California, Los Angeles, CA, USA.,share joint first-authorship
| | - Leonardo G Cohen
- 1 National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, USA
| |
Collapse
|
178
|
Ren X, Orlova EV, Maevsky EI, Bonicalzi V, Canavero S. Brain protection during cephalosomatic anastomosis. Surgery 2016; 160:5-10. [DOI: 10.1016/j.surg.2016.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023]
|
179
|
Ren C, Wang P, Wang B, Li N, Li W, Zhang C, Jin K, Ji X. Limb remote ischemic per-conditioning in combination with post-conditioning reduces brain damage and promotes neuroglobin expression in the rat brain after ischemic stroke. Restor Neurol Neurosci 2016; 33:369-79. [PMID: 25868435 PMCID: PMC4923706 DOI: 10.3233/rnn-140413] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose: Limb remote ischemic per-conditioning or post-conditioning has been shown to be neuroprotective after cerebral ischemic stroke. However, the effect of combining remote per-conditioning with post-conditioning on ischemic/reperfusion injury as well as the underlying mechanisms are largely unexplored. Methods: Here, adult male Sprague Dawley rats were subjected to middle cerebral artery occlusion (MCAO). The limb ischemic stimulus was immediately applied after onset of focal ischemia (per-conditioning), followed by repeated short episodes of remote ischemia 24 hr after reperfusion (post-conditioning). The infarct volume, motor function, and the expression of neuroglobin (Ngb) were measured at different durations after reperfusion. Results: We found that a single episode of limb remote per-conditioning afforded short-term protection, but combining repeated remote post-conditioning during the 14 days after reperfusion significantly ameliorated cerebral ischemia/reperfusion injury. Interestingly, we also found that ischemic per- and post-conditioning significantly increased expression of Ngb, an oxygen-binding globin protein that has been demonstrated to be neuroprotective against stroke, at peri-infarct regions from day 1 to day 14 following ischemia/reperfusion. Conclusion: Our results suggest that the conventional per-conditioning combined with post-conditioning may be used as a novel neuroprotective strategy against ischemia-reperfusion injury, and Ngb seems to be one of the important players in limb remote ischemia-mediated neuroprotection.
Collapse
Affiliation(s)
- Changhong Ren
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Pengcheng Wang
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, The Affiliated Hospital of Weifang Medical College, Weifang, Shandong, China
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA
| | - Ning Li
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| | - Weiguang Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Kunlin Jin
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Texas, USA
| | - Xunming Ji
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing, China
| |
Collapse
|
180
|
Ma XM, Liu M, Liu YY, Ma LL, Jiang Y, Chen XH. Ischemic preconditioning protects against ischemic brain injury. Neural Regen Res 2016; 11:765-70. [PMID: 27335560 PMCID: PMC4904467 DOI: 10.4103/1673-5374.182703] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia.
Collapse
Affiliation(s)
- Xiao-Meng Ma
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Mei Liu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying-Ying Liu
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Li-Li Ma
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Jiang
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Hong Chen
- Department of Neurology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
181
|
Busija DW, Rutkai I, Dutta S, Katakam PV. Role of Mitochondria in Cerebral Vascular Function: Energy Production, Cellular Protection, and Regulation of Vascular Tone. Compr Physiol 2016; 6:1529-48. [PMID: 27347901 DOI: 10.1002/cphy.c150051] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria not only produce energy in the form of ATP to support the activities of cells comprising the neurovascular unit, but mitochondrial events, such as depolarization and/or ROS release, also initiate signaling events which protect the endothelium and neurons against lethal stresses via pre-/postconditioning as well as promote changes in cerebral vascular tone. Mitochondrial depolarization in vascular smooth muscle (VSM), via pharmacological activation of the ATP-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels), leads to vasorelaxation through generation of calcium sparks by the sarcoplasmic reticulum and subsequent downstream signaling mechanisms. Increased release of ROS by mitochondria has similar effects. Relaxation of VSM can also be indirectly achieved via actions of nitric oxide (NO) and other vasoactive agents produced by endothelium, perivascular and parenchymal nerves, and astroglia following mitochondrial activation. Additionally, NO production following mitochondrial activation is involved in neuronal preconditioning. Cerebral arteries from female rats have greater mitochondrial mass and respiration and enhanced cerebral arterial dilation to mitochondrial activators. Preexisting chronic conditions such as insulin resistance and/or diabetes impair mitoKATP channel relaxation of cerebral arteries and preconditioning. Surprisingly, mitoKATP channel function after transient ischemia appears to be retained in the endothelium of large cerebral arteries despite generalized cerebral vascular dysfunction. Thus, mitochondrial mechanisms may represent the elusive signaling link between metabolic rate and blood flow as well as mediators of vascular change according to physiological status. Mitochondrial mechanisms are an important, but underutilized target for improving vascular function and decreasing brain injury in stroke patients. © 2016 American Physiological Society. Compr Physiol 6:1529-1548, 2016.
Collapse
Affiliation(s)
- David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Somhrita Dutta
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Prasad V Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
182
|
TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis. Sci Rep 2016; 6:27096. [PMID: 27256465 PMCID: PMC4891774 DOI: 10.1038/srep27096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022] Open
Abstract
Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis.
Collapse
|
183
|
Tauskela JS, Aylsworth A, Hewitt M, Brunette E, Blondeau N. Failure and rescue of preconditioning-induced neuroprotection in severe stroke-like insults. Neuropharmacology 2016; 105:533-542. [DOI: 10.1016/j.neuropharm.2016.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 01/30/2023]
|
184
|
Ozaki T, Muramatsu R, Sasai M, Yamamoto M, Kubota Y, Fujinaka T, Yoshimine T, Yamashita T. The P2X4 receptor is required for neuroprotection via ischemic preconditioning. Sci Rep 2016; 6:25893. [PMID: 27173846 PMCID: PMC4865734 DOI: 10.1038/srep25893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not been fully clarified. In this study, we found that the P2X4 receptor, which is abundantly expressed in vascular endothelial cells, is required for ischemic tolerance following middle artery occlusion (MCAO) in mice. Mechanistically, the P2X4 receptor was stimulated by fluid shear stress, which mimics reperfusion, thus promoting the increased expression of osteopontin, a neuroprotective molecule. Furthermore, we found that the intracerebroventricular administration of osteopontin was sufficient to exert a neuroprotective effect mediated by preconditioning-stimulated P2X4 receptor activation. These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.,Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yoshiaki Kubota
- The Laboratory of Vascular Biology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiyuki Fujinaka
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
185
|
Landucci E, Lattanzi R, Gerace E, Scartabelli T, Balboni G, Negri L, Pellegrini-Giampietro DE. Prokineticins are neuroprotective in models of cerebral ischemia and ischemic tolerance in vitro. Neuropharmacology 2016; 108:39-48. [PMID: 27140692 DOI: 10.1016/j.neuropharm.2016.04.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 11/24/2022]
Abstract
Bv8/prokineticin 2 (PK2) is a member of a bioactive family of peptides that regulate multiple functions in the CNS including hyperalgesia, neurogenesis, neuronal survival and inflammation. Recent studies have associated PK2 and prokineticin receptors (PKR) with human diseases, but because their role in neuropathology is still debated we examined whether prokineticins exert a protective or deleterious role in models of cerebral ischemia and ischemic tolerance in vitro. In order to mimic cerebral ischemia, we exposed primary murine cortical cell cultures or rat organotypic hippocampal slices to appropriate periods of oxygen-glucose deprivation (OGD), which leads to neuronal damage 24 h later. Ischemic tolerance was induced by exposing hippocampal slices to a preconditioning subtoxic pharmacological stimulus (3 μM NMDA for 1 h) 24 h before the exposure to OGD. Bv8 (10-100 nM) attenuated OGD injury in cortical cultures and hippocampal slices, and the effect was prevented by the PKR antagonist PC7. The development of OGD tolerance was associated with an increase in the expression of PK2, PKR1 and PKR2 mRNA and proteins and was prevented by addition of the antagonist PC7 into the medium during preconditioning. Both Bv8 at protective concentrations and the NMDA preconditioning stimulus promoted the phosphorylation of ERK1/2 and Akt. These findings indicate that the prokineticin system can be up-regulated by a defensive preconditioning subtoxic NMDA stimulus and that PK2 may act as an endogenous neuroprotective factor through the activation of the ERK1/2 and Akt transduction pathways.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy.
| | - Roberta Lattanzi
- Department of Human Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Piazza A. Moro 5, 00185 Rome, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Tania Scartabelli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| | - Gianfranco Balboni
- Department of Life and Environmental Sciences, Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Lucia Negri
- Department of Human Physiology and Pharmacology "Vittorio Erspamer", University of Rome "La Sapienza", Piazza A. Moro 5, 00185 Rome, Italy
| | - Domenico E Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
186
|
Hye Kim I, Lee JC, Ha Park J, Hyeon Ahn J, Cho JH, Hui Chen B, Na Shin B, Chun Yan B, Rueol Ryu D, Hong S, Hwi Cho J, Lyul Lee Y, Kim YM, Cho BR, Won MH. Time interval after ischaemic preconditioning affects neuroprotection and gliosis in the gerbil hippocampal CA1 region induced by transient cerebral ischaemia. Neurol Res 2016; 38:210-9. [DOI: 10.1179/1743132815y.0000000098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
187
|
Ong Q, Guo S, Duan L, Zhang K, Collier EA, Cui B. The Timing of Raf/ERK and AKT Activation in Protecting PC12 Cells against Oxidative Stress. PLoS One 2016; 11:e0153487. [PMID: 27082641 PMCID: PMC4833326 DOI: 10.1371/journal.pone.0153487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Acute brain injuries such as ischemic stroke or traumatic brain injury often cause massive neural death and irreversible brain damage with grave consequences. Previous studies have established that a key participant in the events leading to neural death is the excessive production of reactive oxygen species. Protecting neuronal cells by activating their endogenous defense mechanisms is an attractive treatment strategy for acute brain injuries. In this work, we investigate how the precise timing of the Raf/ERK and the AKT pathway activation affects their protective effects against oxidative stress. For this purpose, we employed optogenetic systems that use light to precisely and reversibly activate either the Raf/ERK or the AKT pathway. We find that preconditioning activation of the Raf/ERK or the AKT pathway immediately before oxidant exposure provides significant protection to cells. Notably, a 15-minute transient activation of the Raf/ERK pathway is able to protect PC12 cells against oxidant strike that is applied 12 hours later, while the transient activation of the AKT pathway fails to protect PC12 cells in such a scenario. On the other hand, if the pathways are activated after the oxidative insult, i.e. postconditioning, the AKT pathway conveys greater protective effect than the Raf/ERK pathway. We find that postconditioning AKT activation has an optimal delay period of 2 hours. When the AKT pathway is activated 30min after the oxidative insult, it exhibits very little protective effect. Therefore, the precise timing of the pathway activation is crucial in determining its protective effect against oxidative injury. The optogenetic platform, with its precise temporal control and its ability to activate specific pathways, is ideal for the mechanistic dissection of intracellular pathways in protection against oxidative stress.
Collapse
Affiliation(s)
- Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Shunling Guo
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Liting Duan
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, United States of America
| | - Eleanor Ann Collier
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, 94305, United States of America
- * E-mail:
| |
Collapse
|
188
|
Zuo W, Yang PF, Chen J, Zhang Z, Chen NH. Drp-1, a potential therapeutic target for brain ischaemic stroke. Br J Pharmacol 2016; 173:1665-77. [PMID: 26915692 DOI: 10.1111/bph.13468] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 01/19/2016] [Accepted: 01/26/2016] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The resistance of CA3 neurons to ischaemia and the ischaemic tolerance conferred by ischaemic preconditioning (IPC) are two well-established endogenous neuroprotective mechanisms. Elucidating the molecules involved may help us find new therapeutic targets. Thus, we determined whether dynamin-related protein 1 (Drp-1) is involved in these processes. EXPERIMENTAL APPROACH In vivo, we subjected rats to either 10 min severe global ischaemia using a four-vessel occlusion (4-VO) model or 2 min IPC before the onset of 4-VO. In vitro, we performed oxygen glucose deprivation (OGD) studies in rat hippocampal neurons. Drp-1 was silenced or inhibited by siRNA or pharmacological inhibitor Mdivi1. To assess whether mitochondrial Drp-1 alters neuronal vulnerability to ischaemic injury, various approaches were used including western blot, immunohistochemistry, immunofluorescence staining and electron microscopy. Hippocampal function was assessed using an open-field test. KEY RESULTS Mitochondrial dynamin-related protein 1 (mtDrp-1) was selectively induced by ischaemia in hippocampal CA3 neurons. In hippocampal CA1 neurons, mtDrp-1 was not affected by ischaemia but significantly up-regulated by IPC. Suppression of Drp-1 increased the vulnerability of cells to OGD and global ischaemia. Inhibition of Drp-1 in vivo resulted in loss of acquisition and encoding of spatial information, and also prevented ischaemia-induced mitophagy in CA3. Thus mitochondrial-mediated injury was amplified and resistance to ischaemic injury lost. CONCLUSIONS AND IMPLICATIONS Our findings that Drp-1 increases the resistance of neurons of hippocampal CA3 affected by global ischaemia and contributes to the tolerance conferred by IPC highlight Drp-1 as a potential therapeutic target for brain ischaemic stroke.
Collapse
Affiliation(s)
- W Zuo
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College Hospital, and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - P F Yang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College Hospital, and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - J Chen
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College Hospital, and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Z Zhang
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College Hospital, and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - N H Chen
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College Hospital, and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
189
|
Fan J, Alsarraf O, Chou CJ, Yates PW, Goodwin NC, Rice DS, Crosson CE. Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities. Exp Eye Res 2016; 146:269-275. [PMID: 27060376 DOI: 10.1016/j.exer.2016.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/07/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023]
Abstract
Increased histone deacetylase (HDAC) activity and the resulting dysregulation of protein acetylation is an integral event in retinal degenerations associated with ischemia and ocular hypertension. This study investigates the role of preconditioning on the process of acetylation in ischemic retinal injury. Rat eyes were unilaterally subjected to retinal injury by 45 min of acute ischemia, and retinal neuroprotection induced by 5 min of an ischemic preconditioning (IPC) event. HDAC activity was evaluated by a fluorometric enzymatic assay with selective isoform inhibitors. Retinal localization of acetylated histone-H3 was determined by immunohistochemistry on retina cross sections. Cleaved caspase-3 level was evaluated by Western blots. Electroretinogram (ERG) analyses were used to assess differences in retinal function seven days following ischemic injury. In control eyes, analysis of HDAC isoforms demonstrated that HDAC1/2 accounted for 28.4 ± 1.6%, HDAC3 for 42.4 ± 1.5% and HDAC6 activity 27.3 ± 3.5% of total activity. Following ischemia, total Class-I HDAC activity increased by 21.2 ± 6.2%, and this increase resulted solely from a rise in HDAC1/2 activity. No change in HDAC3 activity was measured. Activity of Class-II HDACs and HDAC8 was negligible. IPC stimulus prior to ischemic injury also suppressed the rise in Class-I HDAC activity, cleaved caspase-3 levels, and increased acetylated histone-H3 in the retina. In control animals 7 days post ischemia, ERG a- and b-wave amplitudes were significantly reduced by 34.9 ± 3.1% and 42.4 ± 6.3%, respectively. In rats receiving an IPC stimulus, the ischemia-induced decline in ERG a- and b-wave amplitudes was blocked. Although multiple HDACs were detected in the retina, these studies provide evidence that hypoacetylation associated with ischemic injury results from the selective rise in HDAC1/2 activity and that neuroprotection induced by IPC is mediated in part by suppressing HDAC activity.
Collapse
Affiliation(s)
- Jie Fan
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Oday Alsarraf
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - C James Chou
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Phillip W Yates
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Dennis S Rice
- Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA
| | - Craig E Crosson
- 167 Ashley Avenue, Storm Eye Institute, Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
190
|
Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, Zhang JH. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res 2016; 6:20-32. [PMID: 27826420 PMCID: PMC5075679 DOI: 10.4103/2045-9912.179337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
191
|
Ryanodine receptors contribute to the induction of ischemic tolerance. Brain Res Bull 2016; 122:45-53. [DOI: 10.1016/j.brainresbull.2016.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 02/24/2016] [Indexed: 11/21/2022]
|
192
|
Cuomo O, Pignataro G, Sirabella R, Molinaro P, Anzilotti S, Scorziello A, Sisalli MJ, Di Renzo G, Annunziato L. Sumoylation of LYS590 of NCX3 f-Loop by SUMO1 Participates in Brain Neuroprotection Induced by Ischemic Preconditioning. Stroke 2016; 47:1085-93. [PMID: 26979866 DOI: 10.1161/strokeaha.115.012514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The small ubiquitin-like modifier (SUMO), a ubiquitin-like protein involved in posttranslational protein modifications, is activated by several conditions, such as heat stress, hypoxia, and hibernation and confers neuroprotection. Sumoylation enzymes and substrates are expressed also at the plasma membrane level. Among the numerous plasma membrane proteins controlling ionic homeostasis during cerebral ischemia, 1 of the 3 brain sodium/calcium exchangers (NCX3), exerts a protective role during ischemic preconditioning. In this study, we evaluated whether NCX3 is a target for sumoylation and whether this posttranslational modification participates in ischemic preconditioning-induced neuroprotection. To test these hypotheses, we analyzed (1) SUMO1 conjugation pattern after ischemic preconditioning; (2) the effect of SUMO1 knockdown on the ischemic damage after transient middle cerebral artery occlusion and ischemic preconditioning, (3) the possible interaction between SUMO1 and NCX3 and (4) the molecular determinants of NCX3 sequence responsible for sumoylation. METHODS Focal brain ischemia and ischemic preconditioning were induced in rats by middle cerebral artery occlusion. SUMOylation was evaluated by western blot and immunohistochemistry. SUMO1 and NCX3 interaction was analyzed by site-directed mutagenesis and immunoprecipitation assay. RESULTS We found that (1) SUMO1 knockdown worsened ischemic damage and reduced the protective effect of preconditioning; (2) SUMO1 bound to NCX3 at lysine residue 590, and its silencing increased NCX3 degradation; and (3) NCX3 sumoylation participates in SUMO1 protective role during ischemic preconditioning. Thus, our results demonstrate that NCX3 sumoylation confers additional neuroprotection in ischemic preconditioning. CONCLUSIONS Finally, this study suggests that NCX3 sumoylation might be a new target to enhance ischemic preconditioning-induced neuroprotection.
Collapse
Affiliation(s)
- Ornella Cuomo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Giuseppe Pignataro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Rossana Sirabella
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Pasquale Molinaro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Serenella Anzilotti
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Antonella Scorziello
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Maria Josè Sisalli
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Gianfranco Di Renzo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.)
| | - Lucio Annunziato
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy (O.C., G.P., P.M., A.S., M.J.S., G.D.R., L.A.); and SDN IRCCS, Naples, Italy (R.S., S.A.).
| |
Collapse
|
193
|
Abstract
UNLABELLED Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon whereby brief ischemic exposure confers tolerance to a subsequent ischemic challenge. IPC has not been studied selectively in CNS white matter (WM), although stroke frequently involves WM. We determined whether IPC is present in WM and, if so, its mechanism. We delivered a brief in vivo preconditioning ischemic insult (unilateral common carotid artery ligation) to 12- to 14-week-old mice and determined WM ischemic vulnerability [oxygen-glucose deprivation (OGD)] 72 h later, using acutely isolated optic nerves (CNS WM tracts) from the preconditioned (ipsilateral) and control (contralateral) hemispheres. Functional and structural recovery was assessed by quantitative measurement of compound action potentials (CAPs) and immunofluorescent microscopy. Preconditioned mouse optic nerves (MONs) showed better functional recovery after OGD than the non-preconditioned MONs (31 ± 3 vs 17 ± 3% normalized CAP area, p < 0.01). Preconditioned MONs also showed improved axon integrity and reduced oligodendrocyte injury compared with non-preconditioned MONs. Toll-like receptor-4 (TLR4) and type 1 interferon receptor (IFNAR1), key receptors in innate immune response, are implicated in gray matter preconditioning. Strikingly, IPC-mediated WM protection was abolished in both TLR4(-/-) and IFNAR1(-/-) mice. In addition, IPC-mediated protection in WM was also abolished in IFNAR1(fl/fl) LysM(cre), but not in IFNAR1(fl/fl) control, mice. These findings demonstrated for the first time that IPC was robust in WM, the phenomenon being intrinsic to WM itself. Furthermore, WM IPC was dependent on innate immune cell signaling pathways. Finally, these data demonstrated that microglial-specific expression of IFNAR1 plays an indispensable role in WM IPC. SIGNIFICANCE STATEMENT Ischemic preconditioning (IPC) has been studied predominantly in gray matter, but stroke in humans frequently involves white matter (WM) as well. Here we describe a novel, combined in vivo/ex vivo mouse model to determine whether IPC occurs in WM. It does. Using genetically altered mice, we identified two innate immune cell receptors, Toll-like receptor 4 and type 1 interferon receptor (IFNAR1), that are required for IPC-mediated protection in WM. Furthermore, using microglia-targeted IFNAR1 knockdown, we demonstrate that interferon signaling specifically in microglia is essential for this protection. The discovery of IPC as an intrinsic capability of WM is novel and important. This is also the first in vivo demonstration that cell-type-specific expression of an individual gene plays an indispensable role in IPC-mediated protection.
Collapse
|
194
|
Yang X, Zhang X, Li Y, Han S, Howells DW, Li S, Li J. Conventional protein kinase Cβ-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice. J Neurochem 2016; 137:446-59. [PMID: 26788931 DOI: 10.1111/jnc.13538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
We previously reported that conventional protein kinase C (cPKC)β participated in hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury, and collapsin response-mediated protein 2 (CRMP2) was identified as a cPKCβ interacting protein. In this study, we explored the regulation of CRMP2 phosphorylation and proteolysis by cPKCβ, and their role in ischemic injury of oxygen-glucose deprivation (OGD)-treated cortical neurons and brains of mice with middle cerebral artery occlusion-induced ischemic stroke. The results demonstrated that cPKCβ-mediated CRMP2 phosphorylation via the cPKCβ-selective activator 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and inhibition of calpain-mediated CRMP2 proteolysis by calpeptin and a fusing peptide containing TAT peptide and the calpain cleavage site of CRMP2 (TAT-CRMP2) protected neurons against OGD-induced cell death through inhibiting CRMP2 proteolysis in cultured cortical neurons. The OGD-induced nuclear translocation of the CRMP2 breakdown product was inhibited by DOPPA, calpeptin, and TAT-CRMP2 in cortical neurons. In addition, both cPKCβ activation and CRMP2 proteolysis inhibition by hypoxic preconditioning and intracerebroventricular injections of DOPPA, calpeptin, and TAT-CRMP2 improved the neurological deficit in addition to reducing the infarct volume and proportions of cells with pyknotic nuclei in the peri-infact region of mice with ischemic stroke. These results suggested that cPKCβ modulates CRMP2 phosphorylation and proteolysis, and cPKCβ activation alleviates ischemic injury in the cultured cortical neurons and brains of mice with ischemic stroke through inhibiting CRMP2 proteolysis by phosphorylation. Focal cerebral ischemia induces a large flux of Ca(2+) to activate calpain which cleaves collapsin response mediator (CRMP) 2 into breakdown product (BDP). Inhibition of CRMP2 cleavage by calpeptin and TAT-CRMP2 alleviates ischemic injury. Conventional protein kinase C (cPKC)β-mediated phosphorylation could inhibit CRMP2 proteolysis and alleviate ischemic injury in cultured cortical neurons and ischemic stroke-induced mice.
Collapse
Affiliation(s)
- Xuan Yang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yun Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Shujuan Li
- Department of Neurology, Capital Medical University Affiliated Beijing Chao-Yang Hospital, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
195
|
Quaegebeur A, Segura I, Schmieder R, Verdegem D, Decimo I, Bifari F, Dresselaers T, Eelen G, Ghosh D, Davidson SM, Schoors S, Broekaert D, Cruys B, Govaerts K, De Legher C, Bouché A, Schoonjans L, Ramer MS, Hung G, Bossaert G, Cleveland DW, Himmelreich U, Voets T, Lemmens R, Bennett CF, Robberecht W, De Bock K, Dewerchin M, Ghesquière B, Fendt SM, Carmeliet P. Deletion or Inhibition of the Oxygen Sensor PHD1 Protects against Ischemic Stroke via Reprogramming of Neuronal Metabolism. Cell Metab 2016; 23:280-91. [PMID: 26774962 PMCID: PMC4880550 DOI: 10.1016/j.cmet.2015.12.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023]
Abstract
The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.
Collapse
Affiliation(s)
- Annelies Quaegebeur
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Inmaculada Segura
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Roberta Schmieder
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dries Verdegem
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ilaria Decimo
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Francesco Bifari
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Tom Dresselaers
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Debapriva Ghosh
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Shawn M Davidson
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandra Schoors
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Kristof Govaerts
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carla De Legher
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Matt S Ramer
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium; International Collaboration on Repair Discoveries, the University of British Columbia, Vancouver, Canada
| | - Gene Hung
- Isis Pharmaceuticals, Carlsbad, CA 92008, USA
| | - Goele Bossaert
- Leuven Statistics Research Centre (LStat), University of Leuven, Leuven, Belgium
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Medicine and Neuroscience, University of California, San Diego, La Jolla, CA 92093, USA
| | - Uwe Himmelreich
- Biomedical MRI/Mosaic, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP channel research platform Leuven, Department of Cellular and Molecular Medicine, University of Leuven, Leuven, Belgium
| | - Robin Lemmens
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | - Wim Robberecht
- Laboratory of Neurobiology, Vesalius Research Center, VIB, Leuven, Belgium; Experimental Neurology (Department of Neurosciences) and Leuven Research Institute for Neuroscience and Disease (LIND), University of Leuven, Leuven, Belgium; Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Katrien De Bock
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Vesalius Research Center, VIB, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Vesalius Research Center, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Neurovascular link, Department of Oncology, University of Leuven, Leuven, Belgium; Laboratory of Angiogenesis and Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.
| |
Collapse
|
196
|
Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C. Mediators Inflamm 2016; 2016:4854378. [PMID: 26884647 PMCID: PMC4738711 DOI: 10.1155/2016/4854378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background. Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA). Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor α (TNF-α) and interleukin- (IL-) 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1) expression and brain-derived neurotrophic factor (BDNF) release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC) inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.
Collapse
|
197
|
Kim EH, Kim DH, Kim HR, Kim SY, Kim HH, Bang OY. Stroke Serum Priming Modulates Characteristics of Mesenchymal Stromal Cells by Controlling the Expression miRNA-20a. Cell Transplant 2016; 25:1489-99. [PMID: 26762119 DOI: 10.3727/096368916x690430] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) expanded with fetal bovine serum (FBS) has some limitations, including the requirement of a long culture period to obtain a sufficient amount of stem cells. Priming of MSCs with serum from patients with ischemic stroke (stroke serum) increased the proliferation rate and the neurorestorative capacity of MSCs. We hypothesized that this novel priming method increases the proliferation rate of MSCs via the regulation of microRNAs (miRs). Thus, we investigated miR profiling in stroke serum-primed MSCs and tested whether the regulation of certain miRs may affect the proliferation rate of rat MSCs. The proliferation rate of MSCs cultured with stroke serum was higher than that of MSCs cultured with normal serum or FBS. Using miR microarray analysis, we compared the miR expression profiles between MSCs cultured in FBS and in stroke serum. Among miRs associated with cell proliferation, miR-20a was most significantly increased. Similarly, miR-20a was increased in MSCs obtained from the bone marrow of stroke rats compared with MSCs from normal rats. Furthermore, the deregulation of miR-20a by the transfection of MSCs with pre-miR-20a or anti-miR-20a was significantly correlated with the increased proliferation rate of MSCs. The overexpression of miR-20a in MSCs cultured in FBS improved the proliferation rate, while the knockdown of endogenous miR-20a decreased the proliferation rate. In addition, miR-20a promoted proliferation by suppressing the expression of p21 cyclin-dependent kinase inhibitor 1 (CDKN1A). A dual-luciferase reporter assay showed that CDKN1A is a target of miR-20a. Our findings indicate that stroke serum priming upregulated the expression of miR-20a, which promoted MSC proliferation by regulating the cell cycle inhibitor p21 CDKN1A, and suggest the possible roles of priming methods in modulating the characteristics of MSCs by controlling the expression of miR in MSCs.
Collapse
Affiliation(s)
- Eun Hee Kim
- Medical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
198
|
Exercise and Cyclic Light Preconditioning Protect Against Light-Induced Retinal Degeneration and Evoke Similar Gene Expression Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 854:443-8. [PMID: 26427444 DOI: 10.1007/978-3-319-17121-0_59] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To compare patterns of gene expression following preconditioning cyclic light rearing versus preconditioning aerobic exercise. BALB/C mice were preconditioned either by rearing in 800 lx 12:12 h cyclic light for 8 days or by running on treadmills for 9 days, exposed to toxic levels of light to cause light-induced retinal degeneration (LIRD), then sacrificed and retinal tissue harvested. Subsets of mice were maintained for an additional 2 weeks and for assessment of retinal function by electroretinogram (ERG). Both preconditioning protocols partially but significantly preserved retinal function and morphology and induced similar leukemia inhibitory factor (LIF) gene expression pattern. The data demonstrate that exercise preconditioning and cyclic light preconditioning protect photoreceptors against LIRD and evoke a similar pattern of retinal LIF gene expression. It may be that similar stress response pathways mediate the protection provided by the two preconditioning modalities.
Collapse
|
199
|
Anrather J, Iadecola C, Hallenbeck J. Inflammation and Immune Response. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
200
|
Simon RP. Epigenetic modulation of gene expression governs the brain's response to injury. Neurosci Lett 2015; 625:16-9. [PMID: 26739198 DOI: 10.1016/j.neulet.2015.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/03/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury.
Collapse
Affiliation(s)
- Roger P Simon
- Translational Stroke Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA; Grady Memorial Hospital, Atlanta, GA, USA.
| |
Collapse
|