151
|
Affiliation(s)
- Ralf Buckley
- International Chair in Ecotourism Research, School of Environment, Griffith University Gold Coast, QLD, Australia
| |
Collapse
|
152
|
Späti J, Aritake S, Meyer AH, Kitamura S, Hida A, Higuchi S, Moriguchi Y, Mishima K. Modeling circadian and sleep-homeostatic effects on short-term interval timing. Front Integr Neurosci 2015; 9:15. [PMID: 25741253 PMCID: PMC4330698 DOI: 10.3389/fnint.2015.00015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/30/2015] [Indexed: 12/03/2022] Open
Abstract
Short-term interval timing i.e., perception and action relating to durations in the seconds range, has been suggested to display time-of-day as well as wake dependent fluctuations due to circadian and sleep-homeostatic changes to the rate at which an underlying pacemaker emits pulses; pertinent human data being relatively sparse and lacking in consistency however, the phenomenon remains elusive and its mechanism poorly understood. To better characterize the putative circadian and sleep-homeostatic effects on interval timing and to assess the ability of a pacemaker-based mechanism to account for the data, we measured timing performance in eighteen young healthy male subjects across two epochs of sustained wakefulness of 38.67 h each, conducted prior to (under entrained conditions) and following (under free-running conditions) a 28 h sleep-wake schedule, using the methods of duration estimation and duration production on target intervals of 10 and 40 s. Our findings of opposing oscillatory time courses across both epochs of sustained wakefulness that combine with increasing and, respectively, decreasing, saturating exponential change for the tasks of estimation and production are consistent with the hypothesis that a pacemaker emitting pulses at a rate controlled by the circadian oscillator and increasing with time awake determines human short-term interval timing; the duration-specificity of this pattern is interpreted as reflecting challenges to maintaining stable attention to the task that progressively increase with stimulus magnitude and thereby moderate the effects of pacemaker-rate changes on overt behavior.
Collapse
Affiliation(s)
- Jakub Späti
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| | - Sayaka Aritake
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| | - Andrea H Meyer
- Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel Basel, Switzerland
| | - Shingo Kitamura
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| | - Akiko Hida
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| | - Shigekazu Higuchi
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| | - Yoshiya Moriguchi
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| | - Kazuo Mishima
- Department of Psychophysiology, National Center of Neurology and Psychiatry, National Institute of Mental Health Tokyo, Japan
| |
Collapse
|
153
|
Chiba A, Oshio KI, Inase M. Neuronal representation of duration discrimination in the monkey striatum. Physiol Rep 2015; 3:3/2/e12283. [PMID: 25677545 PMCID: PMC4393192 DOI: 10.14814/phy2.12283] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Functional imaging and lesion studies in humans and animals suggest that the basal ganglia are crucial for temporal information processing. To elucidate neuronal mechanisms of interval timing in the basal ganglia, we recorded single-unit activity from the striatum of two monkeys while they performed a visual duration discrimination task. In the task, blue and red cues of different durations (0.2-2.0 sec) were successively presented. Each of the two cues was followed by a 1.0 sec delay period. The animals were instructed to choose the longer presented colored stimulus after the second delay period. A total of 498 phasically active neurons were recorded from the striatum, and 269 neurons were defined as task related. Two types of neuronal activity were distinguished during the delay periods. First, the activity gradually changed depending on the duration of the cue presented just before. This activity may represent the signal duration for later comparison between two cue durations. The activity during the second cue period also represented duration of the first cue. Second, the activity changed differently depending on whether the first or second cue was presented longer. This activity may represent discrimination results after the comparison between the two cue durations. These findings support the assumption that striatal neurons represent timing information of sensory signals for duration discrimination.
Collapse
Affiliation(s)
- Atsushi Chiba
- Department of Physiology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Ken-Ichi Oshio
- Department of Physiology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masahiko Inase
- Department of Physiology, Kinki University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
154
|
Northoff G. Slow cortical potentials and "inner time consciousness" - A neuro-phenomenal hypothesis about the "width of present". Int J Psychophysiol 2015; 103:174-84. [PMID: 25678022 DOI: 10.1016/j.ijpsycho.2015.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
William James postulated a "stream of consciousness" that presupposes temporal continuity. The neuronal mechanisms underlying the construction of such temporal continuity remain unclear, however, in my contribution, I propose a neuro-phenomenal hypothesis that is based on slow cortical potentials and their extension of the present moment as described in the phenomenal term of "width of present". More specifically, I focus on the way the brain's neural activity needs to be encoded in order to make possible the "stream of consciousness." This leads us again to the low-frequency fluctuations of the brain's neural activity and more specifically to slow cortical potentials (SCPs). Due to their long phase duration as low-frequency fluctuations, SCPs can integrate different stimuli and their associated neural activity from different regions in one converging region. Such integration may be central for consciousness to occur, as it was recently postulated by He and Raichle. They leave open, however, the question of the exact neuronal mechanisms, like the encoding strategy, that make possible the association of the otherwise purely neuronal SCP with consciousness and its phenomenal features. I hypothesize that SCPs allow for linking and connecting different discrete points in physical time by encoding their statistically based temporal differences rather than the single discrete time points by themselves. This presupposes difference-based coding rather than stimulus-based coding. The encoding of such statistically based temporal differences makes it possible to "go beyond" the merely physical features of the stimuli; that is, their single discrete time points and their conduction delays (as related to their neural processing in the brain). This, in turn, makes possible the constitution of "local temporal continuity" of neural activity in one particular region. The concept of "local temporal continuity" signifies the linkage and integration of different discrete time points into one neural activity in a particular region. How does such local temporal continuity predispose the experience of time in consciousness? For that, I turn to phenomenological philosopher Edmund Husserl and his description of what he calls "inner time consciousness" (Husserl and Brough, 1990). One hallmark of humans' "inner time consciousness" is that we experience events and objects in succession and duration in our consciousness; according to Husserl, this amounts to what he calls the "width of [the] present." The concept of the width of present describes the extension of the present beyond the single discrete time point, such as, for instance, when we perceive different tones as a melody. I now hypothesize the degree of the width of present to be directly dependent upon and thus predisposed by the degree of the temporal differences between two (or more) discrete time points as they are encoded into neural activity. I therefore conclude that the SCPs and their encoding of neural activity in terms of temporal differences must be regarded a neural predisposition of consciousness (NPC) as distinguished from a neural correlate of consciousness (NCC).
Collapse
Affiliation(s)
- Georg Northoff
- Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Canada.
| |
Collapse
|
155
|
Abstract
Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions.
Collapse
|
156
|
Wittmann M, Otten S, Schötz E, Sarikaya A, Lehnen H, Jo HG, Kohls N, Schmidt S, Meissner K. Subjective expansion of extended time-spans in experienced meditators. Front Psychol 2015; 5:1586. [PMID: 25642205 PMCID: PMC4294119 DOI: 10.3389/fpsyg.2014.01586] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/23/2014] [Indexed: 11/21/2022] Open
Abstract
Experienced meditators typically report that they experience time slowing down in meditation practice as well as in everyday life. Conceptually this phenomenon may be understood through functional states of mindfulness, i.e., by attention regulation, body awareness, emotion regulation, and enhanced memory. However, hardly any systematic empirical work exists regarding the experience of time in meditators. In the current cross-sectional study, we investigated whether 42 experienced mindfulness meditation practitioners (with on average 10 years of experience) showed differences in the experience of time as compared to 42 controls without any meditation experience matched for age, sex, and education. The perception of time was assessed with a battery of psychophysical tasks assessing the accuracy of prospective time judgments in duration discrimination, duration reproduction, and time estimation in the milliseconds to minutes range as well with several psychometric instruments related to subjective time such as the Zimbardo Time Perspective Inventory, the Barratt Impulsivity Scale and the Freiburg Mindfulness Inventory. In addition, subjective time judgments on the current passage of time and retrospective time ranges were assessed. While subjective judgements of time were found to be significantly different between the two groups on several scales, no differences in duration estimates in the psychophysical tasks were detected. Regarding subjective time, mindfulness meditators experienced less time pressure, more time dilation, and a general slower passage of time. Moreover, they felt that the last week and the last month passed more slowly. Overall, although no intergroup differences in psychophysical tasks were detected, the reported findings demonstrate a close association between mindfulness meditation and the subjective feeling of the passage of time captured by psychometric instruments.
Collapse
Affiliation(s)
- Marc Wittmann
- Institute for Frontier Areas in Psychology and Mental Health Freiburg, Germany
| | - Simone Otten
- Institute of Medical Psychology, Ludwig-Maximilian University Munich Munich, Germany
| | - Eva Schötz
- Institute of Medical Psychology, Ludwig-Maximilian University Munich Munich, Germany
| | - Anna Sarikaya
- Institute for Frontier Areas in Psychology and Mental Health Freiburg, Germany
| | - Hanna Lehnen
- Institute for Frontier Areas in Psychology and Mental Health Freiburg, Germany
| | - Han-Gue Jo
- Department of Psychosomatic Medicine, University Medical Center Freiburg Freiburg, Germany ; Institute for Transcultural Health Studies, European University Viadrina Frankfurt (Oder), Germany
| | - Niko Kohls
- Division Integrative Health Promotion, University of Applied Sciences Coburg, Germany
| | - Stefan Schmidt
- Department of Psychosomatic Medicine, University Medical Center Freiburg Freiburg, Germany ; Institute for Transcultural Health Studies, European University Viadrina Frankfurt (Oder), Germany
| | - Karin Meissner
- Institute of Medical Psychology, Ludwig-Maximilian University Munich Munich, Germany
| |
Collapse
|
157
|
Maniadakis M, Wittmann M, Droit-Volet S, Choe Y. Toward embodied artificial cognition: TIME is on my side. Front Neurorobot 2014; 8:25. [PMID: 25538614 PMCID: PMC4259165 DOI: 10.3389/fnbot.2014.00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health Freiburg, Germany
| | - Sylvie Droit-Volet
- Laboratoire de Psychologie Sociale et Cognitive, CNRS (UMR 6024), Department of Psychology, Université Blaise Pascal Clermont-Ferrand, France
| | - Yoonsuck Choe
- Department of Computer Science and Engineering, Texas A&M University Austin, TX, USA
| |
Collapse
|
158
|
Teki S, Griffiths TD. Working memory for time intervals in auditory rhythmic sequences. Front Psychol 2014; 5:1329. [PMID: 25477849 PMCID: PMC4237036 DOI: 10.3389/fpsyg.2014.01329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/02/2014] [Indexed: 12/05/2022] Open
Abstract
The brain can hold information about multiple objects in working memory. It is not known, however, whether intervals of time can be stored in memory as distinct items. Here, we developed a novel paradigm to examine temporal memory where listeners were required to reproduce the duration of a single probed interval from a sequence of intervals. We demonstrate that memory performance significantly varies as a function of temporal structure (better memory in regular vs. irregular sequences), interval size (better memory for sub- vs. supra-second intervals), and memory load (poor memory for higher load). In contrast memory performance is invariant to attentional cueing. Our data represent the first systematic investigation of temporal memory in sequences that goes beyond previous work based on single intervals. The results support the emerging hypothesis that time intervals are allocated a working memory resource that varies with the amount of other temporal information in a sequence.
Collapse
Affiliation(s)
- Sundeep Teki
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
- Auditory Cognition Group, Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
- Laboratoire des Systemes Perceptifs, CNRS UMR 8248, Departement d’Etudes CognitivesEcole Normale Superiere, Paris, France
| | - Timothy D. Griffiths
- Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK
- Auditory Cognition Group, Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
159
|
van Wassenhove V, Lecoutre L. Duration estimation entails predicting when. Neuroimage 2014; 106:272-83. [PMID: 25462792 DOI: 10.1016/j.neuroimage.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 10/24/2022] Open
Abstract
The estimation of duration can be affected by context and surprise. Using MagnetoEncephaloGraphy (MEG), we tested whether increased neural activity during surprise and following neural suppression in two different contexts supported subjective time dilation (Eagleman and Pariyadath, 2009; Pariyadath and Eagleman, 2012). Sequences of three 300 ms frequency-modulated (FM, control) or pure tones (test) were presented and followed by a fourth FM varying in duration. In test, the last FM was perceived as significantly longer than veridical duration (Tse et al., 2004) but did not differ from the perceived duration in control. Several novel and distinct neural signatures were observed in duration estimation: first, neural suppression of standard stimuli was observed for the onset but not for the offset auditory evoked responses. Second, ramping activity increased with veridical duration in control whereas at the same latency in test, the amplitude of the midlatency response increased with the distance of deviant durations. Third, in both conditions, the amplitude of the offset auditory evoked responses accounted well for participants' performance: the longer the perceived duration, the larger the offset response. Fourth, neural duration demarcated by the peak latencies of the onset and ramping evoked activities indexed a systematic time compression that reliably predicted subjective time perception. Our findings suggest that interval timing undergoes time compression by capitalizing on the predicted offset of an auditory event.
Collapse
Affiliation(s)
- Virginie van Wassenhove
- CEA, DSV/I(2)BM, NeuroSpin, INSERM, U992, Cognitive Neuroimaging Unit, Univ Paris-Sud, F-91191 Gif/Yvette, France.
| | - Lucille Lecoutre
- CEA, DSV/I(2)BM, NeuroSpin, INSERM, U992, Cognitive Neuroimaging Unit, Univ Paris-Sud, F-91191 Gif/Yvette, France
| |
Collapse
|
160
|
Distortion of time interval reproduction in an epileptic patient with a focal lesion in the right anterior insular/inferior frontal cortices. Neuropsychologia 2014; 64:184-94. [DOI: 10.1016/j.neuropsychologia.2014.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 02/02/2023]
|
161
|
Northoff G. Do cortical midline variability and low frequency fluctuations mediate William James’ “Stream of Consciousness”? “Neurophenomenal Balance Hypothesis” of “Inner Time Consciousness”. Conscious Cogn 2014; 30:184-200. [DOI: 10.1016/j.concog.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/07/2014] [Accepted: 09/09/2014] [Indexed: 11/28/2022]
|
162
|
Martin B, Wittmann M, Franck N, Cermolacce M, Berna F, Giersch A. Temporal structure of consciousness and minimal self in schizophrenia. Front Psychol 2014; 5:1175. [PMID: 25400597 PMCID: PMC4212287 DOI: 10.3389/fpsyg.2014.01175] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/26/2014] [Indexed: 11/23/2022] Open
Abstract
The concept of the minimal self refers to the consciousness of oneself as an immediate subject of experience. According to recent studies, disturbances of the minimal self may be a core feature of schizophrenia. They are emphasized in classical psychiatry literature and in phenomenological work. Impaired minimal self-experience may be defined as a distortion of one’s first-person experiential perspective as, for example, an “altered presence” during which the sense of the experienced self (“mineness”) is subtly affected, or “altered sense of demarcation,” i.e., a difficulty discriminating the self from the non-self. Little is known, however, about the cognitive basis of these disturbances. In fact, recent work indicates that disorders of the self are not correlated with cognitive impairments commonly found in schizophrenia such as working-memory and attention disorders. In addition, a major difficulty with exploring the minimal self experimentally lies in its definition as being non-self-reflexive, and distinct from the verbalized, explicit awareness of an “I.” In this paper, we shall discuss the possibility that disturbances of the minimal self observed in patients with schizophrenia are related to alterations in time processing. We shall review the literature on schizophrenia and time processing that lends support to this possibility. In particular we shall discuss the involvement of temporal integration windows on different time scales (implicit time processing) as well as duration perception disturbances (explicit time processing) in disorders of the minimal self. We argue that a better understanding of the relationship between time and the minimal self as well of issues of embodiment require research that looks more specifically at implicit time processing. Some methodological issues will be discussed.
Collapse
Affiliation(s)
- Brice Martin
- Centre Référent Lyonnais en Réhabilitation et en Remédiation Cognitive - Service Universitaire de Réhabilitation, Hôpital du Vinatier, Université Lyon 1 and UMR 5229 (Centre National de la Recherche Scientifique) , Lyon, France
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health, Department of Empirical and Analytical Psychophysics , Freiburg, Germany
| | - Nicolas Franck
- Centre Référent Lyonnais en Réhabilitation et en Remédiation Cognitive - Service Universitaire de Réhabilitation, Hôpital du Vinatier, Université Lyon 1 and UMR 5229 (Centre National de la Recherche Scientifique) , Lyon, France
| | - Michel Cermolacce
- Département Universitaire de Psychiatrie, Centre Hospitalier Universitaire Sainte Marguerite and Aix-Marseille Université , Marseille, France ; Unité de Neurophysiologie, Psychophysiologie et Neurophénoménologie, UF 4817, Centre Hospitalier Universitaire Sainte Marguerite , Marseille, France ; Laboratoire de Neurosciences Cognitives, UMR CNRS 7291 and Aix-Marseille Université, Fédération 3C , Marseille, France
| | - Fabrice Berna
- INSERM U1114, Department of Psychiatry, Fédération de Médecine Translationnelle de Strasbourg, University Hospital of Strasbourg, University of Strasbourg , Strasbourg, France
| | - Anne Giersch
- INSERM U1114, Department of Psychiatry, Fédération de Médecine Translationnelle de Strasbourg, University Hospital of Strasbourg, University of Strasbourg , Strasbourg, France
| |
Collapse
|
163
|
Giovannelli F, Ragazzoni A, Battista D, Tarantino V, Del Sordo E, Marzi T, Zaccara G, Avanzini G, Viggiano M, Cincotta M. “…the times they aren’t a-changin’…” rTMS does not affect basic mechanisms of temporal discrimination: A pilot study with ERPs. Neuroscience 2014; 278:302-12. [DOI: 10.1016/j.neuroscience.2014.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/12/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
164
|
Muller T, Nobre AC. Perceiving the passage of time: neural possibilities. Ann N Y Acad Sci 2014; 1326:60-71. [PMID: 25257798 PMCID: PMC4336553 DOI: 10.1111/nyas.12545] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
Abstract
Although the study of time has been central to physics and philosophy for millennia, questions of how time is represented in the brain and how this representation is related to time perception have only recently started to be addressed. Emerging evidence subtly yet profoundly challenges our intuitive notions of time over short scales, offering insight into the nature of the brain's representation of time. Numerous different models, specified at the neural level, of how the brain may keep track of time have been proposed. These models differ in various ways, such as whether time is represented by a centralized or distributed neural system, or whether there are neural systems dedicated to the problem of timing. This paper reviews the insight offered by behavioral experiments and how these experiments refute and guide some of the various models of the brain's representation of time.
Collapse
Affiliation(s)
- Timothy Muller
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
165
|
Barnett AJ, O'Neil EB, Watson HC, Lee ACH. The human hippocampus is sensitive to the durations of events and intervals within a sequence. Neuropsychologia 2014; 64:1-12. [PMID: 25223466 DOI: 10.1016/j.neuropsychologia.2014.09.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/15/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022]
Abstract
Temporal details are an important facet of our memories for events. Consistent with this, it has been demonstrated that the hippocampus, a key structure in learning and memory, is sensitive to the temporal aspects of event sequences, including temporal order, context, recency and distance. One unexplored issue is whether the hippocampus also responds to the temporal duration characteristics of an event sequence, for example, how long each event lasted for or how much time elapsed between events. To address this, we used a temporal match-mismatch detection paradigm across two functional neuroimaging studies to explore whether the human hippocampus is sensitive to the durations of events and intervals that comprise a sequence lasting on the order of seconds. On each trial participants were shown a series of four scenes during an encoding and a test phase, and had to determine whether the durations of the intervals or events were altered. We observed hippocampal sensitivity to temporal durations within event sequences. Activity was significantly greater when participants detected repeating, in comparison to novel, durations. Moreover, greater functional connectivity was observed between hippocampus and brain regions previously implicated in second and millisecond timing when durations were novel, suggesting that the hippocampus may receive duration information from these areas for use within a mnemonic context rather than generate an independent timing signal. Our novel findings suggest that the hippocampus may integrate temporal duration information when binding event sequences.
Collapse
Affiliation(s)
- Alexander J Barnett
- Department of Psychology (Scarborough and St George), University of Toronto, Canada M1C 1A4/M5S 3G3
| | - Edward B O'Neil
- Department of Psychology (Scarborough and St George), University of Toronto, Canada M1C 1A4/M5S 3G3
| | - Hilary C Watson
- Department of Psychology (Scarborough and St George), University of Toronto, Canada M1C 1A4/M5S 3G3
| | - Andy C H Lee
- Department of Psychology (Scarborough and St George), University of Toronto, Canada M1C 1A4/M5S 3G3; Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Canada M6A 2E1.
| |
Collapse
|
166
|
van Rijn H. It's time to take the psychology of biological time into account: speed of driving affects a trip's subjective duration. Front Psychol 2014; 5:1028. [PMID: 25278918 PMCID: PMC4165223 DOI: 10.3389/fpsyg.2014.01028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hedderik van Rijn
- Experimental Psychology, University of Groningen Groningen, Netherlands
| |
Collapse
|
167
|
Reinel C, Schuster S. Pre-start timing information is used to set final linear speed in a C-start manoeuvre. J Exp Biol 2014; 217:2866-75. [DOI: 10.1242/jeb.105510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In their unique hunting behaviour, archerfish use a complex motor decision to secure their prey: based solely on how dislodged prey initially falls, they select an adapted C-start manoeuvre that turns the fish right towards the point on the water surface where their prey will later land. Furthermore, they take off at a speed that is set so as to arrive in time. We show here that the C-start manoeuvre and not subsequent tail beating is necessary and sufficient for setting this adaptive level of speed. Furthermore, the C-start pattern is adjusted to independently determine both the turning angle and the take-off speed. The selection of both aspects requires no a priori information and is done based on information sampled from the onset of target motion until the C-start is launched. Fin strokes can occur right after the C-start manoeuvre but are not required to fine-tune take-off speed, but rather to maintain it. By probing the way in which the fish set their take-off speed in a wide range of conditions in which distance from the later catching point and time until impact varied widely and unpredictably, we found that the C-start manoeuvre is programmed based on pre-C-start estimates of distance and time until impact. Our study hence provides the first evidence for a C-start that is fine-tuned to produce an adaptive speed level.
Collapse
Affiliation(s)
- Caroline Reinel
- Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Stefan Schuster
- Department of Animal Physiology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
168
|
Marchetti G. Attention and working memory: two basic mechanisms for constructing temporal experiences. Front Psychol 2014; 5:880. [PMID: 25177305 PMCID: PMC4132481 DOI: 10.3389/fpsyg.2014.00880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/24/2014] [Indexed: 12/20/2022] Open
Abstract
Various kinds of observations show that the ability of human beings to both consciously relive past events – episodic memory – and conceive future events, entails an active process of construction. This construction process also underpins many other important aspects of conscious human life, such as perceptions, language, and conscious thinking. This article provides an explanation of what makes the constructive process possible and how it works. The process mainly relies on attentional activity, which has a discrete and periodic nature, and working memory, which allows for the combination of discrete attentional operations. An explanation is also provided of how past and future events are constructed.
Collapse
|
169
|
Time-based event expectations employ relative, not absolute, representations of time. Psychon Bull Rev 2014; 22:890-5. [PMID: 25112395 DOI: 10.3758/s13423-014-0710-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When the timing of an event is predictable, humans automatically form implicit time-based event expectations. We investigated whether these expectations rely on absolute (e.g., 800 ms) or relative (e.g., a shorter duration) representations of time. In a choice-response task with two different pre-target intervals, participants implicitly learned that targets were predictable by interval durations. In a test phase, the two intervals were either considerably shortened or lengthened. In both cases, behavioral tendencies transferred from practice to test according to relative, not absolute, interval duration. We conclude that humans employ relative representations of time periods when forming time-based event expectations. These results suggest that learned time-based event expectations (e.g., in communication and human-machine interaction) should transfer to faster or slower environments if the relative temporal distribution of events is preserved.
Collapse
|
170
|
Flicker-Induced Time Dilation Does Not Modulate EEG Correlates of Temporal Encoding. Brain Topogr 2014; 28:559-69. [DOI: 10.1007/s10548-014-0389-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
|
171
|
Block RA, Grondin S. Timing and time perception: A selective review and commentary on recent reviews. Front Psychol 2014; 5:648. [PMID: 25120497 PMCID: PMC4114294 DOI: 10.3389/fpsyg.2014.00648] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/06/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richard A. Block
- Department of Psychology, Montana State UniversityBozeman, MT, USA
| | - Simon Grondin
- École de psychologie, Université LavalQuébec City, QC, Canada
| |
Collapse
|
172
|
Fayolle SL, Droit-Volet S. Time perception and dynamics of facial expressions of emotions. PLoS One 2014; 9:e97944. [PMID: 24835285 PMCID: PMC4023999 DOI: 10.1371/journal.pone.0097944] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022] Open
Abstract
Two experiments were run to examine the effects of dynamic displays of facial expressions of emotions on time judgments. The participants were given a temporal bisection task with emotional facial expressions presented in a dynamic or a static display. Two emotional facial expressions and a neutral expression were tested and compared. Each of the emotional expressions had the same affective valence (unpleasant), but one was high-arousing (expressing anger) and the other low-arousing (expressing sadness). Our results showed that time judgments are highly sensitive to movements in facial expressions and the emotions expressed. Indeed, longer perceived durations were found in response to the dynamic faces and the high-arousing emotional expressions compared to the static faces and low-arousing expressions. In addition, the facial movements amplified the effect of emotions on time perception. Dynamic facial expressions are thus interesting tools for examining variations in temporal judgments in different social contexts.
Collapse
|
173
|
Oleson EB, Cachope R, Fitoussi A, Tsutsui K, Wu S, Gallegos JA, Cheer JF. Cannabinoid receptor activation shifts temporally engendered patterns of dopamine release. Neuropsychopharmacology 2014; 39:1441-52. [PMID: 24345819 PMCID: PMC3988547 DOI: 10.1038/npp.2013.340] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/11/2013] [Accepted: 12/08/2013] [Indexed: 11/09/2022]
Abstract
The ability to discern temporally pertinent environmental events is essential for the generation of adaptive behavior in conventional tasks, and our overall survival. Cannabinoids are thought to disrupt temporally controlled behaviors by interfering with dedicated brain timing networks. Cannabinoids also increase dopamine release within the mesolimbic system, a neural pathway generally implicated in timing behavior. Timing can be assessed using fixed-interval (FI) schedules, which reinforce behavior on the basis of time. To date, it remains unknown how cannabinoids modulate dopamine release when responding under FI conditions, and for that matter, how subsecond dopamine release is related to time in these tasks. In the present study, we hypothesized that cannabinoids would accelerate timing behavior in an FI task while concurrently augmenting a temporally relevant pattern of dopamine release. To assess this possibility, we measured subsecond dopamine concentrations in the nucleus accumbens while mice responded for food under the influence of the cannabinoid agonist WIN 55,212-2 in an FI task. Our data reveal that accumbal dopamine concentrations decrease proportionally to interval duration--suggesting that dopamine encodes time in FI tasks. We further demonstrate that WIN 55,212-2 dose-dependently increases dopamine release and accelerates a temporal behavioral response pattern in a CB1 receptor-dependent manner--suggesting that cannabinoid receptor activation modifies timing behavior, in part, by augmenting time-engendered patterns of dopamine release. Additional investigation uncovered a specific role for endogenous cannabinoid tone in timing behavior, as elevations in 2-arachidonoylglycerol, but not anandamide, significantly accelerated the temporal response pattern in a manner akin to WIN 55,212-2.
Collapse
Affiliation(s)
- Erik B Oleson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,University of Colorado Denver, Denver, CO, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aurelie Fitoussi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kimberly Tsutsui
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sharon Wu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA, Tel: +1 410 706 0112, Fax: +1 410 706 2512, E-mail:
| |
Collapse
|
174
|
Kösem A, Gramfort A, van Wassenhove V. Encoding of event timing in the phase of neural oscillations. Neuroimage 2014; 92:274-84. [DOI: 10.1016/j.neuroimage.2014.02.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/21/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022] Open
|
175
|
Pollatos O, Yeldesbay A, Pikovsky A, Rosenblum M. How much time has passed? Ask your heart. Front Neurorobot 2014; 8:15. [PMID: 24782755 PMCID: PMC3988366 DOI: 10.3389/fnbot.2014.00015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/19/2014] [Indexed: 11/13/2022] Open
Abstract
Internal signals like one's heartbeats are centrally processed via specific pathways and both their neural representations as well as their conscious perception (interoception) provide key information for many cognitive processes. Recent empirical findings propose that neural processes in the insular cortex, which are related to bodily signals, might constitute a neurophysiological mechanism for the encoding of duration. Nevertheless, the exact nature of such a proposed relationship remains unclear. We aimed to address this question by searching for the effects of cardiac rhythm on time perception by the use of a duration reproduction paradigm. Time intervals used were of 0.5, 2, 3, 7, 10, 14, 25, and 40 s length. In a framework of synchronization hypothesis, measures of phase locking between the cardiac cycle and start/stop signals of the reproduction task were calculated to quantify this relationship. The main result is that marginally significant synchronization indices (SIs) between the heart cycle and the time reproduction responses for the time intervals of 2, 3, 10, 14, and 25 s length were obtained, while results were not significant for durations of 0.5, 7, and 40 s length. On the single participant level, several subjects exhibited some synchrony between the heart cycle and the time reproduction responses, most pronounced for the time interval of 25 s (8 out of 23 participants for 20% quantile). Better time reproduction accuracy was not related with larger degree of phase locking, but with greater vagal control of the heart. A higher interoceptive sensitivity (IS) was associated with a higher synchronization index (SI) for the 2 s time interval only. We conclude that information obtained from the cardiac cycle is relevant for the encoding and reproduction of time in the time span of 2-25 s. Sympathovagal tone as well as interoceptive processes mediate the accuracy of time estimation.
Collapse
Affiliation(s)
- Olga Pollatos
- Health Psychology, Institute of Psychology, University of UlmUlm, Germany
| | - Azamat Yeldesbay
- Department of Physics and Astronomy, University of PotsdamPotsdam, Germany
| | - Arkady Pikovsky
- Department of Physics and Astronomy, University of PotsdamPotsdam, Germany
| | - Michael Rosenblum
- Department of Physics and Astronomy, University of PotsdamPotsdam, Germany
| |
Collapse
|
176
|
Affiliation(s)
- Ralf Buckley
- International Chair in Ecotourism Research, School of Environment, Griffith University Gold Coast, QLD, Australia
| |
Collapse
|
177
|
Gouvêa TS, Monteiro T, Soares S, Atallah BV, Paton JJ. Ongoing behavior predicts perceptual report of interval duration. Front Neurorobot 2014; 8:10. [PMID: 24672473 PMCID: PMC3949350 DOI: 10.3389/fnbot.2014.00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/07/2014] [Indexed: 11/25/2022] Open
Abstract
The ability to estimate the passage of time is essential for adaptive behavior in complex environments. Yet, it is not known how the brain encodes time over the durations necessary to explain animal behavior. Under temporally structured reinforcement schedules, animals tend to develop temporally structured behavior, and interval timing has been suggested to be accomplished by learning sequences of behavioral states. If this is true, trial to trial fluctuations in behavioral sequences should be predictive of fluctuations in time estimation. We trained rodents in an duration categorization task while continuously monitoring their behavior with a high speed camera. Animals developed highly reproducible behavioral sequences during the interval being timed. Moreover, those sequences were often predictive of perceptual report from early in the trial, providing support to the idea that animals may use learned behavioral patterns to estimate the duration of time intervals. To better resolve the issue, we propose that continuous and simultaneous behavioral and neural monitoring will enable identification of neural activity related to time perception that is not explained by ongoing behavior.
Collapse
Affiliation(s)
- Thiago S Gouvêa
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | - Tiago Monteiro
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | - Sofia Soares
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | - Bassam V Atallah
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| | - Joseph J Paton
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown Lisbon, Portugal
| |
Collapse
|
178
|
Wackermann J, Meissner K, Tankersley D, Wittmann M. Effects of emotional valence and arousal on acoustic duration reproduction assessed via the "dual klepsydra model". Front Neurorobot 2014; 8:11. [PMID: 24616698 PMCID: PMC3937550 DOI: 10.3389/fnbot.2014.00011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/11/2014] [Indexed: 11/13/2022] Open
Abstract
We report results of an acoustic duration reproduction task with stimulus duration of 2, 4, and 6 s, using 45 emotionally negative, positive, and neutral sounds from the International Affective Digitized Sounds System, in a sample of 31 young healthy participants. To investigate the influence of induced emotions on perceived duration, the effects of emotional modulation were quantified in two ways: (1) via model-free indices (aggregated ratios of reproduced times), and (2) via dual klepsydra model (dkm)-based estimates of parameters of internal time representation. Both data-analytic approaches reveal an effect of emotional valence/arousal, namely, a significantly longer reproduction response for emotional stimuli than for the neutral stimuli. The advantage of the dkm-based approach is its ability to disentangle stimulus-related effects, which are represented by "flow intensities," from general effects which are due to the lossy character of temporal integration. We explain the rationale of the dkm-based strategy and interpret the observed effect within the dkm-framework as transient increase of internal "flows." This interpretation is in line with recent conceptualizations of an "embodiment" of time where the model-posited flows correspond to the ongoing stream of interoceptive (bodily) neural signals. Neurophysiological findings on correlations between the processing of body signals and the perception of time provide cumulative evidence for this working hypothesis.
Collapse
Affiliation(s)
- Jiří Wackermann
- Institute for Frontier Areas of Psychology and Mental Health Freiburg im Breisgau, Germany
| | - Karin Meissner
- Institute of Medical Psychology, Ludwig Maximilian University München, Germany
| | - Dharol Tankersley
- Department of Psychiatry, University of California San Diego San Diego, CA, USA
| | - Marc Wittmann
- Institute for Frontier Areas of Psychology and Mental Health Freiburg im Breisgau, Germany
| |
Collapse
|
179
|
Maniadakis M, Trahanias P. Time models and cognitive processes: a review. Front Neurorobot 2014; 8:7. [PMID: 24578690 PMCID: PMC3936574 DOI: 10.3389/fnbot.2014.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/26/2014] [Indexed: 11/17/2022] Open
Abstract
The sense of time is an essential capacity of humans, with a major role in many of the cognitive processes expressed in our daily lifes. So far, in cognitive science and robotics research, mental capacities have been investigated in a theoretical and modeling framework that largely neglects the flow of time. Only recently there has been a rather limited, but constantly increasing interest in the temporal aspects of cognition, integrating time into a range of different models of perceptuo-motor capacities. The current paper aims to review existing works in the field and suggest directions for fruitful future work. This is particularly important for the newly developed field of artificial temporal cognition that is expected to significantly contribute in the development of sophisticated artificial agents seamlessly integrated into human societies.
Collapse
Affiliation(s)
- Michail Maniadakis
- Institute of Computer Science, Foundation for Research and Technology - Hellas Heraklion, Greece
| | - Panos Trahanias
- Institute of Computer Science, Foundation for Research and Technology - Hellas Heraklion, Greece
| |
Collapse
|
180
|
Kononowicz TW, van Rijn H. Decoupling interval timing and climbing neural activity: a dissociation between CNV and N1P2 amplitudes. J Neurosci 2014; 34:2931-9. [PMID: 24553934 PMCID: PMC6608524 DOI: 10.1523/jneurosci.2523-13.2014] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/16/2013] [Accepted: 12/20/2013] [Indexed: 11/21/2022] Open
Abstract
It is often argued that climbing neural activity, as for example reflected by the contingent negative variation (CNV) in the electroencephalogram, is the signature of the subjective experience of time. According to this view, the resolution of the CNV coincides with termination of subjective timing processes. Paradoxically, behavioral data indicate that participants keep track of timing even after the standard interval (SI) has passed. This study addresses whether timing continues after CNV resolution. In Experiment 1, human participants were asked to discriminate time intervals while evoked potentials (EPs) elicited by the sound terminating a comparison interval (CI) were measured. As the amplitude of N1P2 components increases as a function of the temporal distance from the SI, and the latency of the P2 component followed the hazard rate of the CIs, timing processes continue after CNV resolution. Based on a novel experimental paradigm, statistical model comparisons and trial-by-trial analyses, Experiment 2 supports this finding as subjective time is more accurately indexed by the amplitude of early EPs than by CNV amplitude. These results provide the first direct evidence that subjective timing of multisecond intervals does not depend on climbing neural activity as indexed by the CNV and that the subjective experience of time is better reflected by distinct features of post-CI evoked potentials.
Collapse
Affiliation(s)
- Tadeusz W. Kononowicz
- Experimental Psychology, University of Groningen, 9712 TS Groningen, The Netherlands
| | - Hedderik van Rijn
- Experimental Psychology, University of Groningen, 9712 TS Groningen, The Netherlands
| |
Collapse
|
181
|
Allman MJ, Teki S, Griffiths TD, Meck WH. Properties of the Internal Clock: First- and Second-Order Principles of Subjective Time. Annu Rev Psychol 2014; 65:743-71. [DOI: 10.1146/annurev-psych-010213-115117] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Melissa J. Allman
- Department of Psychology, Michigan State University, East Lansing, Michigan 48823;
| | - Sundeep Teki
- Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom;
| | - Timothy D. Griffiths
- Wellcome Trust Center for Neuroimaging, University College London, London, WC1N 3BG United Kingdom;
- Institute of Neuroscience, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE2 4HH United Kingdom;
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27701;
| |
Collapse
|
182
|
Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci 2013; 33:15432-41. [PMID: 24068812 DOI: 10.1523/jneurosci.1698-13.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is implicated in sensory prediction in the subsecond range. To explore how neurons in the cerebellum encode temporal information for the prediction of sensory events, we trained monkeys to make a saccade in response to either a single omission or deviation of isochronous repetitive stimuli. We found that neurons in the cerebellar dentate nucleus exhibited a gradual elevation of the baseline firing rate as the repetition progressed. Most neurons showed a transient suppression for each stimulus, and this firing modulation also increased gradually, opposed to the sensory adaptation. The magnitude of the enhanced sensory response positively correlated with interstimulus interval. Furthermore, when stimuli appeared unexpectedly earlier than the regular timing, the neuronal modulation became smaller, suggesting that the sensory response depended on the time elapsed since the previous stimulus. The enhancement of neuronal modulation was context dependent and was reduced or even absent when monkeys were unmotivated to detect stimulus omission. A significant negative correlation between neuronal activity at stimulus omission and saccade latency suggested that the timing of each stimulus was predicted by the amount of recovery from the transient response. Because inactivation of the recording sites delayed the detection of stimulus omission but only slightly altered the detection of stimulus deviation, these signals might be necessary for the prediction of stimulus timing but may not be involved only in the generation of saccades. Our results demonstrate a novel mechanism for temporal prediction of upcoming stimuli that accompanies the time-dependent modification of sensory gain in the cerebellum.
Collapse
|
183
|
Gontier E, Hasuo E, Mitsudo T, Grondin S. EEG investigations of duration discrimination: the intermodal effect is induced by an attentional bias. PLoS One 2013; 8:e74073. [PMID: 24009766 PMCID: PMC3751868 DOI: 10.1371/journal.pone.0074073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Previous studies indicated that empty time intervals are better discriminated in the auditory than in the visual modality, and when delimited by signals delivered from the same (intramodal intervals) rather than from different sensory modalities (intermodal intervals). The present electrophysiological study was conducted to determine the mechanisms which modulated the performances in inter- and intramodal conditions. Participants were asked to categorise as short or long empty intervals marked by auditory (A) and/or visual (V) signals (intramodal intervals: AA, VV; intermodal intervals: AV, VA). Behavioural data revealed that the performances were higher for the AA intervals than for the three other intervals and lower for inter- compared to intramodal intervals. Electrophysiological results indicated that the CNV amplitude recorded at fronto-central electrodes increased significantly until the end of the presentation of the long intervals in the AA conditions, while no significant change in the time course of this component was observed for the other three modalities of presentation. They also indicated that the N1 and P2 amplitudes recorded after the presentation of the signals which delimited the beginning of the intervals were higher for the inter- (AV/VA) compared to the intramodal intervals (AA/VV). The time course of the CNV revealed that the high performances observed with AA intervals would be related to the effectiveness of the neural mechanisms underlying the processing of the ongoing interval. The greater amplitude of the N1 and P2 components during the intermodal intervals suggests that the weak performances observed in these conditions would be caused by an attentional bias induced by the cognitive load and the necessity to switch between modalities.
Collapse
Affiliation(s)
- Emilie Gontier
- Laboratoire de Recherche en Psychologie de la Perception, Université Laval, Québec, Québec, Canada.
| | | | | | | |
Collapse
|