151
|
Sharma V, Misteli T. Non-coding RNAs in DNA damage and repair. FEBS Lett 2013; 587:1832-9. [PMID: 23684639 DOI: 10.1016/j.febslet.2013.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs (ncRNAs) are increasingly recognized as central players in diverse biological processes. Upon DNA damage, the DNA damage response (DDR) elicits a complex signaling cascade, which includes the induction of multiple ncRNA species. Recent studies indicate that DNA-damage induced ncRNAs contribute to regulation of cell cycle, apoptosis and DNA repair, and thus play a key role in maintaining genome stability. This review summarizes the emerging role of ncRNAs in DNA damage and repair.
Collapse
Affiliation(s)
- Vivek Sharma
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
152
|
MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013; 23:12-9. [PMID: 23453900 DOI: 10.1016/j.gde.2013.01.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/28/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Radiotherapy is a form of cancer treatment that utilizes the ability of ionizing radiation to induce cell inactivation and cell death, generally via inflicting DNA double-strand breaks. However, different tumors and their normal surrounding tissues are not equally sensitive to radiation, posing a major challenge in the field: to seek out factors that influence radiosensitivity. In this review, we summarize the evidence for microRNA (miRNA) involvement in the radioresponse and discuss their potential as radiosensitizers. MicroRNAs are endogenous small, noncoding RNAs that regulate gene expression posttranscriptionally, influencing many processes including, as highlighted here, cellular sensitivity to radiation. Profiling studies demonstrate that miRNA expression levels change in response to radiation, while certain miRNAs, when overexpressed or knocked down, alter radiosensitivity. Finally, we discuss specific miRNA-target pairs that affect response to radiation and DNA damage as good potential targets for modulating radioresponsitivity.
Collapse
|
153
|
Mueller AC, Sun D, Dutta A. The miR-99 family regulates the DNA damage response through its target SNF2H. Oncogene 2013; 32:1164-72. [PMID: 22525276 PMCID: PMC3407337 DOI: 10.1038/onc.2012.131] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 01/07/2023]
Abstract
Chromatin remodeling factors are becoming known as crucial facilitators of recruitment of repair proteins to sites of DNA damage. Multiple chromatin remodeling protein complexes are now known to be required for efficient double strand break repair. In a screen for microRNAs (miRNAs) that modulate the DNA damage response, we discovered that expression of the miR-99 family of miRNAs correlates with radiation sensitivity. These miRNAs were also transiently induced following radiation. The miRNAs target the SWI/SNF chromatin remodeling factor SNF2H/SMARCA5, a component of the ACF1 complex. We found that by reducing levels of SNF2H, miR-99a and miR-100 reduced BRCA1 localization to sites of DNA damage. Introduction of the miR-99 family of miRNAs into cells reduced the rate and overall efficiency of repair by both homologous recombination and non-homologous end joining. Finally, induction of the miR-99 family following radiation prevents an increase in SNF2H expression and reduces the recruitment of BRCA1 to the sites of DNA damage following a second dose of radiation, reducing the efficiency of repair after multiple rounds of radiation, as used in fractionated radiotherapy.
Collapse
Affiliation(s)
- Adam Christopher Mueller
- Dept. of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Dandan Sun
- Dept. of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Anindya Dutta
- Dept. of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
154
|
Zhu Y, Wang D, Wang F, Li T, Dong L, Liu H, Ma Y, Jiang F, Yin H, Yan W, Luo M, Tang Z, Zhang G, Wang Q, Zhang J, Zhou J, Yu J. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis. Nucleic Acids Res 2013; 41:4129-43. [PMID: 23420868 PMCID: PMC3627585 DOI: 10.1093/nar/gkt093] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
miRNAs play important roles in many biological processes, including erythropoiesis. Although several miRNAs regulate erythroid differentiation, how the key erythroid regulator, GATA-1, directly orchestrates differentiation through miRNA pathways remains unclear. In this study, we identified miR-23a as a key regulator of erythropoiesis, which was upregulated both during erythroid differentiation and in GATA-1 gain-of-function experiments, as determined by miRNA expression profile analysis. In primary human CD34+ hematopoietic progenitor cells, miR-23a increased in a GATA-1-dependent manner during erythroid differentiation. Gain- or loss-of-function analysis of miR-23a in mice or zebrafish demonstrated that it was essential for normal morphology in terminally differentiated erythroid cells. Furthermore, a protein tyrosine phosphatase, SHP2, was identified as a downstream target of miR-23a that mediated its regulation of erythropoiesis. Taken together, our data identify a key GATA-1–miRNA axis in erythroid differentiation.
Collapse
Affiliation(s)
- Yong Zhu
- National Laboratory of Medical Molecular Biology, Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing 100005, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Chowdhury D, Choi YE, Brault ME. Charity begins at home: non-coding RNA functions in DNA repair. Nat Rev Mol Cell Biol 2013; 14:181-9. [PMID: 23385724 DOI: 10.1038/nrm3523] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the past decade, evolutionarily conserved microRNAs (miRNAs) have been characterized as regulators of almost every cellular process and signalling pathway. There is now emerging evidence that this new class of regulators also impinges on the DNA damage response (DDR). Both miRNAs and other small non-coding RNAs (ncRNAs) are induced at DNA breaks and mediate the repair process. These intriguing observations raise the possibility that crosstalk between ncRNAs and the DDR might provide a means of efficient and accurate DNA repair and facilitate the maintenance of genomic stability.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW The contributions of microRNA (miRNA) to pathogenesis of autoimmune diseases such as Systemic lupus erythematosus (SLE) are beginning to be uncovered. In this review, we discuss the major progress made in understanding of miRNA biology, as well as novel insights into SLE pathogenesis mediated by miRNAs. RECENT FINDINGS MiRNA biogenesis is a deliberately controlled process, which requires multiple layers of regulation involving participation of various protein regulators and posttranscriptional modifications. Its expression regulation is critically modulated by multiple physiopathological factors such as inflammation, stress, Epstein-Barr virus infection and sex hormones. MiRNAs play a crucial role in maintaining immune system development and function, and are implicated in development of numerous immunological disorders. Unique miRNA expression signatures in SLE reveal their clinical relevance. MiRNAs contribute broadly and actively to various aspects of SLE pathogenesis and hold great therapeutic potential. SUMMARY The recent findings underscore the potential importance of miRNAs to pathogenesis, diagnosis and treatment of SLE.
Collapse
|
157
|
Amelio I, Lena AM, Viticchiè G, Shalom-Feuerstein R, Terrinoni A, Dinsdale D, Russo G, Fortunato C, Bonanno E, Spagnoli LG, Aberdam D, Knight RA, Candi E, Melino G. miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. ACTA ACUST UNITED AC 2013; 199:347-63. [PMID: 23071155 PMCID: PMC3471232 DOI: 10.1083/jcb.201203134] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A differentiation-promoting micro-RNA regulates actin cable dynamics, intercellular adhesion, and cell migration in human and mouse epidermis. During keratinocyte differentiation and stratification, cells undergo extensive remodeling of their actin cytoskeleton, which is important to control cell mobility and to coordinate and stabilize adhesive structures necessary for functional epithelia. Limited knowledge exists on how the actin cytoskeleton is remodeled in epithelial stratification and whether cell shape is a key determinant to trigger terminal differentiation. In this paper, using human keratinocytes and mouse epidermis as models, we implicate miR-24 in actin adhesion dynamics and demonstrate that miR-24 directly controls actin cable formation and cell mobility. miR-24 overexpression in proliferating cells was sufficient to trigger keratinocyte differentiation both in vitro and in vivo and directly repressed cytoskeletal modulators (PAK4, Tks5, and ArhGAP19). Silencing of these targets recapitulated the effects of miR-24 overexpression. Our results uncover a new regulatory pathway involving a differentiation-promoting microribonucleic acid that regulates actin adhesion dynamics in human and mouse epidermis.
Collapse
Affiliation(s)
- Ivano Amelio
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Jin Y, Chen D, Cabay RJ, Wang A, Crowe DL, Zhou X. Role of microRNA-138 as a potential tumor suppressor in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:357-85. [PMID: 23445815 DOI: 10.1016/b978-0-12-407697-6.00009-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive life-threatening disease associated with high mortality rates. While efforts have been made to explore the molecular mechanisms that contribute to the initiation and progression of HNSCC, most studies focus on protein-coding genes. Understanding of the genomic aberrations associated with noncoding genes (such as microRNAs) and their effects on HNSCC is still relatively limited. Recent evidence suggests that deregulation of microRNA genes (such as downregulation of miR-138) plays an important role in HNSCC. While deregulation of miR-138 has been frequently observed in HNSCC and other cancer types, the precise roles of miR-138 in tumorigenesis remain elusive. Recent bioinformatics analyses and functional studies using in vitro and in vivo systems have identified a number of functional targets for miR-138. These include genes that participate in essential biological processes that are highly relevant to the initiation and progression of HNSCC, including cell migration, epithelial to mesenchymal transition, cell cycle progression, DNA damage response and repair, senescence, and differentiation. However, the biological systems, study design, and data interpretation from these studies are highly variable, which hinder our understanding of the role of miR-138 in tumorigenesis at molecular level. In this review, we will first introduce the significance of microRNA deregulation in HNSCC. We will then provide a comprehensive review and integrative analysis of the existing studies on miR-138, and aim to define its molecular mechanisms that contribute to the initiation and progression of HNSCC.
Collapse
Affiliation(s)
- Yi Jin
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
159
|
Mutual inhibition between miR-34a and SIRT1 contributes to regulation of DNA double-strand break repair. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11434-012-5599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
160
|
Wang Y, Taniguchi T. MicroRNAs and DNA damage response: implications for cancer therapy. Cell Cycle 2012; 12:32-42. [PMID: 23255103 DOI: 10.4161/cc.23051] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The DNA damage response (DDR) pathways play critical roles in protecting the genome from DNA damage. Abrogation of DDR often results in elevated genomic instability and cellular sensitivity to DNA damaging agents. Many proteins involved in DDR are subjected to precise regulation at multiple levels, such as transcriptional control and posttranslational modifications, in response to DNA damage. MicroRNAs (miRNAs) are a class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. The expression levels of some miRNAs change in response to DNA damage. Some miRNAs, such as miR-24, 138, 96 and 182, have been implicated in DDR and/or DNA repair and affect cellular sensitivity to DNA damaging agents. In this review, we summarize recent findings related to the emerging roles of miRNAs in regulating DDR and DNA repair and discuss their potential in cancer therapy.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Human Biology and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
161
|
Hegre SA, Sætrom P, Aas PA, Pettersen HS, Otterlei M, Krokan HE. Multiple microRNAs may regulate the DNA repair enzyme uracil-DNA glycosylase. DNA Repair (Amst) 2012; 12:80-6. [PMID: 23228472 DOI: 10.1016/j.dnarep.2012.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023]
Abstract
Human nuclear uracil-DNA glycosylase UNG2 is essential for post-replicative repair of uracil in DNA, and UNG2 protein and mRNA levels rapidly decline in G2/M phase. Previous work has demonstrated regulation of UNG2 at the transcriptional level, as well as by protein phosphorylation and ubiquitylation. UNG2 mRNA, encoded by the UNG gene, contains a long 3'untranslated region (3'UTR) of previously unknown function. Here, we demonstrate that several conserved regions in the 3'UTR are potential seed sites for microRNAs (miRNAs), such as miR-16, miR-34c, and miR-199a. Our results show that these miRNAs down-regulate UNG activity, UNG mRNA, and UNG protein levels. Down-regulation was dependent on the 3'UTR, indicating that the miRNAs directly target the conserved seed sites in the 3'UTR. These results add miRNAs as a new modality to UNG's increasing list of complex regulatory mechanisms.
Collapse
Affiliation(s)
- Siv A Hegre
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
162
|
Tang KF, Ren H. The role of dicer in DNA damage repair. Int J Mol Sci 2012; 13:16769-78. [PMID: 23222681 PMCID: PMC3546719 DOI: 10.3390/ijms131216769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 11/09/2012] [Accepted: 11/12/2012] [Indexed: 01/07/2023] Open
Abstract
Dicer is the key component of the RNA interference pathway. Our group and others have reported that knockdown or knockout of Dicer leads to DNA damage in mammalian cells. Two groups recently showed that efficiency of DNA damage repair was greatly reduced in Dicer-deficient cells and that Dicer-dependent small RNAs (~21 nucleotides) produced from the sequences in the vicinity of DNA double-strand break sites were essential for DNA damage repair. Moreover, accumulating data have suggested that miroRNAs play pivotal roles in DNA damage repair. In this review, we discuss the molecular mechanisms by which loss of Dicer leads to DNA damage, as well as the role of Dicer in tumorigenesis.
Collapse
Affiliation(s)
- Kai-Fu Tang
- Authors to whom correspondence should be addressed; E-Mails: (K.-F.T.); (H.R.); Tel.: +86-577-8883-1271 (K.-F.T.); +86-236-369-3029 (H.R.); Fax: +86-577-8883-1359 (K.-F.T.); +86-236-370-3790 (H.R.)
| | - Hong Ren
- Authors to whom correspondence should be addressed; E-Mails: (K.-F.T.); (H.R.); Tel.: +86-577-8883-1271 (K.-F.T.); +86-236-369-3029 (H.R.); Fax: +86-577-8883-1359 (K.-F.T.); +86-236-370-3790 (H.R.)
| |
Collapse
|
163
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
164
|
Wang J, Liu L, Xie L, Xiang G, Zhou Y. Induction of differentiation-specific miRNAs in TPA-induced myeloid leukemia cells through MEK/ERK activation. Int J Mol Med 2012; 31:59-66. [PMID: 23175175 DOI: 10.3892/ijmm.2012.1191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/21/2012] [Indexed: 11/06/2022] Open
Abstract
Cellular microRNAs (miRNAs) are pivotal regulators involved in various biological processes through the post-transcriptional regulation of gene expression. Signaling pathways are extensively activated during 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced differentiation of human leukemia cells, but the modulation of miRNA expression and processing in this context has yet to be fully explored. In this study, we comprehensively analyzed 10 miRNAs that are consistently upregulated during TPA-induced differentiation of various leukemia cell lines by employing microarray technology. The upregulation of these miRNAs was further verified by quantitative RT-PCR, and, markedly, a subset of the miRNAs was found to be induced via the MEK/ERK signaling pathway using TPA and specific pharmacological inhibitors. Moreover, immunoblotting and quantitative RT-PCR analysis demonstrated that the expression levels of key miRNA processing machineries (i.e., Drosha, Dicer, Ago1 and Ago2) were not induced in this context, but the transcription of the miRNA products was triggered by MEK/ERK activation. Therefore, we identified the unique miRNAs that respond to TPA treatment in leukemia cells and demonstrated the essential role of the MEK/ERK signaling pathway in the induction of these miRNA transcripts.
Collapse
Affiliation(s)
- Jing Wang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | |
Collapse
|
165
|
Liu Y, Lu X. Non-coding RNAs in DNA damage response. Am J Cancer Res 2012; 2:658-675. [PMID: 23226613 PMCID: PMC3512188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/22/2012] [Indexed: 06/01/2023] Open
Abstract
Genome-wide studies have revealed that human and other mammalian genomes are pervasively transcribed and produce thousands of regulatory non-protein-coding RNAs (ncRNAs), including miRNAs, siRNAs, piRNAs and long non-coding RNAs (lncRNAs). Emerging evidences suggest that these ncRNAs also play a pivotal role in genome integrity and stability via the regulation of DNA damage response (DDR). In this review, we discuss the recent finding on the interplay of ncRNAs with the canonical DDR signaling pathway, with a particular emphasis on miRNAs and lncRNAs. While the expression of ncRNAs is regulated in the DDR, the DDR is also subjected to regulation by those DNA damage-responsive ncRNAs. In addition, the roles of those Dicer- and Drosha-dependent small RNAs produced in the vicinity of double-strand breaks sites are also described.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center Houston, Texas 77030, USA
| | | |
Collapse
|
166
|
Abstract
Dysregulation of gene expression can cause complex disease phenotypes. MicroRNAs (miRNAs) are well known to fine-tune cellular gene expression to control immune cell development and regulate adaptive and innate immune responses. Discoveries over the past decade have indicated that aberrant expression of miRNAs is associated with the pathogenesis of multiple immunological diseases, including systemic lupus erythematosus (SLE). Indeed, profiling miRNA expression in blood cells, body fluid and target tissues taken from patients with SLE has revealed unique miRNA signatures when compared with healthy individuals or those with other diseases. Moreover, dysregulation of these miRNAs has also been found to be associated with disease activity and major organ involvement. In our opinion, therefore, miRNAs have the potential to act as biomarkers for the diagnosis and assessment of patients with SLE. This Review provides an overview of the novel cellular and molecular mechanisms that seem to underlie the roles of miRNAs in SLE disease processes, as well as the future therapeutic potential of targeting miRNAs in the management of patients with SLE.
Collapse
|
167
|
Abstract
With the advent of next generation sequencing techniques a previously unknown world of non-coding RNA molecules have been discovered. Non-coding RNA transcripts likely outnumber the group of protein coding sequences and hold promise of many new discoveries and mechanistic explanations for essential biological phenomena and pathologies. The best characterized non-coding RNA family consists in humans of about 1400 microRNAs for which abundant evidence have demonstrated fundamental importance in normal development, differentiation, growth control and in human diseases such as cancer. In this review, we summarize the current knowledge and concepts concerning the involvement of microRNAs in cancer, which have emerged from the study of cell culture and animal model systems, including the regulation of key cancer-related pathways, such as cell cycle control and the DNA damage response. Importantly, microRNA molecules are already entering the clinic as diagnostic and prognostic biomarkers for patient stratification and also as therapeutic targets and agents.
Collapse
Affiliation(s)
- Martin D Jansson
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark
| | | |
Collapse
|
168
|
Han C, Wan G, Langley RR, Zhang X, Lu X. Crosstalk between the DNA damage response pathway and microRNAs. Cell Mol Life Sci 2012; 69:2895-906. [PMID: 22430204 PMCID: PMC11115143 DOI: 10.1007/s00018-012-0959-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a family of small, non-coding RNAs that control gene expression at the post-transcriptional level by destabilizing and inhibiting translation of their target messenger RNAs. MiRNAs are involved in the regulation of a number of fundamental biological processes, and their dysregulation is thought to contribute to several disease processes. Emerging evidence suggests that miRNAs also play a critical role in protecting the heritable genome by contributing to the regulation of the DNA damage response. Consequently, much recent investigative effort has been directed towards an improved understanding of how miRNAs are regulated in response to DNA damage. In this review, we discuss the most recent findings regarding the regulation of miRNA expression and the functional roles of miRNAs in the DNA damage response.
Collapse
Affiliation(s)
- Cecil Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Guohui Wan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Robert R. Langley
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xinna Zhang
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| |
Collapse
|
169
|
ElSharawy A, Keller A, Flachsbart F, Wendschlag A, Jacobs G, Kefer N, Brefort T, Leidinger P, Backes C, Meese E, Schreiber S, Rosenstiel P, Franke A, Nebel A. Genome-wide miRNA signatures of human longevity. Aging Cell 2012; 11:607-16. [PMID: 22533606 DOI: 10.1111/j.1474-9726.2012.00824.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Little is known about the functions of miRNAs in human longevity. Here, we present the first genome-wide miRNA study in long-lived individuals (LLI) who are considered a model for healthy aging. Using a microarray with 863 miRNAs, we compared the expression profiles obtained from blood samples of 15 centenarians and nonagenarians (mean age 96.4 years) with those of 55 younger individuals (mean age 45.9 years). Eighty miRNAs showed aging-associated expression changes, with 16 miRNAs being up-regulated and 64 down-regulated in the LLI relative to the younger probands. Seven of the eight selected aging-related biomarkers were technically validated using quantitative RT-PCR, confirming the microarray data. Three of the eight miRNAs were further investigated in independent samples of 15 LLI and 17 younger participants (mean age 101.5 and 36.9 years, respectively). Our screening confirmed previously published miRNAs of human aging, thus reflecting the utility of the applied approach. The hierarchical clustering analysis of the miRNA microarray expression data revealed a distinct separation between the LLI and the younger controls (P-value < 10(-5) ). The down-regulated miRNAs appeared as a cluster and were more often reported in the context of diseases than the up-regulated miRNAs. Moreover, many of the differentially regulated miRNAs are known to exhibit contrasting expression patterns in major age-related diseases. Further in silico analyses showed enrichment of potential targets of the down-regulated miRNAs in p53 and other cancer pathways. Altogether, synchronized miRNA-p53 activities could be involved in the prevention of tumorigenesis and the maintenance of genomic integrity during aging.
Collapse
Affiliation(s)
- Abdou ElSharawy
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Schittenhelmstraße 12, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Brunner S, Herndler‐Brandstetter D, Arnold CR, Wiegers GJ, Villunger A, Hackl M, Grillari J, Moreno‐Villanueva M, Bürkle A, Grubeck‐Loebenstein B. Upregulation of miR-24 is associated with a decreased DNA damage response upon etoposide treatment in highly differentiated CD8(+) T cells sensitizing them to apoptotic cell death. Aging Cell 2012; 11:579-87. [PMID: 22435726 PMCID: PMC3427896 DOI: 10.1111/j.1474-9726.2012.00819.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The life-long homeostasis of memory CD8(+) T cells as well as persistent viral infections have been shown to facilitate the accumulation of highly differentiated CD8(+) CD28(-) T cells, a phenomenon that has been associated with an impaired immune function in humans. However, the molecular mechanisms regulating homeostasis of CD8(+) CD28(-) T cells have not yet been elucidated. In this study, we demonstrate that the miR-23∼24∼27 cluster is up-regulated during post-thymic CD8(+) T-cell differentiation in humans. The increased expression of miR-24 in CD8(+) CD28(-) T cells is associated with decreased expression of the histone variant H2AX, a protein that plays a key role in the DNA damage response (DDR). Following treatment with the classic chemotherapeutic agent etoposide, a topoisomerase II inhibitor, apoptosis was increased in CD8(+) CD28(-) when compared to CD8(+) CD28(+) T cells and correlated with an impaired DDR in this cell type. The reduced capacity of CD8(+) CD28(-) T cell to repair DNA was characterized by the automated fluorimetric analysis of DNA unwinding (FADU) assay as well as by decreased phosphorylation of H2AX at Ser139, of ATM at Ser1981, and of p53 at Ser15. Interleukin (IL)-15 could prevent etoposide-mediated apoptosis of CD8(+) CD28(-) T cells, suggesting a role for IL-15 in the survival and the age-dependent accumulation of CD8(+) CD28(-) T cells in humans.
Collapse
Affiliation(s)
- Stefan Brunner
- Immunology Division, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | | | - Christoph R. Arnold
- Immunology Division, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| | - Gerrit Jan Wiegers
- Division of Developmental Immunology, Biocenter, University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, University of Innsbruck, Innsbruck, Austria
| | - Matthias Hackl
- Department of Biotechnology, Aging and Immortalization Research, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, Aging and Immortalization Research, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Konstanz, Germany
| | - Beatrix Grubeck‐Loebenstein
- Immunology Division, Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria
| |
Collapse
|
171
|
Abstract
MicroRNAs (miRNAs) are a class of highly conserved, noncoding short RNA molecules that regulate gene expression on the post-transcriptional level. MiRNAs are involved in a variety of processes such as proliferation, differentiation, and apoptosis. Deregulated expression of miRNAs has been linked to the development of diseases including cardiovascular disorders. Recently, the miR-23/27/24 cluster has been shown to be involved in angiogenesis and endothelial apoptosis in cardiac ischemia and retinal vascular development. In the present review, we summarize and discuss the role and importance of the miRNA-23/27/24 cluster during cardiovascular angiogenesis. Moreover, we illustrate a novel therapeutic application of the miRNA-23/27/24 cluster in vascular disorders and ischemic heart disease.
Collapse
Affiliation(s)
- Claudia Bang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
172
|
Zhao L, Bode AM, Cao Y, Dong Z. Regulatory mechanisms and clinical perspectives of miRNA in tumor radiosensitivity. Carcinogenesis 2012; 33:2220-7. [PMID: 22798379 PMCID: PMC3483015 DOI: 10.1093/carcin/bgs235] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MicroRNA (miRNA) influences carcinogenesis at multiple stages and it can effectively control tumor radiosensitivity by affecting DNA damage repair, cell cycle checkpoint, apoptosis, radio-related signal transduction pathways and tumor microenvironment. MiRNA also efficiently modulates tumor radiosensitivity at multiple levels by blocking the two essential non-homologous end-joining repair and homologous recombination repair pathways in the DNA damage response. It interferes with four radio-related pathways in ionizing radiation, including the PI3-K/Akt, NF-κB, MAPK and TGFβ signaling pathways. Moreover, the regulatory effect of miRNA in radiosensitivity can be enhanced when interacting with various key molecules, including H2AX, BRCA1, ATM, DNA-PK, RAD51, Chk1, Cdc25A, p53, PLK1, HIF-1 and VEGF, which are involved in these processes. Therefore, thoroughly understanding the mechanism of miRNA in tumor radiosensitivity could assist in finding novel targets to improve the radiotherapeutic effects and provide new clinical perspectives and insights for developing effective cancer treatments.
Collapse
Affiliation(s)
- Luqing Zhao
- Cancer Research Institute, Xiangya School of Medicine, Central South University Changsha 410078, China
| | | | | | | |
Collapse
|
173
|
Wang Y, Huang JW, Calses P, Kemp CJ, Taniguchi T. MiR-96 downregulates REV1 and RAD51 to promote cellular sensitivity to cisplatin and PARP inhibition. Cancer Res 2012; 72:4037-46. [PMID: 22761336 DOI: 10.1158/0008-5472.can-12-0103] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cell survival after DNA damage relies on DNA repair, the abrogation of which causes genomic instability. The DNA repair protein RAD51 and the trans-lesion synthesis DNA polymerase REV1 are required for resistance to DNA interstrand cross-linking agents such as cisplatin. In this study, we show that overexpression of miR-96 in human cancer cells reduces the levels of RAD51 and REV1 and impacts the cellular response to agents that cause DNA damage. MiR-96 directly targeted the coding region of RAD51 and the 3'-untranslated region of REV1. Overexpression of miR-96 decreased the efficiency of homologous recombination and enhanced sensitivity to the PARP inhibitor AZD2281 in vitro and to cisplatin both in vitro and in vivo. Taken together, our findings indicate that miR-96 regulates DNA repair and chemosensitivity by repressing RAD51 and REV1. As a therapeutic candidate, miR-96 may improve chemotherapeutic efficacy by increasing the sensitivity of cancer cells to DNA damage.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | | | | | | | | |
Collapse
|
174
|
Abstract
MicroRNAs have been implicated as important mediators of cancer cell homeostasis, and accumulating data suggest compelling roles for them in the apoptosis pathway. X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor and an important barrier to apoptotic cell death, but the mechanisms which determine the diverse range of XIAP expression seen in cancer remains unclear. In this study, we present evidence that miR-24 directly targets the 3′UTR of the XIAP mRNA to exert translational repression. Using a heuristic algorithm of bioinformatics analysis and in vitro screening, we identified miR-24 as a candidate regulator of XIAP expression. Array CGH and SKY analysis reveal that genomic copy number loss at the miR-24 locus is concordant with loss of endogenous miR-24 in cancer cells. Using a luciferase construct of the XIAP 3′UTR, we showed that miR-24 specifically coordinates to the XIAP mRNA. And interference with miR-24’s binding of the critical seed region, resulting from site-directed mutagenesis of the 3′UTR, significantly abrogated miR-24’s effects on XIAP expression. Moreover, miR-24 over-expression can overcome apoptosis-resistance in cancer cells via down-regulation of XIAP expression, and the resulting cancer cell death induced by TRAIL is executed by the canonical caspase-mediated apoptosis pathway. In summary, our data suggest a novel mechanism by which miR-24 directly modulates XIAP expression level and consequently the apoptosis threshold in cancer cells.
Collapse
|
175
|
The quiescent cellular state is Arf/p53-dependent and associated with H2AX downregulation and genome stability. Int J Mol Sci 2012; 13:6492-6506. [PMID: 22754379 PMCID: PMC3382772 DOI: 10.3390/ijms13056492] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/21/2012] [Accepted: 05/22/2012] [Indexed: 12/17/2022] Open
Abstract
Cancer is a disease associated with genomic instability and mutations. Excluding some tumors with specific chromosomal translocations, most cancers that develop at an advanced age are characterized by either chromosomal or microsatellite instability. However, it is still unclear how genomic instability and mutations are generated during the process of cellular transformation and how the development of genomic instability contributes to cellular transformation. Recent studies of cellular regulation and tetraploidy development have provided insights into the factors triggering cellular transformation and the regulatory mechanisms that protect chromosomes from genomic instability.
Collapse
|
176
|
Teta M, Choi YS, Okegbe T, Wong G, Tam OH, Chong MMW, Seykora JT, Nagy A, Littman DR, Andl T, Millar SE. Inducible deletion of epidermal Dicer and Drosha reveals multiple functions for miRNAs in postnatal skin. Development 2012; 139:1405-16. [PMID: 22434867 DOI: 10.1242/dev.070920] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) regulate the expression of many mammalian genes and play key roles in embryonic hair follicle development; however, little is known of their functions in postnatal hair growth. We compared the effects of deleting the essential miRNA biogenesis enzymes Drosha and Dicer in mouse skin epithelial cells at successive postnatal time points. Deletion of either Drosha or Dicer during an established growth phase (anagen) caused failure of hair follicles to enter a normal catagen regression phase, eventual follicular degradation and stem cell loss. Deletion of Drosha or Dicer in resting phase follicles did not affect follicular structure or epithelial stem cell maintenance, and stimulation of anagen by hair plucking caused follicular proliferation and formation of a primitive transient amplifying matrix population. However, mutant matrix cells exhibited apoptosis and DNA damage and hair follicles rapidly degraded. Hair follicle defects at early time points post-deletion occurred in the absence of inflammation, but a dermal inflammatory response and hyperproliferation of interfollicular epidermis accompanied subsequent hair follicle degradation. These data reveal multiple functions for Drosha and Dicer in suppressing DNA damage in rapidly proliferating follicular matrix cells, facilitating catagen and maintaining follicular structures and their associated stem cells. Although Drosha and Dicer each possess independent non-miRNA-related functions, the similarity in phenotypes of the inducible epidermal Drosha and Dicer mutants indicates that these defects result primarily from failure of miRNA processing. Consistent with this, Dicer deletion resulted in the upregulation of multiple direct targets of the highly expressed epithelial miRNA miR-205.
Collapse
Affiliation(s)
- Monica Teta
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Disturbances in gene expression as a result of perturbed transcription or posttranscriptional regulation is one of the main causes of cellular dysfunction that underlies different disease states. Approximately a decade ago, the discovery of microRNAs in mammalian cells has renewed our focus on posttranscriptional regulatory mechanisms during pathogenesis. These tiny posttranscriptional regulators are differentially expressed in almost every disease that has been studied to date and can modulate expression of a gene via specifically binding to its messenger RNA. Because of their capacity to simultaneously target multiple functionally related, genes, they are proving to be potentially powerful therapeutic agents/targets. In this review, we focus on the microRNAs that are differentially regulated in the more common cardiovascular pathologies, their targets, and potential function.
Collapse
Affiliation(s)
- Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
178
|
Seo J, Kim SC, Lee HS, Kim JK, Shon HJ, Salleh NLM, Desai KV, Lee JH, Kang ES, Kim JS, Choi JK. Genome-wide profiles of H2AX and γ-H2AX differentiate endogenous and exogenous DNA damage hotspots in human cells. Nucleic Acids Res 2012; 40:5965-74. [PMID: 22467212 PMCID: PMC3401470 DOI: 10.1093/nar/gks287] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Phosphorylation of the histone variant H2AX forms γ-H2AX that marks DNA double-strand break (DSB). Here, we generated the sequencing-based maps of H2AX and γ-H2AX positioning in resting and proliferating cells before and after ionizing irradiation. Genome-wide locations of possible endogenous and exogenous DSBs were identified based on γ-H2AX distribution in dividing cancer cells without irradiation and that in resting cells upon irradiation, respectively. γ-H2AX-enriched regions of endogenous origin in replicating cells included sub-telomeres and active transcription start sites, apparently reflecting replication- and transcription-mediated stress during rapid cell division. Surprisingly, H2AX itself, prior to phosphorylation, was specifically located at these endogenous hotspots. This phenomenon was only observed in dividing cancer cells but not in resting cells. Endogenous H2AX was concentrated on the transcription start site of actively transcribed genes but was irrelevant to pausing of RNA polymerase II (pol II), which precisely coincided with γ-H2AX of endogenous origin. γ-H2AX enrichment upon irradiation also coincided with actively transcribed regions, but unlike endogenous γ-H2AX, it extended into the gene body and was not specifically concentrated on the pausing site of pol II. Sub-telomeres were less responsive to external DNA damage than to endogenous stress. Our findings provide insight into DNA repair programs of cancer and may have implications for cancer therapy.
Collapse
Affiliation(s)
- Jungmin Seo
- Research Institute of Bioinformatics, Omicsis, Inc., BVC, KRIBB, Daejeon 305-333, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Oda Y, Nakajima M, Mohri T, Takamiya M, Aoki Y, Fukami T, Yokoi T. Aryl hydrocarbon receptor nuclear translocator in human liver is regulated by miR-24. Toxicol Appl Pharmacol 2012; 260:222-31. [PMID: 22387692 DOI: 10.1016/j.taap.2012.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/14/2012] [Accepted: 02/15/2012] [Indexed: 11/26/2022]
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT) forms a heterodimer with aryl hydrocarbon receptor or hypoxia inducible factor 1α to mediate biological responses to xenobiotic exposure and hypoxia. Although the regulation mechanism of the ARNT expression is largely unknown, earlier studies reported that the human ARNT protein level was decreased by hydrogen peroxide or reactive oxygen species. These stimuli increase the miR-24 level in various human cell lines. In silico analysis predicts that some microRNAs including miR-16 and miR-23b may bind to ARNT mRNA. This background prompted us to investigate whether human ARNT is regulated by microRNAs. Overexpression of miR-24 into HuH-7 and HepG2 cells significantly decreased the ARNT protein level, but not the ARNT mRNA level, indicating translational repression. However, overexpression of miR-16 or miR-23b caused no change in the ARNT expression. The miR-24-dependent down-regulation of ARNT decreased the expression of its downstream genes such as CYP1A1 and carbonic anhydrase IX. Luciferase assay was performed to determine the element on the ARNT mRNA to which miR-24 binds. Finally, it was demonstrated that the miR-24 levels in a panel of 26 human livers were inversely correlated with the protein levels or the translational efficiency of ARNT. Taken together, we found that miR-24 negatively regulates ARNT expression in human liver, affecting the expression of its downstream genes. miR-24 would be one of the factors underlying the mechanisms by which ARNT protein is decreased by reactive oxygen species.
Collapse
Affiliation(s)
- Yuki Oda
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
180
|
Girardi C, De Pittà C, Casara S, Sales G, Lanfranchi G, Celotti L, Mognato M. Analysis of miRNA and mRNA expression profiles highlights alterations in ionizing radiation response of human lymphocytes under modeled microgravity. PLoS One 2012; 7:e31293. [PMID: 22347458 PMCID: PMC3276573 DOI: 10.1371/journal.pone.0031293] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/05/2012] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. METHODOLOGY/PRINCIPAL FINDINGS We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of "Response to DNA damage" is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. CONCLUSIONS/SIGNIFICANCE On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.
Collapse
Affiliation(s)
- Cristina Girardi
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Cristiano De Pittà
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Silvia Casara
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Gabriele Sales
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | | | - Lucia Celotti
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
- Laboratori Nazionali di Legnaro, INFN, Padova, Italy
| | - Maddalena Mognato
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
181
|
Sokolov MV, Panyutin IV, Neumann RD. Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells. PLoS One 2012; 7:e31028. [PMID: 22347422 PMCID: PMC3275573 DOI: 10.1371/journal.pone.0031028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/31/2011] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNA) comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR) causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC) has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines) after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line - dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes), and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
182
|
Schnabel RB, Baccarelli A, Lin H, Ellinor PT, Benjamin EJ. Next steps in cardiovascular disease genomic research--sequencing, epigenetics, and transcriptomics. Clin Chem 2012; 58:113-26. [PMID: 22100807 PMCID: PMC3650722 DOI: 10.1373/clinchem.2011.170423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genomic research in cardiovascular disease (CVD) has progressed rapidly over the last 5 years. In most cases, however, these groundbreaking observations have not yet been accompanied by clinically applicable tools for risk prediction, diagnosis, or therapeutic interventions. CONTENT We reviewed the scientific literature published in English for novel methods and promising genomic targets that would permit large-scale screening and follow-up of recent genomic findings for CVD. We anticipate that advances in 3 key areas will be critical for the success of these projects. First, exome-centered and whole-genome next-generation sequencing will identify rare and novel genetic variants associated with CVD and its risk factors. Improvements in methods will also greatly advance the field of epigenetics and gene expression in humans. Second, research is increasingly acknowledging that static DNA sequence variation explains only a fraction of the inherited phenotype. Therefore, we expect that multiple epigenetic and gene expression signatures will be related to CVD in experimental and clinical settings. Leveraging existing large-scale consortia and clinical biobanks in combination with electronic health records holds promise for integrating epidemiological and clinical genomics data. Finally, a systems biology approach will be needed to integrate the accumulated multidimensional data. SUMMARY Novel methods in sequencing, epigenetics, and transcriptomics, plus unprecedented large-scale cooperative efforts, promise to generate insights into the complexity of CVD. The rapid accumulation and integration of knowledge will shed light on a considerable proportion of the missing heritability for CVD.
Collapse
Affiliation(s)
- Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
183
|
Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG, Lee DH, Borin JF, Naslund MJ, Alexander RB, Dorsey TH, Stephens RM, Croce CM, Ambs S. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 2011; 40:3689-703. [PMID: 22210864 PMCID: PMC3333883 DOI: 10.1093/nar/gkr1222] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We previously reported that miR-1 is among the most consistently down-regulated miRs in primary human prostate tumors. In this follow-up study, we further corroborated this finding in an independent data set and made the novel observation that miR-1 expression is further reduced in distant metastasis and is a candidate predictor of disease recurrence. Moreover, we performed in vitro experiments to explore the tumor suppressor function of miR-1. Cell-based assays showed that miR-1 is epigenetically silenced in human prostate cancer. Overexpression of miR-1 in these cells led to growth inhibition and down-regulation of genes in pathways regulating cell cycle progression, mitosis, DNA replication/repair and actin dynamics. This observation was further corroborated with protein expression analysis and 3'-UTR-based reporter assays, indicating that genes in these pathways are either direct or indirect targets of miR-1. A gene set enrichment analysis revealed that the miR-1-mediated tumor suppressor effects are globally similar to those of histone deacetylase inhibitors. Lastly, we obtained preliminary evidence that miR-1 alters the cellular organization of F-actin and inhibits tumor cell invasion and filipodia formation. In conclusion, our findings indicate that miR-1 acts as a tumor suppressor in prostate cancer by influencing multiple cancer-related processes and by inhibiting cell proliferation and motility.
Collapse
Affiliation(s)
- Robert S Hudson
- Laboratory of Human Carcinogenesis, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
MicroRNAs (miRs) are small (19-25 nucleotides) non-protein-coding RNAs involved in development, differentiation, and aging; they act by inducing messenger RNA (mRNA) silencing through degradation, and post-transcriptional or decoy activity. miR profiles of human solid and hematologic malignancies have highlighted their potential value as tumor markers in cancer patient management. Different experimental lines of evidence have confirmed that deregulation of miRs not only results as consequence of cancer progression but also directly promotes tumor initiation and progression in a cause-effect manner. These findings reveal a potential and appealing role for miRs as cancer therapeutic targets. This review focuses on the causes and consequences of miR deregulation in carcinogenesis and tumor progression. The work aims at providing the molecular bases for the understanding of the potential role of miRs in the translational and clinical setting.
Collapse
Affiliation(s)
- Francesca Lovat
- Molecular Virology Immunology & Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | |
Collapse
|
185
|
Abstract
MicroRNAs (miRNAs) are aiding our understanding of cancer biology, and are now coming close to therapeutic use as well. Here, we focus specifically on the interaction between miRNAs and genomic instability. MiRNA regulation is essential to many cellular processes, and escape from this regulatory network seems to be a common characteristic of malignant transformation. Genomic instability may preferentially target miRNAs either because of selective pressure or because of inherent vulnerability related to their location near fragile sites. Furthermore, disruption of miRNA processing elements affords a more global release from miRNA regulation. Finally, we review how miRNAs function as both effectors and modulators of the DNA damage response, intricately weaved with traditional elements such as ATM, P53, and MMR. Thus, miRNAs are important substrates for genomic instability and play a crucial role in cellular DNA sensing and repair mechanisms.
Collapse
Affiliation(s)
- Dan-Avi Landau
- Department of Hematology, Yale University School of Medicine and the Yale Cancer Center, New Haven, CT, USA
| | | |
Collapse
|
186
|
Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling. PLoS Genet 2011; 7:e1002363. [PMID: 22102825 PMCID: PMC3213160 DOI: 10.1371/journal.pgen.1002363] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022] Open
Abstract
A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division. microRNAs (miRNAs) are small RNAs that regulate gene expression by binding to mRNAs bearing a partially complementary sequence. miRNAs decrease the stability or translation of mRNA targets, leading to reduced protein expression. Understanding the biological function of a miRNA requires identifying its targets. Here we developed a sensitive and specific biochemical method to identify candidate microRNA targets that are enriched by pull-down with a tagged, transfected microRNA mimic. The method was applied to miR-34a, a miRNA that inhibits cell proliferation. We found that miR-34a can potentially regulate hundreds of genes. Computational analysis of these genes suggested a novel function for miR-34a—suppression of the pro-proliferative response to diverse growth factors. This function complements the previously known role of miR-34a in blocking cell cycle progression. Thus, by reducing the expression of an extensive network of genes, miR-34a dampens growth factor signaling as well as its downstream consequences, promotion of cell survival and proliferation.
Collapse
|
187
|
Abstract
DNA damage response is an elaborate process in which cells react to external or internal DNA damaging stress. An extensive network of signaling molecules, complexes, and pathways has been identified in the DNA damage response. Emerging evidence indicates that microRNAs (miRNAs) play essential roles in the DNA damage and repair pathways. While much effort has been to predict in silico and verify miRNA target genes, little is known about how miRNAs themselves respond to DNA damage. Here we discuss recent studies showing whether and how miRNAs are regulated in the DNA damage response. MiRNA expression involves transcription of miRNA genes and maturation of the primary transcripts. Therefore, miRNA levels might be regulated in both transcription dependent and independent manners. While the DNA damage response is known to protect against tumorigenesis in vivo, a deficient response could contribute to tumorigenesis through miRNAs.
Collapse
Affiliation(s)
- Xinna Zhang
- Department of Gynecological Oncology, The University of Texas MD Anderson Cancer Center; Houston, TX, USA
| | | |
Collapse
|
188
|
Hanin G, Soreq H. Cholinesterase-Targeting microRNAs Identified in silico Affect Specific Biological Processes. Front Mol Neurosci 2011; 4:28. [PMID: 22007158 PMCID: PMC3186941 DOI: 10.3389/fnmol.2011.00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/14/2011] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) have emerged as important gene silencers affecting many target mRNAs. Here, we report the identification of 244 miRs that target the 3′-untranslated regions of different cholinesterase transcripts: 116 for butyrylcholinesterase (BChE), 47 for the synaptic acetylcholinesterase (AChE-S) splice variant, and 81 for the normally rare splice variant AChE-R. Of these, 11 and 6 miRs target both AChE-S and AChE-R, and AChE-R and BChE transcripts, respectively. BChE and AChE-S showed no overlapping miRs, attesting to their distinct modes of miR regulation. Generally, miRs can suppress a number of targets; thereby controlling an entire battery of functions. To evaluate the importance of the cholinesterase-targeted miRs in other specific biological processes we searched for their other experimentally validated target transcripts and analyzed the gene ontology enriched biological processes these transcripts are involved in. Interestingly, a number of the resulting categories are also related to cholinesterases. They include, for BChE, response to glucocorticoid stimulus, and for AChE, response to wounding and two child terms of neuron development: regulation of axonogenesis and regulation of dendrite morphogenesis. Importantly, all of the AChE-targeting miRs found to be related to these selected processes were directed against the normally rare AChE-R splice variant, with three of them, including the neurogenesis regulator miR-132, also directed against AChE-S. Our findings point at the AChE-R splice variant as particularly susceptible to miR regulation, highlight those biological functions of cholinesterases that are likely to be subject to miR post-transcriptional control, demonstrate the selectivity of miRs in regulating specific biological processes, and open new venues for targeted interference with these specific processes.
Collapse
Affiliation(s)
- Geula Hanin
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
189
|
Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, Tan G, He J, Alb A, John V, Pochampally R. Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:440-51. [PMID: 21839055 DOI: 10.1016/j.nano.2011.07.011] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 06/28/2011] [Accepted: 07/28/2011] [Indexed: 11/27/2022]
Abstract
UNLABELLED The delivery of curcumin, a broad-spectrum anticancer drug, has been explored in the form of liposomal nanoparticles to treat osteosarcoma (OS). Curcumin is water insoluble and an effective delivery route is through encapsulation in cyclodextrins followed by a second encapsulation in liposomes. Liposomal curcumin's potential was evaluated against cancer models of mesenchymal (OS) and epithelial origin (breast cancer). The resulting 2-Hydroxypropyl-γ-cyclodextrin/curcumin - liposome complex shows promising anticancer potential both in vitro and in vivo against KHOS OS cell line and MCF-7 breast cancer cell line. An interesting aspect is that liposomal curcumin initiates the caspase cascade that leads to apoptotic cell death in vitro in comparison with DMSO-curcumin induced autophagic cell death. In addition, the efficiency of the liposomal curcumin formulation was confirmed in vivo using a xenograft OS model. Curcumin-loaded γ-cyclodextrin liposomes indicate significant potential as delivery vehicles for the treatment of cancers of different tissue origin. FROM THE CLINICAL EDITOR Curcumin-loaded γ-cyclodextrin liposomes were demonstrated in vitro to have significant potential as delivery vehicles for the treatment of cancers of mesenchymal and epithelial origin. Differences between mechanisms of cell death were also evaluated.
Collapse
Affiliation(s)
- Santosh S Dhule
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JTG, Sohn-Lee C, Loyer X, Soutschek J, Brand T, Tuschl T, Heineke J, Martin U, Schulte-Merker S, Ertl G, Engelhardt S, Bauersachs J, Thum T. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 2011; 124:720-30. [PMID: 21788589 DOI: 10.1161/circulationaha.111.039008] [Citation(s) in RCA: 308] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Myocardial infarction leads to cardiac remodeling and development of heart failure. Insufficient myocardial capillary density after myocardial infarction has been identified as a critical event in this process, although the underlying mechanisms of cardiac angiogenesis are mechanistically not well understood. METHODS AND RESULTS Here, we show that the small noncoding RNA microRNA-24 (miR-24) is enriched in cardiac endothelial cells and considerably upregulated after cardiac ischemia. MiR-24 induces endothelial cell apoptosis, abolishes endothelial capillary network formation on Matrigel, and inhibits cell sprouting from endothelial spheroids. These effects are mediated through targeting of the endothelium-enriched transcription factor GATA2 and the p21-activated kinase PAK4, which were identified by bioinformatic predictions and validated by luciferase gene reporter assays. Respective downstream signaling cascades involving phosphorylated BAD (Bcl-XL/Bcl-2-associated death promoter) and Sirtuin1 were identified by transcriptome, protein arrays, and chromatin immunoprecipitation analyses. Overexpression of miR-24 or silencing of its targets significantly impaired angiogenesis in zebrafish embryos. Blocking of endothelial miR-24 limited myocardial infarct size of mice via prevention of endothelial apoptosis and enhancement of vascularity, which led to preserved cardiac function and survival. CONCLUSIONS Our findings indicate that miR-24 acts as a critical regulator of endothelial cell apoptosis and angiogenesis and is suitable for therapeutic intervention in the setting of ischemic heart disease.
Collapse
Affiliation(s)
- Jan Fiedler
- Hannover Medical School, Institute for Molecular and Translational Therapeutic Strategies, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ilnytskyy Y, Kovalchuk O. Non-targeted radiation effects-an epigenetic connection. Mutat Res 2011; 714:113-25. [PMID: 21784089 DOI: 10.1016/j.mrfmmm.2011.06.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 01/18/2023]
Abstract
Ionizing radiation (IR) is a pivotal diagnostic and treatment modality, yet it is also a potent genotoxic agent that causes genome instability and carcinogenesis. While modern cancer radiation therapy has led to increased patient survival rates, the risk of radiation treatment-related complications is becoming a growing problem. IR-induced genome instability has been well-documented in directly exposed cells and organisms. It has also been observed in distant 'bystander' cells. Enigmatically, increased instability is even observed in progeny of pre-conceptually exposed animals, including humans. The mechanisms by which it arises remain obscure and, recently, they have been proposed to be epigenetic in nature. Three major epigenetic phenomena include DNA methylation, histone modifications and small RNA-mediated silencing. This review focuses on the role of DNA methylation and small RNAs in directly exposed and bystander tissues and in IR-induced transgenerational effects. Here, we present evidence that IR-mediated effects are maintained by epigenetic mechanisms.
Collapse
Affiliation(s)
- Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada
| | | |
Collapse
|
192
|
miRNA response to DNA damage. Trends Biochem Sci 2011; 36:478-84. [PMID: 21741842 DOI: 10.1016/j.tibs.2011.06.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.
Collapse
|
193
|
Watanabe Y, Kanai A. Systems Biology Reveals MicroRNA-Mediated Gene Regulation. Front Genet 2011; 2:29. [PMID: 22303325 PMCID: PMC3268584 DOI: 10.3389/fgene.2011.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/30/2011] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are members of the small non-coding RNAs, which are principally known for their functions as post-transcriptional regulators of target genes. Regulation by miRNAs is triggered by the translational repression or degradation of their complementary target messenger RNAs (mRNAs). The growing number of reported miRNAs and the estimate that hundreds or thousands of genes are regulated by them suggest a magnificent gene regulatory network in which these molecules are embedded. Indeed, recent reports have suggested critical roles for miRNAs in various biological functions, such as cell differentiation, development, oncogenesis, and the immune responses, which are mediated by systems-wide changes in gene expression profiles. Therefore, it is essential to analyze this complex regulatory network at the transcriptome and proteome levels, which should be possible with approaches that include both high-throughput experiments and computational methodologies. Here, we introduce several systems-level approaches that have been applied to miRNA research, and discuss their potential to reveal miRNA-guided gene regulatory systems and their impacts on biological functions.
Collapse
Affiliation(s)
- Yuka Watanabe
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | | |
Collapse
|
194
|
Wang Y, Huang JW, Li M, Cavenee WK, Mitchell PS, Zhou X, Tewari M, Furnari FB, Taniguchi T. MicroRNA-138 modulates DNA damage response by repressing histone H2AX expression. Mol Cancer Res 2011; 9:1100-11. [PMID: 21693595 DOI: 10.1158/1541-7786.mcr-11-0007] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Precise regulation of DNA damage response is crucial for cellular survival after DNA damage, and its abrogation often results in genomic instability in cancer. Phosphorylated histone H2AX (γH2AX) forms nuclear foci at sites of DNA damage and facilitates DNA damage response and repair. MicroRNAs (miRNA) are short, nonprotein-encoding RNA molecules, which posttranscriptionally regulate gene expression by repressing translation of and/or degrading mRNA. How miRNAs modulate DNA damage response is largely unknown. In this study, we developed a cell-based screening assay using ionizing radiation (IR)-induced γH2AX foci formation in a human osteosarcoma cell line, U2OS, as the readout. By screening a library of human miRNA mimics, we identified several miRNAs that inhibited γH2AX foci formation. Among them, miR-138 directly targeted the histone H2AX 3'-untranslated region, reduced histone H2AX expression, and induced chromosomal instability after DNA damage. Overexpression of miR-138 inhibited homologous recombination and enhanced cellular sensitivity to multiple DNA-damaging agents (cisplatin, camptothecin, and IR). Reintroduction of histone H2AX in miR-138 overexpressing cells attenuated miR-138-mediated sensitization to cisplatin and camptothecin. Our study suggests that miR-138 is an important regulator of genomic stability and a potential therapeutic agent to improve the efficacy of radiotherapy and chemotherapy with DNA-damaging agents.
Collapse
Affiliation(s)
- Yemin Wang
- Howard Hughes Medical Institute, Division of Human Biology, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Krzyzanowski PM, Price FD, Muro EM, Rudnicki MA, Andrade-Navarro MA. Integration of expressed sequence tag data flanking predicted RNA secondary structures facilitates novel non-coding RNA discovery. PLoS One 2011; 6:e20561. [PMID: 21698286 PMCID: PMC3115948 DOI: 10.1371/journal.pone.0020561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/04/2011] [Indexed: 01/05/2023] Open
Abstract
Many computational methods have been used to predict novel non-coding RNAs (ncRNAs), but none, to our knowledge, have explicitly investigated the impact of integrating existing cDNA-based Expressed Sequence Tag (EST) data that flank structural RNA predictions. To determine whether flanking EST data can assist in microRNA (miRNA) prediction, we identified genomic sites encoding putative miRNAs by combining functional RNA predictions with flanking ESTs data in a model consistent with miRNAs undergoing cleavage during maturation. In both human and mouse genomes, we observed that the inclusion of flanking ESTs adjacent to and not overlapping predicted miRNAs significantly improved the performance of various methods of miRNA prediction, including direct high-throughput sequencing of small RNA libraries. We analyzed the expression of hundreds of miRNAs predicted to be expressed during myogenic differentiation using a customized microarray and identified several known and predicted myogenic miRNA hairpins. Our results indicate that integrating ESTs flanking structural RNA predictions improves the quality of cleaved miRNA predictions and suggest that this strategy can be used to predict other non-coding RNAs undergoing cleavage during maturation.
Collapse
Affiliation(s)
- Paul M Krzyzanowski
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
196
|
Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 2011; 226:1407-14. [PMID: 20945401 DOI: 10.1002/jcp.22476] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cyclic mechanical stress (CMS) leads to alterations of cellular functions in the trabecular meshwork (TM), including the up-regulation of transforming growth factor beta 1 (TGFβ1), that can potentially contribute to the pathogenesis of glaucoma. Although microRNAs (miRNAs) are known to play important roles in many biological functions, little is known about their potential involvement in the cellular responses elicited by mechanical stress. Here we analyzed changes in miRNA expression induced by CMS, and examined the possible role of miR-24 in the response of human TM cells to CMS. CMS induced the expression of miR-24 that led to the down regulation of the subtilisin-like proprotein convertase FURIN, which is known to play a major role in the processing of TGFβ1. FURIN was confirmed as a novel target of miR-24 by 3' UTR luciferase assay and western blot. Overexpression of miR-24 resulted in a significant decrease in activated TGFβ1. This effect was mimicked by down regulation of FURIN by siRNA. Conversely, inhibition of miR-24 expression with a specific antagomir led to a small but significant increase in TGFβ1. Furthermore, the increase in active TGFβ1 induced by CMS in HTM cells was prevented by miR-24. Altogether, our results suggest that miRNAs might contribute to the regulation of responses to CMS in TM cells. Specifically, miR-24 might play an important role in modulating the induction of TGFβ1 mediated by CMS through direct targeting of FURIN.
Collapse
Affiliation(s)
- Coralia Luna
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
197
|
MicroRNAs, the DNA damage response and cancer. Mutat Res 2011; 717:54-66. [PMID: 21477600 DOI: 10.1016/j.mrfmmm.2011.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 12/13/2022]
Abstract
Many carcinogenic agents such as ultra-violet light from the sun and various natural and man-made chemicals act by damaging the DNA. To deal with these potentially detrimental effects of DNA damage, cells induce a complex DNA damage response (DDR) that includes DNA repair, cell cycle checkpoints, damage tolerance systems and apoptosis. This DDR is a potent barrier against carcinogenesis and defects within this response are observed in many, if not all, human tumors. DDR defects fuel the evolution of precancerous cells to malignant tumors, but can also induce sensitivity to DNA damaging agents in cancer cells, which can be therapeutically exploited by the use of DNA damaging treatment modalities. Regulation of and coordination between sub-pathways within the DDR is important for maintaining genome stability. Although regulation of the DDR has been extensively studied at the transcriptional and post-translational level, less is known about post-transcriptional gene regulation by microRNAs, the topic of this review. More specifically, we highlight current knowledge about DNA damage responsive microRNAs and microRNAs that regulate DNA damage response genes. We end by discussing the role of DNA damage response microRNAs in cancer etiology and sensitivity to ionizing radiation and other DNA damaging therapeutic agents.
Collapse
|
198
|
Srivastava N, Manvati S, Srivastava A, Pal R, Kalaiarasan P, Chattopadhyay S, Gochhait S, Dua R, Bamezai RNK. miR-24-2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention. Breast Cancer Res 2011; 13:R39. [PMID: 21463514 PMCID: PMC3219202 DOI: 10.1186/bcr2861] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/04/2011] [Indexed: 01/10/2023] Open
Abstract
Introduction New levels of gene regulation with microRNA (miR) and gene copy number alterations (CNAs) have been identified as playing a role in various cancers. We have previously reported that sporadic breast cancer tissues exhibit significant alteration in H2AX gene copy number. However, how CNA affects gene expression and what is the role of miR, miR-24-2, known to regulate H2AX expression, in the background of the change in copy number, are not known. Further, many miRs, including miR-24-2, are implicated as playing a role in cell proliferation and apoptosis, but their specific target genes and the pathways contributing to them remain unexplored. Methods Changes in gene copy number and mRNA/miR expression were estimated using real-time polymerase chain reaction assays in two mammalian cell lines, MCF-7 and HeLa, and in a set of sporadic breast cancer tissues. In silico analysis was performed to find the putative target for miR-24-2. MCF-7 cells were transfected with precursor miR-24-2 oligonucleotides, and the gene expression levels of BRCA1, BRCA2, ATM, MDM2, TP53, CHEK2, CYT-C, BCL-2, H2AFX and P21 were examined using TaqMan gene expression assays. Apoptosis was measured by flow cytometric detection using annexin V dye. A luciferase assay was performed to confirm BCL-2 as a valid cellular target of miR-24-2. Results It was observed that H2AX gene expression was negatively correlated with miR-24-2 expression and not in accordance with the gene copy number status, both in cell lines and in sporadic breast tumor tissues. Further, the cells overexpressing miR-24-2 were observed to be hypersensitive to DNA damaging drugs, undergoing apoptotic cell death, suggesting the potentiating effect of mir-24-2-mediated apoptotic induction in human cancer cell lines treated with anticancer drugs. BCL-2 was identified as a novel cellular target of miR-24-2. Conclusions mir-24-2 is capable of inducing apoptosis by modulating different apoptotic pathways and targeting BCL-2, an antiapoptotic gene. The study suggests that miR-24-2 is more effective in controlling H2AX gene expression, regardless of the change in gene copy number. Further, the study indicates that combination therapy with miR-24-2 along with an anticancer drug such as cisplatin could provide a new avenue in cancer therapy for patients with tumors otherwise resistant to drugs.
Collapse
Affiliation(s)
- Niloo Srivastava
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, Saraswatipuram, New Delhi 110 067, India
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Ceman S, Saugstad J. MicroRNAs: Meta-controllers of gene expression in synaptic activity emerge as genetic and diagnostic markers of human disease. Pharmacol Ther 2011; 130:26-37. [PMID: 21256154 PMCID: PMC3043141 DOI: 10.1016/j.pharmthera.2011.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 12/18/2022]
Abstract
MicroRNAs are members of the non-protein-coding family of RNAs. They serve as regulators of gene expression by modulating the translation and/or stability of messenger RNA targets. The discovery of microRNAs has revolutionized the field of cell biology, and has permanently altered the prevailing view of a linear relationship between gene and protein expression. The increased complexity of gene regulation is both exciting and daunting, as emerging evidence supports a pervasive role for microRNAs in virtually every cellular process. This review briefly describes microRNA processing and formation of RNA-induced silencing complexes, with a focus on the role of RNA binding proteins in this process. We also discuss mechanisms for microRNA-mediated regulation of translation, particularly in dendritic spine formation and function, and the role of microRNAs in synaptic plasticity. We then discuss the evidence for altered microRNA function in cognitive brain disorders, and the effect of gene mutations revealed by single nucleotide polymorphism analysis on altered microRNA function and human disease. Further, we present evidence that altered microRNA expression in circulating fluids such as plasma/serum can correlate with, and serve as, novel diagnostic biomarkers of human disease.
Collapse
Affiliation(s)
- Stephanie Ceman
- University of Illinois, Department of Cell & Developmental Biology, Urbana IL 61801, United States
| | - Julie Saugstad
- Legacy Research Institute, RS Dow Neurobiology Labs, Portland, OR 97232, United States
| |
Collapse
|
200
|
Asaithamby A, Hu B, Delgado O, Ding LH, Story MD, Minna JD, Shay JW, Chen DJ. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture. Nucleic Acids Res 2011; 39:5474-88. [PMID: 21421565 PMCID: PMC3141259 DOI: 10.1093/nar/gkr149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis.
Collapse
Affiliation(s)
- Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas, Southwestern Medical Centre, Dallas, TX 75390, USA.
| | | | | | | | | | | | | | | |
Collapse
|