151
|
Wang G, Zou D, Lu X, Gu X, Cheng Y, Qi T, Cheng Y, Yu J, Ye M, Zhou P. Gut Microbiota Alternation in Disease Progression of Neurosyphilis. Infect Drug Resist 2022; 15:6603-6612. [PMID: 36406865 PMCID: PMC9673944 DOI: 10.2147/idr.s389155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Background The gut microbiota plays an important role in the development of neurological disorders such as Parkinson's disease and Alzheimer's disease. However, studies on the gut microbiota of patients with neurosyphilis (NS) were rarely reported. Methods In this study, we collected fecal samples from 62 syphilis patients, including 39 with NS and 23 with non-NS. Among the NS patients, 18 were general paresis (GP). The white blood cell counts, protein concentrations, and Venereal Disease Research Laboratory test positive rates of cerebrospinal fluid from patients in NS or GP group were significantly higher than those from patients in non-NS group. 16S ribosomal RNA sequencing results revealed that the alpha and beta diversities of the gut microbiota were similar between NS and non-NS patients or GP and non-NS patients. Results Linear discriminant analysis with effect size (LEfSe) analysis showed that some taxa, such as Coprobacter, were increased in both NS group and GP group, compared with non-NS group. Besides, the clade of Akkermansia was also overrepresented in GP Patients. Meanwhile, some taxa such as Clostridia_UCG-014 and SC-I-84 were underrepresented in NS patients. The abundances of class Bacilli and genus Alloprevotella were decreased in GP patients. Among them, the abundances of some taxa such as Coprobacter and Akkermansia have been reported to be associated with other neuropsychiatric disorders. Conclusion Our findings suggest that the alternation of the gut microbiota in NS patients may contribute to the course of NS, which will deepen our understanding of NS.
Collapse
Affiliation(s)
- Guixuan Wang
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Danyang Zou
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xinying Lu
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Xin Gu
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yuanyuan Cheng
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Tengfei Qi
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Yanchun Cheng
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Junjun Yu
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Meiping Ye
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Pingyu Zhou
- Shanghai Skin Disease Clinical College of Anhui Medical University, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China
- STD Institute, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
152
|
Bonnechère B, Amin N, van Duijn C. What Are the Key Gut Microbiota Involved in Neurological Diseases? A Systematic Review. Int J Mol Sci 2022; 23:ijms232213665. [PMID: 36430144 PMCID: PMC9696257 DOI: 10.3390/ijms232213665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
There is a growing body of evidence highlighting there are significant changes in the gut microbiota composition and relative abundance in various neurological disorders. We performed a systematic review of the different microbiota altered in a wide range of neurological disorders (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis, and stroke). Fifty-two studies were included representing 5496 patients. At the genus level, the most frequently involved microbiota are Akkermansia, Faecalibacterium, and Prevotella. The overlap between the pathologies was strongest for MS and PD, sharing eight genera (Akkermansia, Butyricicoccus, Bifidobacterium, Coprococcus, Dorea, Faecalibacterium, Parabacteroides, and Prevotella) and PD and stroke, sharing six genera (Enterococcus, Faecalibacterium, Lactobacillus, Parabacteroides, Prevotella, and Roseburia). The identification signatures overlapping for AD, PD, and MS raise the question of whether these reflect a common etiology or rather common consequence of these diseases. The interpretation is hampered by the low number and low power for AD, ALS, and stroke with ample opportunity for false positive and false negative findings.
Collapse
Affiliation(s)
- Bruno Bonnechère
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Cornelia van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Correspondence:
| |
Collapse
|
153
|
Hashim HM, Makpol S. A review of the preclinical and clinical studies on the role of the gut microbiome in aging and neurodegenerative diseases and its modulation. Front Cell Neurosci 2022; 16:1007166. [PMID: 36406749 PMCID: PMC9669379 DOI: 10.3389/fncel.2022.1007166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/03/2022] [Indexed: 12/06/2023] Open
Abstract
As the world population ages, the burden of age-related health problems grows, creating a greater demand for new novel interventions for healthy aging. Advancing aging is related to a loss of beneficial mutualistic microbes in the gut microbiota caused by extrinsic and intrinsic factors such as diet, sedentary lifestyle, sleep deprivation, circadian rhythms, and oxidative stress, which emerge as essential elements in controlling and prolonging life expectancy of healthy aging. This condition is known as gut dysbiosis, and it affects normal brain function via the brain-gut microbiota (BGM) axis, which is a bidirectional link between the gastrointestinal tract (GIT) and the central nervous system (CNS) that leads to the emergence of brain disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Here, we reviewed the role of the gut microbiome in aging and neurodegenerative diseases, as well as provided a comprehensive review of recent findings from preclinical and clinical studies to present an up-to-date overview of recent advances in developing strategies to modulate the intestinal microbiome by probiotic administration, dietary intervention, fecal microbiota transplantation (FMT), and physical activity to address the aging process and prevent neurodegenerative diseases. The findings of this review will provide researchers in the fields of aging and the gut microbiome design innovative studies that leverage results from preclinical and clinical studies to better understand the nuances of aging, gut microbiome, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
154
|
Pan RY, Zhang J, Wang J, Wang Y, Li Z, Liao Y, Liao Y, Zhang C, Liu Z, Song L, Yu J, Yuan Z. Intermittent fasting protects against Alzheimer's disease in mice by altering metabolism through remodeling of the gut microbiota. NATURE AGING 2022; 2:1024-1039. [PMID: 37118092 DOI: 10.1038/s43587-022-00311-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/11/2022] [Indexed: 04/30/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia without effective clinical treatment. Here, we show that intermittent fasting (IF) improves cognitive functions and AD-like pathology in a transgenic AD mouse model (5XFAD). IF alters gut microbial composition with a significant enrichment in probiotics such as Lactobacillus. The changes in the composition of the gut microbiota affect metabolic activities and metabolite production. Metabolomic profiling analysis of cecal contents revealed IF leads to a decreased carbohydrate metabolism (for example, glucose) and an increased abundance in amino acids (for example, sarcosine and dimethylglycine). Interestingly, we found that the administration of IF-elevated sarcosine or dimethylglycine mimics the protective effects of IF in 5XFAD mice, including the amelioration of cognitive decline, amyloid-β (Aβ) burden and glial overactivation. Our findings thus demonstrate an IF regimen is a potential approach to prevent AD progression, at least through the gut-microbiota-metabolites-brain axis, and constitutes an innovative AD therapeutic avenue.
Collapse
Affiliation(s)
- Rui-Yuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jing Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jinlei Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yingyi Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhihui Li
- Cognitive and Mental Health Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Liao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yajin Liao
- Department of neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Chenggang Zhang
- Cognitive and Mental Health Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zhiqiang Liu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lijuan Song
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jiezhong Yu
- Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
155
|
Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q, Rui YF. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab 2022; 40:874-889. [PMID: 36357745 PMCID: PMC9649400 DOI: 10.1007/s00774-022-01375-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022]
Abstract
Osteoporosis is a systemic metabolic bone disease characterized by the descending bone mass and destruction of bone microstructure, which tends to result in the increased bone fragility and associated fractures, as well as high disability rate and mortality. The relation between gut microbiota and bone metabolism has gradually become a research hotspot, and it has been verified that gut microbiota is closely associated with reduction of bone mass and incidence of osteoporosis recently. As a novel "organ transplantation" technique, fecal microbiota transplantation (FMT) mainly refers to the transplantation of gut microbiota from healthy donors to recipients with gut microbiota imbalance, so that the gut microbiota in recipients can be reshaped and play a normal function, and further prevent or treat the diseases related to gut microbiota disorder. Herein, based on the gut-bone axis and proven regulatory effects of gut microbiota on osteoporosis, this review expounds relevant basic researches and clinical practice of FMT on osteoporosis, thus demonstrating the potentials of FMT as a therapeutic option for osteoporosis and further providing certain reference for the future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Mu-Min Cao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ying-Juan Li
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Ruo-Lan Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng-Ting Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Yu
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, 210009, Jiangsu, People's Republic of China.
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
156
|
Iannone LF, Gómez-Eguílaz M, De Caro C. Gut microbiota manipulation as an epilepsy treatment. Neurobiol Dis 2022; 174:105897. [PMID: 36257595 DOI: 10.1016/j.nbd.2022.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
|
157
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
158
|
Nassar ST, Tasha T, Desai A, Bajgain A, Ali A, Dutta C, Pasha K, Paul S, Abbas MS, Venugopal S. Fecal Microbiota Transplantation Role in the Treatment of Alzheimer's Disease: A Systematic Review. Cureus 2022; 14:e29968. [PMID: 36381829 PMCID: PMC9637434 DOI: 10.7759/cureus.29968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's, a neurodegenerative disease that starts slowly and worsens progressively, is the leading cause of dementia worldwide. Recent studies have linked the brain with the gut and its microbiota through the microbiota-gut-brain axis, opening the door for gut-modifying agents (e.g., prebiotics and probiotics) to influence our brain's cognitive function. This review aims to identify and summarize the effects of fecal microbiota transplantation (FMT) as a gut-microbiota-modifying agent on the progressive symptoms of Alzheimer's disease (AD). This systematic review is based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. A systematic search was done using Google Scholar, PubMed, PubMed Central, and ScienceDirect databases in June 2022. The predefined criteria upon which the studies were selected are English language, past 10 years of narrative reviews, observational studies, case reports, and animal studies involving Alzheimer's subjects as no previous meta-analysis or systematic reviews were done on this subject. Later, a quality assessment was done using the available assessment tool based on each study type. The initial search generated 4,302 studies, yielding 13 studies to be included in the final selection: 1 cohort, 2 case reports, 2 animal studies, and 8 narrative reviews. Our results showed that FMT positively affected AD subjects (whether mice or humans). In humans, the FMT effect was measured by the Mini-Mental State Examination (MMSE), showing improvement in Alzheimer's symptoms of mood, memory, and cognition. However, randomized and nonrandomized clinical trials are essential for more conclusive results.
Collapse
Affiliation(s)
- Sondos T Nassar
- Medicine and Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Tasniem Tasha
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anjali Desai
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anjana Bajgain
- Department of Psychology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Asna Ali
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Chandrani Dutta
- Family Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Khadija Pasha
- Pediatric, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Salomi Paul
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Muhammad S Abbas
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sathish Venugopal
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
159
|
Lee DW, Ryu YK, Chang DH, Park HY, Go J, Maeng SY, Hwang DY, Kim BC, Lee CH, Kim KS. Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease. J Microbiol Biotechnol 2022; 32:1168-1177. [PMID: 36168204 PMCID: PMC9628974 DOI: 10.4014/jmb.2205.05032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.
Collapse
Affiliation(s)
- Da Woon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Young-Kyoung Ryu
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Ho Chang
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hye-Yeon Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jun Go
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - So-Young Maeng
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,College of Biosciences and Biotechnology, Chung-Nam National University, Daejeon 34134, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Byoung-Chan Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,HealthBiome, Inc., Daejeon 34141, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,Department of Biosystems and Bioengineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea,Corresponding authors C.H. Lee E-mail:
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea,
K.S. Kim Phone: 82-42-860-4634 Fax : 82-42-860-4609 E-mail:
| |
Collapse
|
160
|
Biazzo M, Allegra M, Deidda G. Clostridioides difficile and neurological disorders: New perspectives. Front Neurosci 2022; 16:946601. [PMID: 36203814 PMCID: PMC9530032 DOI: 10.3389/fnins.2022.946601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Despite brain physiological functions or pathological dysfunctions relying on the activity of neuronal/non-neuronal populations, over the last decades a plethora of evidence unraveled the essential contribution of the microbial populations living and residing within the gut, called gut microbiota. The gut microbiota plays a role in brain (dys)functions, and it will become a promising valuable therapeutic target for several brain pathologies. In the present mini-review, after a brief overview of the role of gut microbiota in normal brain physiology and pathology, we focus on the role of the bacterium Clostridioides difficile, a pathogen responsible for recurrent and refractory infections, in people with neurological diseases, summarizing recent correlative and causative evidence in the scientific literature and highlighting the potential of microbiota-based strategies targeting this pathogen to ameliorate not only gastrointestinal but also the neurological symptoms.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| | - Manuela Allegra
- Neuroscience Institute, National Research Council (IN-CNR), Padua, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- *Correspondence: Gabriele Deidda
| |
Collapse
|
161
|
Huynh QS, Elangovan S, Holsinger RMD. Non-Pharmacological Therapeutic Options for the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:11037. [PMID: 36232336 PMCID: PMC9570337 DOI: 10.3390/ijms231911037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is a growing global crisis in need of urgent diagnostic and therapeutic strategies. The current treatment strategy mostly involves immunotherapeutic medications that have had little success in halting disease progress. Hypotheses for pathogenesis and development of AD have been expanded to implicate both organ systems as well as cellular reactions. Non-pharmacologic interventions ranging from minimally to deeply invasive have attempted to address these diverse contributors to AD. In this review, we aim to delineate mechanisms underlying such interventions while attempting to provide explanatory links between the observed differences in disease states and postulated metabolic or structural mechanisms of change. The techniques discussed are not an exhaustive list of non-pharmacological interventions against AD but provide a foundation to facilitate a deeper understanding of the area of study.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalini Elangovan
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
162
|
Lacoursiere SG, Safar J, Westaway D, Mohajerani MH, Sutherland RJ. The effect of Aβ seeding is dependent on the presence of knock-in genes in the App NL-G-F mice. FRONTIERS IN DEMENTIA 2022; 1:941879. [PMID: 39081481 PMCID: PMC11285652 DOI: 10.3389/frdem.2022.941879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/08/2022] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by the prion-like propagation of amyloid-β (Aβ). However, the role of Aβ in cognitive impairment is still unclear. To determine the causal role of Aβ in AD, we intracerebrally seeded the entorhinal cortex of a 2-month-old App NL-G-F mouse model with an Aβ peptide derived from patients who died from rapidly progressing AD. When the mice were 3 months of age or 1 month following seeding, spatial learning and memory were tested using the Morris water task. Immunohistochemical labeling showed seeding with the Aβ was found accelerate Aβ plaque deposition and microgliosis in the App NL-G-F mice, but this was dependent on the presence of the knocked-in genes. However, we found no correlation between pathology and spatial performance. The results of the present study show the seeding effects in the App NL-G-F knock-in model, and how these are dependent on the presence of a humanized App gene. But these pathological changes were not initially causal in memory impairment.
Collapse
Affiliation(s)
- Sean G. Lacoursiere
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jiri Safar
- Departments of Pathology, Neurology, Psychiatry, and National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Majid H. Mohajerani
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J. Sutherland
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
163
|
Role of Gut Microbiota through Gut–Brain Axis in Epileptogenesis: A Systematic Review of Human and Veterinary Medicine. BIOLOGY 2022; 11:biology11091290. [PMID: 36138769 PMCID: PMC9495720 DOI: 10.3390/biology11091290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Epilepsy is a common chronic neurological disease in both dogs and humans. Despite the elevated prevalence and the many advances in human and veterinary medicine, the etiology and pathophysiology of epilepsy still remain unclear. In this systematic review, the authors discussed the possible role of the gut microbiota in the canine idiopathic epilepsy etiopathogenesis via the gut–brain axis. Abstract Canine idiopathic epilepsy is a common neurological disease characterized by the enduring predisposition of the cerebral cortex to generate seizures. An etiological explanation has not been fully identified in humans and dogs, and, among the presumed causes, several studies support the possible involvement of gut microbiota. In this review, the authors summarize the evidence of the reasonable role of gut microbiota in epilepsy through the so-called gut–brain axis. The authors provide an overview of recent clinical and preclinical studies in humans and dogs in which the modulation of intestinal permeability, the alteration of local immune response, and the alteration in production of essential metabolites and neurotransmitters associated with dysbiosis could be responsible for the pathogenesis of canine epilepsy. A systematic review of the literature, following the PRISMA guidelines, was performed in two databases (PubMed and Web of Science). Eleven studies were included and reviewed supporting the connection between gut microbiota and epilepsy via the gut–brain axis.
Collapse
|
164
|
Park SH, Lee JH, Kim JS, Kim TJ, Shin J, Im JH, Cha B, Lee S, Kwon KS, Shin YW, Ko SB, Choi SH. Fecal microbiota transplantation can improve cognition in patients with cognitive decline and Clostridioides difficile infection. Aging (Albany NY) 2022; 14:6449-6466. [PMID: 35980280 PMCID: PMC9467396 DOI: 10.18632/aging.204230] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
Abstract
After fecal microbiota transplantation (FMT) to treat Clostridioides difficile infection (CDI), cognitive improvement is noticeable, suggesting an essential association between the gut microbiome and neural function. Although the gut microbiome has been associated with cognitive function, it remains to be elucidated whether fecal microbiota transplantation can improve cognition in patients with cognitive decline. The study included 10 patients (age range, 63-90 years; female, 80%) with dementia and severe CDI who were receiving FMT. Also, 10 patients (age range, 62-91; female, 80%) with dementia and severe CDI who were not receiving FMT. They were evaluated using cognitive function tests (Mini-Mental State Examination [MMSE] and Clinical Dementia Rating scale Sum of Boxes [CDR-SB]) at 1 month before and after FMT or antibiotics treatment (control group). The patients' fecal samples were analyzed to compare the composition of their gut microbiota before and 3 weeks after FMT or antibiotics treatment. Ten patients receiving FMT showed significantly improvements in clinical symptoms and cognitive functions compared to control group. The MMSE and CDR-SB of FMT group were improved compare to antibiotics treatment (MMSE: 16.00, median, 13.00-18.00 [IQR] vs. 10.0, median, 9.8-15.3 [IQR]); CDR-SB: 5.50, median, 4.00-8.00 [IQR]) vs. 8.0, median, 7.9-12.5, [IQR]). FMT led to changes in the recipient's gut microbiota composition, with enrichment of Proteobacteria and Bacteroidetes. Alanine, aspartate, and glutamate metabolism pathways were also significantly different after FMT. This study revealed important interactions between the gut microbiome and cognitive function. Moreover, it suggested that FMT may effectively delay cognitive decline in patients with dementia.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Department of Neurology, Department of Critical Care Medicine, Department of Hospital Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Jung-Hwan Lee
- Division of Gastroenterology, Department of Internal Medicine, Department of Hospital Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Tae Jung Kim
- Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jongbeom Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Jae Hyoung Im
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Boram Cha
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Suhjoon Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Kye Sook Kwon
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Yong Woon Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Sang-Bae Ko
- Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
165
|
Feng M, Hou T, Zhou M, Cen Q, Yi T, Bai J, Zeng Y, Liu Q, Zhang C, Zhang Y. Gut microbiota may be involved in Alzheimer’s disease pathology by dysregulating pyrimidine metabolism in APP/PS1 mice. Front Aging Neurosci 2022; 14:967747. [PMID: 35992591 PMCID: PMC9382084 DOI: 10.3389/fnagi.2022.967747] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionAlzheimer’s disease (AD) is the most common form of dementia worldwide. The biological mechanisms underlying the pathogenesis of AD aren’t completely clear. Studies have shown that the gut microbiota could be associated with AD pathogenesis; however, the pathways involved still need to be investigated.AimsTo explore the possible pathways of the involvement of gut microbiota in AD pathogenesis through metabolites and to identify new AD biomarkers.MethodsSeven-month-old APP/PS1 mice were used as AD models. The Morris water maze test was used to examine learning and memory ability. 16S rRNA gene sequencing and widely targeted metabolomics were used to identify the gut microbiota composition and fecal metabolic profile, respectively, followed by a combined analysis of microbiomics and metabolomics.ResultsImpaired learning abilities were observed in APP/PS1 mice. Statistically significant changes in the gut microbiota were detected, including a reduction in β-diversity, a higher ratio of Firmicutes/Bacteroidota, and multiple differential bacteria. Statistically significant changes in fecal metabolism were also detected, with 40 differential fecal metabolites and perturbations in the pyrimidine metabolism. Approximately 40% of the differential fecal metabolites were markedly associated with the gut microbiota, and the top two bacteria associated with the most differential metabolites were Bacillus firmus and Rikenella. Deoxycytidine, which causes changes in the pyrimidine metabolic pathway, was significantly correlated with Clostridium sp. Culture-27.ConclusionsGut microbiota may be involved in the pathological processes associated with cognitive impairment in AD by dysregulating pyrimidine metabolism. B. firmus, Rikenella, Clostridium sp. Culture-27, and deoxyuridine may be important biological markers for AD. Our findings provide new insights into the host-microbe crosstalk in AD pathology and contribute to the discovery of diagnostic markers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Min Feng
- School of Rehabilitation Medicine and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Tianshu Hou
- Department of Preventive Traditional Chinese Medicine, Chengdu Integrated TCM, Western Medical Hospital, Chengdu, China
| | - Mingze Zhou
- Health and Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyu Cen
- Health and Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Yi
- Health and Rehabilitation School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinfeng Bai
- School of Rehabilitation Medicine and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Yun Zeng
- School of Rehabilitation Medicine and Healthcare, Hunan University of Medicine, Huaihua, China
| | - Qi Liu
- Acupuncture and Tuina School, Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Qi Liu,
| | - Chengshun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengshun Zhang,
| | - Yingjun Zhang
- School of Clinical Medicine, Hunan University of Medicine, Huaihua, China
- Yingjun Zhang,
| |
Collapse
|
166
|
Ye T, Yuan S, Kong Y, Yang H, Wei H, Zhang Y, Jin H, Yu Q, Liu J, Chen S, Sun J. Effect of Probiotic Fungi against Cognitive Impairment in Mice via Regulation of the Fungal Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9026-9038. [PMID: 35833673 DOI: 10.1021/acs.jafc.2c03142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fungal microbiota may be involved in the regulation of cognition and behavior, while the role of probiotic fungi against cognitive impairment is unclear. Here, we explored the idea that probiotic Saccharomyces boulardii could participate in the regulation of microglia-induced neuroinflammation in Alzheimer's disease (AD) model mice. Cognitive deficits, deposits of amyloid-β (Aβ) and phosphorylation of tau, synaptic plasticity, microglia activation, and neuroinflammatory reactions were observed. The expression levels of Toll-like receptors (TLRs) pathway-related proteins were detected. Meanwhile, intestinal barrier integrity and fungal microbiota composition were evaluated. Our results showed fungal microbiota dysbiosis in APP/PS1 mice, which might result in the neuroinflammation of AD. The increased levels of interleukin (IL)-6, IL-1β, and cluster of differentiation 11b (CD11b) were observed in APP/PS1 mice, which were associated with activation of microglia, indicative of a broader recognition of neuroinflammation mediated by fungal microbiota compared to hitherto appreciated. Probiotic S. boulardii treatment improved dysbiosis, alleviated the neuroinflammation as well as synaptic injury, and ultimately improved cognitive impairment. Moreover, S. boulardii therapy could inhibit microglia activation and the TLRs pathway, which were reversed by antifungal treatment. These findings revealed that S. boulardii actively participated in regulating the TLRs pathway to inhibit the neuroinflammation via the gut-brain axis.
Collapse
Affiliation(s)
- Tao Ye
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shushu Yuan
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu Kong
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huiqun Yang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongming Wei
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuhe Zhang
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hangqi Jin
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qingxia Yu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Songfang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
167
|
Du Y, Li X, An Y, Song Y, Lu Y. Association of gut microbiota with sort-chain fatty acids and inflammatory cytokines in diabetic patients with cognitive impairment: A cross-sectional, non-controlled study. Front Nutr 2022; 9:930626. [PMID: 35938126 PMCID: PMC9355148 DOI: 10.3389/fnut.2022.930626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that gut microbiota, short-chain fatty acids (SCFAs), and inflammatory cytokines play important roles in the pathogenesis of diabetic cognitive impairment (DCI). However, little is known about alterations of gut microbiota and SCFA levels as well as the relationships between inflammatory cytokines and cognitive function in Chinese DCI patients. Herein, the differences in the gut microbiota, plasma SCFAs, and inflammatory cytokines in DCI patients and type 2 diabetes mellitus (T2DM) patients were explored. A cross-sectional study of 30 DCI patients and 30 T2DM patients without mild cognitive impairment (MCI) was conducted in Tianjin city, China. The gut microbiota, plasma SCFAs, and inflammatory cytokines were determined using 16S ribosomal RNA (rRNA) gene sequencing, gas chromatography-mass spectrometry (GC-MS), and Luminex immunofluorescence assays, respectively. In addition, the correlation between gut microbiota and DCI clinical characteristics, SCFAs, and inflammatory cytokines was investigated. According to the results, at the genus level, DCI patients presented a greater abundance of Gemmiger, Bacteroides, Roseburia, Prevotella, and Bifidobacterium and a poorer abundance of Escherichia and Akkermansia than T2DM patients. The plasma concentrations of acetic acid, propionic acid, isobutyric acid, and butyric acid plummeted in DCI patients compared to those in T2DM patients. TNF-α and IL-8 concentrations in plasma were significantly higher in DCI patients than in T2DM patients. Moreover, the concentrations of acetic acid, propionic acid, butyric acid, and isovaleric acid in plasma were negatively correlated with TNF-α, while those of acetic acid and butyric acid were negatively correlated with IL-8. Furthermore, the abundance of the genus Alloprevotella was negatively correlated with butyric acid, while that of Holdemanella was negatively correlated with propanoic acid and isobutyric acid. Fusobacterium abundance was negatively correlated with propanoic acid. Clostridium XlVb abundance was negatively correlated with TNF-α, while Shuttleworthia abundance was positively correlated with TNF-α. It was demonstrated that the gut microbiota alterations were accompanied by a change in SCFAs and inflammatory cytokines in DCI in Chinese patients, potentially causing DCI development. These findings might help to identify more effective microbiota-based therapies for DCI in the future.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing, China
| | - Xiaoying Li
- Geriatrics Department, Beijing Jishuitan Hospital, Beijing, China
| | - Yu An
- Endocrinology Department, Beijing Chaoyang Hospital, Beijing, China
| | - Ying Song
- School of Nursing, Peking University, Beijing, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing, China
- *Correspondence: Yanhui Lu
| |
Collapse
|
168
|
Schirmbeck GH, Sizonenko S, Sanches EF. Neuroprotective Role of Lactoferrin during Early Brain Development and Injury through Lifespan. Nutrients 2022; 14:2923. [PMID: 35889882 PMCID: PMC9322498 DOI: 10.3390/nu14142923] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022] Open
Abstract
Early adverse fetal environments can significantly disturb central nervous system (CNS) development and subsequently alter brain maturation. Nutritional status is a major variable to be considered during development and increasing evidence links neonate and preterm infant impaired brain growth with neurological and psychiatric diseases in adulthood. Breastfeeding is one of the main components required for healthy newborn development due to the many "constitutive" elements breastmilk contains. Maternal intake of specific nutrients during lactation may alter milk composition, thus affecting newborn nutrition and, potentially, brain development. Lactoferrin (Lf) is a major protein present in colostrum and the main protein in human milk, which plays an important role in the benefits of breastfeeding during postnatal development. It has been demonstrated that Lf has antimicrobial, as well as anti-inflammatory properties, and is potentially able to reduce the incidence of sepsis and necrotizing enterocolitis (NEC), which are particularly frequent in premature births. The anti-inflammatory effects of Lf can reduce birth-related pathologies by decreasing the release of pro-inflammatory factors and inhibiting premature cervix maturation (also related to commensal microbiome abnormalities) that could contribute to disrupting brain development. Pre-clinical evidence shows that Lf protects the developing brain from neuronal injury, enhances brain connectivity and neurotrophin production, and decreases inflammation in models of perinatal inflammatory challenge, intrauterine growth restriction (IUGR) and neonatal hypoxia-ischemia (HI). In this context, Lf can provide nutritional support for brain development and cognition and prevent the origin of neuropsychiatric diseases later in life. In this narrative review, we consider the role of certain nutrients during neurodevelopment linking to the latest research on lactoferrin with respect to neonatology. We also discuss new evidence indicating that early neuroprotective pathways modulated by Lf could prevent neurodegeneration through anti-inflammatory and immunomodulatory processes.
Collapse
Affiliation(s)
- Gabriel Henrique Schirmbeck
- Biochemistry Post-Graduate Program, Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil;
| | - Stéphane Sizonenko
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| | - Eduardo Farias Sanches
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
169
|
Biazzo M, Deidda G. Fecal Microbiota Transplantation as New Therapeutic Avenue for Human Diseases. J Clin Med 2022; 11:jcm11144119. [PMID: 35887883 PMCID: PMC9320118 DOI: 10.3390/jcm11144119] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
The human body is home to a variety of micro-organisms. Most of these microbial communities reside in the gut and are referred to as gut microbiota. Over the last decades, compelling evidence showed that a number of human pathologies are associated with microbiota dysbiosis, thereby suggesting that the reinstatement of physiological microflora balance and composition might ameliorate the clinical symptoms. Among possible microbiota-targeted interventions, pre/pro-biotics supplementations were shown to provide effective results, but the main limitation remains in the limited microbial species available as probiotics. Differently, fecal microbiota transplantation involves the transplantation of a solution of fecal matter from a donor into the intestinal tract of a recipient in order to directly change the recipient's gut microbial composition aiming to confer a health benefit. Firstly used in the 4th century in traditional Chinese medicine, nowadays, it has been exploited so far to treat recurrent Clostridioides difficile infections, but accumulating data coming from a number of clinical trials clearly indicate that fecal microbiota transplantation may also carry the therapeutic potential for a number of other conditions ranging from gastrointestinal to liver diseases, from cancer to inflammatory, infectious, autoimmune diseases and brain disorders, obesity, and metabolic syndrome. In this review, we will summarize the commonly used preparation and delivery methods, comprehensively review the evidence obtained in clinical trials in different human conditions and discuss the variability in the results and the pivotal importance of donor selection. The final aim is to stimulate discussion and open new therapeutic perspectives among experts in the use of fecal microbiota transplantation not only in Clostridioides difficile infection but as one of the first strategies to be used to ameliorate a number of human conditions.
Collapse
Affiliation(s)
- Manuele Biazzo
- The BioArte Limited, Life Sciences Park, Triq San Giljan, SGN 3000 San Gwann, Malta;
- SienabioACTIVE, University of Siena, Via Aldo Moro 1, 53100 Siena, Italy
| | - Gabriele Deidda
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padova, Italy
- Correspondence: ; Tel.: +39-049-827-6125
| |
Collapse
|
170
|
Zhao W, Wang J, Latta M, Wang C, Liu Y, Ma W, Zhou Z, Hu S, Chen P, Liu Y. Rhizoma Gastrodiae Water Extract Modulates the Gut Microbiota and Pathological Changes of P-TauThr231 to Protect Against Cognitive Impairment in Mice. Front Pharmacol 2022; 13:903659. [PMID: 35910384 PMCID: PMC9335362 DOI: 10.3389/fphar.2022.903659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Gastrodiae Rhizoma and its active constituents are known to exhibit neuroprotective effects in Alzheimer’s disease (AD). However, the effect of Rhizoma Gastrodiae water extract (WERG) on AD and the detailed mechanism of action remain unclear. In this study, the mechanism of action of WERG was investigated by the microbiome–gut–brain axis using a D-galactose (D-gal)/AlCl3-induced AD mouse model. WERG improved the cognitive impairment of D-gal/AlCl3-induced mice. The expression level of p-Tauthr231 in the WERG-H treatment group was decreased, and p-Tauthr231 was found negative in hippocampal DG, CA1, and CA3 regions. Here, the diversity and composition of the gut microbiota were analyzed by 16sRNA sequencing. WERG-H treatment had a positive correlation with Firmicutes, Bacilli, Lactobacillus johnsonii, Lactobacillus murinus, and Lactobacillus reuteri. Interestingly, the Rikenellaceae-RC9 gut group in the gut increased in D-gal/AlCl3-induced mice, but the increased L. johnsonii, L. murinus, and L. reuteri reversed this process. This may be a potential mechanistic link between gut microbiota dysbiosis and P-TauThr231 levels in AD progression. In conclusion, this study demonstrated that WERG improved the cognitive impairment of the AD mouse model by enriching gut probiotics and reducing P-TauThr231 levels.
Collapse
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Maria Latta
- School of Pharmacy, University of Connecticut, Mansfield, CT, United States
| | - Chenyu Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhongkun Zhou
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Shujian Hu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Peng Chen, ; Yingqian Liu,
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Peng Chen, ; Yingqian Liu,
| |
Collapse
|
171
|
Trejo-Castro AI, Carrion-Alvarez D, Martinez-Torteya A, Rangel-Escareño C. A Bibliometric Review on Gut Microbiome and Alzheimer’s Disease Between 2012 and 2021. Front Aging Neurosci 2022; 14:804177. [PMID: 35898324 PMCID: PMC9309471 DOI: 10.3389/fnagi.2022.804177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Research on the microbiome has drawn an increasing amount of attention over the past decade. Even more so for its association with disease. Neurodegenerative diseases, such as Alzheimer’s disease (AD) have been a subject of study for a long time with slow success in improving diagnostic accuracy or identifying a possibility for treatment. In this work, we analyze past and current research on microbiome and its positive impact on AD treatment and diagnosis. We present a bibliometric analysis from 2012 to 2021 with data retrieved on September 2, 2021, from the Scopus database. The query includes “Gut AND (Microbiota OR Microbiome) AND Alzheimer*” within the article title, abstract, and keywords for all kinds of documents in the database. Compared with 2016, the number of publications (NPs) on the subject doubled by 2017. Moreover, we observe an exponential growth through 2020, and with the data presented, it is almost certain that it will continue this trend and grow even further in the upcoming years. We identify key journals interested in the subject and discuss the articles with most citations, analyzing trends and topics for future research, such as the ability to diagnose the disease and complement the cognitive test with other clinical biomarkers. According to the test, mild cognitive impairment (MCI) is normally considered an initial stage for AD. This test, combined with the role of the gut microbiome in early stages of the disease, may improve the diagnostic accuracy. Based on our findings, there is emerging evidence that microbiota, perhaps more specifically gut microbiota, plays a key role in the pathogenesis of diseases, such as AD.
Collapse
Affiliation(s)
| | - Diego Carrion-Alvarez
- Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, Mexico
| | | | - Claudia Rangel-Escareño
- Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Queretaro, Mexico
- Genómica Computacional, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- *Correspondence: Claudia Rangel-Escareño,
| |
Collapse
|
172
|
Ano Y, Takaichi Y, Ohya R, Uchida K, Nakayama H, Takashima A. Tryptophan-tyrosine dipeptide improves tau-related symptoms in tauopathy mice. Nutr Neurosci 2022:1-12. [PMID: 35816407 DOI: 10.1080/1028415x.2022.2090075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neurodegenerative diseases involving pathological tau protein aggregation are collectively known as tauopathies and include Alzheimer's disease and Pick's disease. Recent studies show that the intake of tryptophan-tyrosine (Trp-Tyr)-related β-lactopeptides, including β-lactolin, attenuates cognitive decline in the elderly and prevents the amyloid pathology in mouse models of Alzheimer's disease. However, the effects of Trp-Tyr-related β-lactopeptides on tau-related pathology have not been investigated. In the present study, we examined the effects of Trp-Tyr dipeptide intake on tauopathy in PS19 transgenic mice, a well-established tauopathy model. Intake of Trp-Tyr dipeptide improved the behavioral deficits observed in the open field test, prevented tau phosphorylation, and increased the dopamine turnover and synaptophysin expression in the frontal cortex. Levels of short-chain fatty acids in the cecum were lower in PS19 mice than those in wild-type mice and were increased by treatment with Trp-Tyr dipeptide. In addition, intake of Trp-Tyr dipeptide extended the lifespan of PS19 mice. These findings suggest that the intake of Trp-Tyr-related peptides improves tauopathy symptoms, resulting in improvements in behavioral deficits and longevity. Hence, the intake of Trp-Tyr-related peptides, including β-lactolin, may be beneficial for preventing dementia.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd., Kanagawa, Japan
| | - Yuta Takaichi
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd., Kanagawa, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
173
|
Qian XH, Xie RY, Liu XL, Chen SD, Tang HD. Mechanisms of Short-Chain Fatty Acids Derived from Gut Microbiota in Alzheimer's Disease. Aging Dis 2022; 13:1252-1266. [PMID: 35855330 PMCID: PMC9286902 DOI: 10.14336/ad.2021.1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites derived from the gut microbiota through fermentation of dietary fiber. SCFAs participate a number of physiological and pathological processes in the human body, such as host metabolism, immune regulation, appetite regulation. Recent studies on gut-brain interaction have shown that SCFAs are important mediators of gut-brain interactions and are involved in the occurrence and development of many neurodegenerative diseases, including Alzheimer's disease. This review summarizes the current research on the potential roles and mechanisms of SCFAs in AD. First, we introduce the metabolic distribution, specific receptors and signaling pathways of SCFAs in human body. The concentration levels of SCFAs in AD patient/animal models are then summarized. In addition, we illustrate the effects and mechanisms of SCFAs on the cognitive level, pathological features (Aβ and tau) and neuroinflammation in AD. Finally, we analyze the translational value of SCFAs as potential therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Xiao-hang Qian
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ru-yan Xie
- Shanghai Guangci Memorial hospital, Shanghai 200025, China.
| | - Xiao-li Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201406, China.
| | - Sheng-di Chen
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Correspondence should be addressed to: Dr. Sheng-di Chen () and Dr. Hui-dong Tang (), Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui-dong Tang
- Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Correspondence should be addressed to: Dr. Sheng-di Chen () and Dr. Hui-dong Tang (), Department of Neurology and Institute of Neurology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
174
|
Jing Y, Bai F, Wang L, Yang D, Yan Y, Wang Q, Zhu Y, Yu Y, Chen Z. Fecal Microbiota Transplantation Exerts Neuroprotective Effects in a Mouse Spinal Cord Injury Model by Modulating the Microenvironment at the Lesion Site. Microbiol Spectr 2022; 10:e0017722. [PMID: 35467388 PMCID: PMC9241636 DOI: 10.1128/spectrum.00177-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
The primary traumatic event that causes spinal cord injury (SCI) is followed by a progressive secondary injury featured by vascular disruption and ischemia, inflammatory responses and the release of cytotoxic debris, which collectively add to the hostile microenvironment of the lesioned cord and inhibit tissue regeneration and functional recovery. In a previous study, we reported that fecal microbiota transplantation (FMT) promotes functional recovery in a contusion SCI mouse model; yet whether and how FMT treatment may impact the microenvironment at the injury site are not well known. In the current study, we examined individual niche components and investigated the effects of FMT on microcirculation, inflammation and trophic factor secretion in the spinal cord of SCI mice. FMT treatment significantly improved spinal cord tissue sparing, vascular perfusion and pericyte coverage and blood-spinal cord-barrier (BSCB) integrity, suppressed the activation of microglia and astrocytes, and enhanced the secretion of neurotrophic factors. Suppression of inflammation and upregulation of trophic factors, jointly, may rebalance the niche homeostasis at the injury site and render it favorable for reparative and regenerative processes, eventually leading to functional recovery. Furthermore, microbiota metabolic profiling revealed that amino acids including β-alanine constituted a major part of the differentially detected metabolites between the groups. Supplementation of β-alanine in SCI mice reduced BSCB permeability and increased the number of surviving neurons, suggesting that β-alanine may be one of the mediators of FMT that participates in the modulation and rebalancing of the microenvironment at the injured spinal cord. IMPORTANCE FMT treatment shows a profound impact on the microenvironment that involves microcirculation, blood-spinal cord-barrier, activation of immune cells, and secretion of neurotrophic factors. Analysis of metabolic profiles reveals around 22 differentially detected metabolites between the groups, and β-alanine was further chosen for functional validation experiments. Supplementation of SCI mice with β-alanine significantly improves neuronal survival, and the integrity of blood-spinal cord-barrier at the lesion site, suggesting that β-alanine might be one of the mediators following FMT that has contributed to the recovery.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Fan Bai
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Limiao Wang
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Degang Yang
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yitong Yan
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Qiuying Wang
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, People's Republic of China
| | - Yan Yu
- China Rehabilitation Science Institute, Feng tai District, Beijing, People's Republic of China
- China Rehabilitation Research Center, Feng tai District, Beijing, People's Republic of China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Feng tai District, Beijing, People's Republic of China
- School of Rehabilitation Medicine, Capital Medical University, Feng tai District, Beijing, People's Republic of China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
| | - Zhiguo Chen
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Feng tai District, Beijing, People's Republic of China
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, Xicheng District, Beijing, People's Republic of China
- National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Xicheng District, Beijing, People's Republic of China
| |
Collapse
|
175
|
The Gut Microbiome-Brain Crosstalk in Neurodegenerative Diseases. Biomedicines 2022; 10:biomedicines10071486. [PMID: 35884791 PMCID: PMC9312830 DOI: 10.3390/biomedicines10071486] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
The gut–brain axis (GBA) is a complex interactive network linking the gut to the brain. It involves the bidirectional communication between the gastrointestinal and the central nervous system, mediated by endocrinological, immunological, and neural signals. Perturbations of the GBA have been reported in many neurodegenerative diseases, suggesting a possible role in disease pathogenesis, making it a potential therapeutic target. The gut microbiome is a pivotal component of the GBA, and alterations in its composition have been linked to GBA dysfunction and CNS inflammation and degeneration. The gut microbiome might influence the homeostasis of the central nervous system homeostasis through the modulation of the immune system and, more directly, the production of molecules and metabolites. Small clinical and preclinical trials, in which microbial composition was manipulated using dietary changes, fecal microbiome transplantation, and probiotic supplements, have provided promising outcomes. However, results are not always consistent, and large-scale randomized control trials are lacking. Here, we give an overview of how the gut microbiome influences the GBA and could contribute to disease pathogenesis in neurodegenerative diseases.
Collapse
|
176
|
Lu J, Hou W, Gao S, Zhang Y, Zong Y. The Role of Gut Microbiota—Gut—Brain Axis in Perioperative Neurocognitive Dysfunction. Front Pharmacol 2022; 13:879745. [PMID: 35774608 PMCID: PMC9237434 DOI: 10.3389/fphar.2022.879745] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
With the aging of the world population and advances in medical and health technology, more and more elderly patients are undergoing anesthesia and surgery, and perioperative neurocognitive dysfunction (PND) is receiving increasing attention. The latest definition of PND, published simultaneously in November 2018 in 6 leading journals in the field of anesthesiology, clarifies that PND includes preoperatively cognitive impairment, postoperative delirium, delayed neurocognitive recovery, and postoperative cognitive dysfunction and meets the diagnostic criteria for neurocognitive impairment in the Diagnostic and Statistical Manual of Mental Disorders -fifth edition (DSM-5). The time frame for PND includes preoperatively and within 12 months postoperatively. Recent studies have shown that gut microbiota regulates central nervous function and behavior through the gut microbiota - gut - brain axis, but the role of the axis in the pathogenesis of PND remains unclear. Therefore, this article reviews the mechanism of the role of gut microbiota-gut-brain axis in PND, so as to help explore reasonable early treatment strategies.
Collapse
Affiliation(s)
- Jian Lu
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenlong Hou
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
| | - Sunan Gao
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Youming Zong
- Department of Anesthesiology, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
- Department of Anesthesiology, Bengbu Medical College, Bengbu, China
- *Correspondence: Youming Zong,
| |
Collapse
|
177
|
Davis BT, Chen Z, Islam MB, Timken ME, Procissi D, Schwulst SJ. Fecal Microbiota Transfer Attenuates Gut Dysbiosis and Functional Deficits After Traumatic Brain Injury. Shock 2022; 57:251-259. [PMID: 35759305 PMCID: PMC10341382 DOI: 10.1097/shk.0000000000001934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is an underrecognized public health threat. Survivors of TBI often suffer long-term neurocognitive deficits leading to the progressive onset of neurodegenerative disease. Recent data suggests that the gut-brain axis is complicit in this process. However, no study has specifically addressed whether fecal microbiota transfer (FMT) attenuates neurologic deficits after TBI. HYPOTHESIS We hypothesized that fecal microbiota transfer would attenuate neurocognitive, anatomic, and pathologic deficits after TBI. METHODS C57Bl/6 mice were subjected to severe TBI (n = 20) or sham-injury (n = 20) via an open-head controlled cortical impact. Post-injury, this cohort of mice underwent weekly oral gavage with a slurry of healthy mouse stool or vehicle alone beginning 1 h post-TBI followed by behavioral testing and neuropathologic analysis. 16S ribosomal RNA sequencing of fecal samples was performed to characterize gut microbial community structure pre- and post-injury. Zero maze and open field testing were used to evaluate post-traumatic anxiety, exploratory behavior, and generalized activity. 3D, contrast enhanced, magnetic resonance imaging was used to determine differences in cortical volume loss and white matter connectivity. Prior to euthanasia, brains were harvested for neuropathologic analysis. RESULTS Fecal microbiome analysis revealed a large variance between TBI, and sham animals treated with vehicle, while FMT treated TBI mice had restoration of gut dysbiosis back to levels of control mice. Neurocognitive testing demonstrated a rescue of normal anxiety-like and exploratory behavior in TBI mice treated with FMT. FMT treated TBI mice spent a greater percentage of time (22%, P = 0.0001) in the center regions of the Open Field as compared to vehicle treated TBI mice (13%). Vehicle-treated TBI animals also spent less time (19%) in the open areas of zero maze than FMT treated TBI mice (30%, P = 0.0001). Comparing in TBI mice treated with FMT, MRI demonstrated a marked attenuation in ventriculomegaly (P < 0.002) and a significant change in fractional anisotropy (i.e., loss of white matter connectivity) (P < 0.0001). Histologic analysis of brain sections revealed a FMT- injury dependent interaction in the microglia/macrophage-specific ionized calcium-binding protein, Iba1 (P = 0.002). CONCLUSION These data suggest that restoring a pre-injury gut microbial community structure may be a promising therapeutic intervention after TBI.
Collapse
Affiliation(s)
- Booker T. Davis
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zhangying Chen
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Driskill Graduate Program in Life Science, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Mecca B.A.R. Islam
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Madeline E. Timken
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniele Procissi
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Steven J. Schwulst
- Department of Surgery, Division of Trauma and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
178
|
Bostick JW, Schonhoff AM, Mazmanian SK. Gut microbiome-mediated regulation of neuroinflammation. Curr Opin Immunol 2022; 76:102177. [DOI: 10.1016/j.coi.2022.102177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022]
|
179
|
Giridharan VV, Barichello de Quevedo CE, Petronilho F. Microbiota-gut-brain axis in the Alzheimer's disease pathology - an overview. Neurosci Res 2022; 181:17-21. [DOI: 10.1016/j.neures.2022.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
|
180
|
Clinical and Preclinical Studies of Fermented Foods and Their Effects on Alzheimer’s Disease. Antioxidants (Basel) 2022; 11:antiox11050883. [PMID: 35624749 PMCID: PMC9137914 DOI: 10.3390/antiox11050883] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The focus on managing Alzheimer’s disease (AD) is shifting towards prevention through lifestyle modification instead of treatments since the currently available treatment options are only capable of providing symptomatic relief marginally and result in various side effects. Numerous studies have reported that the intake of fermented foods resulted in the successful management of AD. Food fermentation is a biochemical process where the microorganisms metabolize the constituents of raw food materials, giving vastly different organoleptic properties and additional nutritional value, and improved biosafety effects in the final products. The consumption of fermented foods is associated with a wide array of nutraceutical benefits, including anti-oxidative, anti-inflammatory, neuroprotective, anti-apoptotic, anti-cancer, anti-fungal, anti-bacterial, immunomodulatory, and hypocholesterolemic properties. Due to their promising health benefits, fermented food products have a great prospect for commercialization in the food industry. This paper reviews the memory and cognitive enhancement and neuroprotective potential of fermented food products on AD, the recently commercialized fermented food products in the health and food industries, and their limitations. The literature reviewed here demonstrates a growing demand for fermented food products as alternative therapeutic options for the prevention and management of AD.
Collapse
|
181
|
Parker A, Romano S, Ansorge R, Aboelnour A, Le Gall G, Savva GM, Pontifex MG, Telatin A, Baker D, Jones E, Vauzour D, Rudder S, Blackshaw LA, Jeffery G, Carding SR. Fecal microbiota transfer between young and aged mice reverses hallmarks of the aging gut, eye, and brain. MICROBIOME 2022; 10:68. [PMID: 35501923 PMCID: PMC9063061 DOI: 10.1186/s40168-022-01243-w] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Altered intestinal microbiota composition in later life is associated with inflammaging, declining tissue function, and increased susceptibility to age-associated chronic diseases, including neurodegenerative dementias. Here, we tested the hypothesis that manipulating the intestinal microbiota influences the development of major comorbidities associated with aging and, in particular, inflammation affecting the brain and retina. METHODS Using fecal microbiota transplantation, we exchanged the intestinal microbiota of young (3 months), old (18 months), and aged (24 months) mice. Whole metagenomic shotgun sequencing and metabolomics were used to develop a custom analysis workflow, to analyze the changes in gut microbiota composition and metabolic potential. Effects of age and microbiota transfer on the gut barrier, retina, and brain were assessed using protein assays, immunohistology, and behavioral testing. RESULTS We show that microbiota composition profiles and key species enriched in young or aged mice are successfully transferred by FMT between young and aged mice and that FMT modulates resulting metabolic pathway profiles. The transfer of aged donor microbiota into young mice accelerates age-associated central nervous system (CNS) inflammation, retinal inflammation, and cytokine signaling and promotes loss of key functional protein in the eye, effects which are coincident with increased intestinal barrier permeability. Conversely, these detrimental effects can be reversed by the transfer of young donor microbiota. CONCLUSIONS These findings demonstrate that the aging gut microbiota drives detrimental changes in the gut-brain and gut-retina axes suggesting that microbial modulation may be of therapeutic benefit in preventing inflammation-related tissue decline in later life. Video abstract.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK.
| | - Stefano Romano
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Rebecca Ansorge
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Asmaa Aboelnour
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Gwenaelle Le Gall
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - George M Savva
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | | | - Andrea Telatin
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - David Baker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Emily Jones
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - David Vauzour
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Steven Rudder
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - L Ashley Blackshaw
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Simon R Carding
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, NR4 7UQ, UK.
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
182
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
183
|
Choi H, Lee D, Mook-Jung I. Gut Microbiota as a Hidden Player in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2022; 86:1501-1526. [PMID: 35213369 DOI: 10.3233/jad-215235] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disorder, is accompanied by cognitive impairment and shows representative pathological features, including senile plaques and neurofibrillary tangles in the brain. Recent evidence suggests that several systemic changes outside the brain are associated with AD and may contribute to its pathogenesis. Among the factors that induce systemic changes in AD, the gut microbiota is increasingly drawing attention. Modulation of gut microbiome, along with continuous attempts to remove pathogenic proteins directly from the brain, is a viable strategy to cure AD. Seeking a holistic understanding of the pathways throughout the body that can affect the pathogenesis, rather than regarding AD solely as a brain disease, may be key to successful therapy. In this review, we focus on the role of the gut microbiota in causing systemic manifestations of AD. The review integrates recently emerging concepts and provides potential mechanisms about the involvement of the gut-brain axis in AD, ranging from gut permeability and inflammation to bacterial translocation and cross-seeding.
Collapse
Affiliation(s)
- Hyunjung Choi
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Inhee Mook-Jung
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
184
|
Shang L, Tu J, Dai Z, Zeng X, Qiao S. Microbiota Transplantation in an Antibiotic-Induced Bacterial Depletion Mouse Model: Reproducible Establishment, Analysis, and Application. Microorganisms 2022; 10:902. [PMID: 35630347 PMCID: PMC9146686 DOI: 10.3390/microorganisms10050902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
The fecal bacteria transplantation (FMT) technique is indispensable when exploring the pathogenesis and potential treatments for microbiota-related diseases. For FMT clinical treatments, there are already systematic guidelines for donor selection, fecal bacterial separation, FMT frequency, and infusion methods. However, only a few studies have demonstrated the use of standardized FMT procedures for animal models used in theoretical research, creating difficulties for many new researchers in this field. In the present paper, we provide a brief overview of FMT and discuss its contribution to the current understanding of disease mechanisms that relate to microbiota. This protocol can be used to generate a commonly used FMT mouse model and provides a literature reference of customizable steps.
Collapse
Affiliation(s)
- Lijun Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Jiayu Tu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Ziqi Dai
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, China; (L.S.); (J.T.); (Z.D.); (X.Z.)
- Beijing Bio-Feed Additives Key Laboratory, Beijing 100193, China
| |
Collapse
|
185
|
Soriano S, Curry K, Wang Q, Chow E, Treangen TJ, Villapol S. Fecal Microbiota Transplantation Derived from Alzheimer's Disease Mice Worsens Brain Trauma Outcomes in Wild-Type Controls. Int J Mol Sci 2022; 23:4476. [PMID: 35562867 PMCID: PMC9103830 DOI: 10.3390/ijms23094476] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Traumatic brain injury (TBI) causes neuroinflammation and neurodegeneration, both of which increase the risk and accelerate the progression of Alzheimer's disease (AD). The gut microbiome is an essential modulator of the immune system, impacting the brain. AD has been related with reduced diversity and alterations in the community composition of the gut microbiota. This study aimed to determine whether the gut microbiota from AD mice exacerbates neurological deficits after TBI in control mice. We prepared fecal microbiota transplants from 18 to 24 month old 3×Tg-AD (FMT-AD) and from healthy control (FMT-young) mice. FMTs were administered orally to young control C57BL/6 (wild-type, WT) mice after they underwent controlled cortical impact (CCI) injury, as a model of TBI. Then, we characterized the microbiota composition of the fecal samples by full-length 16S rRNA gene sequencing analysis. We collected the blood, brain, and gut tissues for protein and immunohistochemical analysis. Our results showed that FMT-AD administration stimulates a higher relative abundance of the genus Muribaculum and a decrease in Lactobacillus johnsonii compared to FMT-young in WT mice. Furthermore, WT mice exhibited larger lesion, increased activated microglia/macrophages, and reduced motor recovery after FMT-AD compared to FMT-young one day after TBI. In summary, we observed gut microbiota from AD mice to have a detrimental effect and aggravate the neuroinflammatory response and neurological outcomes after TBI in young WT mice.
Collapse
Affiliation(s)
- Sirena Soriano
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (S.S.); (E.C.)
| | - Kristen Curry
- Department of Computer Science, Rice University, Houston, TX 77005, USA; (K.C.); (Q.W.); (T.J.T.)
| | - Qi Wang
- Department of Computer Science, Rice University, Houston, TX 77005, USA; (K.C.); (Q.W.); (T.J.T.)
| | - Elsbeth Chow
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (S.S.); (E.C.)
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX 77005, USA; (K.C.); (Q.W.); (T.J.T.)
| | - Sonia Villapol
- Department of Neurosurgery and Center for Neuroregeneration, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; (S.S.); (E.C.)
- Department of Neuroscience in Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
186
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
187
|
Nkera-Gutabara CK, Kerr R, Scholefield J, Hazelhurst S, Naidoo J. Microbiomics: The Next Pillar of Precision Medicine and Its Role in African Healthcare. Front Genet 2022; 13:869610. [PMID: 35480328 PMCID: PMC9037082 DOI: 10.3389/fgene.2022.869610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/04/2022] [Indexed: 11/26/2022] Open
Abstract
Limited access to technologies that support early monitoring of disease risk and a poor understanding of the geographically unique biological and environmental factors underlying disease, represent significant barriers to improved health outcomes and precision medicine efforts in low to middle income countries. These challenges are further compounded by the rich genetic diversity harboured within Southern Africa thus necessitating alternative strategies for the prediction of disease risk and clinical outcomes in regions where accessibility to personalized healthcare remains limited. The human microbiome refers to the community of microorganisms (bacteria, archaea, fungi and viruses) that co-inhabit the human body. Perturbation of the natural balance of the gut microbiome has been associated with a number of human pathologies, and the microbiome has recently emerged as a critical determinant of drug pharmacokinetics and immunomodulation. The human microbiome should therefore not be omitted from any comprehensive effort towards stratified healthcare and would provide an invaluable and orthogonal approach to existing precision medicine strategies. Recent studies have highlighted the overarching effect of geography on gut microbial diversity as it relates to human health. Health insights from international microbiome datasets are however not yet verified in context of the vast geographical diversity that exists throughout the African continent. In this commentary we discuss microbiome research in Africa and its role in future precision medicine initiatives across the African continent.
Collapse
Affiliation(s)
- C. K. Nkera-Gutabara
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Bioengineering and Integrated Genomics Research Group, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - R. Kerr
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Scholefield
- Bioengineering and Integrated Genomics Research Group, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - S. Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience (SBIMB), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - J. Naidoo
- Bioengineering and Integrated Genomics Research Group, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
188
|
Hirosawa K, Fukami T, Nagaoka M, Nakano M, Nakajima M. Methionine sulfoxide reductase A in human and mouse tissues is responsible for sulindac activation, making a larger contribution than the gut microbiota. Drug Metab Dispos 2022; 50:725-733. [DOI: 10.1124/dmd.122.000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/01/2022] [Indexed: 11/22/2022] Open
|
189
|
Dutta M, Weigel KM, Patten KT, Valenzuela AE, Wallis C, Bein KJ, Wexler AS, Lein PJ, Cui JY. Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease. Toxicol Rep 2022; 9:432-444. [PMID: 35310146 PMCID: PMC8927974 DOI: 10.1016/j.toxrep.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/03/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Traffic-related air pollution (TRAP) is linked to increased risk for age-related dementia, including Alzheimer's disease (AD). The gut microbiome is posited to influence AD risk, and an increase in microbial-derived secondary bile acids (BAs) is observed in AD patients. We recently reported that chronic exposure to ambient TRAP modified AD risk in a sex-dependent manner in the TgF344 AD (TG) rat. Objectives In this study, we used samples from the same cohort to test our hypothesis that TRAP sex-dependently produces gut dysbiosis and increases secondary BAs to a larger extent in the TG rat relative to wildtype (WT) controls. Methods Male and female TG and age-matched WT rats were exposed to either filtered air (FA) or TRAP from 28 days up to 15 months of age (n = 5-6). Tissue samples were collected after 9 or 14months of exposure. Results At 10 months of age, TRAP tended to decrease the alpha diversity as well as the beneficial taxa Lactobacillus and Ruminococcus flavefaciens uniquely in male TG rats as determined by 16 S rDNA sequencing. A basal decrease in Firmicutes/Bacteroidetes (F/B) ratio was also noted in TG rats at 10 months. At 15 months of age, TRAP altered inflammation-related bacteria in the gut of female rats from both genotypes. BAs were more affected by chronic TRAP exposure in females, with a general trend of increase in host-produced unconjugated primary and microbiota-produced secondary BAs. Most of the mRNAs of the hepatic BA-processing genes were not altered by TRAP, except for a down-regulation of the BA-uptake transporter Ntcp in males. Conclusion In conclusion, chronic TRAP exposure produced distinct gut dysbiosis and altered BA homeostasis in a sex and host genotype-specific manner.
Collapse
Affiliation(s)
- Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kris M. Weigel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kelley T. Patten
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | - Anthony E. Valenzuela
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | | | - Keith J. Bein
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Center for Health and the Environment, UC Davis, Davis, CA, USA
| | - Anthony S. Wexler
- Air Quality Research Center, UC Davis, Davis, CA, USA
- Mechanical and Aerospace Engineering, Civil and Environmental Engineering, and Land, Air and Water Resources, UC Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, University of California Davis (UC Davis) School of Veterinary Medicine, Davis, CA, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
190
|
Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer's disease. Mol Neurodegener 2022; 17:19. [PMID: 35248147 PMCID: PMC8898063 DOI: 10.1186/s13024-022-00522-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The implication of gut microbiota in the control of brain functions in health and disease is a novel, currently emerging concept. Accumulating data suggest that the gut microbiota exert its action at least in part by modulating neuroinflammation. Given the link between neuroinflammatory changes and neuronal activity, it is plausible that gut microbiota may affect neuronal functions indirectly by impacting microglia, a key player in neuroinflammation. Indeed, increasing evidence suggests that interplay between microglia and synaptic dysfunction may involve microbiota, among other factors. In addition to these indirect microglia-dependent actions of microbiota on neuronal activity, it has been recently recognized that microbiota could also affect neuronal activity directly by stimulation of the vagus nerve. MAIN MESSAGES The putative mechanisms of the indirect and direct impact of microbiota on neuronal activity are discussed by focusing on Alzheimer's disease, one of the most studied neurodegenerative disorders and the prime cause of dementia worldwide. More specifically, the mechanisms of microbiota-mediated microglial alterations are discussed in the context of the peripheral and central inflammation cross-talk. Next, we highlight the role of microbiota in the regulation of humoral mediators of peripheral immunity and their impact on vagus nerve stimulation. Finally, we address whether and how microbiota perturbations could affect synaptic neurotransmission and downstream cognitive dysfunction. CONCLUSIONS There is strong increasing evidence supporting a role for the gut microbiome in the pathogenesis of Alzheimer's disease, including effects on synaptic dysfunction and neuroinflammation, which contribute to cognitive decline. Putative early intervention strategies based on microbiota modulation appear therapeutically promising for Alzheimer's disease but still require further investigation.
Collapse
Affiliation(s)
- Diane Bairamian
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Sha Sha
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Nathalie Rolhion
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Paris Center for Microbiome Medicine, PaCeMM, FHU, Paris, France
| | - Harry Sokol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Microbiota, Gut and Inflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
- Paris Center for Microbiome Medicine, PaCeMM, FHU, Paris, France
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, F-75012 Paris, France
- INRAE Micalis & AgroParisTech, Jouy en Josas, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| | - Cynthia A. Lemere
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115 USA
| | - Slavica Krantic
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, F-75012 Paris, France
| |
Collapse
|
191
|
Hang Z, Cai S, Lei T, Zhang X, Xiao Z, Wang D, Li Y, Bi W, Yang Y, Deng S, Wang L, Li Q, Du H. Transfer of Tumor-Bearing Mice Intestinal Flora Can Ameliorate Cognition in Alzheimer's Disease Mice. J Alzheimers Dis 2022; 86:1287-1300. [PMID: 35180124 DOI: 10.3233/jad-215495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fecal microbiota transplant (FMT) is a potential treatment approach for many diseases. Alzheimer's disease (AD) and cancer have been proven to have a specific antagonistic relationship to FMT. OBJECTIVE This article aims to explore whether intestinal flora transplantation from cancer individuals can ameliorate cognitive impairment. METHODS Morris water maze and object recognition tests were performed to assess cognitive function after the fecal flora from tumor-bearing and WT mice were transplanted into AD mice by gavage. The effect of flora transplantation on AD was analyzed by thioflavin T staining, western blot, and 16S RNA sequencing. RESULTS AD mice with FMT significantly improved short-term memory level and cognitive ability compared with Tg + NaCl group. Inflammatory factors in the plasma were regulated, and Aβ plaques burden in the hippocampus and cortex were decreased. FMT in the tumor-bearing group showed a higher significant amelioration in symptoms compared to the healthy group. 16S RNA sequencing revealed that FMT treatments could reverse the increased Firmicutes and Prevotella and the decreased Bacteroidetes, Bacteroides, and Sutterella in AD mice. AD mice transplanted with tumor-bearing mice feces additionally increased the density of Oscillospira, Odoribacter, and AF12. Furthermore, the predicted functional analyses showed that the metabolism of inorganic and organic salts in the intestinal flora of AD mice was also reversed by FMT. CONCLUSION Intestinal flora transplantation from tumor-bearing mice can ameliorate the cognitive impairment of AD mice.
Collapse
Affiliation(s)
- Zhongci Hang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shanglin Cai
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Tong Lei
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhuangzhuang Xiao
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Donghui Wang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yingxian Li
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China
| | - Wangyu Bi
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yanjie Yang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shiwen Deng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Li Wang
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Quanhai Li
- Cell Therapy Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Immunology, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongwu Du
- Daxing Research Institute, University of Science and Technology Beijing, Beijing, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
192
|
Varesi A, Pierella E, Romeo M, Piccini GB, Alfano C, Bjørklund G, Oppong A, Ricevuti G, Esposito C, Chirumbolo S, Pascale A. The Potential Role of Gut Microbiota in Alzheimer’s Disease: from Diagnosis to Treatment. Nutrients 2022; 14:nu14030668. [PMID: 35277027 PMCID: PMC8840394 DOI: 10.3390/nu14030668] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/04/2022] Open
Abstract
Gut microbiota is emerging as a key regulator of many disease conditions and its dysregulation is implicated in the pathogenesis of several gastrointestinal and extraintestinal disorders. More recently, gut microbiome alterations have been linked to neurodegeneration through the increasingly defined gut microbiota brain axis, opening the possibility for new microbiota-based therapeutic options. Although several studies have been conducted to unravel the possible relationship between Alzheimer’s Disease (AD) pathogenesis and progression, the diagnostic and therapeutic potential of approaches aiming at restoring gut microbiota eubiosis remain to be fully addressed. In this narrative review, we briefly summarize the role of gut microbiota homeostasis in brain health and disease, and we present evidence for its dysregulation in AD patients. Based on these observations, we then discuss how dysbiosis might be exploited as a new diagnostic tool in early and advanced disease stages, and we examine the potential of prebiotics, probiotics, fecal microbiota transplantation, and diets as complementary therapeutic interventions on disease pathogenesis and progression, thus offering new insights into the diagnosis and treatment of this devastating and progressive disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
- Almo Collegio Borromeo, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Marcello Romeo
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy;
| | | | - Claudia Alfano
- Department of Emergency Medicine and Surgery, IRCCS Fondazione Policlinico San Matteo, 27100 Pavia, Italy;
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), 8610 Mo i Rana, Norway;
| | - Abigail Oppong
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (E.P.); (A.O.)
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
- Correspondence: (A.V.); (G.R.)
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37121 Verona, Italy;
| | - Alessia Pascale
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
193
|
Waller KMJ, Leong RW, Paramsothy S. An update on fecal microbiota transplantation for the treatment of gastrointestinal diseases. J Gastroenterol Hepatol 2022; 37:246-255. [PMID: 34735024 DOI: 10.1111/jgh.15731] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Our understanding of the microbiome and its implications for human health and disease continues to develop. Fecal microbiota transplantation (FMT) is now an established treatment for recurrent Clostridioides difficile infection. There is also increasing evidence for the efficacy of FMT in inducing remission for mild-moderate ulcerative colitis. However, for other indications, data for FMT are limited, with randomized controlled trials rare, typically small and often conflicting. Studies are continuing to explore the role of FMT for many other conditions, including Crohn's disease, functional gut disorders, metabolic syndrome, modulating responses to chemotherapy, eradication of multidrug resistant organisms, and the gut-brain axis. In light of safety, logistical, and regulatory challenges, there is a move to standardized products including narrow spectrum consortia. However, the mechanisms underpinning FMT remain incompletely understood, including the role of non-bacterial components, which may limit success of novel microbial approaches.
Collapse
Affiliation(s)
- Karen M J Waller
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rupert W Leong
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sudarshan Paramsothy
- Gastroenterology and Liver Services, Concord Repatriation General Hospital, Sydney, New South Wales, Australia.,Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
194
|
Verhaar BJH, Hendriksen HMA, de Leeuw FA, Doorduijn AS, van Leeuwenstijn M, Teunissen CE, Barkhof F, Scheltens P, Kraaij R, van Duijn CM, Nieuwdorp M, Muller M, van der Flier WM. Gut Microbiota Composition Is Related to AD Pathology. Front Immunol 2022; 12:794519. [PMID: 35173707 PMCID: PMC8843078 DOI: 10.3389/fimmu.2021.794519] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/31/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Several studies have reported alterations in gut microbiota composition of Alzheimer's disease (AD) patients. However, the observed differences are not consistent across studies. We aimed to investigate associations between gut microbiota composition and AD biomarkers using machine learning models in patients with AD dementia, mild cognitive impairment (MCI) and subjective cognitive decline (SCD). Materials and Methods We included 170 patients from the Amsterdam Dementia Cohort, comprising 33 with AD dementia (66 ± 8 years, 46%F, mini-mental state examination (MMSE) 21[19-24]), 21 with MCI (64 ± 8 years, 43%F, MMSE 27[25-29]) and 116 with SCD (62 ± 8 years, 44%F, MMSE 29[28-30]). Fecal samples were collected and gut microbiome composition was determined using 16S rRNA sequencing. Biomarkers of AD included cerebrospinal fluid (CSF) amyloid-beta 1-42 (amyloid) and phosphorylated tau (p-tau), and MRI visual scores (medial temporal atrophy, global cortical atrophy, white matter hyperintensities). Associations between gut microbiota composition and dichotomized AD biomarkers were assessed with machine learning classification models. The two models with the highest area under the curve (AUC) were selected for logistic regression, to assess associations between the 20 best predicting microbes and the outcome measures from these machine learning models while adjusting for age, sex, BMI, diabetes, medication use, and MMSE. Results The machine learning prediction for amyloid and p-tau from microbiota composition performed best with AUCs of 0.64 and 0.63. Highest ranked microbes included several short chain fatty acid (SCFA)-producing species. Higher abundance of [Clostridium] leptum and lower abundance of [Eubacterium] ventriosum group spp., Lachnospiraceae spp., Marvinbryantia spp., Monoglobus spp., [Ruminococcus] torques group spp., Roseburia hominis, and Christensenellaceae R-7 spp., was associated with higher odds of amyloid positivity. We found associations between lower abundance of Lachnospiraceae spp., Lachnoclostridium spp., Roseburia hominis and Bilophila wadsworthia and higher odds of positive p-tau status. Conclusions Gut microbiota composition was associated with amyloid and p-tau status. We extend on recent studies that observed associations between SCFA levels and AD CSF biomarkers by showing that lower abundances of SCFA-producing microbes were associated with higher odds of positive amyloid and p-tau status.
Collapse
Affiliation(s)
- Barbara J. H. Verhaar
- Department of Internal Medicine - Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Heleen M. A. Hendriksen
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Francisca A. de Leeuw
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Astrid S. Doorduijn
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Mardou van Leeuwenstijn
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- University College London (UCL) Institutes of Neurology, Faculty of Brain Sciences, London, United Kingdom
| | - Philip Scheltens
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus Medical Center (MC), Rotterdam, Netherlands
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam, Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Majon Muller
- Department of Internal Medicine - Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
- Department of Epidemiology and Data Science, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
195
|
Wan J, Zhou S, Mea HJ, Guo Y, Ku H, Urbina BM. Emerging Roles of Microfluidics in Brain Research: From Cerebral Fluids Manipulation to Brain-on-a-Chip and Neuroelectronic Devices Engineering. Chem Rev 2022; 122:7142-7181. [PMID: 35080375 DOI: 10.1021/acs.chemrev.1c00480] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Remarkable progress made in the past few decades in brain research enables the manipulation of neuronal activity in single neurons and neural circuits and thus allows the decipherment of relations between nervous systems and behavior. The discovery of glymphatic and lymphatic systems in the brain and the recently unveiled tight relations between the gastrointestinal (GI) tract and the central nervous system (CNS) further revolutionize our understanding of brain structures and functions. Fundamental questions about how neurons conduct two-way communications with the gut to establish the gut-brain axis (GBA) and interact with essential brain components such as glial cells and blood vessels to regulate cerebral blood flow (CBF) and cerebrospinal fluid (CSF) in health and disease, however, remain. Microfluidics with unparalleled advantages in the control of fluids at microscale has emerged recently as an effective approach to address these critical questions in brain research. The dynamics of cerebral fluids (i.e., blood and CSF) and novel in vitro brain-on-a-chip models and microfluidic-integrated multifunctional neuroelectronic devices, for example, have been investigated. This review starts with a critical discussion of the current understanding of several key topics in brain research such as neurovascular coupling (NVC), glymphatic pathway, and GBA and then interrogates a wide range of microfluidic-based approaches that have been developed or can be improved to advance our fundamental understanding of brain functions. Last, emerging technologies for structuring microfluidic devices and their implications and future directions in brain research are discussed.
Collapse
Affiliation(s)
- Jiandi Wan
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Sitong Zhou
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Hing Jii Mea
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Yaojun Guo
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Hansol Ku
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
| | - Brianna M Urbina
- Biochemistry, Molecular, Cellular and Developmental Biology Program, University of California, Davis, California 95616, United States
| |
Collapse
|
196
|
Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G, Miani M, Patterson E, Pot B, Shortt C, Vauzour D. The microbiota-gut-brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 2022; 79:80. [PMID: 35044528 PMCID: PMC8770392 DOI: 10.1007/s00018-021-04060-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The gut and brain link via various metabolic and signalling pathways, each with the potential to influence mental, brain and cognitive health. Over the past decade, the involvement of the gut microbiota in gut-brain communication has become the focus of increased scientific interest, establishing the microbiota-gut-brain axis as a field of research. There is a growing number of association studies exploring the gut microbiota's possible role in memory, learning, anxiety, stress, neurodevelopmental and neurodegenerative disorders. Consequently, attention is now turning to how the microbiota can become the target of nutritional and therapeutic strategies for improved brain health and well-being. However, while such strategies that target the gut microbiota to influence brain health and function are currently under development with varying levels of success, still very little is yet known about the triggers and mechanisms underlying the gut microbiota's apparent influence on cognitive or brain function and most evidence comes from pre-clinical studies rather than well controlled clinical trials/investigations. Filling the knowledge gaps requires establishing a standardised methodology for human studies, including strong guidance for specific focus areas of the microbiota-gut-brain axis, the need for more extensive biological sample analyses, and identification of relevant biomarkers. Other urgent requirements are new advanced models for in vitro and in vivo studies of relevant mechanisms, and a greater focus on omics technologies with supporting bioinformatics resources (training, tools) to efficiently translate study findings, as well as the identification of relevant targets in study populations. The key to building a validated evidence base rely on increasing knowledge sharing and multi-disciplinary collaborations, along with continued public-private funding support. This will allow microbiota-gut-brain axis research to move to its next phase so we can identify realistic opportunities to modulate the microbiota for better brain health.
Collapse
Affiliation(s)
| | - Lucie Geurts
- International Life Sciences Institute, European Branch, Brussels, Belgium.
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Michela Miani
- International Life Sciences Institute, European Branch, Brussels, Belgium
| | | | - Bruno Pot
- Yakult Europe BV, Almere, The Netherlands
| | | | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
197
|
Chen P, Tang X. Gut Microbiota as Regulators of Th17/Treg Balance in Patients With Myasthenia Gravis. Front Immunol 2022; 12:803101. [PMID: 35003133 PMCID: PMC8732367 DOI: 10.3389/fimmu.2021.803101] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is an acquired neurological autoimmune disorder characterized by dysfunctional transmission at the neuromuscular junction, with its etiology associated with genetic and environmental factors. Anti-inflammatory regulatory T cells (Tregs) and pro-inflammatory T helper 17 (Th17) cells functionally antagonize each other, and the immune imbalance between them contributes to the pathogenesis of MG. Among the numerous factors influencing the balance of Th17/Treg cells, the gut microbiota have received attention from scholars. Gut microbial dysbiosis and altered microbial metabolites have been seen in patients with MG. Therefore, correcting Th17/Treg imbalances may be a novel therapeutic approach to MG by modifying the gut microbiota. In this review, we initially review the association between Treg/Th17 and the occurrence of MG and subsequently focus on recent findings on alterations of gut microbiota and microbial metabolites in patients with MG. We also explore the effects of gut microbiota on Th17/Treg balance in patients with MG, which may provide a new direction for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Pan Chen
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
198
|
Wang XQ, Li H, Li XN, Yuan CH, Zhao H. Gut-Brain Axis: Possible Role of Gut Microbiota in Perioperative Neurocognitive Disorders. Front Aging Neurosci 2022; 13:745774. [PMID: 35002672 PMCID: PMC8727913 DOI: 10.3389/fnagi.2021.745774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/03/2021] [Indexed: 12/19/2022] Open
Abstract
Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.
Collapse
Affiliation(s)
- Xiao-Qing Wang
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - He Li
- Department of Anesthesiology, Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Nan Li
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Cong-Hu Yuan
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| | - Hang Zhao
- Department of Anesthesiology, School of Medicine, Affiliated Yancheng Hospital, Southeast University, Yancheng, China
| |
Collapse
|
199
|
Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, Mai V, Vedam-Mai V. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 2022; 13:782082. [PMID: 35069178 PMCID: PMC8776990 DOI: 10.3389/fnagi.2021.782082] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome-gut-brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome-gut-brain axis might play in the underlying pathological mechanisms of Parkinson's disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson's disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome-gut-brain axis in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emily M. Klann
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Upuli Dissanayake
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anjela Gurrala
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Farrer
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vinata Vedam-Mai
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
200
|
Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ, Zhang CM, Liang Y, Srinath A, Zhang X, Xia J, Olszewski M, Zhang X, Schipma MJ, Chang EB, Tanzi RE, Gilbert JA, Sisodia SS. Gut microbiota-driven brain Aβ amyloidosis in mice requires microglia. J Exp Med 2022; 219:e20200895. [PMID: 34854884 PMCID: PMC8647415 DOI: 10.1084/jem.20200895] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
We previously demonstrated that lifelong antibiotic (ABX) perturbations of the gut microbiome in male APPPS1-21 mice lead to reductions in amyloid β (Aβ) plaque pathology and altered phenotypes of plaque-associated microglia. Here, we show that a short, 7-d treatment of preweaned male mice with high-dose ABX is associated with reductions of Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes at 9 wk of age in male mice only. More importantly, fecal microbiota transplantation (FMT) from transgenic (Tg) or WT male donors into ABX-treated male mice completely restored Aβ amyloidosis, plaque-localized microglia morphologies, and Aβ-associated degenerative changes. Transcriptomic studies revealed significant differences between vehicle versus ABX-treated male mice and FMT from Tg mice into ABX-treated mice largely restored the transcriptome profiles to that of the Tg donor animals. Finally, colony-stimulating factor 1 receptor (CSF1R) inhibitor-mediated depletion of microglia in ABX-treated male mice failed to reduce cerebral Aβ amyloidosis. Thus, microglia play a critical role in driving gut microbiome-mediated alterations of cerebral Aβ deposition.
Collapse
Affiliation(s)
- Hemraj B. Dodiya
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Holly L. Lutz
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA
| | - Ian Q. Weigle
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL
| | | | | | | | - Yingxia Liang
- Department of Neurology, Harvard Medical School, Boston, MA
| | - Abhinav Srinath
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Xulun Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Jessica Xia
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Monica Olszewski
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | - Xiaoqiong Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL
| | | | - Eugene B. Chang
- Department of Digestive Diseases, The University of Chicago, Chicago, IL
| | | | - Jack A. Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA
| | | |
Collapse
|