151
|
Nojima Y, Aoki M, Re S, Hirano H, Abe Y, Narumi R, Muraoka S, Shoji H, Honda K, Tomonaga T, Mizuguchi K, Boku N, Adachi J. Integration of pharmacoproteomic and computational approaches reveals the cellular signal transduction pathways affected by apatinib in gastric cancer cell lines. Comput Struct Biotechnol J 2023; 21:2172-2187. [PMID: 37013003 PMCID: PMC10066531 DOI: 10.1016/j.csbj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Apatinib is known to be a highly selective vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor with anti-angiogenic and anti-tumor properties. In a phase III study, the objective response rate to apatinib was low. It remains unclear why the effectivity of apatinib varies among patients and what type of patients are candidates for the treatment. In this study, we investigated the anti-tumor efficacy of apatinib against 13 gastric cancer cell lines and found that it differed depending on the cell line. Using integrated wet and dry approaches, we showed that apatinib was a multi-kinase inhibitor of c-Kit, RAF1, VEGFR1, VEGFR2, and VEGFR3, predominantly inhibiting c-Kit. Notably, KATO-III, which was the most apatinib-sensitive among the gastric cancer cell lines investigated, was the only cell line expressing c-Kit, RAF1, VEGFR1, and VEGFR3 but not VEGFR2. Furthermore, we identified SNW1 as a molecule affected by apatinib that plays an important role in cell survival. Finally, we identified the molecular network related to SNW1 that was affected by treatment with apatinib. These results suggest that the mechanism of action of apatinib in KATO-III cells is independent of VEGFR2 and that the differential efficacy of apatinib was due to differences in expression patterns of receptor tyrosine kinases. Furthermore, our results suggest that the differential efficacy of apatinib in gastric cell lines may be attributed to SNW1 phosphorylation levels at a steady state. These findings contribute to a deeper understanding of the mechanism of action of apatinib in gastric cancer cells.
Collapse
Affiliation(s)
- Yosui Nojima
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560–8531, Japan
| | - Masahiko Aoki
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University Hospital, Kyoto 606–8507, Japan
| | - Suyong Re
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
| | - Hidekazu Hirano
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya 464–8681, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Satoshi Muraoka
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo 104–0045, Japan
- Department of Bioregulation, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo 113–8602, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Proteobiologics Co., Ltd., Osaka 567–0085, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research (ArCHER), National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Institute for Protein Research, Osaka University, Osaka 565–0871, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo 104–0045, Japan
- Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, Tokyo 108–8639, Japan
- Correspondence to: Department of Medical Oncology and General Medicine, IMSUT Hospital, Institute of Medical Science, University of Tokyo, 4–6-1 Minato-ku, Shiroganedai, Tokyo 108–8639, Japan.
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health, and Nutrition, Osaka 567–0085, Japan
- Laboratory of Clinical and Analytical Chemistry, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567–0085, Japan
- Correspondence to: Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7–6-8 Saito-asagi, Ibaraki, Osaka 567–0085, Japan.
| |
Collapse
|
152
|
Kumar P, Salve R, Paknikar KM, Gajbhiye V. Nucleolin aptamer conjugated MSNPs-PLR-PEG multifunctional nanoconstructs for targeted co-delivery of anticancer drug and siRNA to counter drug resistance in TNBC. Int J Biol Macromol 2023; 229:600-614. [PMID: 36586658 DOI: 10.1016/j.ijbiomac.2022.12.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
The emergence of drug resistance in cancer cells is among the major challenges for treating cancer. In the last few years, the co-delivery of drug and siRNA has shown promising results against drug-resistant cancers. In the present study, we developed mesoporous silica-based multifunctional nanocarrier for co-delivery against drug-resistant triple-negative breast cancer (TNBC) cells. We synthesized the nanocarrier by modifying mesoporous silica nanoparticles with poly-L-arginine, polyethylene glycol and AS1411 aptamer to impart siRNA binding ability, biocompatibility, and cancer cell specificity, respectively. We optimized the loading of doxorubicin (DOX) within the developed nanocarrier to avoid interference with siRNA binding. We ascertained the target specificity by performing a receptor blockade assay during cellular uptake studies. The cytotoxic efficacy of DOX and siRNA co-delivered using the developed nanocarrier was assessed using DOX-resistant MDA-MB-231 TNBC cells. The nanocarrier exhibited >10-fold and 40-fold reduction in the IC50 values of DOX due to co-delivery with BCl-xL and BCL-2 siRNA, respectively. The results were further validated using a 3-D in vitro cell culture system. This study demonstrates that the targeted co-delivery of drug and siRNA has a strong potential to overcome drug resistance in TNBC cells.
Collapse
Affiliation(s)
- Pramod Kumar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Indian Institute of Technology, Powai, Mumbai 400076, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
153
|
Wang J, Zhou Z. Estrogen-dependent activation of NCOA3 couples with p300 and NF-κB to mediate antiapoptotic genes in ER-positive breast cancer cells. Discov Oncol 2023; 14:28. [PMID: 36853387 PMCID: PMC9975134 DOI: 10.1007/s12672-023-00635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Circumvention of apoptosis by the elevation of antiapoptotic proteins is an important cause of carcinogenesis. The induction of antiapoptotic genes, including B-cell CLL/lymphoma 2 (BCL2), BCL2 related protein A1 (BCL2A1), BCL2 like 1 (BCL2L1), BCL2L2, and myeloid cell leukemia 1 (MCL1), has been observed in multiple cancers, including breast cancer. However, the underlying mechanisms of their overexpression are still being investigated. Here, we revealed that BCL2, BCL2A1, BCL2L2, and MCL1 but not BCL2L1 were overexpressed in estrogen receptor (ER)-positive breast cancer cells and clinical biopsies. Stimulation with estrogen in ER-positive cell lines resulted in a dose-dependent increase in BCL2, BCL2A1, BCL2L2, and MCL1 mRNA levels. Molecular investigation revealed that nuclear factor kappa B (NF-κB) recruited histone acetyltransferase p300 and nuclear receptor coactivator 3 (NCOA3) to form a transcriptional complex. This complex docked the promoters of BCL2, BCL2A1, BCL2L2, and MCL1 and activated their expression. Interestingly, estrogen exposure dose-dependently activated NCOA3. Depletion of the NCOA3-p300-NF-κB components or blockage of NCOA3 function with inhibitors (gossypol and bufalin) in ER-positive cells suppressed BCL2, BCL2A1, BCL2L2, and MCL1 expression, while also decreasing cell viability, colony formation, cell invasion, and tumor growth. Collectively, our results demonstrate an upstream signaling that activates four antiapoptotic genes in ER-positive breast cancer cells. Importantly, our results also imply that targeting NCOA3 or blocking the assembly of the NCOA3-p300-NF-κB complex may be promising therapeutic strategies for treating ER-positive breast cancer.
Collapse
Affiliation(s)
- Jun Wang
- Department of Breast Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi, China
| | - Zhiyong Zhou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 92 Aiguo Rd, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
154
|
Hom LM, Sun S, Campbell J, Liu P, Culbert S, Murphy IM, Schafer ZT. A role for fibroblast-derived SASP factors in the activation of pyroptotic cell death in mammary epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529458. [PMID: 36865231 PMCID: PMC9980130 DOI: 10.1101/2023.02.21.529458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
In normal tissue homeostasis, bidirectional communication between different cell types can shape numerous biological outcomes. Many studies have documented instances of reciprocal communication between fibroblasts and cancer cells that functionally change cancer cell behavior. However, less is known about how these heterotypic interactions shape epithelial cell function in the absence of oncogenic transformation. Furthermore, fibroblasts are prone to undergo senescence, which is typified by an irreversible cell cycle arrest. Senescent fibroblasts are also known to secrete various cytokines into the extracellular space; a phenomenon that is termed the senescence-associated secretory phenotype (SASP). While the role of fibroblast derived SASP factors on cancer cells has been well studied, the impact of these factors on normal epithelial cells remains poorly understood. We discovered that treatment of normal mammary epithelial cells with conditioned media (CM) from senescent fibroblasts (SASP CM) results in a caspase-dependent cell death. This capacity of SASP CM to cause cell death is maintained across multiple senescence-inducing stimuli. However, the activation of oncogenic signaling in mammary epithelial cells mitigates the ability of SASP CM to induce cell death. Despite the reliance of this cell death on caspase activation, we discovered that SASP CM does not cause cell death by the extrinsic or intrinsic apoptotic pathway. Instead, these cells die by an NLRP3, caspase-1, and gasdermin D (GSDMD)-dependent induction of pyroptosis. Taken together, our findings reveal that senescent fibroblasts can cause pyroptosis in neighboring mammary epithelial cells, which has implications for therapeutic strategies that perturb the behavior of senescent cells.
Collapse
|
155
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
156
|
Zhou C, Xiang Y, Ren Y, Li M, Gou X, Li W. Keratin19 promotes pancreatic cancer progression and poor prognosis via activating the Hedgehog pathway. Int J Oncol 2023; 62:43. [PMID: 36825581 PMCID: PMC9946805 DOI: 10.3892/ijo.2023.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer is a serious threat to human health, with strong invasiveness, rapid progression and poor prognosis. Tumors expressing keratin 19 (K19) have stronger invasiveness and a worse prognosis. However, the role and mechanism of K19 in pancreatic cancer have remained largely elusive. In the present study, K19 expression was detected in pancreatic cancer tissues, its effect on proliferation, apoptosis and metastasis of pancreatic cancer at the cellular, in vivo preclinical and clinical levels was evaluated and its effect on the Hedgehog pathway was analyzed. K19 was significantly overexpressed in pancreatic cancer, promoted pancreatic cancer proliferation and metastasis, inhibited tumor cell apoptosis and was associated with poor prognosis. Mechanistically, these effects were mediated through the activation of the Hedgehog pathway. In conclusion, K19 may be a novel target molecule for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Changsheng Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yi Xiang
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yantao Ren
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ming Li
- Xiamen Medicine Research Institute, Xiamen, Fujian 361005, P.R. China
| | - Xin Gou
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China,Correspondence to: Dr Xin Gou, Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, 83 Zhongshandong Road, Guiyang, Guizhou 550002, P.R. China, E-mail:
| | - Wengang Li
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Dr Wengang Li, School of Medicine, Xiamen University, 4221 Xiang'annan Road, Xiamen, Fujian 361102, P.R. China, E-mail:
| |
Collapse
|
157
|
Development of sulfonium tethered peptides conjugated with HDAC inhibitor to improve selective toxicity for cancer cells. Bioorg Med Chem 2023; 83:117213. [PMID: 36934526 DOI: 10.1016/j.bmc.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
The anti-cancer peptides emerged as new weapons for cancer therapy due to their potent toxicity toward various cancer cells. However, their therapeutic promise is often limited by non-specific toxicity to normal cells. How to improve peptides' selectivity to cancer cells is always a matter to solve. In this manuscript, we designed a sulfonium tethered lytic peptide conjugated with a HDAC inhibitor to improve the selectivity of cancer cells. The sulfonium tethered lytic peptide with improved hydrophilicity and positive charge showed reduced toxicity to both cancer cells and normal cells. When conjugated with the HDAC inhibitor, this peptide showed increased toxicity to cancer cells. Besides, the stabilized peptide HDAC conjugate showed better serum stability than the linear peptide conjugate. For cellular function, the stabilized peptide conjugate could induce cancer cell apoptosis, cell cycle arrest, and influence multiple signal pathways through transcriptome analysis. This design may provide an alternative approach for the development of safe and effective anti-cancer drugs.
Collapse
|
158
|
Wu Y, Li X, Ma M, Hu G, Fu X, Liu J. Characterization of the Dynamic Gastrointestinal Digests of the Preserved Eggs and Their Effect and Mechanism on HepG2 Cells. Foods 2023; 12:foods12040800. [PMID: 36832875 PMCID: PMC9955911 DOI: 10.3390/foods12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
Preserved eggs, an alkaline-fermented food, have been widely searched for their anti-inflammatory activity. Their digestive characteristics in the human gastrointestinal tract and anti-cancer mechanism have not been well explained. In this study, we investigated the digestive characteristics and anti-tumor mechanisms of preserved eggs using an in vitro dynamic human gastrointestinal-IV (DHGI-IV) model. During digestion, the sample pH dynamically changed from 7.01 to 8.39. The samples were largely emptied in the stomach with a lag time of 45 min after 2 h. Protein and fat were significantly hydrolyzed with 90% and 87% digestibility, respectively. Moreover, preserved eggs digests (PED) significantly increased the free radical scavenging activity of ABTS, DPPH, FRAP and hydroxyl groups by 15, 14, 10 and 8 times more than the control group, respectively. PED significantly inhibited the growth, cloning and migration of HepG2 cells at concentrations of 250-1000 μg/mL. Meanwhile, it induced apoptosis by up/down-regulating the expression of the pro-apoptotic factor Bak and the anti-apoptotic gene Bcl-2 in the mitochondrial pathway. PED (1000 μg/mL) treatment resulted in 55% higher ROS production than the control, which also led to apoptosis. Furthermore, PED down-regulated the expression of the pro-angiogenic genes HIF-1α and VEGF. These findings provided a reliable scientific reference for the study of the anti-tumor activity of preserved eggs.
Collapse
Affiliation(s)
- Yan Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiujuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| | - Gan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- National R&D Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
159
|
Huang Z, Song S, Zhang D, Bian Z, Han J. Protective effects of Tripterygium glycoside on IL-1β-induced inflammation and apoptosis of rat chondrocytes via microRNA-216a-5p/TLR4/NF-κB axis. Immunopharmacol Immunotoxicol 2023; 45:61-72. [PMID: 36052873 DOI: 10.1080/08923973.2022.2115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND This study is designed to fill the research gap concerning the efficacy of Tripterygium glycoside (TG) on Interleukin-1β (IL-1β)-induced inflammation and injury in chondrocytes. METHODS Chondrocytes were isolated from Sprague-Dawley rats. After the treatment with IL-1β and TG and transfection, the viability and apoptosis of chondrocytes were determined via Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-8 were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression levels of potential microRNAs (miRNAs, miRs) that may target toll-like receptor 4 (TLR4), as well as apoptosis- and TLR4/nuclear factor-κB (TLR4/NF-κB) pathway-associated factors were quantified using quantitative real-time (qRT) PCR and western blot. The targeting relationship between miR-216a-5p and TLR4 was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. RESULTS The viability was reduced yet the apoptosis and inflammation were promoted in IL-1β-treated chondrocytes, where upregulation of Bax, Cleaved caspase 3, TLR4, Myeloid differentiation factor 88 (MyD88), phosphorylation of P65 and IκBα yet downregulation of Bcl-2 and IκBα were evidenced. Strikingly, the above changes were reversed by TG. TG also offset the effects of IL-1β on repressing the expression of miR-216a-5p, the miRNA targeting TLR4. Additionally, TLR4 overexpression neutralized the impacts of TG upon viability, apoptosis, and TLR4 expression in IL-1β-treated chondrocytes, while all these effects induced by TLR4 overexpression could be restored by miR-216a-5p. CONCLUSIONS TG protects chondrocytes against IL-1β-induced inflammation and apoptosis via miR-216a-5p/TLR4/NF-κB axis.
Collapse
Affiliation(s)
- Zhen Huang
- Acupuncture and Massage Department, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Shuanglin Song
- Acupuncture and Massage Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Di Zhang
- Acupuncture and Massage Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Zhenyu Bian
- Orthopedics Department, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Jinsheng Han
- Massage Department, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, PR China
| |
Collapse
|
160
|
Zhou JY, Yang RR, Chang J, Song J, Fan ZS, Zhang YH, Lu CH, Jiang HL, Zheng MY, Zhang SL. Discovery and identification of a novel small molecule BCL-2 inhibitor that binds to the BH4 domain. Acta Pharmacol Sin 2023; 44:475-485. [PMID: 35918411 PMCID: PMC9889308 DOI: 10.1038/s41401-022-00936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The B-cell lymphoma 2 (BCL-2) protein family plays a pivotal role in regulating the apoptosis process. BCL-2, as an antiapoptotic protein in this family, mediates apoptosis resistance and is an ideal target for cell death strategies in cancer therapy. Traditional treatment modalities target BCL-2 by occupying the hydrophobic pocket formed by BCL-2 homology (BH) domains 1-3, while in recent years, the BH4 domain of BCL-2 has also been considered an attractive novel target. Herein, we describe the discovery and identification of DC-B01, a novel BCL-2 inhibitor targeting the BH4 domain, through virtual screening combined with biophysical and biochemical methods. Our results from surface plasmon resonance and cellular thermal shift assay confirmed that the BH4 domain is responsible for the interaction between BCL-2 and DC-B01. As evidenced by further cell-based experiments, DC-B01 induced cell killing in a BCL-2-dependent manner and triggered apoptosis via the mitochondria-mediated pathway. DC-B01 disrupted the BCL-2/c-Myc interaction and consequently suppressed the transcriptional activity of c-Myc. Moreover, DC-B01 inhibited tumor growth in vivo in a BCL‑2‑dependent manner. Collectively, these results indicate that DC-B01 is a promising BCL-2 BH4 domain inhibitor with the potential for further development.
Collapse
Affiliation(s)
- Jing-Yi Zhou
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
| | - Rui-Rui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, 393 Huaxiazhong Road, Shanghai, 200031, China
| | - Jie Chang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Jia Song
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zi-Sheng Fan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying-Hui Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China
| | - Cheng-Hao Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hua-Liang Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| | - Ming-Yue Zheng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, China.
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| | - Su-Lin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
161
|
Hu J, Ji Y, Miao T, Zheng S, Cui X, Hu J, Yang L, Li F. HPV 16 E6 promotes growth and metastasis of esophageal squamous cell carcinoma cells in vitro. Mol Biol Rep 2023; 50:1181-1190. [PMID: 36435921 DOI: 10.1007/s11033-022-07952-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies worldwide. Increasing evidence suggests that human papillomavirus (HPV) infection may be associated with the etiology of ESCC. However, the precise role of HPV in ESCC remains unclear. METHODS AND RESULTS Proliferation and apoptosis of ESCC cells upon infection with HPV16 E6 were detected using CCK-8 assays and Western blot analyses. The migration rate was measured with a wound healing assay, and a Transwell Matrigel invasion assay was used to detect the invasive ability. RT-qPCR was performed to detect the expression of E6AP, p53, and miR-34a. The proliferation rates were significantly higher in HPV16E6-transfected cell groups compared with the negative control groups. Bax protein expression was downregulated in HPV16E6-treated groups compared to the controls. The wound healing and Transwell Matrigel invasion assays indicated that HPV16 E6 infection could increase ESCC cell migration and invasion. Furthermore, E6AP, p53 and miR-34a expression were decreased in HPV16 E6-transfected cell lines. CONCLUSION Our results not only provide evidence that HPV16 E6 promotes cell proliferation, migration, and invasion in ESCC, but also suggests a correlation between HPV infection and E6AP, p53 and miR-34a expression. Consequently, HPV16 E6 may play an important role in ESCC development.
Collapse
Affiliation(s)
- JiaoJiao Hu
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
| | - Yu Ji
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Pathology Department, Jiangmen Maternity and Child Health Care Hospital, Guangdong, 529000, Jiangmen, People's Republic of China
| | - TingTing Miao
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
| | - ShiYao Zheng
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China
| | - XiaoBin Cui
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China
| | - JianMing Hu
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China
| | - Lan Yang
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China.
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China.
| | - Feng Li
- Department of Pathology, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, People's Republic of China.
- Department of Pathology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi University School of Medicine, 832000, Shihezi, Xinjiang, China.
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, 100020, Beijing, People's Republic of China.
| |
Collapse
|
162
|
Yao Q, Zhang H, Standish C, Grube J, Mañas A, Xiang J. Expression profile of the proapoptotic protein Bax in the human brain. Histochem Cell Biol 2023; 159:209-220. [PMID: 35951115 DOI: 10.1007/s00418-022-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2022] [Indexed: 11/27/2022]
Abstract
Bax is a well-known universal proapoptotic protein. Bax protein is detected in almost all human organs, and its expression levels can be correlated with disease progression and therapeutic efficacy in certain settings. Interestingly, increasing evidence has shown that mature neuronal cell death is often not typical apoptosis. Most results on the expression of Bax proteins (predominantly Baxα) in the human brain come from disease-oriented studies, and the data on Bax protein expression in the normal brain are limited and lack consistency due to many variable factors. Here, we analyzed Bax RNA and protein expression data from multiple databases and performed immunostaining of over 80 samples from 25 healthy subjects across 7 different brain regions. We found that Bax protein expression was heterogeneous across brain regions and individual subjects. Both neurons and glial cells, such as astrocytes, could be Bax positive, but Bax positivity appeared to be highly selective, even within the same cell type in the same region. Furthermore, Bax proteins could be localized in the cytosol (evenly spread or concentrated to one region), nucleus or nucleolus depending on the cell type. Such variation and distribution in Bax expression suggest that Bax may function differently in the human brain than in other organs.
Collapse
Affiliation(s)
- Qi Yao
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Huaiyuan Zhang
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Collin Standish
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Joshua Grube
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Adriana Mañas
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA
| | - Jialing Xiang
- Department of Biology, Lewis College of Science and Letters, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL, 60616, USA.
| |
Collapse
|
163
|
Ma C, Gu Y, Liu C, Tang X, Yu J, Li D, Liu J. Anti-cervical cancer effects of Compound Yangshe granule through the PI3K/AKT pathway based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115820. [PMID: 36220511 DOI: 10.1016/j.jep.2022.115820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Compound Yangshe granule is a characteristic Chinese preparation against cervical cancer used at Fudan University Shanghai Cancer Center, and it consists of Hedyotis Diffusae Herba, Solani Lyrati Herba, Rubiae Radix et Rhizoma, Echinopsis Radix, Angelicae Sinensis Radix, Codonopsis Radix and Atractylodis Macrocephalae Rhizoma. AIM OF THE STUDY The objective of the current study was to investigate the preclinical efficacy of compound Yangshe granule against cervical cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS Antitumor effect of the preparation was investigated in U14 cells in vitro and subcutaneous xenograft mice in vivo. The underlying mechanisms were investigated by through network pharmacological analysis and identified by in vitro study. The components of compound Yangshe granule were collected from the Traditional Chinese Medicine Systems Pharmacology database, and the corresponding targets were predicted by the SwissTargetPrediction database. The targets involved in cervical cancer were collected from the GeneCards, Online Mendelian Inheritance in Man and DrugBank databases. A protein‒protein interaction network was constructed by using the String platform. The drug-disease-target network was plotted by Cytoscape software. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were performed to investigate hub targets. RESULTS After treatment with 0.5-10 mg/mL compound Yangshe granule, the survival rates of U14 cells gradually declined to 53.32% for 24 h, 23.62% for 48 h, and 12.81% for 72 h. The apoptosis rates of U14 cells gradually increased to 15.52% for 24 h, 23.87% for 48 h, and 65.01% for 72 h after treatment with 2-10 mg/mL compound Yangshe granule. After oral administration of compound Yangshe granule by xenograft mice, the tumor inhibition rates reached 52.27%, 74.62%, and 82.70% in the low, middle, and high dose groups, respectively. According to the network pharmacological analysis, quercetin, luteolin and naringenin were the most bioactive ingredients of the preparation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that compound Yangshe granule may combat cervical cancer through the PI3K/AKT pathway. CONCLUSION In summary, network pharmacology combined with biological experiments demonstrated that the main bioactive components including quercetin, luteolin and naringenin could inhibit the tumor growth by regulating the PI3K/AKT pathway and Bcl-2 family. Thus, compound Yangshe granule may be a promising adjuvant therapy for cervical cancer.
Collapse
Affiliation(s)
- Chao Ma
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chang Liu
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianchao Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
164
|
Zhao T, He Q, Xie S, Zhan H, Jiang C, Lin S, Liu F, Wang C, Chen G, Zeng H. A novel Mcl-1 inhibitor synergizes with venetoclax to induce apoptosis in cancer cells. Mol Med 2023; 29:10. [PMID: 36658493 PMCID: PMC9854187 DOI: 10.1186/s10020-022-00565-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Evading apoptosis by overexpression of anti-apoptotic Bcl-2 family proteins is a hallmark of cancer cells and the Bcl-2 selective inhibitor venetoclax is widely used in the treatment of hematologic malignancies. Mcl-1, another anti-apoptotic Bcl-2 family member, is recognized as the primary cause of resistance to venetoclax treatment. However, there is currently no Mcl-1 inhibitor approved for clinical use. METHODS Paired parental and Mcl-1 knockout H1299 cells were used to screen and identify a small molecule named MI-238. Immunoprecipitation (IP) and flow cytometry assay were performed to analyze the activation of pro-apoptotic protein Bak. Annexin V staining and western blot analysis of cleaved caspase 3 were employed to measure the cell apoptosis. Mouse xenograft AML model using luciferase-expressing Molm13 cells was employed to evaluate in vivo therapeutic efficacy. Bone marrow samples from newly diagnosed AML patients were collected to evaluate the therapeutic potency. RESULTS Here, we show that MI-238, a novel and specific Mcl-1 inhibitor, can disrupt the association of Mcl-1 with BH3-only pro-apoptotic proteins, selectively leading to apoptosis in Mcl-1 proficient cells. Moreover, MI-238 treatment also potently induces apoptosis in acute myeloid leukemia (AML) cells. Notably, the combined treatment of MI-238 with venetoclax exhibited strong synergistic anti-cancer effects in AML cells in vitro, MOLM-13 xenografts mouse model and AML patient samples. CONCLUSIONS This study identified a novel and selective Mcl-1 inhibitor MI-238 and demonstrated that the development of MI-238 provides a novel strategy to improve the outcome of venetoclax therapy in AML.
Collapse
Affiliation(s)
- Tianming Zhao
- grid.412601.00000 0004 1760 3828Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Qiang He
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Shurong Xie
- grid.412601.00000 0004 1760 3828Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Huien Zhan
- grid.412601.00000 0004 1760 3828Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Cheng Jiang
- grid.254147.10000 0000 9776 7793Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009 China
| | - Shengbin Lin
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China
| | - Fangshu Liu
- grid.412601.00000 0004 1760 3828Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| | - Cong Wang
- grid.254147.10000 0000 9776 7793School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Guo Chen
- grid.258164.c0000 0004 1790 3548Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, 510632 China ,grid.254147.10000 0000 9776 7793School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198 China
| | - Hui Zeng
- grid.412601.00000 0004 1760 3828Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630 China
| |
Collapse
|
165
|
MAPK Cascade Signaling Is Involved in α-MMC Induced Growth Inhibition of Multiple Myeloma MM.1S Cells via G2 Arrest and Mitochondrial-Pathway-Dependent Apoptosis In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16010124. [PMID: 36678620 PMCID: PMC9867419 DOI: 10.3390/ph16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple myeloma is a hematological malignancy characterized by the unrestricted proliferation of plasma cells that secrete monoclonal immunoglobulins in the bone marrow. Alpha-momorcharin (α-MMC) is a type I ribosome-inactivating protein extracted from the seeds of the edible plant Momordica charantia L., which has a variety of biological activities. This study aimed to investigate the inhibitory effect of α-MMC on the proliferation of multiple myeloma MM.1S cells and the molecular mechanism of MM.1S cell death induced through the activation of cell signal transduction pathways. The cell counting kit-8 (CCK-8) assay was used to determine the inhibitory effect of α-MMC on the proliferation of MM.1S cells and its toxic effect on normal human peripheral blood mononuclear cells (PBMCs). The effect of α-MMC on the MM.1S cells' morphology was observed via inverted microscope imaging. The effects of α-MMC on the MM.1S cell cycle, mitochondrial membrane potential (MMP), and apoptosis were explored using propidium iodide, JC-1, annexin V- fluorescein isothiocyanate/propidium iodide fluorescence staining, and flow cytometry (FCM) analysis. Western blot was used to detect the expressions levels of apoptosis-related proteins and MAPK-signaling-pathway-related proteins in MM.1S cells induced by α-MMC. The results of the CCK-8 showed that in the concentration range of no significant toxicity to PBMCs, α-MMC inhibited the proliferation of MM.1S cells in a time-dependent and concentration-dependent manner, and the IC50 value was 13.04 and 7.518 μg/mL for 24 and 48 h, respectively. Through inverted microscope imaging, it was observed that α-MMC induced a typical apoptotic morphology in MM.1S cells. The results of the FCM detection and analysis showed that α-MMC could arrest the MM.1S cells cycle at the G2 phase, decrease the MMP, and induce cell apoptosis. Western blot analysis found that α-MMC upregulated the expression levels of Bax, Bid, cleaved caspase-3, and cleaved PARP, and downregulated the expression levels of Mcl-1. At the same time, α-MMC decreased the expression levels of p-c-Raf, p-MEK1/2, p-ERK1/2, p-MSK1, and p-P90RSK, and increased the expression levels of p-p38, p-SPAK/JNK, p-c-Jun, and p-ATF2. The above results suggest that α-MMC can inhibit the proliferation of multiple myeloma MM.1S cells. MAPK cascade signaling is involved in the growth inhibition effect of α-MMC on MM.1S cells via cycle arrest and mitochondrial-pathway-dependent apoptosis.
Collapse
|
166
|
Tabbal M, Hachim MY, Jan RK, Adrian TE. Using publicly available datasets to identify population-based transcriptomic landscape contributing to the aggressiveness of breast cancer in young women. Front Genet 2023; 13:1039037. [PMID: 36685821 PMCID: PMC9845274 DOI: 10.3389/fgene.2022.1039037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction: Although the risk of breast cancer increases with advancing age, some regions have larger number of young breast cancer patients (≤45 years-old), such as the Middle East, Eastern Asia, and North Africa, with more aggressive and poorly differentiated tumors. We aimed to conduct an in-silico analysis in an attempt to understand the aggressive nature of early-onset breast cancer, and to identify potential drivers of early-onset breast cancer using gene expression profiling datasets in a population-dependent manner. Methods: Functional genomics experiments data were acquired from cBioPortal database for cancer genomics, followed by the stratification of patients based on the age at representation of breast cancer and race. Differential gene expression analysis and gene amplification status analysis were carried out, followed by hub gene, transcription factor, and signalling pathway identification. Results: PAM50 subtype analysis revealed that young patients (≤45 years-old) had four-fold more basal tumors and worst progression-free survival (median of 101 months), compared with the 45-65 years group (median of 168 months). Fourteen genes were amplified in more than 14% of patients with an early-onset breast cancer. Interestingly, FREM2, LINC00332, and LINC00366 were exclusively amplified in younger patients. Gene expression data from three different populations (Asian, White, and African) revealed a unique transcriptomic profile of young patients, which was also reflected on the PAM50 subtype analysis. Our data indicates a higher tendency of young African patients to develop basal tumors, while young Asian patients are more prone to developing Luminal A tumors. Most genes that were found to be upregulated in younger patients are involved in important signaling pathways that promote cancer progression and metastasis, such as MAPK pathway, Reelin pathway and the PI3K/Akt pathway. Conclusion: This study provides strong evidence that the molecular profile of tumors derived from young breast cancer patients of different populations is unique and may explain the aggressiveness of these tumors, stressing the need to conduct population- based multi-omic analyses to identify the potential drivers for tumorigenesis and molecular profiles of young breast cancer patients.
Collapse
Affiliation(s)
| | | | | | - Thomas E. Adrian
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates
| |
Collapse
|
167
|
Saleh MA, Antar SA, Abdo W, Ashour A, Zaki AA. Genistin modulates high-mobility group box protein 1 (HMGB1) and nuclear factor kappa-B (NF-κB) in Ehrlich-ascites-carcinoma-bearing mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:966-978. [PMID: 35907070 DOI: 10.1007/s11356-022-22268-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Cancer is the world's second-largest cause of death. Although there are numerous cancer treatment options, they are typically uncomfortable owing to side effects and ineffectual due to increased resistance to traditional anti-cancer medications or radiation therapy. A key method in cancer treatment is to target delayed/inhibited inflammation and apoptosis, which are very active areas of research. Natural chemicals originating from plants are of particular interest because of their high bioavailability, safety, few side effects, and, most importantly, cost-effectiveness. Flavonoids have become incredibly common as anti-cancer medications, with promising findings as cytotoxic anti-cancer agents that cause cancer cell death. Isolated compound (genistin) was evaluated for in vitro antiproliferative activity against breast cancer cell line (MCF-7 and MDA-MB-231). The compound exhibited good cytotoxic activities against both cell lines. In vivo antiproliferative efficacy was also investigated in Ehrlich's ascites carcinoma (EAC). Compared to the control group, genistin revealed a significant decrease in tumor weight, volume, high-mobility group box1 (HMGB1), and nuclear factor-kappa B (NF-κB) contents. On the other hand, B-cell lymphoma 2 (Bcl-2) contents increase suggesting an anti-inflammatory and anti-apoptotic activity through inhibition of HMGB1 signaling and activating the Bcl-2 pathway.
Collapse
Affiliation(s)
- Mohamed A Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, UAE.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Samar A Antar
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Zaki
- Department of Pharmacognosy, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
168
|
Chan S, Wang X, Wang Z, Du Y, Zuo X, Chen J, Sun R, Zhang Q, Lin L, Yang Y, Yu Z, Zhao H, Zhang H, Chen W. CTSG Suppresses Colorectal Cancer Progression through Negative Regulation of Akt/mTOR/Bcl2 Signaling Pathway. Int J Biol Sci 2023; 19:2220-2233. [PMID: 37151875 PMCID: PMC10158020 DOI: 10.7150/ijbs.82000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/08/2023] [Indexed: 05/09/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal tumor worldwide, which is a severe malignant disease that threatens mankind. Cathepsin G (CTSG) has been reported to be associated with tumorigenesis, whereas its role in CRC is still unclear. This investigation aims to determine the function of CTSG in CRC. Our results indicated that CTSG was inhibited in CRC tissues, and patients with CTSG low expression have poor overall survival. Functional experiments revealed that CTSG overexpression suppressed CRC cell progression in vitro and in vivo, whereas CTSG suppression supports CRC development cells in vitro and in vivo. Mechanistically, CTSG overexpression suppressed Akt/mTOR signaling mechanism and elevated apoptotic-associated markers, and CTSG silencing activated Akt/mTOR signaling mechanisms and inhibited apoptotic-associated markers. Furthermore, the Akt suppression signaling pathway by MK2206 abolishes CTSG-silenced expression-induced cell viability and Bcl2 up-regulation in vitro and in vivo. Altogether, these outcomes demonstrate that CTSG may act as a tumor suppressor gene via Akt/mTOR/Bcl2-mediated anti-apoptotic signaling inactivation, and CTSG represents a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Youwen Du
- School of Life Sciences, Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaomin Zuo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Jiajie Chen
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Li Lin
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
| | - Yang Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Zhen Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Hu Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui, China
- Affiliated Chuzhou Hospital of Anhui Medical University, First People's Hospital of Chuzhou, Chuzhou 239000, Anhui, China
- ✉ Corresponding authors: W. Chen (Address: Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China, E-mail: and ) and H. Zhang (Address: Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China, E-mail: and )
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230022, Anhui, China
- ✉ Corresponding authors: W. Chen (Address: Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China, E-mail: and ) and H. Zhang (Address: Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China, E-mail: and )
| |
Collapse
|
169
|
Xiang G, Xing N, Wang S, Zhang Y. Antitumor effects and potential mechanisms of aconitine based on preclinical studies: an updated systematic review and meta-analysis. Front Pharmacol 2023; 14:1172939. [PMID: 37180714 PMCID: PMC10174313 DOI: 10.3389/fphar.2023.1172939] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Herbs originating from the Aconitum L. (Ranunculaceae), such as Aconitum carmichaelii Debeaux. (Wutou), Aconitum pendulum Busch. (Tiebangchui), and Aconitum kusnezoffii Reichb. (Caowu), etc. are highly valued for their medicinal properties. The roots and tubers of these herbs are commonly used to treat an array of ailments, including joint pain and tumors. The alkaloids present in them are the primary active components, with aconitine being the most notable. Aconitine has gained attention for its exceptional anti-inflammatory and analgesic properties, as well as its potential as an anti-tumor and cardiotonic agent. However, the exact process through which aconitine hinders the growth of cancerous cells and triggers their programmed cell death remains unclear. Therefore, we have undertaken a comprehensive systematic review and meta-analysis of the current research on the potential antitumor properties of aconitine. Methods: We conducted a thorough search of relevant preclinical studies in databases including PubMed, Web of Science, VIP, WanFang Data, CNKI, Embase, Cochrane Library, and National Center for Biotechnology Information (NCBI). The search was conducted up until 15 September 2022, and the data were statistically analyzed using RevMan 5.4 software. The number of tumor cell value-added, tumor cell apoptosis rate, thymus index (TI), and Bcl-2 gene expression level were the main indicators to be analyzed. Results: After applying the final inclusion criteria, a total of thirty-seven studies, comprising both in vivo and in vitro research were analyzed. The results showed that treatment with aconitine led to a significant reduction in tumor cell proliferation, a noteworthy increase in the rate of apoptosis among tumor cells, a decrease in the thymus index, and a reduction in the expression level of Bcl-2. These results suggested that aconitine could inhibit the proliferation, invasion, and migration abilities of tumor cells by regulating Bcl-2 etc., thereby enhancing the anti-tumor effects. Conclusion: In summary, our present study demonstrated that aconitine effectively reduced tumor size and volume, indicating a strong anti-tumor effect. Additionally, aconitine could increase the expression levels of caspase-3, Bax and other targets. Mechanistically, it may regulate the expression levels of Bax and Bcl-2 through the NF-κB signaling pathway, ultimately inhibiting tumor cell proliferation through autophagy.
Collapse
Affiliation(s)
- Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Research Center for Academic Inheritance and Innovation of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Shaohui Wang, ; Yi Zhang,
| |
Collapse
|
170
|
Wu J, Wang D, Zhou J, Li J, Xie R, Li Y, Huang J, Liu B, Qiu J. Gambogenic acid induces apoptosis and autophagy through ROS-mediated endoplasmic reticulum stress via JNK pathway in prostate cancer cells. Phytother Res 2023; 37:310-328. [PMID: 36086867 DOI: 10.1002/ptr.7614] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/11/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Prostate cancer (PCa) is the most common malignant tumor in males, which frequently develops into castration-resistant prostate cancer (CRPC) with limited therapies. Gambogenic acid (GNA), a flavonoids compound isolated from Gamboge, exhibits anti-tumor capacity in various cancers. Our results showed that GNA revealed not only antiproliferative and pro-apoptotic activities but also the induction of autophagy in PCa cells. In addition, autophagy inhibitor chloroquine enhanced the pro-apoptosis effect of GNA. Moreover, the activation of JNK pathway and the induction of apoptosis and autophagy triggered by GNA were attenuated by JNK inhibitor SP600125. We also found that GNA significantly promoted reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress. Meanwhile, suppressing ER stress with 4-phenylbutyric acid (4-PBA) markedly blocked the activation of JNK pathway induced by GNA. Further research indicated that ROS scavenger N-acetyl-L-cysteine (NAC) effectively abrogated ER stress and JNK pathway activation induced by GNA. Furthermore, NAC and 4-PBA significantly reversed GNA-triggered apoptosis and autophagy. Finally, GNA remarkably suppressed prostate tumor growth with low toxicity in vivo. In conclusion, the present study revealed that GNA induced apoptosis and autophagy through ROS-mediated ER stress via JNK signaling pathway in PCa cells. Thus, GNA might be a promising therapeutic drug against PCa.
Collapse
Affiliation(s)
- Jianjian Wu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Dejuan Wang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Juntao Li
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Ruoxin Xie
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Yiyuan Li
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Jiayu Huang
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Bihao Liu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| | - Jianguang Qiu
- Department of Urology, The Sixth Affiliated Hospital of Sun Yat-Sen Univerisity, Guangzhou, China
| |
Collapse
|
171
|
Shi G, Long Z, De la Vega RE, Behfar A, Moran SL, Evans C, Zhao C. Purified exosome product enhances chondrocyte survival and regeneration by modulating inflammation and promoting chondrogenesis. Regen Med 2023; 18:55-71. [PMID: 36255073 PMCID: PMC9732920 DOI: 10.2217/rme-2022-0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022] Open
Abstract
Aim: This study was to detect the effects of purified exosome product (PEP) on C28/I2 cells and chondrocytes derived from osteoarthritis patients. Materials & methods: Cell viability and apoptosis assays were used to detect the effect of PEP on cells. qRT-PCR and cell fluorescence assays were used to investigate the potential mechanism of PEP on cell chondrogenesis. Results: PEP was internalized by cells at a fast rate and enhanced cellular proliferation and migration while attenuating apoptosis. These findings reflect the fact that PEP can increase the expression of PCNA and reduce the expression of CASP3/7/9 and BAX. Conclusion: This study suggests an innovative strategy for chondrogenesis that could be applied to osteoarthritis repair in the future.
Collapse
Affiliation(s)
- Guidong Shi
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zeling Long
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
| | - Rodolfo E De la Vega
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55901, USA
- Department cBITE, MERLN Institute, Maastricht University, Maastricht, 6221, The Netherlands
| | - Atta Behfar
- Department of Cardiovascular Diseases, Van Cleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | - Steven L Moran
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
| | - Christopher Evans
- Musculoskeletal Gene Therapy Research Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55901, USA
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55901, USA
| |
Collapse
|
172
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
173
|
Salari Z, Khosravi A, Pourkhandani E, Molaakbari E, Salarkia E, Keyhani A, Sharifi I, Tavakkoli H, Sohbati S, Dabiri S, Ren G, Shafie’ei M. The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo. Front Oncol 2023; 13:1098429. [PMID: 36937441 PMCID: PMC10020515 DOI: 10.3389/fonc.2023.1098429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Epithelial ovarian cancer is very common in women and causes hundreds of deaths per year worldwide. Chemotherapy drugs including cisplatin have adverse effects on patients' health. Complementary treatments and the use of herbal medicines can help improve the performance of medicine. 6-Gingerol is the major pharmacologically active component of ginger. In this study, we compared the effects of 6-gingerol, cisplatin, and their combination in apoptotic and angiogenetic activities in silico, in test tubes, and in in vivo assays against two ovarian cancer cell lines: OVCAR-3 and human umbilical vein endothelial cells (HUVECs). Methods The drug-treated cell lines were evaluated for their cytotoxicity, cell cycle, and apoptotic and angiogenetic gene expression changes. Results The proportion of apoptosis treated by 6-gingerol coupled with cisplatin was significantly high. In the evaluation of the cell cycle, the combination therapy also showed a significant promotion of a higher extent of the S sequence. The expression of p53 level, Caspase-8, Bax, and Apaf1 genes was amplified again with combination therapy. Conversely, in both cell lines, the cumulative drug concentrations reduced the expression of VEGF, FLT1, KDR, and Bcl-2 genes. Similarly, in the control group, combination treatment significantly decreased the expression of VEGF, FLT1, KDR, and Bcl-2 genes in comparison to cisplatin alone. Conclusions The findings of the present study demonstrated that the cisplatin and 6-gingerol combination is more effective in inducing apoptosis and suppressing the angiogenesis of ovarian cancer cells than using each drug alone.
Collapse
Affiliation(s)
- Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Ahmad Khosravi, ; Elham Pourkhandani,
| | - Elham Pourkhandani
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Ahmad Khosravi, ; Elham Pourkhandani,
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Samira Sohbati
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Mohammad Shafie’ei
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
174
|
Pan F, Ma X, Tang X, Xing J, Sheng X, Chi H, Zhan W. Genome characterization of Hirame novirhabdovirus (HIRRV) isolate CNPo2015 and transcriptome analysis of Hirame natural embryo (HINAE) cells infected with CNPo2015. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108493. [PMID: 36509411 DOI: 10.1016/j.fsi.2022.108493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Hirame novirhabdovirus (HIRRV) is a fish rhabdovirus belonging to family Rhabdoviridae, genus Novirhabdovirus, which is highly contagious and virulent, and causes hemorrhagic disease in many fish species. In the present work, the whole genome sequence of HIRRV strain CNPo2015 that previously isolated from cultured flounders was obtained using high-throughput sequencing. It consists of 10,998 nucleotides and encodes six viral proteins arranged in order of 3'-N-P-M-G-NV-L-5'. Among Novirhabdovirus, L protein of CNPo2015 possessed the lowest amino acid sequence divergence with HIRRV isolate CA 9703 and HIRRV 080113, and the highest with Snakehead rhabdovirus. Furthermore, the immune response of Hirame natural embryo (HINAE) cell line to HIRRV infection was characterized by RNA-seq, and the results showed that 1976 differentially expressed genes (DEGs) including 1219 up-regulated and 727 down-regulated genes were identified in the HINAE cells infected with HIRRV at 48 h post infection (hpi). Several KEGG pathways were significantly enriched in the viral infected cells, such as cytokine-cytokine receptor interaction, JAK-STAT signaling pathway, cell cycle, apoptosis, RIG-I-like receptors signaling pathway and P13K-AKT signaling pathway. Post viral infection, the flow cytometric Annexin V/PI assay found that apoptotic rate of HINAE cells showed a slight increase within 3 days and then the early and late apoptotic rate were significantly increased to 41 ± 2.65% and 12.37 ± 2.61% at day 4, respectively. Meanwhile, qRT-PCR results also showed that six apoptosis-related genes (BCL2L1, CASPASE 3, CASPASE 10, FAS, AKT and CDK1) were significantly upregulated. This investigation has not only enriched our knowledge of sequence difference characteristics between CNPo2015 and other Novirhabdoviruses, but also provided a data basis for deeper understanding of immune responses in flounder cells post viral infection.
Collapse
Affiliation(s)
- Fenghuang Pan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| |
Collapse
|
175
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
176
|
Adamová B, Říhová K, Pokludová J, Beneš P, Šmarda J, Navrátilová J. Synergistic cytotoxicity of perifosine and ABT-737 to colon cancer cells. J Cell Mol Med 2022; 27:76-88. [PMID: 36523175 PMCID: PMC9806293 DOI: 10.1111/jcmm.17636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
An acidic environment and hypoxia within the tumour are hallmarks of cancer that contribute to cell resistance to therapy. Deregulation of the PI3K/Akt pathway is common in colon cancer. Numerous Akt-targeted therapies are being developed, the activity of Akt-inhibitors is, however, strongly pH-dependent. Combination therapy thus represents an opportunity to increase their efficacy. In this study, the cytotoxicity of the Akt inhibitor perifosine and the Bcl-2/Bcl-xL inhibitor ABT-737 was tested in colon cancer HT-29 and HCT-116 cells cultured in monolayer or in the form of spheroids. The efficacy of single drugs and their combination was analysed in different tumour-specific environments including acidosis and hypoxia using a series of viability assays. Changes in protein content and distribution were determined by immunoblotting and a "peeling analysis" of immunohistochemical signals. While the cytotoxicity of single agents was influenced by the tumour-specific microenvironment, perifosine and ABT-737 in combination synergistically induced apoptosis in cells cultured in both 2D and 3D independently on pH and oxygen level. Thus, the combined therapy of perifosine and ABT-737 could be considered as a potential treatment strategy for colon cancer.
Collapse
Affiliation(s)
- Barbora Adamová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kamila Říhová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jana Pokludová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Petr Beneš
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| | - Jan Šmarda
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jarmila Navrátilová
- Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,International Clinical Research CenterSt. Anne's University HospitalBrnoCzech Republic
| |
Collapse
|
177
|
Circ-CREBBP inhibits sperm apoptosis via the PI3K-Akt signaling pathway by sponging miR-10384 and miR-143-3p. Commun Biol 2022; 5:1339. [PMID: 36476986 PMCID: PMC9729231 DOI: 10.1038/s42003-022-04263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Male reproductive diseases are becoming increasingly prominent, and sperm quality is an important indicator to reflect these diseases. Seminal plasma extracellular vesicles (SPEVs) are involved in sperm motility. However, their effects on sperm remain unclear. Here, we identified 222 differentially expressed circRNAs in SPEVs between boars with high or low sperm motility. We found that circ-CREBBP promoted sperm motility and inhibited sperm apoptosis by sponging miR-10384 and miR-143-3p. In addition, miR-10384 and miR-143-3p can regulate the expression of MCL1, CREB1 and CREBBP. Furthermore, we demonstrated that MCL1 interacted directly with BAX and that CREBBP interacted with CREB1 in sperm. We showed that inhibition of circ-CREBBP can reduce the expression of MCL1, CREB1 and CREBBP and increase the expression of BAX and CASP3, thus promoting sperm apoptosis. Our results suggest that circ-CREBBP may be a promising biomarker and therapeutic target for male reproductive diseases.
Collapse
|
178
|
Paeoniflorin Protects against Acetaminophen-Induced Liver Injury in Mice via JNK Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238534. [PMID: 36500627 PMCID: PMC9739375 DOI: 10.3390/molecules27238534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022]
Abstract
BACKGROUND Drug-induced liver injury (DILI), represented by acetaminophen (APAP), is a common cause of acute liver failure in clinics. Paeoniflorin (PF) has been proven to demonstrate a significant hepatoprotective effect. However, it is still unclear whether it can be a potential agent against hepatotoxicity induced by APAP. This study aimed to explore the preventive and therapeutic effects and mechanisms of PF on APAP-induced liver injury. METHODS Different doses of PF (50, 100, and 200 mg/kg) were given to C57BL/6 male mice for five consecutive days. After 12 h of APAP (250 mg/kg i.p.) treatment, blood and liver tissues were collected and isolated for detection. RESULTS The results showed that the therapeutic effects of PF on APAP mice were presented in the downregulation of the content of serum indices and significantly improved hepatic tissue edema and inflammatory infiltration. Meanwhile, PF reduces the level of the mitochondrial metabolic enzyme. Ulteriorly, it was found that PF has a downregulating effect on the apoptotic reaction and could inhibit the protein expression of CYP2E1/JNK signaling, which in turn reduces the damage of APAP. CONCLUSION Our findings showed that PF acted as a protective agent against APAP-induced hepatotoxicity by inhibiting JNK-related signals, suggesting a novel insight into treating APAP-induced liver injury.
Collapse
|
179
|
Synthesis, antitumor, and apoptosis-inducing activities of novel 5-arylidenethiazolidine-2,4-dione derivatives: Histone deacetylases inhibitory activity and molecular docking study. Eur J Med Chem 2022; 244:114827. [DOI: 10.1016/j.ejmech.2022.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
|
180
|
Abdul Khaliq H, Alhouayek M, Quetin-Leclercq J, Muccioli GG. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases. Crit Rev Food Sci Nutr 2022; 64:4763-4788. [PMID: 36450301 DOI: 10.1080/10408398.2022.2145264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.
Collapse
Affiliation(s)
- Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
181
|
Extrinsic cell death pathway plasticity: a driver of clonal evolution in cancer? Cell Death Dis 2022; 8:465. [PMID: 36435845 PMCID: PMC9701215 DOI: 10.1038/s41420-022-01251-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/28/2022]
Abstract
Human cancers are known to adhere to basic evolutionary principles. During their journey from early transformation to metastatic disease, cancer cell populations have proven to be remarkably adaptive to different forms of intra- and extracellular selective pressure, including nutrient scarcity, oxidative stress, and anti-cancer immunity. Adaption may be achieved via the expansion of clones bearing driver mutations that optimize cellular fitness in response to the specific selective scenario, e.g., mutations facilitating evasion of cell death, immune evasion or increased proliferation despite growth suppression, all of which constitute well-established hallmarks of cancer. While great progress concerning the prevention, diagnosis and treatment of clinically apparent disease has been made over the last 50 years, the mechanisms underlying cellular adaption under selective pressure via the immune system during early carcinogenesis and its influence on cancer cell fate or disease severity remain to be clarified. For instance, evasion of cell death is generally accepted as a hallmark of cancer, yet recent decades have revealed that the extrinsic cell death machinery triggered by immune effector cells is composed of an astonishingly complex network of interacting—and sometimes compensating—modes of cell death, whose role in selective processes during early carcinogenesis remains obscure. Based upon recent advances in cell death research, here we propose a concept of cell death pathway plasticity in time shaping cancer evolution prior to treatment in an effort to offer new perspectives on how cancer cell fate may be determined by cell death pathway plasticity during early carcinogenesis.
Collapse
|
182
|
The antitumor activity of a novel GCN2 inhibitor in head and neck squamous cell carcinoma cell lines. Transl Oncol 2022; 27:101592. [PMID: 36436443 PMCID: PMC9694079 DOI: 10.1016/j.tranon.2022.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND General control nonderepressible 2 (GCN2) senses amino acid deprivation and activates activating transcription factor 4 (ATF4), which regulates many adaptive genes. We evaluated the impact of AST-0513, a novel GCN2 inhibitor, on the GCN2-ATF4 pathway. Additionally, we evaluated the antitumor effects of AST-0513 in amino acid deprivation in head and neck squamous cell carcinoma (HNSCC) cell lines. METHODS GCN2 expression in HNSCC patient tissues was measured by immunohistochemistry. Five HNSCC cell lines (SNU-1041, SNU-1066, SNU-1076, Detroit-562, FaDu) grown under amino acid deprivation conditions, were treated with AST-0513. After AST-0513 treatment, cell proliferation was measured by CCK-8 assay. Flow cytometry was used to evaluate apoptosis and cell cycle phase. In addition, immunoblotting was performed to evaluate the effect of AST-0513 on the GCN2-ATF4 pathway, cell cycle arrest, and apoptosis. RESULTS We demonstrated that GCN2 was highly expressed in HNSCC patient tissues. AST-0513 inhibited the GCN2-ATF4 pathway in all five HNSCC cell lines. Inhibiting the GCN2-ATF4 pathway during amino acid deprivation reduced HNSCC cell proliferation and prevented adaptation to nutrient stress. Moreover, AST-0513 treatment led to p21 and Cyclin B1 accumulation and G2/M phase cycle arrest. Also, apoptosis was increased, consistent with increased bax expression, increased bcl-xL phosphorylation, and decreased bcl-2 expression. CONCLUSION A novel GCN2 inhibitor, AST-0513, inhibited the GCN2-ATF4 pathway and has antitumor activity that inhibits proliferation and promotes cell cycle arrest and apoptosis. Considering the high expression of GCN2 in HNSCC patients, these results suggest the potential role of GCN2 inhibitor for the treatment of HNSCC.
Collapse
|
183
|
Gholipour AR, Jafari L, Ramezanpour M, Evazalipour M, Chavoshi M, Yousefbeyk F, Kargar Moghaddam SJ, Yekta Kooshali MH, Ramezanpour N, Daei P, Ghasemi S, Hamidi M. Apoptosis Effects of Oxalis corniculata L. Extract on Human MCF-7 Breast Cancer Cell Line:. Galen Med J 2022; 11:e2484. [PMID: 36698692 PMCID: PMC9838112 DOI: 10.31661/gmj.v11i.2484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Recently, the non-toxic properties of natural plant products have gained more focus as anticancer agents. Therefore, this study aimed to assess the apoptosis effects of the ethanolic extract of Oxalis corniculata on the MCF-7 breast cancer cell line.Materials and Methods: In this experimental study, aerial parts of O. corniculata were collected in Lahijan city (Iran), and after confirmation, they were dried and extracted with ethanol for 24 h. Then, the total phenolic and flavonoid contents of the extract were measured. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay was used to measure the antioxidant properties of the extract. Selected cell lines (MCF-7 and human dermal fibroblast) were cultured in 6-wells dishes (1×106 cells/well). After 72 h of treating the extract, cytotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of apoptotic genes (such as p53, bcl-2, bax, and CD95) was studied by real-time polymerase chain reaction (PCR). Results: The extract's total phenolic content was 31.30±02 μg of gallic acid equivalents/mg of dry extract, and the total flavonoid content was 49.61±04 μg of quercetin as equivalents/mg of extract. The antioxidant activity ofO. corniculata was measured at the dose of 619.2 μg/μl, indicating that it decreases cancer cell viability and enhances apoptosis. Within the half maximal inhibitory concentrations, real-time PCR revealed substantial increases in p53 (P<0.001), CD95 (P<0.05), and bcl-2 expression (P<0.05) in MCF-7 cells treated with O. corniculata. Conclusion: This study suggests that O. corniculata may cause apoptosis by oxidative stress in cancer cells.[GMJ.2022;11:e2484].
Collapse
Affiliation(s)
- Amir Reza Gholipour
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell and Tissue Research Institute, Tehran University of Medical Science Tehran, Iran
| | - Mahsa Ramezanpour
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehdi Evazalipour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Maral Chavoshi
- Department of Genetics and Developmental Biology, University of Vienna, Vienna, Austria
| | - Fatemeh Yousefbeyk
- Department of Pharmacognosy, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad Hossein Yekta Kooshali
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Cellular and Molecular Biology, Islamic Azad University, Lahijan, Iran
| | - Nahid Ramezanpour
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Puyan Daei
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
184
|
Boyenle ID, Ogunlana AT, Kehinde Oyedele AQ, Olokodana BK, Owolabi N, Salahudeen A, Aderenle OT, Oloyede TO, Adelusi TI. Reinstating apoptosis using putative Bcl-xL natural product inhibitors: Molecular docking and ADMETox profiling investigations. J Taibah Univ Med Sci 2022; 18:461-469. [PMID: 36818176 PMCID: PMC9906007 DOI: 10.1016/j.jtumed.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/17/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Objectives While a fine balance in the pro-apoptotic and anti-apoptotic family members of the B-cell lymphoma-2 (Bcl-2) protein family represents a normal signaling profile, a tilt in balance towards anti-apoptotic family members has fortified different forms of cancers with survival advantage and resistance against treatment. Induction of apoptosis is a key therapeutic approach in cancer drug discovery, and the inhibition of the anti-apoptotic B cell lymphoma extra-large (Bcl-xL) is a long-standing clinical target for cancer therapy. In this study, we combined computer-aided approaches to report putative binders for this target. Methods Before our virtual screening campaign, we conducted a redocking experiment strategy of the x-ray bound inhibitor of the Bcl-xL protein with some of the available docking software at our disposal to determine the software with the best efficiency for this screening. iGEMDOCK emerged to reproduce the x-ray crystallographic information and was used to dock the library of ligand, which was developed from diverse literature reporting compounds with anti-apoptotic profiles through the Bcl-2 family. Results Of the compounds in the library, alpha-mangostin and oubain scored as hits with binding energy values of -123.025 kcal/mol and -122.271 kcal/mol, respectively, which is more than -120.8 kcal/mol observed by the standard. Conclusions These compounds revealed a more binding affinity potential than ABT-737, which is a standard inhibitor of the protein. In addition, these scaffolds not only interact with relevant and hotspot residues for the inhibition of Bcl-xL but also possess good pharmacokinetic and excellent toxicity, an endpoint that should be considered for further testing and drug development.
Collapse
Affiliation(s)
- Ibrahim Damilare Boyenle
- Department of Nursing Science, College of Health Science, Crescent University, Abeokuta, Nigeria,Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Abdeen Tunde Ogunlana
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Abdul-Quddus Kehinde Oyedele
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria,Biochemistry and Nutrition Department, Nigeria Institute of Medical Research, Lagos, Nigeria
| | | | - Nurudeen Owolabi
- Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria
| | - Abdulmalik Salahudeen
- Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | | | - Temitope Isaac Adelusi
- Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria,Corresponding address: Computational Biology/Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, Nigeria.
| |
Collapse
|
185
|
Du X, Zhang X, Dong J, Zou N, Guo D, Yao W, Wang X, Li S, Song C, Yan K, Shen W, Zhu S. Irradiation-induced exosomal HMGB1 to confer radioresistance via the PI3K/AKT/FOXO3A signaling pathway in ESCC. J Transl Med 2022; 20:507. [PMID: 36335371 PMCID: PMC9636677 DOI: 10.1186/s12967-022-03720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Radioresistance is a major cause of treatment failure in esophageal squamous cell carcinoma (ESCC) radiotherapy, and the underlying mechanisms of radioresistance are still unclear. Irradiation (IR) stimulates changes in tumor-derived exosome contents, which can be taken up by recipient cells, playing an important role in the proliferation, cell cycle and apoptosis of recipient cells. This study investigated the effect of IR-induced exosomal high mobility group box 1 (HMGB1) on radioresistance in ESCC cells. Methods Plasma exosomes were isolated from 21 ESCC patients and 24 healthy volunteers, and the expression of HMGB1 was examined. Then, the therapeutic effect of radiotherapy was analyzed according to the different expression levels of plasma exosomal HMGB1 in ESCC patients. The uptake of exosomes by recipient cells was verified by immunofluorescence staining, and the localization of exosomes and HMGB1 in cells before and after IR was evaluated. The effects of IR-induced exosomes on cell proliferation, invasion, apoptosis, cell cycle distribution and radioresistance after HMGB1 knockdown were verified. Moreover, western blotting was used to measure changes in the expression of cyclin B1, CDK1, Bax, Bcl2, phosphorylated histone H2AX and the PI3K/AKT/FOXO3A pathway in the HMGB1-knockdown exosome group and the negative control group. Results The expression of HMGB1 in ESCC plasma exosomes was significantly increased compared with that in healthy volunteers, and high expression of HMGB1 in plasma exosomes was associated with radioresistance (P = 0.016). IR-induced the release of exosomal HMGB1 and promoted proliferation and radioresistance in recipient cells, with a sensitization enhancement ratio (SER) of 0.906 and 0.919, respectively. In addition, IR-induced exosomal HMGB1 promotes G2/M phase arrest by regulating the proteins cyclin B1 and CDK1, cooperating with the proteins Bax and Bcl2 to reduce the apoptosis rate through the PI3K/AKT/FOXO3A signaling pathway, and participated in IR-induced DNA damage repair through γH2AX. Conclusion These findings indicate that high expression of plasma exosomal HMGB1 is associated with an adverse radiotherapy response. IR-induced exosomal HMGB1 enhances the radioresistance of ESCC cells.
Collapse
|
186
|
Dang X, Cao D, Zhao J, Schank M, Khanal S, Nguyen LNT, Wu XY, Zhang Y, Zhang J, Jiang Y, Ning S, Wang L, El Gazzar M, Moorman JP, Yao ZQ. Mitochondrial topoisomerase 1 inhibition induces topological DNA damage and T cell dysfunction in patients with chronic viral infection. Front Cell Infect Microbiol 2022; 12:1026293. [PMID: 36405960 PMCID: PMC9669385 DOI: 10.3389/fcimb.2022.1026293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
T cells are crucial for controlling viral infections; however, the mechanisms that dampen their responses during viral infections remain incompletely understood. Here, we studied the role and mechanisms of mitochondrial topoisomerase 1 (Top1mt) inhibition in mitochondrial dysfunction and T cell dysregulation using CD4 T cells from patients infected with HCV or HIV and compared it with CD4 T cells from healthy individuals following treatment with Top1 inhibitor - camptothecin (CPT). We found that Top1mt protein levels and enzymatic activity are significantly decreased, along with Top1 cleavage complex (Top1cc) formation, in mitochondria of CD4 T cells from HCV- and HIV-infected patients. Notably, treatment of healthy CD4 T cells with CPT caused similar changes, including inhibition of Top1mt, accumulation of Top1cc in mitochondria, increase in PARP1 cleavage, and decrease in mtDNA copy numbers. These molecular changes resulted in mitochondrial dysfunction, T cell dysregulation, and programmed cell death through multiple signaling pathways, recapitulating the phenotype we detected in CD4 T cells from HCV- and HIV-infected patients. Moreover, treatment of CD4 T cells from HCV or HIV patients with CPT further increased cellular and mitochondrial reactive oxygen species (ROS) production and cell apoptosis, demonstrating a critical role for Top1 in preventing mtDNA damage and cell death. These results provide new insights into the molecular mechanisms underlying immune dysregulation during viral infection and indicate that Top1 inhibition during chronic HCV or HIV infection can induce mtDNA damage and T cell dysfunction. Thus, reconstituting Top1mt protein may restore the mtDNA topology and T cell functions in humans with chronic viral infection.
Collapse
Affiliation(s)
- Xindi Dang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Dechao Cao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Sushant Khanal
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Lam Ngoc Thao Nguyen
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Xiao Y Wu
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jinyu Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Yong Jiang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Shunbin Ning
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
| | - Jonathan P Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| | - Zhi Q Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson, TN, United States
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, ETSU, Johnson, TN, United States
- Hepatitis (HBV/HCV) and HIV Programs, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson, TN, United States
| |
Collapse
|
187
|
Roh W, Geffen Y, Cha H, Miller M, Anand S, Kim J, Heiman DI, Gainor JF, Laird PW, Cherniack AD, Ock CY, Lee SH, Getz G. High-Resolution Profiling of Lung Adenocarcinoma Identifies Expression Subtypes with Specific Biomarkers and Clinically Relevant Vulnerabilities. Cancer Res 2022; 82:3917-3931. [PMID: 36040373 PMCID: PMC9718502 DOI: 10.1158/0008-5472.can-22-0432] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the most common cancer types and has various treatment options. Better biomarkers to predict therapeutic response are needed to guide choice of treatment modality and to improve precision medicine. Here, we used a consensus hierarchical clustering approach on 509 LUAD cases from The Cancer Genome Atlas to identify five robust LUAD expression subtypes. Genomic and proteomic data from patient samples and cell lines was then integrated to help define biomarkers of response to targeted therapies and immunotherapies. This approach defined subtypes with unique proteogenomic and dependency profiles. Subtype 4 (S4)-associated cell lines exhibited specific vulnerability to loss of CDK6 and CDK6-cyclin D3 complex gene (CCND3). Subtype 3 (S3) was characterized by dependency on CDK4, immune-related expression patterns, and altered MET signaling. Experimental validation showed that S3-associated cell lines responded to MET inhibitors, leading to increased expression of programmed death-ligand 1 (PD-L1). In an independent real-world patient dataset, patients with S3 tumors were enriched with responders to immune checkpoint blockade. Genomic features in S3 and S4 were further identified as biomarkers for enabling clinical diagnosis of these subtypes. Overall, our consensus hierarchical clustering approach identified robust tumor expression subtypes, and our subsequent integrative analysis of genomics, proteomics, and CRISPR screening data revealed subtype-specific biology and vulnerabilities. These LUAD expression subtypes and their biomarkers could help identify patients likely to respond to CDK4/6, MET, or PD-L1 inhibitors, potentially improving patient outcome. SIGNIFICANCE Integrative analysis of multiomic and drug dependency data uncovers robust lung adenocarcinoma expression subtypes with unique therapeutic vulnerabilities and subtype-specific biomarkers of response.
Collapse
Affiliation(s)
- Whijae Roh
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Cancer Center and Dept. of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Hongui Cha
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Jaegil Kim
- GSK inc. 196 Broadway, Cambridge, Massachusetts
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Justin F Gainor
- Center for Thoracic Cancers, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | | - Andrew D Cherniack
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | | | - Se-Hoon Lee
- Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Cancer Center and Dept. of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
188
|
Madushani KP, Shanaka KASN, Wijerathna HMSM, Lim C, Jeong T, Jung S, Lee J. Molecular characterization and expression analysis of B-cell lymphoma-2 protein in Amphiprion clarkii and its role in virus infections. FISH & SHELLFISH IMMUNOLOGY 2022; 130:206-214. [PMID: 36100068 DOI: 10.1016/j.fsi.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
189
|
Yenamandra AK, Smith RB, Senaratne TN, Kang SHL, Fink JM, Corboy G, Hodge CA, Lu X, Mathew S, Crocker S, Fang M. Evidence-based review of genomic aberrations in diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS): Report from the cancer genomics consortium lymphoma working group. Cancer Genet 2022; 268-269:1-21. [PMID: 35970109 DOI: 10.1016/j.cancergen.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/26/2022] [Accepted: 07/31/2022] [Indexed: 01/25/2023]
Abstract
Diffuse large B cell lymphoma, not otherwise specified (DLBCL, NOS) is the most common type of non-Hodgkin lymphoma (NHL). The 2016 World Health Organization (WHO) classification defined DLBCL, NOS and its subtypes based on clinical findings, morphology, immunophenotype, and genetics. However, even within the WHO subtypes, it is clear that additional clinical and genetic heterogeneity exists. Significant efforts have been focused on utilizing advanced genomic technologies to further subclassify DLBCL, NOS into clinically relevant subtypes. These efforts have led to the implementation of novel algorithms to support optimal risk-oriented therapy and improvement in the overall survival of DLBCL patients. We gathered an international group of experts to review the current literature on DLBCL, NOS, with respect to genomic aberrations and the role they may play in the diagnosis, prognosis and therapeutic decisions. We comprehensively surveyed clinical laboratory directors/professionals about their genetic testing practices for DLBCL, NOS. The survey results indicated that a variety of diagnostic approaches were being utilized and that there was an overwhelming interest in further standardization of routine genetic testing along with the incorporation of new genetic testing modalities to help guide a precision medicine approach. Additionally, we present a comprehensive literature summary on the most clinically relevant genomic aberrations in DLBCL, NOS. Based upon the survey results and literature review, we propose a standardized, tiered testing approach which will help laboratories optimize genomic testing in order to provide the maximum information to guide patient care.
Collapse
Affiliation(s)
- Ashwini K Yenamandra
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37215, United States.
| | | | - T Niroshi Senaratne
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Sung-Hae L Kang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - James M Fink
- Department of Pathology and Laboratory Medicine, Hennepin Healthcare, Minneapolis, MN, United States
| | - Gregory Corboy
- Haematology, Pathology Queensland, Herston, Queensland, Australia; Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, Vic, Australia
| | - Casey A Hodge
- Department of Pathology and Immunology, Barnes Jewish Hospital, St. Louis, MO, United States
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Susan Mathew
- Department of Pathology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Crocker
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Min Fang
- Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, United States
| |
Collapse
|
190
|
Shi X, Jie L, Wu P, Zhang N, Mao J, Wang P, Yin S. Calycosin mitigates chondrocyte inflammation and apoptosis by inhibiting the PI3K/AKT and NF-κB pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115536. [PMID: 35843413 DOI: 10.1016/j.jep.2022.115536] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Decoction (SG-Tang), originated from the Treatise on Febrile Diseases, is often used to treat OA pain symptoms. Whereas its efficacy has been verified by several clinical studies, the underlying mechanism remained unclear. Network pharmacology and UPLC-QTOF-MS analysis found that calycosin could be regarded as the active components of SG-Tang in treating OA. However, the effect of calycosin on cartilage destruction and the pathogenesis of OA are not known. Therefore, we evaluated the benefits of calycosin for OA and revealed the underlying mechanisms. AIM OF STUDY Using network pharmacology, UPLC-QTOF-MS analysis and experiments, the active components of SG-Tang were analyzed to explore their potential therapeutic mechanism in OA. MATERIALS AND METHODS The components of SG-Tang were detected by UPLC-QTOF-MS, and the possible active components and mechanism of SG-Tang in the treatment of OA were screened by network pharmacology. The OA mouse model was constructed by DMM. In total, 30 mice were randomly divided into three groups: Sham, DMM, and DMM + Calycosin. H&E, safranin O/fast green staining and the OARSI scores were used to evaluate joint injury in mice. In addition, OA models were established using chondrocytes treated with 10 ng/mL IL-1β. Treatment groups were treated with 100, 200 or 400 μM calycosin. CCK-8 assay was used for assessing the cytotoxic effects of calycosin. TUNEL staining and Western blotting were used to detect chondrocyte apoptosis. In addition, PI3K/Akt and NF-κB signaling pathway-related markers and cartilage matrix-related indicators were also detected. RESULTS In vivo studies showed that calycosin inhibited IL-1β-induced IL-6 and TNF-α production, as well as iNOS and COX-2 expression. Meanwhile, calycosin could inhibit IL-1β-induced degradation of cartilage matrix, including downregulation of MMP3, MMP-13, collagen II and aggrecan. NF-κB and PI3K/AKT were also inhibited by calycosin in OA chondrocytes. Furthermore, calycosin inhibited IL-1β-induced apoptosis in mouse chondrocytes. In a mouse model of OA, our results suggest that calycosin has a chondroprotective effect. CONCLUSIONS According to this study, calycosin may act as a protective agent against OA by inhibiting the PI3K/AKT and NF-κB pathways. Furthermore, this study suggested that calycosin is a potential candidate for the treatment of OA.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Wu
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nongshan Zhang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Songjiang Yin
- Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
191
|
Li H, Wei Y, Xi Y, Jiao L, Wen X, Wu R, Chang G, Sun F, Hao J. DR1-CSE/H 2S pathway upregulates autophagy and inhibits H9C2 cells damage induced by high glucose. Acta Cardiol 2022:1-13. [PMID: 36197015 DOI: 10.1080/00015385.2022.2119663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the cardiovascular system, long-term high glucose (HG) can lead to cardiomyocyte damage. Hydrogen sulfide (H2S) reduces cell autophagy in cardiomyocytes. Dopamine 1 receptors (DR1), a specific binding receptor for dopamine, which has a significant regulatory effect on cardiomyocytes. However, it is unclear whether DR1 inhibits HG-induced cardiomyocyte damage by regulating endogenous H2S production and the level of cell autophagy. The present data indicated that the expression of DR1 and cystathionine-γ-lyase (CSE, a key enzyme for endogenous H2S production) and H2S content were significantly reduced in HG-induced cardiomyocytes, which was reversed by SKF38393 (an agonist of DR1). NaHS (an exogenous H2S donor) only increased H2S content and the expression of CSE with no effect on DR1 expression. HG reduced cell viability, the expression of Bcl-2 and Beclin1, the production of autophagosomes and LC3 II/I ratio and increased the cell apoptotic ratio, the expression of cleaved caspase-3, cleaved caspase-9, cytochrome c, P62, and p-mTOR/t-mTOR ratio. SKF38393 and NaHS reversed the effects of HG. PPG (an inhibitor of CSE) and 3MA (an inhibitor of autophagy) abolished the beneficial effect of SKF38393. In addition, AICAR (an agonist of AMPK) and Rapamycin (an inhibitor of mTOR) increased the production of autophagosomes but decreased the p-mTOR/t-mTOR ratio, which was similar to the effects of SKF38393 and 3MA. Our findings suggest that DR1 reduces the HG-induced cardiomyocyte damage via up-regulating the CSE/H2S pathway, which increases cell autophagy by inhibiting the activation of mTOR.
Collapse
Affiliation(s)
- Hongzhu Li
- School of Medicine, Xiamen University, Xiamen, China.,Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Yaxin Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China.,Department of Pathology, Northeast Yunnan Regional Central Hospital, Zhaotong, China
| | - Yuxin Xi
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Lijie Jiao
- School of Medicine, Xiamen University, Xiamen, China
| | - Xin Wen
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ren Wu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guiquan Chang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Fengqi Sun
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Jinghui Hao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| |
Collapse
|
192
|
Si P, Zhu C. Biological and neurological activities of astaxanthin (Review). Mol Med Rep 2022; 26:300. [PMID: 35946443 PMCID: PMC9435021 DOI: 10.3892/mmr.2022.12816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Astaxanthin is a lipid‑soluble carotenoid produced by various microorganisms and marine animals, including bacteria, yeast, fungi, microalgae, shrimps and lobsters. Astaxanthin has antioxidant, anti‑inflammatory and anti‑apoptotic properties. These characteristics suggest that astaxanthin has health benefits and protects against various diseases. Owing to its ability to cross the blood‑brain barrier, astaxanthin has received attention for its protective effects against neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, cerebral ischemia/reperfusion, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, cognitive impairment and neuropathic pain. Previous studies on the neurological effects of astaxanthin are mostly based on animal models and cellular experiments. Thus, the biological effects of astaxanthin on humans and its underlying mechanisms are still not fully understood. The present review summarizes the neuroprotective effects of astaxanthin, explores its mechanisms of action and draws attention to its potential clinical implications as a therapeutic agent.
Collapse
Affiliation(s)
- Pan Si
- Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chenkai Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
193
|
Rosa N, Speelman-Rooms F, Parys JB, Bultynck G. Modulation of Ca 2+ signaling by antiapoptotic Bcl-2 versus Bcl-xL: From molecular mechanisms to relevance for cancer cell survival. Biochim Biophys Acta Rev Cancer 2022; 1877:188791. [PMID: 36162541 DOI: 10.1016/j.bbcan.2022.188791] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Members of the Bcl-2-protein family are key controllers of apoptotic cell death. The family is divided into antiapoptotic (including Bcl-2 itself, Bcl-xL, Mcl-1, etc.) and proapoptotic members (Bax, Bak, Bim, Bim, Puma, Noxa, Bad, etc.). These proteins are well known for their canonical role in the mitochondria, where they control mitochondrial outer membrane permeabilization and subsequent apoptosis. However, several proteins are recognized as modulators of intracellular Ca2+ signals that originate from the endoplasmic reticulum (ER), the major intracellular Ca2+-storage organelle. More than 25 years ago, Bcl-2, the founding member of the family, was reported to control apoptosis through Ca2+ signaling. Further work elucidated that Bcl-2 directly targets and inhibits inositol 1,4,5-trisphosphate receptors (IP3Rs), thereby suppressing proapoptotic Ca2+ signaling. In addition to Bcl-2, Bcl-xL was also shown to impact cell survival by sensitizing IP3R function, thereby promoting prosurvival oscillatory Ca2+ release. However, new work challenges this model and demonstrates that Bcl-2 and Bcl-xL can both function as inhibitors of IP3Rs. This suggests that, depending on the cell context, Bcl-xL could support very distinct Ca2+ patterns. This not only raises several questions but also opens new possibilities for the treatment of Bcl-xL-dependent cancers. In this review, we will discuss the similarities and divergences between Bcl-2 and Bcl-xL regarding Ca2+ homeostasis and IP3R modulation from both a molecular and a functional point of view, with particular emphasis on cancer cell death resistance mechanisms.
Collapse
Affiliation(s)
- Nicolas Rosa
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Jan B Parys
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium
| | - Geert Bultynck
- KU Leuven, Laboratory of Molecular & Cellular Signaling, Department of Cellular & Molecular Medicine, Campus Gasthuisberg O/N-I bus 802, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
194
|
Managing Cancer Drug Resistance from the Perspective of Inflammation. JOURNAL OF ONCOLOGY 2022; 2022:3426407. [PMID: 36245983 PMCID: PMC9553519 DOI: 10.1155/2022/3426407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022]
Abstract
The development of multidrug resistance in cancer chemotherapy is a major obstacle to the effective treatment of human malignant tumors. Several epidemiological studies have demonstrated that inflammation is closely related to cancer and plays a key role in the development of both solid and liquid tumors. Therefore, targeting inflammation and the molecules involved in the inflammatory process may be a good strategy for treating drug-resistant tumors. In this review, we discuss the molecular mechanisms underlying inflammation in regulating anticancer drug resistance by modulating drug action and drug-mediated cell death pathways. Inflammation alters the effectiveness of drugs through modulation of the expression of multidrug efflux transporters (e.g., ABCG2, ABCB1, and ABCC1) and drug-metabolizing enzymes (e.g., CYP1A2 and CYP3A4). In addition, inflammation can protect cancer cells from drug-mediated cell death by regulating DNA damage repair, downstream adaptive response (e.g., apoptosis, autophagy, and oncogenic bypass signaling), and tumor microenvironment. Intriguingly, manipulating inflammation may affect drug resistance through various molecular mechanisms validated by in vitro/in vivo models. In this review, we aim to summarize the underlying molecular mechanisms that inflammation participates in cancer drug resistance and discuss the potential clinical strategies targeting inflammation to overcome drug resistance.
Collapse
|
195
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|
196
|
Zhou X, Ao X, Jia Z, Li Y, Kuang S, Du C, Zhang J, Wang J, Liu Y. Non-coding RNA in cancer drug resistance: Underlying mechanisms and clinical applications. Front Oncol 2022; 12:951864. [PMID: 36059609 PMCID: PMC9428469 DOI: 10.3389/fonc.2022.951864] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most frequently diagnosed malignant diseases worldwide, posing a serious, long-term threat to patients’ health and life. Systemic chemotherapy remains the first-line therapeutic approach for recurrent or metastatic cancer patients after surgery, with the potential to effectively extend patient survival. However, the development of drug resistance seriously limits the clinical efficiency of chemotherapy and ultimately results in treatment failure and patient death. A large number of studies have shown that non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, are widely involved in the regulation of cancer drug resistance. Their dysregulation contributes to the development of cancer drug resistance by modulating the expression of specific target genes involved in cellular apoptosis, autophagy, drug efflux, epithelial-to-mesenchymal transition (EMT), and cancer stem cells (CSCs). Moreover, some ncRNAs also possess great potential as efficient, specific biomarkers in diagnosis and prognosis as well as therapeutic targets in cancer patients. In this review, we summarize the recent findings on the emerging role and underlying mechanisms of ncRNAs involved in cancer drug resistance and focus on their clinical applications as biomarkers and therapeutic targets in cancer treatment. This information will be of great benefit to early diagnosis and prognostic assessments of cancer as well as the development of ncRNA-based therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xiang Ao
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Yiwen Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shouxiang Kuang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Chengcheng Du
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jinyu Zhang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ying Liu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
197
|
Abd El-Aziz YM, Hendam BM, Al-Salmi FA, Qahl SH, Althubaiti EH, Elsaid FG, Shati AA, Hosny NM, Fayad E, Abu Almaaty AH. Ameliorative Effect of Pomegranate Peel Extract (PPE) on Hepatotoxicity Prompted by Iron Oxide Nanoparticles (Fe 2O 3-NPs) in Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3074. [PMID: 36080111 PMCID: PMC9457799 DOI: 10.3390/nano12173074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
An evaluation of the ameliorative effect of pomegranate peel extract (PPE) in counteracting the toxicity of iron oxide nanoparticles (Fe2O3-NPs) that cause hepatic tissue damage is focused on herein. Forty male albino mice were haphazardly grouped into four groups as follows: the first control group was orally gavage daily with physiological saline; the second group received 100 mg/kg of PPE by the oral route day after day; the third group received 30 mg/kg Fe2O3-NPs orally; and the fourth group received both PPE and Fe2O3-NPs by the oral route, the same as the second and third sets. Later, after the completion of the experiment, we collected the liver, blood, and bone marrow of bone specimens that were obtained for further laboratory tests. For instance, exposure to Fe2O3-NPs significantly altered serum antioxidant biomarkers by decreasing the levels of total antioxidant capacity (TAC), catalase (CAT), and glutathione s-transferase (GST). Additionally, it caused changes in the morphology of hepatocytes, hepatic sinusoids, and inflammatory Kupffer cells. Furthermore, they significantly elevated the number of chromosomal aberrations including gaps, breaks, deletions, fragments, polyploidies, and ring chromosomes. Moreover, they caused a significant overexpression of TIMP-1, TNF-α, and BAX mRNA levels. Finally, the use of PPE alleviates the toxicity of Fe2O3-NPs that were induced in the hepatic tissues of mice. It is concluded that PPE extract has mitigative roles against the damage induced by Fe2O3-NPs, as it serves as an antioxidant and hepatoprotective agent. The use of PPE as a modulator of Fe2O3-NPs' hepatotoxicity could be considered as a pioneering method in the use of phytochemicals against the toxicity of nanoparticles.
Collapse
Affiliation(s)
- Yasmin M. Abd El-Aziz
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Basma M. Hendam
- Department of Husbandry & Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Gomhoria St., Mansoura 35516, Egypt
| | - Fawziah A. Al-Salmi
- Department of Biology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Safa H. Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Eman H. Althubaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fahmy G. Elsaid
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ali A. Shati
- Biology Department, Science College, King Khalid University, Abha 61421, Saudi Arabia
| | - Nasser M. Hosny
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42526, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Ali H. Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt
| |
Collapse
|
198
|
Zhang M, Chen J, Wang Y, Kang G, Zhang Y, Han X. Network Pharmacology-Based Combined with Experimental Validation Study to Explore the Underlying Mechanism of Agrimonia pilosa Ledeb. Extract in Treating Acute Myocardial Infarction. Drug Des Devel Ther 2022; 16:3117-3132. [PMID: 36132334 PMCID: PMC9484776 DOI: 10.2147/dddt.s370473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The network pharmacology approach and validation experiment were performed to investigate the potential mechanisms of Agrimonia pilosa Ledeb. (APL) extract against acute myocardial infarction (AMI). Methods The primary compounds of APL extract were identified by High-Performance Liquid Chromatography (HPLC) analysis. The intersecting targets of active compounds and AMI were determined via network pharmacology analysis. A mouse model of AMI was established by subcutaneous injection of isoproterenol (Iso). Mice were treated with APL extract by intragastric administration. We assessed the effects of APL extract on the electrocardiography (ECG), cardiac representative markers, representative indicators of oxidative stress, pathological changes, and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, as well as apoptosis-related indicators in the mice. Results Five candidate compounds were identified in APL extract. Enrichment analyses indicated that APL extract could exert myocardial protective effects via the PI3K/Akt pathway. ST segment elevation and increased heart rate were obviously reversed in APL extract groups compared to Iso group. We also detected significant decreases in lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CK-MB), malondialdehyde (MDA), and reactive oxygen species (ROS), as well as a significant increase in superoxide dismutase activities (SOD) after APL extract treatment. In addition, APL extract markedly decreased the number of apoptotic cardiomyocytes after AMI. In the APL extract groups of AMI mice, there were increased expression levels of p-PI3K, p-Akt, and B-cell lymphoma-2 (Bcl-2) protein, and there were decreases in Bcl-2-associated X (Bax), cysteinyl aspartate-specific proteases-3 (caspase-3), and cleaved-caspase-3 protein expression levels, as well as the Bax/Bcl-2 ratio. Conclusion APL extract had a protective effect against Iso-induced AMI. APL extract could ameliorate AMI through antioxidant and anti-apoptosis actions which may be associated with the activation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Jian Chen
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Yanwei Wang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Guobin Kang
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine, Shijiazhuang, People’s Republic of China
- Correspondence: Yixin Zhang; Xue Han, Tel +86 311 89926316, Fax +86 311 89926316, Email ;
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine, Shijiazhuang, People’s Republic of China
| |
Collapse
|
199
|
Mosallanejad S, Mahmoodi M, Tavakkoli H, Khosravi A, Salarkia E, Keyhani A, Dabiri S, Gozashti MH, Pardakhty A, Khodabandehloo H, Pourghadamyari H. Empagliflozin induces apoptotic-signaling pathway in embryonic vasculature: In vivo and in silico approaches via chick’s yolk sac membrane model. Front Pharmacol 2022; 13:970402. [PMID: 36120349 PMCID: PMC9474685 DOI: 10.3389/fphar.2022.970402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
The present investigation was conducted to evaluate the vascular-toxicity of empagliflozin (EMP) in embryonic vasculature. Firstly, the vascular-toxicity of the drug as well as its interaction with apoptotic regulator proteins was predicted via in silico approach. In the next step, the apoptotic-signaling pathway in embryonic vasculature was evaluated using a chick’s YSM model. In silico simulation confirmed vascular-toxicity of EMP. There was also an accurate affinity between EMP, Bax and Bcl-2 (−7.9 kcal/mol). Molecular dynamics assay revealed complex stability in the human body conditions. Furthermore, EMP is suggested to alter Bcl-2 more than BAX. Morphometric quantification of the vessels showed that the apoptotic activity of EMP in embryonic vasculature was related to a marked reduction in vessel area, vessel diameter and mean capillary area. Based on the qPCR and immunohistochemistry assays, enhanced expression level of BAX and reduced expression level of Bcl-2 confirmed apoptotic responses in the vessels of the YSM. We observed that induction of an apoptotic signal can cause the embryonic defect of the vascular system following EMP treatment. The acquired data also raised suspicions that alteration in apoptotic genes and proteins in the vasculature are two critical pathways in vascular-toxicity of EMP.
Collapse
Affiliation(s)
- Saeedeh Mosallanejad
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| | - Hadi Tavakkoli
- Department of Clinical Sciences, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Keyhani
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine, Pathology and Stem Cell Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mohammad Hossein Gozashti
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hadi Khodabandehloo
- Department of Clinical Biochemistry, School of Medicine Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
- *Correspondence: Mehdi Mahmoodi, ; Hossein Pourghadamyari,
| |
Collapse
|
200
|
Kumar M, Kapoor S, Dhumal S, Tkaczewska J, Changan S, Saurabh V, Mekhemar M, Radha, Rais N, Satankar V, Pandiselvam R, Sayed AAS, Senapathy M, Anitha T, Singh S, Tomar M, Dey A, Zengin G, Amarowicz R, Jyoti Bhuyan D. Guava (Psidium guajava L.) seed: A low-volume, high-value byproduct for human health and the food industry. Food Chem 2022; 386:132694. [PMID: 35334323 DOI: 10.1016/j.foodchem.2022.132694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 11/04/2022]
Abstract
Guava processing industries generate peel and seeds as primary waste fractions. Guava seeds obtained after fruit processing possess untapped potential in the field of food science due to the presence of a diversity of nutritional and bioactive compounds. Along with offering a detailed understanding of the nutritional attributes of guava seeds, the present review comprehensively elaborates on the therapeutic activities of their bioactive compounds, their techno-functional properties, and their other edible and nonedible applications. The limited molecular and biochemical mechanistic studies outlining the antioxidant, immunomodulatory, anticancer, antimicrobial, neuroprotective and antidiabetic activities of guava seeds available in the literature are also extensively discussed in this review. The use of guava seed constituents as food additives and food functional and structural modulators, primarily as fat reducers, emulsifiers, water and oil holding agents, is also conceptually explained. Additional human intervention and molecular mechanistic studies deciphering the effects of guava seeds on various diseases and human health are warranted.
Collapse
Affiliation(s)
- Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India.
| | - Swati Kapoor
- Punjab Horticultural Postharvest Technology Centre, Punjab Agricultural University, Ludhiana, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, 416004, Maharashtra, India.
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, ul. Balicka 122, 30-149 Kraków, Poland
| | - Sushil Changan
- Division of Crop Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, 24105 Kiel, Germany
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Varsha Satankar
- Ginning Training Centre, ICAR - Central Institute for Research on Cotton Technology, Nagpur, Maharashtra, India
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR - Central Plantation Crops Research Institute (CPCRI), Kasaragod, 671 124 Kerala, India
| | - Ali A S Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; Division of Plant Physiology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Wolaita Sodo, Ethiopia
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam, 625604, India
| | - Surinder Singh
- Dr. S.S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Maharishi Tomar
- Seed Technology Division, ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|