151
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
152
|
Shen C, Ma F, Deng S, Zhong LL, El-Sayed Ahmed MAEG, Zhang G, Yan B, Dai M, Yang F, Xia Y, Tian GB. Prevalence, genomic characteristics, and transmission dynamics of mcr-1-positive Salmonella enterica Typhimurium from patients with infectious diarrhea. Int J Med Microbiol 2021; 311:151501. [PMID: 33866091 DOI: 10.1016/j.ijmm.2021.151501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Previous studies reported the prevalence of mcr-1 among clinical infected Salmonella isolates in China. However, the transmission dynamics of mcr-1 in different ecological niches were not well investigated. Our objective is to exhibit the transmission dynamics of mcr-1 in Salmonella. METHODS 598 Salmonella isolates were recovered from ten hospitals; besides 936 pig faces and 167 pork samples were collected from January 2015 to December 2017 in Guangzhou, China. PCR and sequencing were used to identify mcr-1-positive Salmonella. Antimicrobial susceptibility testing was performed with 16 antimicrobials. Conjugation, S1-PFGE, and Southern blot were used to determine the transferability and location of mcr-1. Whole-genome sequencing was used to investigate pangenome, phylogeny, plasmid, and transposon. RESULTS Eleven mcr-1-positive Salmonella isolates were identified from patients with infectious diarrhea. Five pig fecal samples and three pork samples contained mcr-1-positive Salmonella isolates. All isolates were multi-drug resistant. The mcr-1 genes were located on ∼210-250 kb IncHI2-pST3 plasmids, and 12 mcr-1 genes were transferable. All isolates were assigned to ST34 or its genetically closed STs. The distribution of the core-genome network was significantly correlated with source distributions. The accessory genes-based network demonstrated that the diverse clonal complexes could share highly similar accessory genomes. CONCLUSIONS The prevalence of mcr-1-positive Salmonella among different sources was low. Clonal transmission could not be the main reason for the expansion of mcr-1-positive Salmonella, but be attributed to the horizontal transfer of IncHI2-pST3 plasmid. Continuous surveillance on Salmonella should be performed to investigate the response of colistin banning in food-producing animals by mcr-1-positive Salmonella populations.
Collapse
Affiliation(s)
- Cong Shen
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Furong Ma
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Suiyan Deng
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Microbiology and Immunology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Cairo, 6th of October City, Egypt
| | - Guili Zhang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bin Yan
- Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Fan Yang
- Basic Medical College, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.
| |
Collapse
|
153
|
Wang X, Ling Z, Sun N, Liu Y, Huang J, Wang L. Molecular genetic characteristics of mcr-9-harbouring Salmonella enterica serotype Typhimurium isolated from raw milk. Int J Antimicrob Agents 2021; 57:106332. [PMID: 33798705 DOI: 10.1016/j.ijantimicag.2021.106332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 11/28/2022]
Abstract
Among the 10 reported mcr genes, mcr-9 was first identified in Salmonella enterica serotype Typhimurium, which is a leading cause of foodborne illness worldwide. However, information about the prevalence and genetic features of mcr-9 is still lacking, especially among food samples. This study reports the presence of mcr-9 in raw milk samples from China; the prevalence rate was low (0.83%, 1/120). mcr-9 was located on a transferable plasmid, and was stable in wild-type S. enterica. However, it had a biological fitness cost when transferred to an Escherichia coli recipient. Whole-genome sequencing revealed that mcr-9 was located on the IncHI2A-type plasmid, and was surrounded by IS903B and IS26 in its flanking regions. The mcr-9-carrying S. enterica 19SE belonged to ST26 and had a multi-drug-resistant phenotype. It was confirmed that mcr-9 did not mediate colistin resistance in this study, indicating that its transfer may not facilitate the dissemination of colistin resistance.
Collapse
Affiliation(s)
- Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhuoren Ling
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongshi Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
154
|
Draft Genome Sequence of a Polymyxin-Resistant Klebsiella pneumoniae Clinical Strain Carrying mcr-8.1 and bla NDM-5. Microbiol Resour Announc 2021; 10:10/12/e01224-20. [PMID: 33766905 PMCID: PMC7996464 DOI: 10.1128/mra.01224-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major threat to global health. Here, we report the draft genome sequence of a Klebsiella pneumoniae clinical strain carrying mcr-8.1 and blaNDM-5. Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major threat to global health. Here, we report the draft genome sequence of a Klebsiella pneumoniae clinical strain carrying mcr-8.1 and blaNDM-5.
Collapse
|
155
|
Khuntayaporn P, Kanathum P, Houngsaitong J, Montakantikul P, Thirapanmethee K, Chomnawang MT. Predominance of international clone 2 multidrug-resistant Acinetobacter baumannii clinical isolates in Thailand: a nationwide study. Ann Clin Microbiol Antimicrob 2021; 20:19. [PMID: 33743736 PMCID: PMC7980754 DOI: 10.1186/s12941-021-00424-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as one of the common multidrug resistance pathogens causing hospital-acquired infections. This study was conducted to elucidate the distribution of antimicrobial resistance genes in the bacterial population in Thailand. Multidrug-resistant A. baumannii (MDR A. baumannii) isolates were characterized phenotypically, and the molecular epidemiology of clinical isolates in 11 tertiary hospitals was investigated at a country-wide level. METHODS A total of 135 nonrepetitive MDR A. baumannii isolates collected from tertiary care hospitals across 5 regions of Thailand were examined for antibiotic susceptibility, resistance genes, and sequence types. Multilocus sequence typing (MLST) was performed to characterize the spread of regional lineages. RESULTS ST2 belonging to IC2 was the most dominant sequence type in Thailand (65.19%), and to a lesser extent, there was also evidence of the spread of ST164 (10.37%), ST129 (3.70%), ST16 (2.96%), ST98 (2.96%), ST25 (2.96%), ST215 (2.22%), ST338 (1.48%), and ST745 (1.48%). The novel sequence types ST1551, ST1552, ST1553, and ST1557 were also identified in this study. Among these, the blaoxa-23 gene was by far the most widespread in MDR A. baumannii, while the blaoxa-24/40 and blaoxa-58 genes appeared to be less dominant in this region. The results demonstrated that the predominant class D carbapenemase was blaOXA-23, followed by the class B carbapenemase blaNDM-like, while the mcr-1 gene was not observed in any isolate. Most of the MDR A. baumannii isolates were resistant to ceftazidime (99.23%), gentamicin (91.85%), amikacin (82.96%), and ciprofloxacin (97.78%), while all of them were resistant to carbapenems. The results suggested that colistin could still be effective against MDR A. baumannii in this region. CONCLUSION This is the first molecular epidemiological analysis of MDR A. baumannii clinical isolates at the national level in Thailand to date. Studies on the clonal relatedness of MDR A. baumannii isolates could generate useful data to understand the local epidemiology and international comparisons of nosocomial outbreaks.
Collapse
Affiliation(s)
- Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Pohnvipa Kanathum
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Jantana Houngsaitong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Preecha Montakantikul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, 447 Sri Ayudthya Rd, Rajathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
156
|
Tkadlec J, Kalova A, Brajerova M, Gelbicova T, Karpiskova R, Smelikova E, Nyc O, Drevinek P, Krutova M. The Intestinal Carriage of Plasmid-Mediated Colistin-Resistant Enterobacteriaceae in Tertiary Care Settings. Antibiotics (Basel) 2021; 10:258. [PMID: 33806455 PMCID: PMC8002115 DOI: 10.3390/antibiotics10030258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background: In order to estimate the prevalence of plasmid borne colistin resistance and to characterize in detail the mcr-positive isolates, we carried out a sentinel testing survey on the intestinal carriage of plasmid-mediated colistin-resistant Enterobacteriaceae in hospitalized patients. Methods: Between June 2018 and September 2019, 1922 faecal samples from hospitalised patients were analysed by selective culture in presence of colistin (3.5 mg/L), and in parallel by direct detection of the mcr-1 to mcr-8 genes by qPCR. The mcr-positive isolates were characterised by whole-genome sequencing. Results: The prevalence of the mcr-1 gene was 0.21% (n = 4/1922); the mcr-2 to 8 genes were not detected. The mcr-1 gene was found to be localised in the IncX4 (n = 3) and IncHI2 (n = 1) plasmid type. One Escherichia coli isolate was susceptible to colistin due to the inactivation of the mcr-1 gene through the insertion of the IS2 element; however, the colistin resistance was inducible by culture in low concentrations of colistin. One human mcr-1 positive E. coli isolate was related genetically to the mcr-1 E. coli isolate derived from turkey meat of Czech origin. Conclusions:mcr-mediated colistin resistance currently poses little threat to patients hospitalised in Czech healthcare settings. The presence of the mcr-1 gene in the human population has a possible link to domestically produced, retail meat.
Collapse
Affiliation(s)
- Jan Tkadlec
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Alzbeta Kalova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.); (A.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Marie Brajerova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Tereza Gelbicova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.); (A.K.)
| | - Renata Karpiskova
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.); (A.K.)
| | - Eva Smelikova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Otakar Nyc
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (M.B.); (E.S.); (O.N.); (P.D.); (M.K.)
- Department of Medical Microbiology, Motol University Hospital, 150 06 Prague, Czech Republic
| |
Collapse
|
157
|
Ketkhao P, Thongratsakul S, Poolperm P, Poolkhet C, Amavisit P. Antimicrobial resistance profiles of Escherichia coli from swine farms using different antimicrobials and management systems. Vet World 2021; 14:689-695. [PMID: 33935415 PMCID: PMC8076459 DOI: 10.14202/vetworld.2021.689-695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND AIM The emerging of antimicrobial-resistant foodborne bacteria is a serious public health concern worldwide. This study was conducted to determine the association between farm management systems and antimicrobial resistance profiles of Escherichia coli isolated from conventional swine farms and natural farms. E. coli isolates were evaluated for the minimum inhibitory concentration (MIC) of 17 antimicrobials, extended-spectrum beta-lactamase (ESBL)-producing enzymes, and plasmid-mediated colistin-resistant genes. MATERIALS AND METHODS Fecal swabs were longitudinally collected from healthy pigs at three stages comprising nursery pigs, fattening pigs, and finishers, in addition to their environments. High-generation antimicrobials, including carbapenem, were selected for the MIC test. DNA samples of colistin-resistant isolates were amplified for mcr-1 and mcr-2 genes. Farm management and antimicrobial applications were evaluated using questionnaires. RESULTS The detection rate of ESBL-producing E. coli was 17%. The highest resistance rates were observed with trimethoprim/sulfamethoxazole (53.9%) and colistin (48.5%). All isolates were susceptible to carbapenem. Two large intensive farms that used colistin-supplemented feed showed the highest colistin resistance rates of 84.6% and 58.1%. Another intensive farm that did not use colistin showed a low colistin resistance rate of 14.3%. In contrast, a small natural farm that was free from antimicrobials showed a relatively high resistance rate of 41.8%. The majority of colistin-resistant isolates had MIC values of 8 mg/mL (49%) and ≥16 mg/mL (48%). The genes mcr-1 and mcr-2 were detected at rates of 64% and 38%, respectively, among the colistin-resistant E. coli. CONCLUSION Commensal E. coli were relatively sensitive to the antimicrobials used for treating critical human infections. Colistin use was the primary driver for the occurrence of colistin resistance in swine farms having similar conventional management systems. In the natural farm, cross-contamination could just occur through the environment if farm biosecurity is not set up carefully, thus indicating the significance of farm biosecurity risk even in an antimicrobial-free farm.
Collapse
Affiliation(s)
- Pramualchai Ketkhao
- Center for Agricultural Biotechnology, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Sukanya Thongratsakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Pariwat Poolperm
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Chaithep Poolkhet
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Patamabhorn Amavisit
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
158
|
Nguyen TNT, Nguyen PLN, Le NTQ, Nguyen LPH, Duong TB, Ho NDT, Nguyen QPN, Pham TD, Tran AT, The HC, Nguyen HH, Nguyen CVV, Thwaites GE, Rabaa MA, Pham DT. Emerging carbapenem-resistant Klebsiella pneumoniae sequence type 16 causing multiple outbreaks in a tertiary hospital in southern Vietnam. Microb Genom 2021; 7:mgen000519. [PMID: 33565955 PMCID: PMC8190610 DOI: 10.1099/mgen.0.000519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
The emergence of carbapenem resistance in Klebsiella pneumoniae represents a major global public health concern. Nosocomial outbreaks caused by multidrug-resistant K. pneumoniae are commonly reported to result in high morbidity and mortality due to limited treatment options. Between October 2019 and January 2020, two concurrent high-mortality nosocomial outbreaks occurred in a referral hospital in Ho Chi Minh City, Vietnam. We performed genome sequencing and phylogenetic analysis of eight K. pneumoniae isolates from infected patients and two environmental isolates for outbreak investigation. We identified two outbreaks caused by two distinct lineages of the international sequence type (ST) 16 clone, which displayed extensive drug resistance, including resistance to carbapenem and colistin. Carbapenem-resistant ST16 outbreak strains clustered tightly with previously described ST16 K. pneumoniae from other hospitals in Vietnam, suggesting local persistence and transmission of this particular clone in this setting. We found environmental isolates from a hospital bed and blood pressure cuff that were genetically linked to an outbreak case cluster, confirming the potential of high-touch surfaces as sources for nosocomial spread of K. pneumoniae. Further, we found colistin resistance caused by disruption of the mgrB gene by an ISL3-like element, and carbapenem resistance mediated by a transferable IncF/blaOXA-181 plasmid carrying the ISL3-like element. Our study highlights the importance of coordinated efforts between clinical and molecular microbiologists and infection control teams to rapidly identify, investigate and contain nosocomial outbreaks. Routine surveillance with advanced sequencing technology should be implemented to strengthen hospital infection control and prevention measures.
Collapse
Affiliation(s)
| | | | | | | | | | - Nghia Dang Trung Ho
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | | | - Trung Duc Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Anh Tuan Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
159
|
Zhang Z, Lei L, Zhang H, Dai H, Song Y, Li L, Wang Y, Xia Z. Molecular Investigation of Klebsiella pneumoniae from Clinical Companion Animals in Beijing, China, 2017-2019. Pathogens 2021; 10:pathogens10030271. [PMID: 33673656 PMCID: PMC7997213 DOI: 10.3390/pathogens10030271] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/22/2022] Open
Abstract
This work is aimed to elucidate the prevalence and characteristics of antimicrobial resistance, virulence, and molecular typing in Klebsiella pneumoniae from clinical companion animals in Beijing, China. In total, 105 K. pneumoniae (2.0%) isolates were recovered from 5359 samples (dogs, n = 3356; cats, n = 2003). All tested isolates exhibited high resistance to amoxicillin-clavulanate (74.3%). Moreover, resistance rates in dog isolates (2.1%) were significantly higher than in cat isolates (0.9%); however, the rate of multidrug-resistance (MDR) was 57.1% and the MDR prevalence in cats was significantly higher than dogs. Whole-genome sequencing demonstrated plasmids IncX4 and IncFIA (HI1)/FII(K) carried mcr-1 (n = 1) and mcr-8 (n = 1), but blaOXA-181 (n = 1) and blaNDM-5 (n = 4) were harbored in IncX3-type plasmids, and the above genes were in different isolates. The most prevalent sequence types (STs) in companion animals were ST1 (n = 9) and ST37 (n = 9). Compared to National Center for Biotechnology Information (NCBI) data on human K. pneumoniae, resistance genes blaCTX-M and blaTEM were more prevalent in human isolates; however, aac(6′)-Ib-cr and oqxAB showed a higher prevalence in companion animals. Hypermucoviscosity was reported in 9 (8.6%) isolates, whereas 64 isolates (61.0%) were hypervirulent K. pneumoniae (hvKP) via the Galleria mellonella. These findings validate the high risk of K. pneumonia and necessitate its relevant control in pet clinics.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.Z.); (H.Z.); (H.D.); (Y.S.); (L.L.)
| | - Lei Lei
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing 100193, China;
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China
| | - Haixia Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.Z.); (H.Z.); (H.D.); (Y.S.); (L.L.)
| | - Hegen Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.Z.); (H.Z.); (H.D.); (Y.S.); (L.L.)
| | - Yu Song
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.Z.); (H.Z.); (H.D.); (Y.S.); (L.L.)
| | - Lei Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.Z.); (H.Z.); (H.D.); (Y.S.); (L.L.)
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, China Agricultural University, Beijing 100193, China;
- Correspondence: (Y.W.); (Z.X.)
| | - Zhaofei Xia
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Z.Z.); (H.Z.); (H.D.); (Y.S.); (L.L.)
- Correspondence: (Y.W.); (Z.X.)
| |
Collapse
|
160
|
The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Microorganisms 2021; 9:microorganisms9020442. [PMID: 33672663 PMCID: PMC7924381 DOI: 10.3390/microorganisms9020442] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex.
Collapse
|
161
|
Yuan J, Wang X, Shi D, Ge Q, Song X, Hu W, Wei D, Ge C, Li X, Hu C. Extensive antimicrobial resistance and plasmid-carrying resistance genes in mcr-1-positive E. coli sampled in swine, in Guangxi, South China. BMC Vet Res 2021; 17:86. [PMID: 33602222 PMCID: PMC7893886 DOI: 10.1186/s12917-021-02758-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Background The discovery of the superbug mcr-1-positive Escherichia coli (MCRPEC) has drew greet attention. Swine-origin multi-drug resistant MCRPEC has been a potential threat to public health and safety. However, there were few detailed studies have been reported on swine MCRPEC in Guangxi, South China. Results In this study, thirty-three MCRPEC strains were detected from 142 E. coli strains from 116 samples in Guangxi in 2018. Which could be classified into eight unique STs and a total of six incompatibility plasmid groups (IncFI, IncHI1, IncY, IncN, IncI1 and IncX1). After that, the susceptibility of MCRPEC isolates to 27 antimicrobial agents belonging to 17 antimicrobial categories was tested. There were nineteen E. coli resistant to 3rd and 4th generation cephalosporins and twelve E. coli resistant to carbapenem resistan. Importantly, the MCRPEC showed high resistance highly resistance for imipenem and meropenem, which were forbidden to use in livestock production. Three MCRPEC strains were further proved to be extensively drug-resistant (XDR), and the other isolates were multi-drug-resistant (MDR). Furthermore, we found that the plasmid-carrying resistance genes coexisted with the mcr-1 gene of the MCRPEC isolates. Which were listed as follows: β-lactamase antimicrobial resistance genes e.g. ESBL genes (blaCTX-M14, blaCTX-M24, blaCTX-M123, blaOXA-1), plasmid-mediated AmpC (pAmpC) gene (blaCMY-2), the carbapenem resistance gene (blaNDM-5), and non-β-lactamase antimicrobial resistance genes (qnrA, qnrB, qnrS, aac (6′)-Ib-cr, tetA, tetB, sul1, sul2, floR, aadA). Conclusion Thirty-three mcr-1-positive E. coli isolates in Guangxi displayed a wide profile of antimicrobial resistance. Plasmid-carrying resistance genes might be the main cause of MCRPEC multidrug resistance. This study highlighted the necessity for long-term surveillance of mcr-1-positive E. coli in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02758-4.
Collapse
Affiliation(s)
- Jingzhi Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xiaoye Wang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China.
| | - Dali Shi
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Qiang Ge
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xingxing Song
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Wen Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Deyuan Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Chenling Ge
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xun Li
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Chuanhuo Hu
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
162
|
Zhang B, Yu B, Zhou W, Wang Y, Sun Z, Wu X, Chen S, Ni M, Hu Y. Mobile Plasmid Mediated Transition From Colistin-Sensitive to Resistant Phenotype in Klebsiella pneumoniae. Front Microbiol 2021; 12:619369. [PMID: 33658985 PMCID: PMC7917065 DOI: 10.3389/fmicb.2021.619369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Multidrug-resistant bacteria, including carbapenem-resistant Klebsiella pneumoniae (CRKP), are becoming an increasing health crisis worldwide. For CRKP, colistin is regarded as "the last treatment option." In this study, we isolated a clinical CRKP strain named as K. pneumoniae R10-341. Phenotyping analysis showed that this strain could transit from a colistin-sensitive to a resistant phenotype by inserting an IS4 family ISKpn72 element into the colistin-resistance associated mgrB gene. To investigate the mechanism of this transition, we performed genome sequencing analysis of the colistin-sensitive parental strain and found that 12 copies of ISKpn72 containing direct repeats (DR) are located on the chromosome and 1 copy without DR is located on a multidrug-resistant plasmid pR10-341_2. Both types of ISKpn72 could be inserted into the mgrB gene to cause colistin-resistance, though the plasmid-derived ISKpn72 without DR was in higher efficiency. Importantly, we demonstrated that colistin-sensitive K. pneumoniae strain transferred with the ISKpn72 element also obtained the ability to switch from colistin-sensitive to colistin-resistant phenotype. Furthermore, we confirmed that the ISKpn72-containing pR10-341_2 plasmid was able to conjugate, suggesting that the ability of causing colistin-resistant transition is transferable through common conjugation. Our results point to new challenges for both colistin-resistance detection and CRKP treatment.
Collapse
Affiliation(s)
- Baoyue Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Yu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhou
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyong Sun
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wu
- Department of Respiratory and Critical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ming Ni
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangbo Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
163
|
Hala S, Antony CP, Momin AA, Alshehri M, Ben-Rached F, Al-Ahmadi G, Zakri S, Baadhaim M, Alsaedi A, Thaqafi OAA, Arold ST, Al-Amri A, Pain A. Co-occurrence of mcr-1 and mcr-8 genes in multi-drug-resistant Klebsiella pneumoniae from a 2015 clinical isolate. Int J Antimicrob Agents 2021; 57:106303. [PMID: 33592301 DOI: 10.1016/j.ijantimicag.2021.106303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/30/2021] [Accepted: 02/06/2021] [Indexed: 11/17/2022]
Affiliation(s)
- S Hala
- Pathogen Genomics Laboratory, Division of Biological and Environmental Sciences and Engineering, Thuwal, Makkah, Saudi Arabia; King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia; King Abdullah International Medical Research Centre, Jeddah, Makkah, Saudi Arabia; Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - C P Antony
- Pathogen Genomics Laboratory, Division of Biological and Environmental Sciences and Engineering, Thuwal, Makkah, Saudi Arabia; Red Sea Research Centre, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Saudi Arabia
| | - A A Momin
- Computational Bioscience Research Centre, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - M Alshehri
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia; King Abdullah International Medical Research Centre, Jeddah, Makkah, Saudi Arabia; Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - F Ben-Rached
- Pathogen Genomics Laboratory, Division of Biological and Environmental Sciences and Engineering, Thuwal, Makkah, Saudi Arabia
| | - G Al-Ahmadi
- Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - S Zakri
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia; King Abdullah International Medical Research Centre, Jeddah, Makkah, Saudi Arabia; Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - M Baadhaim
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia; King Abdullah International Medical Research Centre, Jeddah, Makkah, Saudi Arabia; Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - A Alsaedi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia; King Abdullah International Medical Research Centre, Jeddah, Makkah, Saudi Arabia; Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - O A Al Thaqafi
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia
| | - S T Arold
- Computational Bioscience Research Centre, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
| | - A Al-Amri
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Makkah, Saudi Arabia; King Abdullah International Medical Research Centre, Jeddah, Makkah, Saudi Arabia; Ministry of National Guard Health Affairs, Jeddah Makkah, Saudi Arabia
| | - A Pain
- Pathogen Genomics Laboratory, Division of Biological and Environmental Sciences and Engineering, Thuwal, Makkah, Saudi Arabia; Global Institution for Collaborative Research and Education, Hokkaido University, Kita-ku, Sapporo, Japan.
| |
Collapse
|
164
|
Snyman Y, Whitelaw AC, Reuter S, Maloba MRB, Newton-Foot M. Colistin Resistance Mechanisms in Clinical Escherichia coli and Klebsiella spp. Isolates from the Western Cape of South Africa. Microb Drug Resist 2021; 27:1249-1258. [PMID: 33571049 DOI: 10.1089/mdr.2020.0479] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: Colistin is a last-resort antibiotic for the treatment of carbapenem-resistant Gram-negative infections. Colistin resistance thus poses a threat to human health. Colistin resistance is most commonly encoded by mutations in chromosomal pmrA, pmrB, phoP, phoQ, ccrB, and mgrB genes, and the presence of plasmid-mediated mcr genes. This study describes colistin resistance mechanisms in clinical Enterobacterales isolates from the Western Cape, South Africa. Results: Escherichia coli (n = 22) and Klebsiella spp. (n = 7) isolates, from nine health care facilities, were confirmed to be colistin resistant during 2016 and 2017. mcr-1 was present in 55% (12/22) of E. coli and 71% (5/7) of Klebsiella spp. isolates. Colistin resistance mutations in pmrB were identified in 8/10 mcr-negative E. coli isolates using whole-genome sequencing, with pmrB Pro-94→Gln being the most frequent with presence in 4 isolates. One mcr-negative Klebsiella spp. isolate had a complete deletion of the mgrB and one contained an insertion sequence (IS1) in mgrB. Conclusion: A reduction in the proportion of colistin-resistant isolates harboring mcr-1 from 2016 to 2017 was observed. Colistin-resistant E. coli attributed by chromosomal mutations in pmrB in 2017 were mostly clonal related, which contrasts with the 2016 unrelated mcr-1-positive isolates. The diverse strains, hospitals, and resistance mechanisms may suggest that selective pressure is the main driver of colistin resistance.
Collapse
Affiliation(s)
- Yolandi Snyman
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa
| | - Andrew Christopher Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center University of Freiburg, Freiburg, Germany
| | - Motlatji Reratilwe Bonnie Maloba
- Department of Medical Microbiology, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa
| | - Mae Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Cape Town, South Africa.,National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
165
|
Ding M, Shi J, Ud Din A, Liu Y, Zhang F, Yan X, Li Q, Bai J, Chen W, Zhou Y. Co-infections of two carbapenemase-producing Enterobacter hormaechei clinical strains isolated from the same diabetes individual in China. J Med Microbiol 2021; 70. [PMID: 33528353 DOI: 10.1099/jmm.0.001316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Since mcr-1 was first reported in China, there have been ten variants of MCR appearing nationwide so far. Multidrug-resistant Enterobacteriaceae bacteria carrying both NDM and MCR have become a serious threat to global public health.Hypothesis/Gap Statement. The genetic structure of mcr-9 needs to be better understood in order to better prevent and control the transmission of drug-resistant genes.Aims. The aim of this study was to characterize the presence of two Enterobacter hormaechei isolates, which carries bla NDM-5 CME2 and the coexistence of mcr-9 and bla NDM-1 strain CMD2, which were isolated from a patient with diabetes in Sichuan, China.Methodology. The microbroth dilution method was used for antibiotic susceptibility. Conjugation experiment was used to investigate the transferability of bla NDM-1, bla NDM-5 and mcr-9. Whole-genome sequencing was performed on Illumina HiSeq platform. The ability of biofilm formation was detected by crystal-violet staining, the virulence of the bacteria was measured by Galleria mellonella killing assay.Results. bla NDM-5 carrier CME2 and CMD2 with bla NDM-1 and mcr-9 were resistant to carbapenems, β-lactam, aminoglycoside, quinolone and tetracycline, while CMD2 was also resistant to colistin. Conjugation assay and plasmid replicon typing further demonstrated that both bla NDM-1 and bla NDM-5 were respectively present on the self-transferrable IncX3 plasmid, mcr-9 was located on the self-transferrable IncHI2 plasmid. Through the analysis of mcr-9 gene context, the structure was DUF4942-rcnR-rcnA-copS-IS903-mcr-9-wbuC-qseC-qseB-IS1R-ΔsilR-IS903, bla NDM-1 context was IS3000-ΔISAba125-IS5-bla NDM-1-ble-trpF-groS-groL-insE-ΔIS26 structure, bla NDM-5 structure was IS3000-bla NDM-5-ble-trpF-dsbC-ΔIS26-umuD-ISKox3-tnpR-parA. Biofilm formation of CME2 was stronger than CMD2. There was no significant difference in virulence between the two strains.Conclusion. This study reveals two multiple drug-resistant E. hormaechei isolates from diabetes patient samples. E. hormaechei carrying two NDM-resistant genes is already a serious threat, where MCR is an important cause of treatment failure in bacterial infections. This study is a reminder not only to prevent infection in patients with diabetes, but also to constantly monitor the epidemic and spread of the drug-resistant gene.
Collapse
Affiliation(s)
- Manlin Ding
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jiao Shi
- The first affiliated hospital of Chengdu medical college, Chengdu 610500, Sichuan, PR China.,Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Ahmad Ud Din
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, 646000, PR China
| | - Yao Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xiangjin Yan
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Qin Li
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - JiaWei Bai
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| |
Collapse
|
166
|
Sun S, Gao H, Liu Y, Jin L, Wang R, Wang X, Wang Q, Yin Y, Zhang Y, Wang H. Co-existence of a novel plasmid-mediated efflux pump with colistin resistance gene mcr in one plasmid confers transferable multidrug resistance in Klebsiella pneumoniae. Emerg Microbes Infect 2021; 9:1102-1113. [PMID: 32401163 PMCID: PMC8284978 DOI: 10.1080/22221751.2020.1768805] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tigecycline is considered one of the last-resort antimicrobials for carbapenem-resistant K. pneumoniae. Plasmid-mediated tigecycline resistance remains largely unclear. Here, by utilizing whole genome sequencing, we report a plasmid-mediated tigecycline resistance mechanism, a 6,489 bp Resistance-nodulation-division family (RND) efflux pump (tmexCD1-toprJ1 pump), that confers transferable tigecycline resistance in K pneumoniae isolated from patients and chickens. In addition, we identified high prevalence of the plasmids co-harbouring both tmexCD1-toprJ1 pump and mcr (tmexCD1-mcr co-harbouring plasmid) from human in our nationwide collection. Even worse, the tmexCD1-toprJ1 and mcr co-harbouring plasmid was also co-existed with blaNDM-harbouring IncX3 plasmid in the same host, resulting in pandrug resistance. Phylogenetic analysis suggested that the plasmid-borne tmexCD1-toprJ1 originated from the chromosome of Aeromonas spp. through Tn5393-mediating translocation. Both plasmid-harbored tmexCD1-toprJ1 gene and mcr-8 likely originated from animal isolates and then spread to human. Our findings highlight a substantial threat of tmexCD1-toprJ1-mcr8 co-harbouring IncFIA/IncFII plasmid to public health due to their mobile resistance to both tigecycline and colistin, emphasizing an urgent need for further global surveillance on this plasmid.
Collapse
Affiliation(s)
- Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
167
|
Ma K, Feng Y, Liu L, Yao Z, Zong Z. A Cluster of Colistin- and Carbapenem-Resistant Klebsiella pneumoniae Carrying blaNDM-1 and mcr-8.2. J Infect Dis 2021; 221:S237-S242. [PMID: 31822905 DOI: 10.1093/infdis/jiz519] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae resistant to both carbapenems and colistin imposes severe challenges for management. In this study, we report a cluster of 5 carbapenem-resistant K pneumoniae clinical strains belonging to ST1 and K57 types, 4 of which were also resistant to colistin, from 2 hospitals. METHODS The 5 strains were subjected to whole-genome sequencing (WGS) using the short-read Illumina HiSeq platform, and 2 strains were also selected for long-read WGS using MinION. Clonal relatedness of the 5 strains was determined based on single-nucleotide polymorphisms (SNPs). Conjugation experiments were performed to obtain self-transmissible plasmids. RESULTS All 5 strains carried the carbapenemase-encoding gene blaNDM-1, whereas the 4 colistin-resistant strains also harbored a new variant of the mcr-8 colistin resistance gene, namely, mcr-8.2. MCR-8.2 differs from MCR-8.1 by four amino acid substitutions (A51V, A232S, N365Y, and N480K). mcr-8.2 was located on a large, hybrid, nonself-transmissible plasmid containing IncQ, IncR, and IncFII replicons, whereas blaNDM-1 was carried by self-transmissible IncX3 plasmids. Phylogenetic analysis based on SNPs revealed that the 5 strains were likely to have a common origin. CONCLUSIONS Both the intra- and interhospital transfer of strains carrying mcr-8 and blaNDM-1 were identified, which represents an emerging threat for clinical management and infection control.
Collapse
Affiliation(s)
- Ke Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Yao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.,Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.,Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.,Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
168
|
In vitro activity of antimicrobial peptide CDP-B11 alone and in combination with colistin against colistin-resistant and multidrug-resistant Escherichia coli. Sci Rep 2021; 11:2151. [PMID: 33495505 PMCID: PMC7835343 DOI: 10.1038/s41598-021-81140-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 01/21/2023] Open
Abstract
Multidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.
Collapse
|
169
|
Sadek M, Ortiz de la Rosa JM, Abdelfattah Maky M, Korashe Dandrawy M, Nordmann P, Poirel L. Genomic Features of MCR-1 and Extended-Spectrum β-Lactamase-Producing Enterobacterales from Retail Raw Chicken in Egypt. Microorganisms 2021; 9:microorganisms9010195. [PMID: 33477851 PMCID: PMC7832903 DOI: 10.3390/microorganisms9010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 01/28/2023] Open
Abstract
Colistin is considered as a last resort agent for treatment of severe infections caused by carbapenem-resistant Enterobacterales (CRE). Recently, plasmid-mediated colistin resistance genes (mcr type) have been reported, mainly corresponding to mcr-1 producers. Those mcr-1-positive Enterobacterales have been identified not only from human isolates, but also from food samples, from animal specimens and from environmental samples in various parts of the world. Our study focused on the occurrence and characterization of mcr-1-positive Enterobacterales recovered from retail raw chicken in Egypt. From the 345 retail chicken carcasses collected, a total of 20 samples allowed to recover mcr-1-positive isolates (Escherichia coli, n = 19; Citrobacter freundii, n = 1). No mcr-2- to mcr-10-positive isolate was identified from those samples. The colistin resistance trait was confirmed for all those 20 isolates with a positivity of the Rapid Polymyxin NP (Nordmann-Poirel) test. Minimum inhibitory concentrations (MICs) of colistin for all MCR-1-producing isolates ranged between 4 and 16 μg/mL. Noticeably, 9 out of the 20 mcr-1-positive isolates produced an extended-spectrum β-lactamase (ESBL), respectively producing CTX-M-9 (n = 2), CTX-M-14 (n = 4), CTX-M-15 (n = 2), and SHV-12 (n = 1). Noteworthy, the fosA4 gene encoding resistance to fosfomycin was found in a single mcr-1-positive E. coli isolate, in which both genes were located on different conjugative plasmids. The pulsed-field gel electrophoresis (PFGE) patterns were identified, corresponding to 10 different sequence types (STs), highlighting the genetic diversity of those different E. coli. Whole-genome sequencing revealed three major types of mcr-1-bearing plasmids, corresponding to IncI2, IncX4, and IncHI2 scaffolds. The occurrence of MCR-1-producing multidrug-resistant Enterobacterales in retail raw chicken is of great concern, considering the possibility of transmission to humans through the food chain.
Collapse
Affiliation(s)
- Mustafa Sadek
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.S.); (J.M.O.d.l.R.); (P.N.)
- INSERM European Unit (IAME, France), University of Fribourg, CH-1700 Fribourg, Switzerland
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt; (M.A.M.); (M.K.D.)
| | - José Manuel Ortiz de la Rosa
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.S.); (J.M.O.d.l.R.); (P.N.)
- INSERM European Unit (IAME, France), University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Mohamed Abdelfattah Maky
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt; (M.A.M.); (M.K.D.)
| | - Mohamed Korashe Dandrawy
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83522, Egypt; (M.A.M.); (M.K.D.)
| | - Patrice Nordmann
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.S.); (J.M.O.d.l.R.); (P.N.)
- INSERM European Unit (IAME, France), University of Fribourg, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, CH-1700 Fribourg, Switzerland
- Institute for Microbiology, University of Lausanne and University Hospital Centre, CH-1011 Lausanne, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland; (M.S.); (J.M.O.d.l.R.); (P.N.)
- INSERM European Unit (IAME, France), University of Fribourg, CH-1700 Fribourg, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, CH-1700 Fribourg, Switzerland
- Correspondence:
| |
Collapse
|
170
|
Paveenkittiporn W, Kamjumphol W, Ungcharoen R, Kerdsin A. Whole-Genome Sequencing of Clinically Isolated Carbapenem-Resistant Enterobacterales Harboring mcr Genes in Thailand, 2016-2019. Front Microbiol 2021; 11:586368. [PMID: 33505364 PMCID: PMC7829498 DOI: 10.3389/fmicb.2020.586368] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023] Open
Abstract
Mobile colistin-resistant genes (mcr) have become an increasing public health concern. Since the first report of mcr-1 in Thailand in 2016, perspective surveillance was conducted to explore the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE) isolates harboring mcr in 2016-2019. Thirteen (0.28%) out of 4,516 CRE isolates were found to carry mcr genes, including 69.2% (9/13) of E. coli and 30.8% (4/13) of K. pneumoniae isolates. Individual mcr-1.1 was detected in eight E. coli (61.5%) isolates, whereas the co-occurrence of mcr-1.1 and mcr-3.5 was seen in only one E. coli isolate (7.7%). No CRE were detected carrying mcr-2, mcr-4, or mcr-5 through to mcr-9. Analysis of plasmid replicon types carrying mcr revealed that IncX4 was the most common (61.5%; 8/13), followed by IncI2 (15.4%; 2/13). The minimum inhibitory concentration values for colistin were in the range of 4-16 μg/ml for all CRE isolates harboring mcr, suggesting they have 100% colistin resistance. Clermont phylotyping of nine mcr-harboring carbapenem-resistant E. coli isolates demonstrated phylogroup C was predominant in ST410. In contrast, ST336 belonged to CC17, and the KL type 25 was predominant in carbapenem-resistant K. pneumoniae isolates. This report provides a comprehensive insight into the prevalence of mcr-carrying CRE from patients in Thailand. The information highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harboring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Wantana Paveenkittiporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Watcharaporn Kamjumphol
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Nakhon, Thailand
| |
Collapse
|
171
|
Bacteria Broadly-Resistant to Last Resort Antibiotics Detected in Commercial Chicken Farms. Microorganisms 2021; 9:microorganisms9010141. [PMID: 33435450 PMCID: PMC7826917 DOI: 10.3390/microorganisms9010141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
Resistance to last resort antibiotics in bacteria is an emerging threat to human and animal health. It is important to identify the source of these antimicrobial resistant (AMR) bacteria that are resistant to clinically important antibiotics and evaluate their potential transfer among bacteria. The objectives of this study were to (i) detect bacteria resistant to colistin, carbapenems, and β-lactams in commercial poultry farms, (ii) characterize phylogenetic and virulence markers of E. coli isolates to potentiate virulence risk, and (iii) assess potential transfer of AMR from these isolates via conjugation. Ceca contents from laying hens from conventional cage (CC) and cage-free (CF) farms at three maturity stages were randomly sampled and screened for extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter (CRA), and colistin resistant Escherichia coli (CRE) using CHROMagar™ selective media. We found a wide-spread abundance of CRE in both CC and CF hens across all three maturity stages. Extraintestinal pathogenic Escherichia coli phylogenetic groups B2 and D, as well as plasmidic virulence markers iss and iutA, were widely associated with AMR E. coli isolates. ESBL-producing Enterobacteriaceae were uniquely detected in the early lay period of both CC and CF, while multidrug resistant (MDR) Acinetobacter were found in peak and late lay periods of both CC and CF. CRA was detected in CF hens only. blaCMY
was detected in ESBL-producing E. coli in CC and CF and MDR Acinetobacter spp. in CC. Finally, the blaCMY
was shown to be transferrable via an IncK/B plasmid in CC. The presence of MDR to the last-resort antibiotics that are transferable between bacteria in food-producing animals is alarming and warrants studies to develop strategies for their mitigation in the environment.
Collapse
|
172
|
Di Domenico EG, Cavallo I, Sivori F, Marchesi F, Prignano G, Pimpinelli F, Sperduti I, Pelagalli L, Di Salvo F, Celesti I, Paluzzi S, Pronesti C, Koudriavtseva T, Ascenzioni F, Toma L, De Luca A, Mengarelli A, Ensoli F. Biofilm Production by Carbapenem-Resistant Klebsiella pneumoniae Significantly Increases the Risk of Death in Oncological Patients. Front Cell Infect Microbiol 2020; 10:561741. [PMID: 33363047 PMCID: PMC7759150 DOI: 10.3389/fcimb.2020.561741] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial infections associated with high rates of morbidity and mortality, particularly in oncological patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors for CRKP colonization and persistence in the host. This study aims at exploring the impact of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86 CRKP were collected between January 2015 and December 2019. Carbapenem resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm production were evaluated. The median age of the patients was 71 years (range 40–96 years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were 33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and pneumonia (18.9%), while rectal surveillance swabs were the most common site of CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM (1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were strong biofilm-producers equally distributed between infected (54.2%) and colonized (45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains. The overall mortality rate calculated on the group of infected patients was 35.8%. In univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95% 1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also associated with increased CRKP infection-related mortality. Notably, the multivariate analysis showed that infection with strong biofilm-producing CRKP was an independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP infection presents a high risk of death among oncological patients, particularly when pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Grazia Prignano
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Isabella Sperduti
- Biostatistical Unit-Clinical Trials Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorella Pelagalli
- Anesthesiology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiola Di Salvo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Celesti
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Silvia Paluzzi
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Carmelina Pronesti
- Hospital Infection Control Committee, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza, University of Rome Sapienza, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Assunta De Luca
- Quality, Accreditation and Risk Management Unit, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabrizio Ensoli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
173
|
Kim S, Kim H, Kang HS, Kim Y, Kim M, Kwak, H, Ryu S. Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea. J Microbiol Biotechnol 2020; 30:1862-1869. [PMID: 32958736 PMCID: PMC9728184 DOI: 10.4014/jmb.2007.07008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
The spread of plasmid-mediated colistin resistance has posed a serious threat to public health owing to its effects on the emergence of pandrug-resistant bacteria. In this study, we investigated the prevalence and characteristics of mcr-1-positive Escherichia coli isolated from retail meat samples in Korea. In total, 1,205 E. coli strains were isolated from 3,234 retail meat samples in Korea. All E. coli strains were subjected to antimicrobial susceptibility testing and were examined for the presence of mcr-1 gene. All mcr-1-positive E. coli (n = 10, 0.8%) from retail meat were subjected to pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). The transferability of mcr-1 gene was determined by conjugation assays. The mcr-1-positive strains exhibited diverse clonal types. Our mcr-1 genes were located in plasmids belonged to the IncI2 (n = 1) and IncX4 (n = 8) types, which were reported to be prevalent in Asia and worldwide, respectively. Most mcr-1 genes from mcr-1-positive strains (9/10) were transferable to the recipient strain and the transfer frequencies ranged from 2.4 × 10-3 to 9.8 × 10-6. Our data suggest that the specific types of plasmid may play an important role in spreading plasmid-mediated colistin resistance in Korea. Furthermore, our findings suggest that the retail meat may be an important tool for disseminating plasmid-mediated colistin resistance.
Collapse
Affiliation(s)
- Seokhwan Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea
| | - Hansol Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hai-Seong Kang
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Yonghoon Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Migyeong Kim
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea
| | - Hyosun Kwak,
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 2859, Republic of Korea,Corresponding authors H.Kwak Phone: +82-43-719-4301 Fax: +82-43-719-4300 E-mail:
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Seoul National University, Seoul 0886, Republic of Korea,S.Ryu Phone: +82-2-880-4856 Fax: +82-2-873-5095 E-mail:
| |
Collapse
|
174
|
Heterogeneity and Diversity of mcr-8 Genetic Context in Chicken-Associated Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 65:AAC.01872-20. [PMID: 33046490 DOI: 10.1128/aac.01872-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022] Open
Abstract
Increasing mobile colistin resistance, mediated by the mcr gene family, in Enterobacteriaceae has become a global concern. Among the 10 reported mcr genes, mcr-8 was first identified in Klebsiella pneumoniae, which could cause severe infections with high mortality. Information about the prevalence and genetic context of mcr-8 is still lacking. In this study, we found that mcr-8 was present in 9.83% of K. pneumoniae isolates of chicken origin. S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting showed that the mcr-8 gene was located on a plasmid in all of the isolates. The genetic context of the plasmids exhibited considerable diversity from the whole-genome sequence through Illumina and MinION long-read sequencing. Mutations in two-component systems may function synergistically with mcr-8, resulting in extremely high resistance to colistin. In addition to colistin resistance, these plasmids also contained genes conferring resistance to beta-lactams, tetracycline, aminoglycosides, sulfonamides, macrolides, chloramphenicol, and florfenicol. Therefore, these findings indicate that the genetic context of mcr-8 is heterogeneous and diverse and that mcr-8 and certain chromosomal mechanisms jointly contribute to high-level colistin resistance in K. pneumoniae strains, which provides new insights into the resistance mechanisms of K. pneumoniae.
Collapse
|
175
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
176
|
Khanawapee A, Kerdsin A, Chopjitt P, Boueroy P, Hatrongjit R, Akeda Y, Tomono K, Nuanualsuwan S, Hamada S. Distribution and Molecular Characterization of Escherichia coli Harboring mcr Genes Isolated from Slaughtered Pigs in Thailand. Microb Drug Resist 2020; 27:971-979. [PMID: 33325796 DOI: 10.1089/mdr.2020.0242] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The resistance of Enterobacteriaceae to colistin mediated by plasmid-borne mobile mcr genes is an emerging public health concern. This study aimed to explore the distribution and characteristics of Escherichia coli isolates harboring mcr genes from slaughtered pigs in Thailand from 2014 to 2015. A total of 779 E. coli isolates were assessed, of which 61 (7.8%) were found to carry mcr genes, including mcr-1, mcr-3, mcr-6, mcr-7, mcr-8, and mcr-9, together with co-occurrences of mcr-1+mcr-3, mcr-1+mcr-9, and mcr-3+mcr-6+mcr-7. In these mcr-harboring E. coli isolates, mcr-1 (40.9%) and mcr-9 (32.8%) were predominant. Colistin resistance was mainly mediated by the mcr-1 gene, whereas intermediate resistance was noted in isolates that harbored mcr-9, mcr-6, mcr-7, and mcr-8 genes. Most E. coli isolates harboring mcr genes were susceptible to third-generation cephalosporins and all of these isolates were susceptible to carbapenems. Clermont phylotyping demonstrated that mcr-harboring isolates mainly belonged to phylogroup A (44.3%), followed by phylogroups B1 (34.4%), D (14.8%), and B2 (6.6%). Multilocus sequence typing revealed that 25 sequence types (STs) were assigned to 45 mcr-harboring E. coli isolates, whereas the remaining 16 isolates were novel STs. The mcr-1 and mcr-9 genes were mostly predominant in ST101 and ST8900, respectively. This study provides a comprehensive insight into the prevalence and diversity of mcr-harboring E. coli isolates obtained from slaughtered pigs across Thailand. Strengthening of surveillance systems by the government for controlling and preventing mcr dissemination from animals to humans or vice versa is urgently needed. No clinical trial registration number.
Collapse
Affiliation(s)
- Aunyarat Khanawapee
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Japan.,Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Japan
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Shigeyuki Hamada
- Japan-Thailand Research Collaboration Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
177
|
Hassen B, Abbassi MS, Benlabidi S, Ruiz-Ripa L, Mama OM, Ibrahim C, Hassen A, Hammami S, Torres C. Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from wastewater and river water in Tunisia: predominance of CTX-M-15 and high genetic diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44368-44377. [PMID: 32767214 DOI: 10.1007/s11356-020-10326-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic environments are crucial hotspots for the dissemination of antibiotic resistant microorganisms and resistance genes. Thus, the purpose of this study was to investigate the occurrence and the genetic characterization of cefotaxime-resistant (CTXR) Enterobacteriaceae at a Tunisian semi-industrial pilot plant with biological treatment (WWPP) and its receiving river (Rouriche River, downstream from WWPP) located in Tunis City, during 2017-2018. We collected 105 and 15 water samples from the WWPP and the Rouriche River, respectively. Samples were screened to recover ESBL-producing Enterobacteriaceae (ESBL-E) and isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, plasmid types and molecular typing (multilocus sequence typing, MLST). Among 120 water samples, 33 and 4 contained ESBL-producing E. coli and K. pneumoniae isolates, respectively. Most isolates were multidrug resistant and produced CTX-M-15 (28 isolates), CTX-M-1 (4 isolates), CTX-M-55 (2 isolates), CTX-M-27 (one isolate), SHV-12 (one isolate) and VEB beta-lactamases (one isolate). All K. pneumoniae were CTX-M-15-positive. Four colistin-resistant isolates were found (MIC 4-8 μg/ml), but they were negative for the mcr genes tested. Class 1 integrons were detected in 21/25 trimethoprim/sulfamethoxazole-resistant isolates, and nine of them carried the gene cassette arrays: aadA2 + dfrA12 (n = 4), aadA1 + dfrA15 (n = 2), aadA5 + dfrA17 (n = 2) and aadA1/2 (n = 1). The IncP and IncFIB plasmids were found in 30 and 16 isolates, respectively. Genetic lineages detected were as follows: E. coli (ST48-ST10 Cplx, ST2499, ST906, ST2973 and ST2142); K. pneumoniae: (ST1540 and ST661). Our findings show a high rate of CTX-M-15 and high genetic diversity of ESBL-E isolates from WWPP and receiving river water.
Collapse
Affiliation(s)
- Bilel Hassen
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, 20 rue Jebel, Lakhdhar, Bab Saadoun, 1006, Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, 20 rue Jebel, Lakhdhar, Bab Saadoun, 1006, Tunis, Tunisia
- Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Université de Tunis El Manar, Tunis, Tunisia
| | - Saloua Benlabidi
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, 20 rue Jebel, Lakhdhar, Bab Saadoun, 1006, Tunis, Tunisia
| | - Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain
| | - Olouwafemi M Mama
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain
| | - Chourouk Ibrahim
- Laboratoire de Traitement et de Valorisation des Rejets Hydriques, Centre de Recherche et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et de Valorisation des Rejets Hydriques, Centre de Recherche et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Salah Hammami
- IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Université de la Manouba, Sidi Thabet 2020, Sidi Thabet, Ariana, Tunisia
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain.
| |
Collapse
|
178
|
El-Sayed Ahmed MAEG, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019). Emerg Microbes Infect 2020; 9:868-885. [PMID: 32284036 PMCID: PMC7241451 DOI: 10.1080/22221751.2020.1754133] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/28/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing antibiotic resistance in multidrug-resistant (MDR) Gram-negative bacteria (MDR-GNB) presents significant health problems worldwide, since the vital available and effective antibiotics, including; broad-spectrum penicillins, fluoroquinolones, aminoglycosides, and β-lactams, such as; carbapenems, monobactam, and cephalosporins; often fail to fight MDR Gram-negative pathogens as well as the absence of new antibiotics that can defeat these "superbugs". All of these has prompted the reconsideration of old drugs such as polymyxins that were reckoned too toxic for clinical use. Only two polymyxins, polymyxin E (colistin) and polymyxin B, are currently commercially available. Colistin has re-emerged as a last-hope treatment in the mid-1990s against MDR Gram-negative pathogens due to the development of extensively drug-resistant GNB. Unfortunately, rapid global resistance towards colistin has emerged following its resurgence. Different mechanisms of colistin resistance have been characterized, including intrinsic, mutational, and transferable mechanisms.In this review, we intend to discuss the progress over the last two decades in understanding the alternative colistin mechanisms of action and different strategies used by bacteria to develop resistance against colistin, besides providing an update about what is previously recognized and what is novel concerning colistin resistance.
Collapse
Affiliation(s)
- Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
- Department of Microbiology and Immunology,
Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science
and Technology (MUST), Cairo, Egypt
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Cong Shen
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Yohei Doi
- University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Infectious
Diseases, Fujita Health University, School of Medicine, Aichi,
Japan
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| |
Collapse
|
179
|
Low prevalence of mobile colistin-resistance in U.S. meat, catfish, poultry and genomic characterization of a mcr-1 positive Escherichia coli strain. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
180
|
Hernández-Castro R, Rodríguez-Santiago J, Téllez-Sosa J, Bravo-Romero S, Silva-Sánchez J, Sánchez-Pérez A, Avalos-Téllez R, Martínez-Chavarría LC, Xicohtencatl-Cortes J, Garza-Ramos U. Molecular and genome characterization of colistin-resistant Escherichia coli isolates from wild sea lions (Zalophus californianus). Braz J Microbiol 2020; 51:2009-2014. [PMID: 32897511 PMCID: PMC7688835 DOI: 10.1007/s42770-020-00371-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Using molecular and whole-genome sequencing tools, we investigated colistin-resistant Escherichia coli isolates from wild sea lions. Two unrelated E. coli colistin-resistant isolates, ST8259 and ST4218, were identified, both belonging to the B2 phylogroup and different serotypes. Polymorphisms in PmrA, PmrB, and PhoQ proteins were identified, and the role of PmrB and PhoQ in contributing to colistin resistance was determined by complementation assays. However, the mutations characterized in the present study are not involved in colistin resistance, which have been described in E. coli isolates from clinical settings. Therefore, the acquired mutations in pmrB and phoQ genes in resistance to colistin in bacteria related to marine environment animals are different. This work contributes to the surveillance and characterization of colistin resistance in Escherichia coli obtained from animals from aquatic environments.
Collapse
Affiliation(s)
- Rigoberto Hernández-Castro
- Departamento Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
| | - Jonathan Rodríguez-Santiago
- Laboratorio de Resistencia Bacteriana; Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Sugey Bravo-Romero
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Jesús Silva-Sánchez
- Laboratorio de Resistencia Bacteriana; Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Alejandro Sánchez-Pérez
- Laboratorio de Resistencia Bacteriana; Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Rosalia Avalos-Téllez
- Área de Protección de Flora y Fauna. Islas del Golfo de California, Baja California, CONANP, SEMARNAT. Bahía de Los Ángeles, 22980, Ensenada, Baja California, Mexico
| | - Luary Carolina Martínez-Chavarría
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Bacteriología Intestinal, Hospital Infantil de México Dr. Federico Gómez, Cuauhtémoc, 06720, Ciudad de México, Mexico
| | - Ulises Garza-Ramos
- Laboratorio de Resistencia Bacteriana; Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
181
|
Dao TL, Hoang VT, Magmoun A, Ly TDA, Baron SA, Hadjadj L, Canard N, Drali T, Gouriet F, Raoult D, Parola P, Marty P, Rolain JM, Gautret P. Acquisition of multidrug-resistant bacteria and colistin resistance genes in French medical students on internships abroad. Travel Med Infect Dis 2020; 39:101940. [PMID: 33248262 DOI: 10.1016/j.tmaid.2020.101940] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/31/2020] [Accepted: 11/22/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Acquisition of multidrug resistant bacteria (MDR) and colistin resistance genes by international travellers has been demonstrated. Studies conducted in medical students during internships abroad are scant. METHODS Nasopharyngeal, rectal, and vaginal swabs samples were collected from 382 French medical students before and after travel to investigate the acquisition of MDR bacteria. The bacterial diversity in the samples was assessed by culture on selective media. We also genetically characterised the isolates of MDR bacteria including Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E), methicillin-resistant Staphylococcus aureus (MRSA), and Carbapenemase-producing Enterobacteriacae (CPE) using the real-time polymerase chain reaction method. The samples were collected from 293 students and were investigated for mcr colistin-resistance genes using RT-PCR directly on the samples, followed by conventional PCR and sequencing. RESULTS A proportion of 29.3% (112/382) of the participants had acquired ESBL-E and 2.6% (10/382) had acquired CPE. The most common species and ESBL-E encoding gene were Escherichia coli (125/127 isolates, 98.4%) and blaCTX-M-A (121/127, 95.3%), respectively. A proportion of 6.8% (20/293) of the participants had acquired mcr-1 genes, followed by mcr-3 (1/293, 0.3%) and mcr-8 (1/293, 0.3%). We found that taking part in humanitarian missions to orphanages (aRR = 2.01, p < 0.0001), being in contact with children during travel (aRR = 1.78, p = 0.006), the primary destination of travel being Vietnam (aRR = 2.15, p < 0.0001) and north India (aRR = 2.41, p = 0.001), using antibiotics during travel (aRR = 1.77, p = 0.01), and studying in 2018 (aRR = 1.55, p = 0.03) were associated with the acquisition of ESBL-E. When the primary destination of travel was Vietnam (aRR = 2.74, p < 0.0001) and the year of study was 2018 (aRR = 1.93, p < 0.002), this was associated with acquisition of colistin resistance genes. CONCLUSION Medical students are at a potential risk of acquiring ESBL-E, CPE and colistin resistance genes. A number of risk factors have been identified, which may be used to develop targeted preventive measures.
Collapse
Affiliation(s)
- Thi Loi Dao
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Van Thuan Hoang
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Thai Binh University of Medicine and Pharmacy, Thai Binh, Viet Nam
| | - Amal Magmoun
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Tran Duc Anh Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Sophie Alexandra Baron
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Linda Hadjadj
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Naomie Canard
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Tassadit Drali
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Frédérique Gouriet
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Pierre Marty
- Université Côte D'Azur, Inserm, C3M, Nice Cedex 3, France; Parasitologie-Mycologie, Centre Hospitalier Universitaire L'Archet, Nice Cedex 3, France
| | - Jean-Marc Rolain
- IHU-Méditerranée Infection, Marseille, France; Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Philippe Gautret
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
182
|
The colonisation of Czech travellers and expatriates living in the Czech Republic by colistin-resistant Enterobacteriaceae and whole genome characterisation of E. coli isolates harbouring the mcr-1 genes on a plasmid or chromosome: A cross-sectional study. Travel Med Infect Dis 2020; 39:101914. [PMID: 33197647 DOI: 10.1016/j.tmaid.2020.101914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Travellers were recognized as a risk cohort that can be colonized by mcr-1-mediated colistin-resistant Enterobacteriaceae. We aimed to investigate the carriage of mcr-mediated colistin resistance in Enterobacteriaceae in Czech travellers or expatriates residing temporarily in the Czech Republic. METHODS Between August 2018 and September 2019, the stool samples were cultured in enrichment broth. The enriched cultures were tested for the presence of the mcr-1-8 genes and inoculated onto selective agar with colistin. Colistin-resistant Enterobacteriaceae were tested for the presence of the mcr-1-8 genes; the mcr-positive isolates were characterised by whole genome sequencing. RESULTS From the 177 stool samples, 15 colistin-resistant Enterobacteriaceae isolates were cultured (7.9%); two of the E. coli isolates carried the mcr-1 gene (1.1%). In the E. coli multilocus sequence type (ST) 156, the mcr-1 gene was located in an ISApl1-mcr-1-orf-ISApl1 (Tn6330) and incorporated into the chromosome; in the E. coli ST23 isolate, the mcr-1 gene was harboured by the plasmid IncX4. Both of the mcr-1 positive E. coli isolates were multidrug-resistant and one isolate was an extended-spectrum β-lactamase producer (blaCTX-M-27). CONCLUSION Patients with an international travel history should be monitored for the carriage of the mcr-1 gene in order to prevent its dissemination into healthcare settings.
Collapse
|
183
|
Khine NO, Lugsomya K, Kaewgun B, Honhanrob L, Pairojrit P, Jermprasert S, Prapasarakul N. Multidrug Resistance and Virulence Factors of Escherichia coli Harboring Plasmid-Mediated Colistin Resistance: mcr-1 and mcr-3 Genes in Contracted Pig Farms in Thailand. Front Vet Sci 2020; 7:582899. [PMID: 33240958 PMCID: PMC7683614 DOI: 10.3389/fvets.2020.582899] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/02/2020] [Indexed: 12/01/2022] Open
Abstract
The presence of the plasmid-mediated colistin resistance encoding mcr gene family in the Enterobacteriaceae is one of the crucial global concerns. The use of colistin in livestock rearing is believed to be the cause of mcr gene spreading and is of impact to public health. The objective of this research was to detect the frequency and virulent genes of mcr-positive Escherichia coli (MCRPE) in fecal samples from healthy pigs in a contract farming system across Thailand. A total of 696 pooled samples were derived from 80 farms, located in 49 provinces across six regions of Thailand. The colistin-resistant E. coli were identified by MALDI-TOF mass spectrometry and antimicrobial susceptibility testing by broth microdilution. The antibiogram was determined using an automated susceptibility machine, and the genetic characteristics were investigated for mcr-1–5 genes, phylogenetic group, replicon types, and virulent genes. In total, 31 of 696 samples were positive, with E. coli containing mcr-1 or combination of mcr-1 and mcr-3 with incidence of 4.45 and 0.43%. Phylogenetic groups A and B1 and the IncF and IncFIB replicon types were predominantly found in the MCRPE located in the central area, with multidrug-resistant traits against 3–14 types of antimicrobials. Additionally, 19 of 31 isolates identified as enterotoxigenic E. coli were with the stap and stb (enterotoxin-encoding genes). In conclusion, a low carriage rate of mcr-positive E. coli was detected in the large-scale farming of healthy pigs. The association between multidrug-resistant MCRPE and their pathogenic potential should be of concern.
Collapse
Affiliation(s)
- Nwai Oo Khine
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Course of Veterinary Science and Technology, Chulalongkorn University, Bangkok, Thailand
| | - Kittitat Lugsomya
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, China
| | - Benjarong Kaewgun
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Lertrob Honhanrob
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Panupong Pairojrit
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthipat Jermprasert
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuvee Prapasarakul
- Department of Veterinary Microbiology, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand.,Diagnosis and Monitoring of Animal Pathogen Research Unit (DMAP), Bangkok, Thailand
| |
Collapse
|
184
|
Hazırolan G, Karagöz A. Emergence of carbapenemase-producing and colistin resistant Klebsiella pneumoniae ST101 high-risk clone in Turkey. Acta Microbiol Immunol Hung 2020; 67:216-221. [PMID: 33174866 DOI: 10.1556/030.2020.01275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022]
Abstract
Carbapenemase-producing and colistin resistant Klebsiella pneumoniae has become a worldwide healthcare problem. This study describes molecular characterization of carbapenemase-producing and colistin resistant clinical K. pneumoniae isolates.A total of 93 non-replicate carbapenem and colistin resistant K. pneumoniae were recovered from clinical specimens in a university hospital during 2017-2019. Detection of blaOXA-48, blaKPC, blaNDM-1, blaIMP, blaVIM-1 and mcr-1, -2, -3, -4, -5, -6, -7, and -8 genes was performed by PCR. The bacterial isolates were assigned to clonal lineages by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST).All isolates harbored blaOXA-48 and only two isolates harbored blaOXA-48, and blaNDM-1 genes together. In colistin resistant K. pneumoniae, mcr-1 was detected in two (2.1%) isolates. Ninety three isolates of K. pneumoniae were categorized into three clusters and five pulsotypes. MLST revealed two different sequence types, ST101 (89/93) and ST147 (4/93).In our study ST101 was found to be a significantly dominant clone carrying blaOXA-48 and among our strains a low frequency of mcr-1 gene was determined. The emergence of colistin resistance was observed in K. pneumoniae ST101 isolates. ST101 may become a global threat in the dissemination of carbapenem and colistin resistance.
Collapse
Affiliation(s)
- Gülşen Hazırolan
- 1Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Alper Karagöz
- 2Department of Microbiology, Faculty of Molecular Biology and Genetics, Usak University, 64200, Usak, Turkey
| |
Collapse
|
185
|
Savin M, Bierbaum G, Blau K, Parcina M, Sib E, Smalla K, Schmithausen R, Heinemann C, Hammerl JA, Kreyenschmidt J. Colistin-Resistant Enterobacteriaceae Isolated From Process Waters and Wastewater From German Poultry and Pig Slaughterhouses. Front Microbiol 2020; 11:575391. [PMID: 33193188 PMCID: PMC7661462 DOI: 10.3389/fmicb.2020.575391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the high prevalence of colistin-resistant Enterobacteriaceae in poultry and pigs, process waters and wastewater from slaughterhouses were considered as a hotspot for isolates carrying plasmid-encoded, mobilizable colistin resistances (mcr genes). Thus, questions on the effectiveness of wastewater treatment in in-house and municipal wastewater treatment plants (WWTPs) as well as on the diversity of the prevailing isolates, plasmid types, and their transmissibility arise. Process waters and wastewater accruing in the delivery and unclean areas of two poultry and two pig slaughterhouses were screened for the presence of target colistin-resistant bacteria (i.e., Escherichia coli, Klebsiella spp., Enterobacter cloacae complex). In-house and municipal WWTPs (mWWTPs) including receiving waterbodies were investigated as well. Samples taken in the poultry slaughterhouses yielded the highest occurrence of target colistin-resistant Enterobacteriaceae (40.2%, 33/82), followed by mWWTPs (25.0%, 9/36) and pig slaughterhouses (14.9%, 10/67). Recovered isolates exhibited various resistance patterns. The resistance rates using epidemiological cut-off values were higher in comparison to those obtained with clinical breakpoints. Noteworthy, MCR-1-producing Klebsiella pneumoniae and E. coli were detected in scalding waters and preflooders of mWWTPs. A total of 70.8% (46/65) of E. coli and 20.6% (7/34) of K. pneumoniae isolates carried mcr-1 on a variety of transferable plasmids with incompatibility groups IncI1, IncHI2, IncX4, IncF, and IncI2 ranging between 30 and 360 kb. The analyzed isolates carrying mcr-1 on transferable plasmids (n = 53) exhibited a broad diversity, as they were assigned to 25 different XbaI profiles. Interestingly, in the majority of colistin-resistant mcr-negative E. coli and K. pneumoniae isolates non-synonymous polymorphisms in pmrAB were detected. Our findings demonstrated high occurrence of colistin-resistant E. coli and K. pneumoniae carrying mcr-1 on transferrable plasmids in poultry and pig slaughterhouses and indicate their dissemination into surface water.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany.,Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Khald Blau
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Ricarda Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Jens A Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany.,Department of Fresh Produce Logistics, Hochschule Geisenheim University, Geisenheim, Germany
| |
Collapse
|
186
|
High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh. Sci Rep 2020; 10:18637. [PMID: 33122817 PMCID: PMC7596488 DOI: 10.1038/s41598-020-75608-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Colistin is a last-resort antimicrobial used for the treatment of human infections caused by multidrug-resistant Gram-negative bacteria. However, colistin is still widely used in intensive poultry production in Bangladesh. We aimed to investigate the dynamics and genetic diversity of colistin-resistant commensal Escherichia coli from broiler chickens. A total of 1200 E. coli strains were characterized from 20 broiler farms at three-time points along the production period. All strains were screened for mcr-1 to mcr-5 genes by a multiplex PCR, and their genetic diversity was measured by repetitive extragenic palindromic (REP)-PCR fingerprinting. Genomic diversity and characterization were performed by whole genome sequencing (WGS). Twenty-five percent of the commensal E. coli strains harbored mcr-1 genes. Frequency of mcr-1 gene detection correlated positively (odds ratio 1.71; 95% CI 0.96-3.06; p = 0.068) with the use of colistin in poultry flocks. REP-PCR profiles and WGS analysis showed diverse E. coli population carrying multiple antimicrobial resistance genes. Phylogenetic comparison of mcr-1-bearing strains recovered from this study with a global strain collection revealed wide phylogenetic relationship. This study identified a high prevalence of mcr-1 gene among genetically diverse E. coli populations from broiler chickens in Bangladesh suggesting a massive horizontal spread of mcr-1 rather than by clonal expansion.
Collapse
|
187
|
Li T, Wang L, Ko W, Lv Y. Genetic and phenotypic characteristics of mcr-8 positive extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from patient in China. Eur J Clin Microbiol Infect Dis 2020; 40:901-904. [PMID: 33108529 DOI: 10.1007/s10096-020-04081-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Tianmeng Li
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China
| | - Liyuan Wang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China
| | - Weihsin Ko
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China
| | - Yuan Lv
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, 100191, China.
| |
Collapse
|
188
|
Pei J, Xiong L, Chu M, Guo X, Yan P. Effect of intramolecular disulfide bond of bovine lactoferricin on its molecular structure and antibacterial activity against Trueperella pyogenes separated from cow milk with mastitis. BMC Vet Res 2020; 16:401. [PMID: 33097042 PMCID: PMC7585202 DOI: 10.1186/s12917-020-02620-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/13/2020] [Indexed: 12/01/2022] Open
Abstract
Background Lactoferricin (Lfcin) is an antimicrobial activity center of lactoferrin, produced by hydrolysis from the N-terminal of lactoferrin. It was hypothesized that the intramolecular disulfide bond in Lfcin could affect its antibacterial function through influencing its molecular structure. To prove this hypothesis, bovine Lfcin (bLfcin) and its two derivatives, bLfcin with an intramolecular disulfate bond (bLfcin DB) and bLfcin with a mutation C36G (bLfcin C36G), were synthesized, purified, and identified. The circular dichroism spectra of the peptides were detected in solutions with different ionic and hydrophobic strength. The antibacterial activity of the peptides against Trueperella pyogenes, separated from cow milk with mastitis, were determined. Results The secondary structure of bLfcin DB showed more β-turn and less random coil than the other peptides in H2O, similar ratios of secondary structures with bLfcin and bLfcin C36G under ionic conditions, and close percentages of secondary structure with bLfcin under hydrophobic conditions. The synthetic peptides exhibited strong antimicrobial activity against T. pyogenes isolates, T. pyogenes ATCC 19,411, and E. coli ATCC 25,922. The antimicrobial activities of the three peptides were greater against T. pyogenes than against E. coli, and bLfcin DB exhibited higher antibacterial activity compared with its derivatives. Conclusions The intramolecular disulfide bond could change the molecular structure of bLfcin under alternative ionic strengths and hydrophobic effects, and the formation of the disulfide bond is beneficial to executing the antibacterial function of bLfcin.
Collapse
Affiliation(s)
- Jie Pei
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, 730050, Lanzhou, China
| | - Lin Xiong
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, 730050, Lanzhou, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China.,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, 730050, Lanzhou, China
| | - Xian Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China. .,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, 730050, Lanzhou, China.
| | - Ping Yan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, 730050, Lanzhou, China. .,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, 730050, Lanzhou, China.
| |
Collapse
|
189
|
Zhou C, Wang Q, Jin L, Wang R, Yin Y, Sun S, Zhang J, Wang H. In vitro Synergistic Activity of Antimicrobial Combinations Against bla KPC and bla NDM-Producing Enterobacterales With bla IMP or mcr Genes. Front Microbiol 2020; 11:533209. [PMID: 33193122 PMCID: PMC7609915 DOI: 10.3389/fmicb.2020.533209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Carbapenemase-producing Enterobacterales have become a severe public health concern because of their rapidly transmissible resistance elements and limited treatment options. The most effective antimicrobial combinations against carbapenemase-producing Enterobacterales are currently unclear. Here, we aimed to assess the therapeutic effects of seven antimicrobial combinations (colistin-meropenem, colistin-tigecycline, colistin-rifampicin, colistin-erythromycin, meropenem-tigecycline, meropenem-rifampicin, and meropenem-tigecycline-colistin) against twenty-four carbapenem-producing Enterobacterales (producing blaKPC, blaNDM, coexisting blaNDM and blaIMP, and coexisting mcr-1/8/9 and blaNDM genes) and one carbapenem-susceptible Enterobacterales using the checkerboard assay, time-kill curves, and scanning electron microscopy. None of the combinations were antagonistic. The combination of colistin-rifampicin showed the highest synergistic effect of 76% (19/25), followed by colistin-erythromycin at 60% (15/25), meropenem-rifampicin at 24% (6/25), colistin-meropenem at 20% (5/25), colistin-tigecycline at 20% (5/25), and meropenem-tigecycline at 4% (1/25). The triple antimicrobial combinations of meropenem-tigecycline-colistin had a synergistic effect of 100%. Most double antimicrobial combinations were ineffective on isolates with coexisting blaNDM and blaIMP genes. Meropenem with tigecycline showed no synergistic effect on isolates that produced different carbapenemase genes and were highly resistant to meropenem (92% meropenem MIC ≥ 16 mg/mL). Colistin-tigecycline showed no synergistic effect on Escherichia coli producing blaNDM–1 and Serratia marcescens. Time-kill curves showed that antimicrobial combinations achieved an eradication effect (≥ 3 log10 decreases in colony counts) within 24 h without regrowth, based on 1 × MIC of each drug. The synergistic mechanism of colistin-rifampicin may involve the colistin-mediated disruption of bacterial membranes, leading to severe alterations in their permeability, then causes more rifampicin to enter the cell and induces cell death. In conclusion, the antimicrobial combinations evaluated in this study may facilitate the successful treatment of patients infected with carbapenemase-producing pathogens.
Collapse
Affiliation(s)
- Chaoe Zhou
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Jiangang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
190
|
Du C, Feng Y, Wang G, Zhang Z, Hu H, Yu Y, Liu J, Qiu L, Liu H, Guo Z, Huang J, Qiu J. Co-Occurrence of the mcr-1.1 and mcr-3.7 Genes in a Multidrug-Resistant Escherichia coli Isolate from China. Infect Drug Resist 2020; 13:3649-3655. [PMID: 33116684 PMCID: PMC7585518 DOI: 10.2147/idr.s268787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022] Open
Abstract
Objective A colistin-resistant Escherichia coli strain isolated from dog feces was characterized in this study. Methods and Results A multiplex PCR assay was used to detect the presence of colistin-resistant mcr genes; it was found that E. coli QDFD216 co-harbored the mcr-1 and mcr-3 genes. Whole-genome sequencing and further bioinformatics analysis revealed that E. coli QDFD216 belonged to serotype O176:H11, fimH1311 type and ST132. The resistance genes blaCTX-M-14, mdfA, dfrA3, acrA, acrB, tolc, and sul3 were present in the chromosome. The mcr-1.1 and mcr-3.7 genes were located in two plasmids of different incompatibility groups. mcr-1.1 was carried by a IncX4-type plasmid within an typical IS26-parA-mcr-1.1-pap2 cassette, while mcr-3.7 was encoded by an IncP1-type plasmid with a genetic structure of TnAs2-mcr-3.7-dgkA-IS26. No additional antibiotic resistance genes were carried by either plasmid. Conclusion This is the first report of an E. coli isolate co-harboring a mcr-1.1-carrying IncX4 plasmid and a mcr-3.7-carrying IncP1 plasmid. The evolution and mechanism of mcr gene co-existence need further study to assess its impact on public health.
Collapse
Affiliation(s)
- Chongtao Du
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yuyang Feng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Guizhen Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, People's Republic of China
| | - Zhiyuan Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Huimin Hu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Yu Yu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Jiayang Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Lihao Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun 130021, People's Republic of China
| | - Jiazhang Qiu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| |
Collapse
|
191
|
Kumar H, Chen BH, Kuca K, Nepovimova E, Kaushal A, Nagraik R, Bhatia SK, Dhanjal DS, Kumar V, Kumar A, Upadhyay NK, Verma R, Kumar D. Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Animals (Basel) 2020; 10:E1892. [PMID: 33081121 PMCID: PMC7602861 DOI: 10.3390/ani10101892] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.
Collapse
Affiliation(s)
- Harsh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Bing-Huei Chen
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram-122413, Haryana, India;
| | - Rupak Nagraik
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK;
| | - Anil Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Rachna Verma
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India;
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, H.P., India; (H.K.); (R.N.); (A.K.)
| |
Collapse
|
192
|
Mohammed Jajere S, Hassan L, Zakaria Z, Abu J, Abdul Aziz S. Antibiogram Profiles and Risk Factors for Multidrug Resistance of Salmonella enterica Recovered from Village Chickens ( Gallus gallus domesticus Linnaeus) and Other Environmental Sources in the Central and Southern Peninsular Malaysia. Antibiotics (Basel) 2020; 9:E701. [PMID: 33076451 PMCID: PMC7602575 DOI: 10.3390/antibiotics9100701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
The emergence of multidrug resistance (MDR), including colistin resistance, among Enterobacteriaceae recovered from food animals poses a serious public health threat because of the potential transmission of these resistant variants to humans along the food chain. Village chickens or Ayam Kampung are free-range birds and are preferred by a growing number of consumers who consider these chickens to be organic and more wholesome. The current study investigates the antibiogram profiles of Salmonella isolates recovered from village chicken flocks in South-central Peninsular Malaysia. A total of 34 isolates belonging to eight serotypes isolated from village chickens were screened for resistance towards antimicrobials including colistin according to the WHO and OIE recommendations of critical antibiotics. S. Weltevreden accounted for 20.6% of total isolates, followed by serovars Typhimurium and Agona (17.6%). The majority of isolates (73.5%) demonstrated resistance to one or more antimicrobials. Eight isolates (23.5%) were resistant to ≥3 antimicrobial classes. Colistin resistance (minimum inhibitory concentrations: 4-16 mg/L) was detected among five isolates (14.7%), including S. Weltevreden, S. Albany, S. Typhimurium, and Salmonella spp. Univariable analysis of risk factors likely to influence the occurrence of MDR Salmonella revealed that the flock size, poultry production system, and use of antibiotics in the farm were not significantly (p > 0.05) associated with MDR Salmonella. The current study highlights that MDR Salmonella occur at a lower level in village chickens compared to that found in live commercial chickens. However, MDR remains a problem even among free-range chickens with minimal exposure to antibiotics.
Collapse
Affiliation(s)
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor 43400 UPM, Malaysia; (S.M.J.); (Z.Z.); (J.A.); (S.A.A.)
| | | | | | | |
Collapse
|
193
|
Xiaomin S, Yiming L, Yuying Y, Zhangqi S, Yongning W, Shaolin W. Global impact of mcr-1-positive Enterobacteriaceae bacteria on "one health". Crit Rev Microbiol 2020; 46:565-577. [PMID: 33044874 DOI: 10.1080/1040841x.2020.1812510] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polymyxins, especially polymyxin B and polymyxin E (colistin), are considered to be the last line of defence against infections caused by multi-drug-resistant (MDR) gram-negative bacteria such as carbapenem-resistant Enterobacteriaceae (CRE). However, the recent emergence and dissemination of the plasmid-mediated colistin resistance gene mcr-1 and its variants pose a serious challenge to public health and the livestock industry. This review describes the prevalence and dissemination of mcr-1-positive isolates from different sources, including animals (food animals, pet animals and wildlife), humans (healthy populations and patients) and the environment (farms, urban and rural communities and natural environments) based on existing epidemiological studies of mcr-1 and MCR-1-producing Enterobacteriaceae bacteria around the world. The major mechanisms of mcr-1 transmission across humans, animals and the environment are discussed.
Collapse
Affiliation(s)
- Shi Xiaomin
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Li Yiming
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Yang Yuying
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Shen Zhangqi
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| | - Wu Yongning
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China.,NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Wang Shaolin
- Beijing Advance Innovation Center for Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China, P.R. China
| |
Collapse
|
194
|
Emergence of mcr-3 carrying Escherichia coli in Diseased Pigs in South Korea. Microorganisms 2020; 8:microorganisms8101538. [PMID: 33036214 PMCID: PMC7650651 DOI: 10.3390/microorganisms8101538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
We examined the prevalence and molecular characteristics of mcr-3 carrying colistin-resistant Escherichia coli among cattle, pig, and chicken isolates in South Korea. Among a total of 185 colistin-resistant E. coli isolates determined in this study (47 from cattle, 90 from pigs, and 48 from chicken), PCR amplification detected mcr-3 genes in 17 isolates predominantly from diseased pigs. The mcr-3 genes were characterized as mcr-3.1 in 15 isolates and mcr-3.5 in 2 isolates. The mcr-3 gene was transferred to the E. coli J53 recipient strain from more than 50% of the mcr-3-carrying isolates. The mcr-3.1 and mcr-3.5 genes were identified predominantly in IncHI2 and IncP plasmids, respectively. Multi-locus sequence typing analysis revealed eight previously reported sequence types (ST), including ST1, ST10, and ST42. We identified isolates with similar pulsed-field gel electrophoresis patterns from diseased pigs in three farms. Besides, the isolates carried various virulence factors and demonstrated resistance to multiple antimicrobials, including β-lactams and quinolones. Further, the mcr-3.5 encodes three amino acid substitutions compared with mcr-3.1. To the best of our knowledge, this is the first report of pathogenic E. coli carrying mcr-3.5 in South Korea, which implies that mcr-3 variants may have already been widely spread in the pig industry.
Collapse
|
195
|
Fournier C, Poirel L, Nordmann P. Implementation and evaluation of methods for the optimal detection of carbapenem-resistant and colistin-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from stools. Diagn Microbiol Infect Dis 2020; 98:115121. [DOI: 10.1016/j.diagmicrobio.2020.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 12/25/2022]
|
196
|
Nang SC, Han ML, Yu HH, Wang J, Torres VVL, Dai C, Velkov T, Harper M, Li J. Polymyxin resistance in Klebsiella pneumoniae: multifaceted mechanisms utilized in the presence and absence of the plasmid-encoded phosphoethanolamine transferase gene mcr-1. J Antimicrob Chemother 2020; 74:3190-3198. [PMID: 31365098 DOI: 10.1093/jac/dkz314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Until plasmid-mediated mcr-1 was discovered, it was believed that polymyxin resistance in Gram-negative bacteria was mainly mediated by the chromosomally-encoded EptA and ArnT, which modify lipid A with phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), respectively. This study aimed to construct a markerless mcr-1 deletion mutant in Klebsiella pneumoniae, validate a reliable reference gene for reverse transcription quantitative PCR (RT-qPCR) and investigate the interactions among mcr-1, arnT and eptA, in response to polymyxin treatments using pharmacokinetics/pharmacodynamics (PK/PD). METHODS An isogenic markerless mcr-1 deletion mutant (II-503Δmcr-1) was generated from a clinical K. pneumoniae II-503 isolate. The efficacy of different polymyxin B dosage regimens was examined using an in vitro one-compartment PK/PD model and polymyxin resistance was assessed using population analysis profiles. The expression of mcr-1, eptA and arnT was examined using RT-qPCR with a reference gene pepQ, and lipid A was profiled using LC-MS. In vivo polymyxin B efficacy was investigated in a mouse thigh infection model. RESULTS In K. pneumoniae II-503, mcr-1 was constitutively expressed, irrespective of polymyxin exposure. Against II-503Δmcr-1, an initial bactericidal effect was observed within 4 h with polymyxin B at average steady-state concentrations of 1 and 3 mg/L, mimicking patient PK. However, substantial regrowth and concomitantly increased expression of eptA and arnT were detected. Predominant l-Ara4N-modified lipid A species were detected in II-503Δmcr-1 following polymyxin B treatment. CONCLUSIONS This is the first study demonstrating a unique markerless deletion of mcr-1 in a clinical polymyxin-resistant K. pneumoniae. The current polymyxin B dosage regimens are suboptimal against K. pneumoniae, regardless of mcr, and can lead to the emergence of resistance.
Collapse
Affiliation(s)
- Sue C Nang
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Mei-Ling Han
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Heidi H Yu
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jiping Wang
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Von Vergel L Torres
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tony Velkov
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Marina Harper
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
197
|
Nesporova K, Jamborova I, Valcek A, Medvecky M, Literak I, Dolejska M. Various conjugative plasmids carrying the mcr-5 gene in Escherichia coli isolates from healthy chickens in Paraguay. J Antimicrob Chemother 2020; 74:3394-3397. [PMID: 31326998 DOI: 10.1093/jac/dkz317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kristina Nesporova
- CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ivana Jamborova
- CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Adam Valcek
- CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Matej Medvecky
- CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ivan Literak
- CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Monika Dolejska
- CEITEC VFU Brno, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
198
|
Molecular mechanisms and prevalence of colistin resistance of Klebsiella pneumoniae in the Middle East region: A review over the last 5 years. J Glob Antimicrob Resist 2020; 22:625-630. [DOI: 10.1016/j.jgar.2020.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
|
199
|
Eltai NO, Kelly B, Al-Mana HA, Ibrahim EB, Yassine HM, Al Thani A, Al Maslmani M, Lammens C, Xavier BB, Malhotra-Kumar S. Identification of mcr-8 in Clinical Isolates From Qatar and Evaluation of Their Antimicrobial Profiles. Front Microbiol 2020; 11:1954. [PMID: 32983006 PMCID: PMC7476323 DOI: 10.3389/fmicb.2020.01954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 11/13/2022] Open
Abstract
This study was performed to investigate the genotypic causes of colistin resistance in 18 colistin-resistant Klebsiella pneumoniae (n = 13), Escherichia coli (n = 3) and Pseudomonas aeruginosa (n = 2) isolates from patients at the Hamad General Hospital, Qatar. MIC testing for colistin was performed using Phoenix (BD Biosciences, Heidelberg, Germany) and then verified with SensiTest Colistin (Liofilchem, Zona Ind. le, Italy). Strains determined to be resistant (MIC > 4-16 μg/mL) were then whole-genome sequenced (MiSeq, Illumina, Inc.). Sequences were processed and analysed using BacPipe v1.2.6, a bacterial whole genome sequencing analysis pipeline. Known chromosomal modifications were determined using CLC Genomics Workbench v.9.5.3 (CLCbio, Denmark). Two K. pneumoniae isolates (KPN-15 and KPN-19) harboured mcr-8.1 on the IncFII(K) plasmids, pqKPN-15 and pqKPN-19, and belonged to ST383 and ST716, respectively. One E. coli isolate harboured mcr-1.1 on the IncI2 plasmid pEC-12. The other 15 isolates harboured known chromosomal mutations linked to colistin resistance in the PhoPQ two-component system. Also, three K. pneumoniae strains (KPN-9, KPN-10 and KPN-15) showed disruptions due to IS elements in mgrB. To our knowledge, this marks the first description of mcr-8.1 in K. pneumoniae of human origin in Qatar. Currently, more research is necessary to trace the source of mcr-8.1 and its variants in humans in this region.
Collapse
Affiliation(s)
- Nahla O Eltai
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Brianna Kelly
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Emad B Ibrahim
- Laboratory Medicine and Pathology, Hamad General Hospital, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Asmaa Al Thani
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Muna Al Maslmani
- Infectious Disease Department, Hamad General Hospital, Doha, Qatar
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil B Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
200
|
Ullah S, Ji K, Li J, Xu Y, Jiang C, Zhang H, Huang M, Feng Y. Characterization of NMCR-2, a new non-mobile colistin resistance enzyme: implications for an MCR-8 ancestor. Environ Microbiol 2020; 23:844-860. [PMID: 32686285 DOI: 10.1111/1462-2920.15171] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
MCR-4 and MCR-8 are two recently identified members of an ongoing MCR family of colistin resistance. Although that aquatic reservoir for MCR-4 is proposed, the origin and mechanism of MCR-8 is poorly understood. Here we report a previously unrecognized non-mobile colistin resistance enzyme, termed NMCR-2, originating from the plant pathogen Kosakonia pseudosacchari. NMCR-2 (551aa) gives 67.3% identity to MCR-8 (565aa). NMCR-2 is placed as a progenitor/ancestor for MCR-8 in phylogeny of MCR members. Genetic study reveals that nmcr-2 is comparable to mcr-8 in the ability of producing phenotypic colistin resistance. Biochemical analyses determine that these two enzymes catalyse the transfer of PEA from the donor PE lipid substrate to the recipient lipid A molecule by a putative 'ping-pong' trade-off. Further experiment of protein engineering demonstrates that the two motifs (TM region and catalytic domain) of NMCR-2 are functionally exchangeable with that of MCR-8, rather than MCR-1. Physiological impacts of nmcr-2 and/or mcr-8 are detected in Escherichia coli, featuring with fitness cost. Evidently, the action and mechanism of NMCR-2 is analogous to that of MCR-8. Therefore, our finding underlines that NMCR-2 might be a possible progenitor of MCR-8.
Collapse
Affiliation(s)
- Saif Ullah
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China
| | - Kai Ji
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Jun Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Yongchang Xu
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Chengjian Jiang
- Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Huimin Zhang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Man Huang
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China
| | - Youjun Feng
- Department of Pathogen Biology & Microbiology and Department of General Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310058, China.,Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Guangxi, China.,Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, 610500, China.,College of Animal Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| |
Collapse
|