151
|
Xu Q, Cha Q, Qin H, Liu B, Wu X, Shi J. Identification of Master Regulators Driving Disease Progression, Relapse, and Drug Resistance in Lung Adenocarcinoma. FRONTIERS IN BIOINFORMATICS 2022; 2:813960. [PMID: 36304306 PMCID: PMC9580914 DOI: 10.3389/fbinf.2022.813960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds: Lung cancer is the leading cause of cancer related death worldwide. Current treatment strategies primarily involve surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, determined by TNM stages, histologic types, and genetic profiles. Plenty of studies have been trying to identify robust prognostic gene expression signatures. Even for high performance signatures, they usually have few shared genes. This is not totally unexpected, since a prognostic signature is associated with patient survival and may contain no upstream regulators. Identification of master regulators driving disease progression is a vital step to understand underlying molecular mechanisms and develop new treatments. Methods: In this study, we have utilized a robust workflow to identify potential master regulators that drive poor prognosis in patients with lung adenocarcinoma. This workflow takes gene expression signatures that are associated with poor survival of early-stage lung adenocarcinoma, EGFR-TKI resistance, and responses to immune checkpoint inhibitors, respectively, and identifies recurrent master regulators from seven public gene expression datasets by a regulatory network-based approach. Results: We have found that majority of the master regulators driving poor prognosis in early stage LUAD are cell-cycle related according to Gene Ontology annotation. However, they were demonstrated experimentally to promote a spectrum of processes such as tumor cell proliferation, invasion, metastasis, and drug resistance. Master regulators predicted from EGFR-TKI resistance signature and the EMT pathway signature are largely shared, which suggests that EMT pathway functions as a hub and interact with other pathways such as hypoxia, angiogenesis, TNF-α signaling, inflammation, TNF-β signaling, Wnt, and Notch signaling pathways. Master regulators that repress immunotherapy are enriched with MYC targets, E2F targets, oxidative phosphorylation, and mTOR signaling. Conclusion: Our study uncovered possible mechanisms underlying recurrence, resistance to targeted therapy, and immunotherapy. The predicted master regulators may serve as potential therapeutic targets in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Qiong Xu
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongfang Cha
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Qin
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueling Wu
- Department of Respiratory Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xueling Wu, ; Jiantao Shi,
| | - Jiantao Shi
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Xueling Wu, ; Jiantao Shi,
| |
Collapse
|
152
|
Jiang W, Song Y, Zhong Z, Gao J, Meng X. Ferroptosis-Related Long Non-Coding RNA Signature Contributes to the Prediction of Prognosis Outcomes in Head and Neck Squamous Cell Carcinomas. Front Genet 2022; 12:785839. [PMID: 34976018 PMCID: PMC8718757 DOI: 10.3389/fgene.2021.785839] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a malignant tumor, which makes the prognosis prediction challenging. Ferroptosis is an iron-dependent form of non-apoptotic regulated cell death, which could affect cancer development. However, the prognostic value of ferroptosis-related long non-coding RNA (lncRNA) in HNSCC is still limited. Methods: In the current study, we employed the DESeq2 method to characterize the differentially expressed ferroptosis-related genes (FEGs) between cancer and normal samples. Next, the FEG-related lncRNAs (FElncRNAs) were identified using Spearman’s correlation analysis and multiple permutation hypotheses. Subsequently, LASSO and stepwise multivariate Cox regression analyses were undertaken to recognize the prognosis-related FElncRNA signature (PFLS) and risk scores. Results: Herein, we first identified 60 dysregulated FEGs and their co-expressed FElncRNAs in HNSCC. Then, we recognized a set of six FElncRNAs PFLS (SLCO4A1-AS1, C1RL-AS1, PCED1B-AS1, HOXB-AS3, MIR9-3HG, and SFTA1P) for predicting patients’ prognostic risks and survival outcomes. We also assessed the efficiency of PFLS in the test set and an external validation cohort. Further parsing of the tumor immune microenvironment showed the PFLS was closely associated with immune cell infiltration abundances. Notably, the low-risk group of the PFLS showed a higher MHC score and cytolytic activity (CYT) score than the high-risk group, implying the low-risk group may have greater tumor surveillance and killing ability. In addition, we observed that the expression levels of two immune checkpoints (ICPs), i.e., programmed cell death protein 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1), showed significant associations with patients’ risk score, prompting the role of the PFLS in ICP blockade therapy. Finally, we also constructed a drug–PFLS network to reinforce the clinical utilities of the PFLS. Conclusion: In summary, our study indicated that FElncRNAs played an important role in HNSCC survival prediction. Identification of PFLS will contribute to the development of novel anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Wenru Jiang
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingtao Song
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaowei Zhong
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jili Gao
- Department of Implant and Prosthodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaofei Meng
- Donglai Road Stomatological Clinic, Laizhou, China
| |
Collapse
|
153
|
Li Y, Yang C, Liu Z, Du S, Can S, Zhang H, Zhang L, Huang X, Xiao Z, Li X, Fang J, Qin W, Sun C, Wang C, Chen J, Chen H. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy. Mol Cancer 2022; 21:2. [PMID: 34980132 PMCID: PMC8722047 DOI: 10.1186/s12943-021-01462-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background In recent years, the application of functional genetic immuno-oncology screens has showcased the striking ability to identify potential regulators engaged in tumor-immune interactions. Although these screens have yielded substantial data, few studies have attempted to systematically aggregate and analyze them. Methods In this study, a comprehensive data collection of tumor immunity-associated functional screens was performed. Large-scale genomic data sets were exploited to conduct integrative analyses. Results We identified 105 regulator genes that could mediate resistance or sensitivity to immune cell-induced tumor elimination. Further analysis identified MON2 as a novel immune-oncology target with considerable therapeutic potential. In addition, based on the 105 genes, a signature named CTIS (CRISPR screening-based tumor-intrinsic immune score) for predicting response to immune checkpoint blockade (ICB) and several immunomodulatory agents with the potential to augment the efficacy of ICB were also determined. Conclusion Overall, our findings provide insights into immune oncology and open up novel opportunities for improving the efficacy of current immunotherapy agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01462-z.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shangce Du
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Susan Can
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Hailin Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Linmeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Xiaowen Huang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Zhenyu Xiao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaobo Li
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Jingyuan Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Chong Sun
- Immune Regulation in Cancer Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China.
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China. .,Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Huimin Chen
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
154
|
Ning J, Wang F, Zhu K, Li B, Shu Q, Liu W. Characterizing the Copy Number Variation of Non-Coding RNAs Reveals Potential Therapeutic Targets and Prognostic Markers of LUSC. Front Genet 2021; 12:779155. [PMID: 34925461 PMCID: PMC8672037 DOI: 10.3389/fgene.2021.779155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and a lack of available targeted therapies. Therefore, there is an urgent need to identify novel prognostic markers and therapeutic targets to assist in the diagnosis and treatment of LUSC. With the development of high-throughput sequencing technology, integrated analysis of multi-omics data will provide annotation of pathogenic non-coding variants and the role of non-coding sequence variants in cancers. Here, we integrated RNA-seq profiles and copy number variation (CNV) data to study the effects of non-coding variations on gene regulatory network. Furthermore, the 372 long non-coding RNAs (lncRNA) regulated by CNV were used as candidate genes, which could be used as biomarkers for clinical application. Nine lncRNAs including LINC00896, MCM8-AS1, LINC01251, LNX1-AS1, GPRC5D-AS1, CTD-2350J17.1, LINC01133, LINC01121, and AC073130.1 were recognized as prognostic markers for LUSC. By exploring the association of the prognosis-related lncRNAs (pr-lncRNAs) with immune cell infiltration, GPRC5D-AS1 and LINC01133 were highlighted as markers of the immunosuppressive microenvironment. Additionally, the cascade response of pr-lncRNA-CNV-mRNA-physiological functions was revealed. Taken together, the identification of prognostic markers and carcinogenic regulatory mechanisms will contribute to the individualized treatment for LUSC and promote the development of precision medicine.
Collapse
Affiliation(s)
- Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fengjiao Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaibin Zhu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Binxi Li
- Department of Management Science and Engineering, Harbin Engineering University, Harbin, China
| | - Qing Shu
- Department of Medical Imaging, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
155
|
Baulu E, Dougé A, Chuvin N, Bay JO, Depil S. [T cell-based immunotherapies in solid tumors]. Bull Cancer 2021; 108:S96-S108. [PMID: 34920813 DOI: 10.1016/j.bulcan.2021.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/08/2022]
Abstract
In solid tumors, adoptive T cell therapies based on ex vivo amplification of antitumor T cell are represented by three main complementary approaches : (i) tumor infiltrating lymphocytes (TILs) which are amplified in vitro before reinjection to the patient, (ii) chimeric antigen receptor (CAR) engineered T cells and (iii) T cell receptor (TCR) engineered T cells. Despite encouraging results, some obstacles remain, such as optimal target selection and tumor microenvironment. In this Review, we discuss pros and cons of these different therapeutic strategies that may open new perspectives in the treatment of solid tumors.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de recherche en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France; ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France
| | - Aurore Dougé
- CHU Estaing, service d'hématologie, 1, rue Lucie et Raymond Aubrac, 63100 Clermont-Ferrand, France
| | - Nicolas Chuvin
- ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France
| | - Jacques-Olivier Bay
- CHU Estaing, service d'hématologie, 1, rue Lucie et Raymond Aubrac, 63100 Clermont-Ferrand, France; Faculté de médecine, 28, place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Stéphane Depil
- Centre de recherche en cancérologie de Lyon, 28, rue Laennec, 69008 Lyon, France; ErVaccine Technologies, 28, rue Laennec, 69008 Lyon, France; Centre Léon Bérard, 28, Prom. Léa et Napoléon Bullukian, 69008 Lyon, France; Université Claude-Bernard Lyon 1, 43, boulevard du 11 novembre 1918, 69100 Villeurbanne, France.
| |
Collapse
|
156
|
Song J, Tang Y, Luo X, Shi X, Song F, Ran L. Pan-Cancer Analysis Reveals the Signature of TMC Family of Genes as a Promising Biomarker for Prognosis and Immunotherapeutic Response. Front Immunol 2021; 12:715508. [PMID: 34899684 PMCID: PMC8660091 DOI: 10.3389/fimmu.2021.715508] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023] Open
Abstract
Transmembrane Channel-like (TMC) genes are critical in the carcinogenesis, proliferation, and cell cycle of human cancers. However, the multi-omics features of TMCs and their role in the prognosis and immunotherapeutic response of human cancer have not been explored. We discovered that TMCs 4-8 were commonly deregulated and correlated with patient survival in a variety of cancers. For example, TMC5 and TMC8 were correlated with the relapse and overall survival rates of breast cancer and skin melanoma, respectively. These results were validated by multiple independent cohorts. TMCs were regulated by DNA methylation and somatic alterations, such as TMC5 amplification in breast cancer (523/1062, 49.2%). Six algorithms concordantly uncovered the critical role of TMCs in the tumor microenvironment, potentially regulating immune cell toxicity and lymphocytes infiltration. Moreover, TMCs 4-8 were correlated with tumor mutation burden and expression of PD-1/PD-L1/CTLA4 in 33 cancers. Thus, we established an immunotherapy response prediction (IRP) score based on the signature of TMCs 4-8. Patients with higher IRP scores showed higher immunotherapeutic responses in five cohorts of skin melanoma (area under curve [AUC] = 0.90 in the training cohort, AUCs range from 0.70 to 0.83 in the validation cohorts). Together, our study highlights the great potential of TMCs as biomarkers for prognosis and immunotherapeutic response, which can pave the way for further investigation of the tumor-infiltrating mechanisms and therapeutic potentials of TMCs in cancer.
Collapse
Affiliation(s)
- Jing Song
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China.,Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Yongyao Tang
- Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Xiaoyong Luo
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Xinpeng Shi
- Department of Oncology, The Affiliated Luoyang Central Hospital of Zhengzhou University, Luoyang, China
| | - Fangzhou Song
- Molecular and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Longke Ran
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing, China.,Forensic Laboratory, The Basic Medical School of Chongqing Medical University, Chongqing, China
| |
Collapse
|
157
|
Wu L, Hu X, Dai H, Chen K, Liu B. Identification of an m6A Regulators-Mediated Prognosis Signature For Survival Prediction and Its Relevance to Immune Infiltration in Melanoma. Front Cell Dev Biol 2021; 9:718912. [PMID: 34900983 PMCID: PMC8656227 DOI: 10.3389/fcell.2021.718912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
Despite robust evidence for the role of m6A in cancer development and progression, its association with immune infiltration and survival outcomes in melanoma remains obscure. Here, we aimed to develop an m6A-related risk signature to improve prognostic and immunotherapy responder prediction performance in the context of melanoma. We comprehensively analyzed the m6A cluster and immune infiltration phenotypes of public datasets. The TCGA (n = 457) and eleven independent melanoma cohorts (n = 758) were used as the training and validation datasets, respectively. We identified two m6A clusters (m6A-clusterA and m6A-clusterB) based on the expression pattern of m6A regulators via unsupervised consensus clustering. IGF2BP1 (7.49%), KIAA1429 (7.06%), and YTHDC1 (4.28%) were the three most frequently mutated genes. There was a correlation between driver genes mutation statuses and the expression of m6A regulators. A significant difference in tumor-associated immune infiltration between two m6A clusters was detected. Compared with m6A-clusterA, the m6A-clusterB was characterized by a lower immune score and immune cell infiltration but higher mRNA expression-based stemness index (mRNAsi). An m6A-related risk signature consisting of 12 genes was determined via Cox regression analysis and divided the patients into low- and high-risk groups (IL6ST, MBNL1, NXT2, EIF2A, CSGALNACT1, C11orf58, CD14, SPI1, NCCRP1, BOK, CD74, PAEP). A nomogram was developed for the prediction of the survival rate. Compared with the high-risk group, the low-risk group was characterized by high expression of immune checkpoints and immunophenoscore (IPS), activation of immune-related pathways, and more enriched in immune cell infiltrations. The low-risk group had a favorable prognosis and contained the potential beneficiaries of the immune checkpoint blockade therapy and verified by the IMvigor210 cohort (n = 298). The m6A-related signature we have determined in melanoma highlights the relationships between m6A regulators and immune cell infiltration. The established risk signature was identified as a promising clinical biomarker of melanoma.
Collapse
Affiliation(s)
- Liuxing Wu
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Hu
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongji Dai
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ben Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
158
|
Li Y, Li Y, Xia Z, Zhang D, Chen X, Wang X, Liao J, Yi W, Chen J. Identification of a novel immune signature for optimizing prognosis and treatment prediction in colorectal cancer. Aging (Albany NY) 2021; 13:25518-25549. [PMID: 34898475 PMCID: PMC8714135 DOI: 10.18632/aging.203771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 04/11/2023]
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is one of the most lethal malignant diseases. However, the currently approved therapeutic options for CRC failed to acquire satisfactory treatment efficacy. Tailoring therapeutic strategies for CRC individuals can provide new insights into personalized prediction approaches and thus maximize clinical benefits. METHODS In this study, a multi-step process was used to construct an immune-related genes (IRGs) based signature leveraging the expression profiles and clinical characteristics of CRC from the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database. An integrated immunogenomic analysis was performed to determine the association between IRGs with prognostic significance and cancer genotypes in the tumor immune microenvironment (TIME). Moreover, we performed a comprehensive in silico therapeutics screening to identify agents with subclass-specific efficacy. RESULTS The established signature was shown to be a promising biomarker for evaluating clinical outcomes in CRC. The immune risk score as calculated by this classifier was significantly correlated with over-riding malignant phenotypes and immunophenotypes. Further analyses demonstrated that CRCs with low immune risk scores achieved better therapeutic benefits from immunotherapy, while AZD4547, Cytochalasin B and S-crizotinib might have potential therapeutic implications in the immune risk score-high CRCs. CONCLUSIONS Overall, this IRGs-based signature not only afforded a useful tool for determining the prognosis and evaluating the TIME features of CRCs, but also shed new light on tailoring CRCs with precise treatment.
Collapse
Affiliation(s)
- Yan Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yiyi Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zijin Xia
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dun Zhang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaomei Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Liao
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Yi
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Precision Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
159
|
Wen F, Ruan S, Huang W, Chen X, Wang Y, Gu S, Liu J, Liu S, Shu P. Prognostic Value of Tumor Mutational Burden Related to Immune Infiltration in Cervical Squamous Cell Carcinoma. Front Med (Lausanne) 2021; 8:755657. [PMID: 34859010 PMCID: PMC8631969 DOI: 10.3389/fmed.2021.755657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical squamous cell carcinoma is one of the most common causes of female cancer deaths worldwide. At present, immunotherapy using immune checkpoint blockade (ICB) has improved the prognosis of many cancer patients, and neoantigens generated by mutations may serve as potential biomarkers for predicting the outcome of ICB therapy. In this study, we identified missense mutations as the most frequent in landscapes of gene mutation in cervical squamous cell carcinoma (CESC) samples. Patients with higher tumor mutation burden (TMB) presented higher overall survival (OS). In addition, there was a significant correlation between the high TMB group and fractions of most immune cells. Univariate and multivariate Cox regression analyses identified five hub genes (IFNG, SERPINA3, CCL4L2, TNFSF15, and IL1R1) that were used to build a prognostic model. In the prognostic model, the low-risk group achieved better OS. Mutations in the five hub genes mainly affected the infiltration level of CD8+ T cells and dendritic cells. In conclusion, our study is valuable for exploring the role of TMB and its relationship with immune infiltration in CESC. Moreover, the prognosis model may help predict the sensitivity of patients to immunotherapy and provide underlying biomarkers for personalized immunotherapy.
Collapse
Affiliation(s)
- Fang Wen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Ruan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenjie Huang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxue Chen
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulan Wang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suping Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiatong Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Shu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
160
|
Pan X, Zhang C, Wang J, Wang P, Gao Y, Shang S, Guo S, Li X, Zhi H, Ning S. Epigenome signature as an immunophenotype indicator prompts durable clinical immunotherapy benefits in lung adenocarcinoma. Brief Bioinform 2021; 23:6447679. [PMID: 34864866 DOI: 10.1093/bib/bbab481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Intertumoral immune heterogeneity is a critical reason for distinct clinical benefits of immunotherapy in lung adenocarcinoma (LUAD). Tumor immunophenotype (immune 'Hot' or 'Cold') suggests immunological individual differences and potential clinical treatment guidelines. However, employing epigenome signatures to determine tumor immunophenotypes and responsive treatment is not well understood. To delineate the tumor immunophenotype and immune heterogeneity, we first distinguished the immune 'Hot' and 'Cold' tumors of LUAD based on five immune expression signatures. In terms of clinical presentation, the immune 'Hot' tumors usually had higher immunoactivity, lower disease stages and better survival outcomes than 'Cold' tumors. At the epigenome levels, we observed that distinct DNA methylation patterns between immunophenotypes were closely associated with LUAD development. Hence, we identified a set of five CpG sites as the immunophenotype-related methylation signature (iPMS) for tumor immunophenotyping and further confirmed its efficiency based on a machine learning framework. Furthermore, we found iPMS and immunophenotype-related immune checkpoints (IPCPs) could contribute to the risk of tumor progression, implying IPCP has the potential to be a novel immunotherapy blockade target. After further parsing of the role of iPMS-predicted immunophenotypes, we found immune 'Hot' was a protective factor leading to better survival outcomes when patients received the anti-PD-1/PD-L1 immunotherapy. And iPMS was also a well-performed signature (AUC = 0.752) for predicting the durable/nondurable clinical benefits. In summary, our study explored the role of epigenome signature in clinical tumor immunophenotyping. Utilizing iPMS to characterize tumor immunophenotypes will facilitate developing personalized epigenetic anticancer approaches.
Collapse
Affiliation(s)
- Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Caiyu Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Junwei Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
161
|
Beyond immune checkpoint blockade: emerging immunological strategies. Nat Rev Drug Discov 2021; 20:899-919. [PMID: 33686237 DOI: 10.1038/s41573-021-00155-y] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.
Collapse
|
162
|
James CA, Ronning P, Cullinan D, Cotto KC, Barnell EK, Campbell KM, Skidmore ZL, Sanford DE, Goedegebuure SP, Gillanders WE, Griffith OL, Hawkins WG, Griffith M. In silico epitope prediction analyses highlight the potential for distracting antigen immunodominance with allogeneic cancer vaccines. CANCER RESEARCH COMMUNICATIONS 2021; 1:115-126. [PMID: 35611186 PMCID: PMC9126504 DOI: 10.1158/2767-9764.crc-21-0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Allogeneic cancer vaccines are designed to induce antitumor immune responses with the goal of impacting tumor growth. Typical allogeneic cancer vaccines are produced by expansion of established cancer cell lines, transfection with vectors encoding immunostimulatory cytokines, and lethal irradiation. More than 100 clinical trials have investigated the clinical benefit of allogeneic cancer vaccines in various cancer types. Results show limited therapeutic benefit in clinical trials and currently there are no FDA approved allogeneic cancer vaccines. We used recently developed bioinformatics tools including the pVAC-seq suite of software tools to analyze DNA/RNA sequencing data from the TCGA to examine the repertoire of antigens presented by a typical allogeneic cancer vaccine, and to simulate allogeneic cancer vaccine clinical trials. Specifically, for each simulated clinical trial we modeled the repertoire of antigens presented by allogeneic cancer vaccines consisting of three hypothetical cancer cell lines to 30 patients with the same cancer type. Simulations were repeated ten times for each cancer type. Each tumor sample in the vaccine and the vaccine recipient was subjected to HLA typing, differential expression analyses for tumor associated antigens (TAAs), germline variant calling, and neoantigen prediction. These analyses provided a robust, quantitative comparison between potentially beneficial TAAs and neoantigens versus distracting antigens present in the allogeneic cancer vaccines. We observe that distracting antigens greatly outnumber shared TAAs and neoantigens, providing one potential explanation for the lack of observed responses to allogeneic cancer vaccines. This analysis provides additional rationale for the redirection of efforts towards a personalized cancer vaccine approach.
Collapse
Affiliation(s)
- C. Alston James
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Peter Ronning
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Darren Cullinan
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Kelsy C. Cotto
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Erica K. Barnell
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Katie M. Campbell
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Dominic E. Sanford
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - S. Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - William E. Gillanders
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,CorrespondingAuthor: Malachi Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. Phone: 314-286-1274; E-mail: ; Obi L. Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail: ; and William G. Hawkins, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
| | - William G. Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,CorrespondingAuthor: Malachi Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. Phone: 314-286-1274; E-mail: ; Obi L. Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail: ; and William G. Hawkins, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
| | - Malachi Griffith
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.,McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,CorrespondingAuthor: Malachi Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. Phone: 314-286-1274; E-mail: ; Obi L. Griffith, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail: ; and William G. Hawkins, McDonnell Genome Institute, 4444 Forest Park Avenue, Campus Box 8501, St. Louis, MO 63108. E-mail:
| |
Collapse
|
163
|
Fountzilas E, Kurzrock R, Vo HH, Tsimberidou AM. Wedding of Molecular Alterations and Immune Checkpoint Blockade: Genomics as a Matchmaker. J Natl Cancer Inst 2021; 113:1634-1647. [PMID: 33823006 PMCID: PMC9890928 DOI: 10.1093/jnci/djab067] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
The development of checkpoint blockade immunotherapy has transformed the medical oncology armamentarium. But despite its favorable impact on clinical outcomes, immunotherapy benefits only a subset of patients, and a substantial proportion of these individuals eventually manifest resistance. Serious immune-related adverse events and hyperprogression have also been reported. It is therefore essential to understand the molecular mechanisms and identify the drivers of therapeutic response and resistance. In this review, we provide an overview of the current and emerging clinically relevant genomic biomarkers implicated in checkpoint blockade outcome. US Food and Drug Administration-approved molecular biomarkers of immunotherapy response include mismatch repair deficiency and/or microsatelliteinstability and tumor mutational burden of at least 10 mutations/megabase. Investigational genomic-associated biomarkers for immunotherapy response include alterations of the following genes/associated pathways: chromatin remodeling (ARID1A, PBRM1, SMARCA4, SMARCB1, BAP1), major histocompatibility complex, specific (eg, ultraviolet, APOBEC) mutational signatures, T-cell receptor repertoire, PDL1, POLE/POLD1, and neo-antigens produced by the mutanome, those potentially associated with resistance include β2-microglobulin, EGFR, Keap1, JAK1/JAK2/interferon-gamma signaling, MDM2, PTEN, STK11, and Wnt/Beta-catenin pathway alterations. Prospective clinical trials are needed to assess the role of a composite of these biomarkers to optimize the implementation of precision immunotherapy in patient care.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
- European University Cyprus, Limassol, Cyprus
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| | - Henry Hiep Vo
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA
| | - Apostolia-Maria Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX, USA
| |
Collapse
|
164
|
Li X, Liang W, Zhao H, Jin Z, Shi G, Xie W, Wang H, Wu X. Immune Cell Infiltration Landscape of Ovarian Cancer to Identify Prognosis and Immunotherapy-Related Genes to Aid Immunotherapy. Front Cell Dev Biol 2021; 9:749157. [PMID: 34805159 PMCID: PMC8595115 DOI: 10.3389/fcell.2021.749157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Ovarian cancer (OC) is the second leading cause of death in gynecological cancer. Multiple study have shown that the efficacy of tumor immunotherapy is related to tumor immune cell infiltration (ICI). However, so far, the Immune infiltration landscape of tumor microenvironment (TME) in OC has not been elucidated. In this study, We organized the transcriptome data of OC in the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, evaluated the patient's TME information, and constructed the ICI scores to predict the clinical benefits of patients undergoing immunotherapy. Immune-related genes were further used to construct the prognostic model. After clustering analysis of ICI genes, we found that patients in ICI gene cluster C had the best prognosis, and their tumor microenvironment had the highest proportion of macrophage M1 and T cell follicular helper cells. This result was consistent with that of multivariate cox (multi-cox) analysis. The prognostic model constructed by immune-related genes had good predictive performance. By estimating Tumor mutation burden (TMB), we also found that there were multiple genes with statistically different mutation frequencies in the high and low ICI score groups. The model based on the ICI score may help to screen out patients who would benefit from immunotherapy. The immune-related genes screened may be used as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xiushen Li
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | | | - Huanyi Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zheng Jin
- ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| | - Guoqi Shi
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanhua Xie
- The Precise Medicine Center, Department of Basic Medical College, Shenyang Medical College, Shenyang, China
| | - Hao Wang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xueqing Wu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
- Clinical Medical Academy, Shenzhen University, Shenzhen, China
| |
Collapse
|
165
|
Zhou B, Gao S. Comprehensive Analysis of Clinical Significance, Immune Infiltration and Biological Role of m 6A Regulators in Early-Stage Lung Adenocarcinoma. Front Immunol 2021; 12:698236. [PMID: 34650549 PMCID: PMC8505809 DOI: 10.3389/fimmu.2021.698236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Recent publications have revealed that N6-methyladenosine (m6A) modification is critically involved in tumorigenesis and metastasis. However, the correlation of m6A modification and immune infiltration in early-stage lung adenocarcinoma (LUAD) is still uncertain. We performed NMF clustering based on 23 m6A regulators and identify three distinct m6A clusters and three m6A related genes clusters (m6A cluster-R) in early-stage LUAD. The immune infiltrating levels were calculated using CIBERSORT, MCPcounter and ssGSEA algorithms. And we established the m6A-predictive score to quantify m6A modified phenotypes and predict immunotherapeutic responses. Based on the TME characteristics, different immune profiles were also identified among three m6A gene-related clusters. And the m6A-R-C2 was related to a favorable overall survival (OS), whereas m6A-R-C3 had unfavorable overall survival. The m6A-predictive score was built according to the expression levels of m6A-related genes, and patients could be stratified into subgroups with low/high scores. Patients with high scores had poor overall survival, enhanced immune infiltration, high tumor mutation burden and increased level of somatic mutation. Besides, patients with high scores had unfavorable overall survival in the anti-PD-1 cohort, whereas the overall survival of high-score patients was better in the adoptive T cell therapy cohort. Our work highlights that m6A modification is closely related to immune infiltration in early-stage LUAD, which also contributes to the development of more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
166
|
Draghi A, Chamberlain CA, Khan S, Papp K, Lauss M, Soraggi S, Radic HD, Presti M, Harbst K, Gokuldass A, Kverneland A, Nielsen M, Westergaard MCW, Andersen MH, Csabai I, Jönsson G, Szallasi Z, Svane IM, Donia M. Rapid Identification of the Tumor-Specific Reactive TIL Repertoire via Combined Detection of CD137, TNF, and IFNγ, Following Recognition of Autologous Tumor-Antigens. Front Immunol 2021; 12:705422. [PMID: 34707600 PMCID: PMC8543011 DOI: 10.3389/fimmu.2021.705422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Detecting the entire repertoire of tumor-specific reactive tumor-infiltrating lymphocytes (TILs) is essential for investigating their immunological functions in the tumor microenvironment. Current in vitro assays identifying tumor-specific functional activation measure the upregulation of surface molecules, de novo production of antitumor cytokines, or mobilization of cytotoxic granules following recognition of tumor-antigens, yet there is no widely adopted standard method. Here we established an enhanced, yet simple, method for identifying simultaneously CD8+ and CD4+ tumor-specific reactive TILs in vitro, using a combination of widely known and available flow cytometry assays. By combining the detection of intracellular CD137 and de novo production of TNF and IFNγ after recognition of naturally-presented tumor antigens, we demonstrate that a larger fraction of tumor-specific and reactive CD8+ TILs can be detected in vitro compared to commonly used assays. This assay revealed multiple polyfunctionality-based clusters of both CD4+ and CD8+ tumor-specific reactive TILs. In situ, the combined detection of TNFRSF9, TNF, and IFNG identified most of the tumor-specific reactive TIL repertoire. In conclusion, we describe a straightforward method for efficient identification of the tumor-specific reactive TIL repertoire in vitro, which can be rapidly adopted in most cancer immunology laboratories.
Collapse
Affiliation(s)
- Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Krisztian Papp
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Martin Lauss
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Samuele Soraggi
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Haja Dominike Radic
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Katja Harbst
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Aishwarya Gokuldass
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anders Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
167
|
Alterations in HLA Class I-Presented Immunopeptidome and Class I-Interactome upon Osimertinib Resistance in EGFR Mutant Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13194977. [PMID: 34638461 PMCID: PMC8507780 DOI: 10.3390/cancers13194977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary We sought to identify molecular mechanisms of lower efficacy of immunotherapy in epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma and the differences in those mechanisms with the emergence of tyrosine kinase inhibitor (TKI)-resistance. To this end, we conducted affinity purification and quantitative mass spectrometry-based proteomic profiling of human leukocyte antigen (HLA) Class I-presented immunopeptides and Class I-interacting proteins. This large-scale dataset revealed that the Class I-presented immunopeptidome was suppressed in two third-generation EGFR TKI, osimertinib-resistant lung adenocarcinoma cell lines compared to their isogenic TKI-sensitive counterparts. The whole-cell proteomic profiling show that antigen presentation complex proteins and immunoproteasome were downregulated upon EGFR TKI resistance. Furthermore, HLA class I-interactome profiling demonstrated altered interaction with key apoptosis and autophagy pathway proteins. In summary, our comprehensive multi-proteomic characterization in antigen presentation machinery provides potentially novel evidence of poor immune response in osimertinib-resistant lung adenocarcinoma. Abstract Immune checkpoint inhibitor (ICI) therapy has been a paradigm shift in the treatment of cancer. ICI therapy results in durable responses and survival benefit for a large number of tumor types. Osimertinib, a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) has shown great efficacy treating EGFR mutant lung cancers; however, all patients eventually develop resistance. ICI therapy has not benefitted EGFR mutant lung cancer. Herein, we employed stable isotope labeling by amino acids in cell culture (SILAC) quantitative mass spectrometry-based proteomics to investigate potential immune escape molecular mechanisms in osimertinib resistant EGFR mutant lung adenocarcinoma by interrogating the alterations in the human leukocyte antigen (HLA) Class I-presented immunopeptidome, Class I-interactome, and the whole cell proteome between isogenic osimertinib-sensitive and -resistant human lung adenocarcinoma cells. Our study demonstrates an overall reduction in HLA class I-presented immunopeptidome and downregulation of antigen presentation core complex (e.g., TAP1 and ERAP1/2) and immunoproteasome in osimertinib resistant lung adenocarcinoma cells. Several key components in autophagy pathway are differentially altered. S100 proteins and SLC3A2 may play critical roles in reduced antigen presentation. Our dataset also includes ~1000 novel HLA class I interaction partners and hundreds of Class I-presented immunopeptides in EGFR mutant lung adenocarcinoma. This large-scale unbiased proteomics study provides novel insights and potential mechanisms of immune evasion of EGFR mutant lung adenocarcinoma.
Collapse
|
168
|
Chen Y, Zhang X, Li J, Zhou M. Immune-related eight-lncRNA signature for improving prognosis prediction of lung adenocarcinoma. J Clin Lab Anal 2021; 35:e24018. [PMID: 34550610 PMCID: PMC8605161 DOI: 10.1002/jcla.24018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the leading cause of cancer‐related deaths worldwide. Therefore, the identification of a novel prediction signature for predicting the prognosis risk and survival outcomes is urgently demanded. Methods We integrated a machine‐learning frame by combing the Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) regression model to identify the LUAD‐related long non‐coding RNA (lncRNA) survival biomarkers. Subsequently, the Spearman correlation test was employed to interrogate the relationships between lncRNA signature and tumor immunity and constructed the competing endogenous RNA (ceRNA) network. Results Herein, we identified an eight‐lncRNA signature (PR‐lncRNA signature, NPSR1‐AS1, SATB2‐AS1, LINC01090, FGF12‐AS2, AC005256.1, MAFA‐AS1, BFSP2‐AS1, and CPC5‐AS1), which contributes to predicting LUAD patient's prognosis risk and survival outcomes. The PR‐lncRNA signature has also been confirmed as the robust signature in independent datasets. Further parsing of the LUAD tumor immune infiltration showed the PR‐lncRNAs were closely associated with the abundance of multiple immune cells infiltration and the expression of MHC molecules. Furthermore, by constructing the PR‐lncRNA–related ceRNA network, we interrogated more potential anti‐cancer therapy targets. Conclusion lncRNAs, as emerging cancer biomarkers, play an important role in a variety of cancer processes. Identification of PR‐lncRNA signatures allows us to better predict patient's survival outcomes and disease risk. Finally, the PR‐lncRNA signatures could help us to develop novel LUAD anti‐cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yan Chen
- School of Medicine, Department of Oncology, Southeast University, Zhongda Hospital, Nanjing, China
| | - Xiuxiu Zhang
- School of Medicine, Department of Oncology, Southeast University, Zhongda Hospital, Nanjing, China
| | - Jinze Li
- Tianjin Medical University General Hospital, Tianjin, China
| | - Min Zhou
- School of Medicine, Department of Oncology, Southeast University, Zhongda Hospital, Nanjing, China
| |
Collapse
|
169
|
Klaver Y, Rijnders M, Oostvogels A, Wijers R, Smid M, Grünhagen D, Verhoef C, Sleijfer S, Lamers C, Debets R. Differential quantities of immune checkpoint-expressing CD8 T cells in soft tissue sarcoma subtypes. J Immunother Cancer 2021; 8:jitc-2019-000271. [PMID: 32792357 PMCID: PMC7430493 DOI: 10.1136/jitc-2019-000271] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Local T-cell immunity is recognized for its contribution to the evolution and therapy response of various carcinomas. Here, we investigated characteristics of tumor-infiltrating lymphocytes (TILs), as well as T-cell evasive mechanisms in different soft tissue sarcoma (STS) subtypes. Methods Liposarcoma, gastrointestinal stromal tumor (GIST), leiomyosarcoma, myxofibrosarcoma and pleomorphic sarcomas were assessed for T-cell numbers and phenotypes using flow cytometry. Next-generation sequencing was used to analyze T-cell receptor repertoire, mutational load, immune cell frequencies, and expression of immune-related genes. Results GIST, myxofibrosarcoma and pleomorphic sarcoma showed high numbers of CD8+ TILs, with GIST having the lowest fraction of effector memory T cells. These TILs coexpress the immune checkpoints PD1, TIM3, and LAG3 in myxofibrosarcoma and pleomorphic sarcoma, yet TILs coexpressing these checkpoints were near negligible in GIST. Fractions of dominant T-cell clones among STS subtypes were lowest in GIST and liposarcoma, whereas mutational load was relatively low in all STS subtypes. Furthermore, myeloid-derived cells and expression of the costimulatory ligands CD86, ICOS-L and 41BB-L were lowest in GIST when compared with other STS subtypes. Conclusion STS subtypes differ with respect to number and phenotypical signs of antitumor responsiveness of CD8+ TILs. Notably, GIST, myxofibrosarcoma and pleomorphic sarcoma harbor high numbers of CD8+ T cells, yet in the GIST microenvironment, these T cells are less differentiated and non-exhausted, which is accompanied with a relatively low expression of costimulatory ligands.
Collapse
Affiliation(s)
- Yarne Klaver
- Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Maud Rijnders
- Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Astrid Oostvogels
- Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Rebecca Wijers
- Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Marcel Smid
- Medical Oncology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Dirk Grünhagen
- General Surgery, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Cornelis Verhoef
- General Surgery, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Stefan Sleijfer
- Medical Oncology, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Cor Lamers
- Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Reno Debets
- Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
170
|
van den Berg JH, Heemskerk B, van Rooij N, Gomez-Eerland R, Michels S, van Zon M, de Boer R, Bakker NAM, Jorritsma-Smit A, van Buuren MM, Kvistborg P, Spits H, Schotte R, Mallo H, Karger M, van der Hage JA, Wouters MWJM, Pronk LM, Geukes Foppen MH, Blank CU, Beijnen JH, Nuijen B, Schumacher TN, Haanen JBAG. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer 2021; 8:jitc-2020-000848. [PMID: 32753545 PMCID: PMC7406109 DOI: 10.1136/jitc-2020-000848] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Treatment of metastatic melanoma with autologous tumor infiltrating lymphocytes (TILs) is currently applied in several centers. Robust and remarkably consistent overall response rates, of around 50% of treated patients, have been observed across hospitals, including a substantial fraction of durable, complete responses. PURPOSE Execute a phase I/II feasibility study with TIL therapy in metastatic melanoma at the Netherlands Cancer Institute, with the goal to assess feasibility and potential value of a randomized phase III trial. EXPERIMENTAL Ten patients were treated with TIL therapy. Infusion products and peripheral blood samples were phenotypically characterized and neoantigen reactivity was assessed. Here, we present long-term clinical outcome and translational data on neoantigen reactivity of the T cell products. RESULTS Five out of 10 patients, who were all anti-PD-1 naïve at time of treatment, showed an objective clinical response, including two patients with a complete response that are both ongoing for more than 7 years. Immune monitoring demonstrated that neoantigen-specific T cells were detectable in TIL infusion products from three out of three patients analyzed. For six out of the nine neoantigen-specific T cell responses detected in these TIL products, T cell response magnitude increased significantly in the peripheral blood compartment after therapy, and neoantigen-specific T cells were detectable for up to 3 years after TIL infusion. CONCLUSION The clinical results from this study confirm the robustness of TIL therapy in metastatic melanoma and the potential role of neoantigen-specific T cell reactivity. In addition, the data from this study supported the rationale to initiate an ongoing multicenter phase III TIL trial.
Collapse
Affiliation(s)
| | - Bianca Heemskerk
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Nienke van Rooij
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Raquel Gomez-Eerland
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Samira Michels
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maaike van Zon
- BioTherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Renate de Boer
- BioTherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Noor A M Bakker
- BioTherapeutics Unit, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Annelies Jorritsma-Smit
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marit M van Buuren
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Amsterdam, The Netherlands.,Experimental Immunology, Amsterdam University Medical Centres, Amsterdam, Noord-Holland, The Netherlands
| | | | - Henk Mallo
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthias Karger
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joris A van der Hage
- Department of Surgery, Leiden Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Michel W J M Wouters
- Surgical Oncology, Antoni van Leeuwenhoek Nederlands Kanker Instituut, Amsterdam, The Netherlands.,Dutch Institute for Clinical Auditing, Leiden, The Netherlands
| | - Loes M Pronk
- Department of Biometrics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marnix H Geukes Foppen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University Department of Pharmaceutical Sciences, Utrecht, Utrecht, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, Utrecht, The Netherlands
| | - John B A G Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
171
|
Verdegaal E, van der Kooij MK, Visser M, van der Minne C, de Bruin L, Meij P, Terwisscha van Scheltinga A, Welters MJ, Santegoets S, de Miranda N, Roozen I, Liefers GJ, Kapiteijn E, van der Burg SH. Low-dose interferon-alpha preconditioning and adoptive cell therapy in patients with metastatic melanoma refractory to standard (immune) therapies: a phase I/II study. J Immunother Cancer 2021; 8:jitc-2019-000166. [PMID: 32238469 PMCID: PMC7174065 DOI: 10.1136/jitc-2019-000166] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2020] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) with tumor-reactive T cells has shown consistent clinical efficacy. We evaluated the response to ACT in combination with interferon alpha (IFNa) preconditioning in patients with stage IV metastatic melanoma, most of which were progressive on cytotoxic T-lymphocyte-associated protein 4 and/or programmed cell death protein 1 checkpoint blockade therapy. METHODS Thirty-four patients were treated with ex vivo expanded tumor reactive T cells, derived from mixed lymphocyte autologous tumor cultures, or with autologous tumor-infiltrating lymphocytes and evaluated for clinical response. Clinical and immunological parameters associated with response were also evaluated. RESULTS Best overall response defined as clinical benefit, comprising either complete response, partial response or stable disease >6 months, was observed in 29% of the patients. Forty-three per cent of the 14 immunotherapy-naïve patients and 20% of the 20 patients progressive on prior immunotherapy benefited from ACT. The overall survival (OS) was 90% versus 28.6% at 1 year and 46.7% versus 0% at 3 years follow-up, of responder and non-responder patients, respectively. Median OS was 36 versus 7 months, respectively. IFNa pretreatment resulted in leukopenia, neutropenia and lymphopenia, which was sustained during the treatment in clinical responders and associated with response. Differences in antigen specificity, but not in phenotype, cytokine profile or CD8+ T cell number of the ACT products correlated with clinical response. Cross-reactivity of the ACT products to one or more allogeneic human leukocyte antigen-matched melanoma cell lines was associated with short OS after treatment while the ACT products of very long-term survivors showed no cross-reactivity but recognized patient-specific neoantigens. CONCLUSION This study demonstrates that ACT in combination with a mild IFNa preconditioning regimen can induce clinical benefit even in immunotherapy pretreated patients, although with lower success than in immunotherapy-naïve patients. ACT products comprising neoantigen reactivity may be more effective.
Collapse
Affiliation(s)
- Els Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique K van der Kooij
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Marten Visser
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Caroline van der Minne
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Bruin
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Pauline Meij
- GMP Facility Leiden, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton Terwisscha van Scheltinga
- GMP Facility Leiden, Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marij J Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Saskia Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Noel de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Roozen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit Jan Liefers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
172
|
Paving the Way for Immunotherapy in Pediatric Acute Myeloid Leukemia: Current Knowledge and the Way Forward. Cancers (Basel) 2021; 13:cancers13174364. [PMID: 34503174 PMCID: PMC8431730 DOI: 10.3390/cancers13174364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/26/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Immunotherapy may be an attractive treatment option to increase survival, and to reduce treatment-related side effects, for children with acute myeloid leukemia (AML). While immunotherapies have shown successes in many cancer types, the development and subsequent clinical implementation have proven difficult in pediatric AML. To expedite the development of immunotherapy, it will be crucial to understand which pediatric AML patients are likely to respond to immunotherapies. Emerging research in solid malignancies has shown that the number and phenotype of immune cells in the tumor microenvironment is predictive of response to several types of immunotherapies. Such a predictive model may also be applicable for AML and, thus, knowledge on the immune cells infiltrating the bone marrow environment is needed. Here, we discuss the current state of knowledge on these infiltrating immune cells in pediatric AML, as well as ongoing immunotherapy trials, and provide suggestions concerning the way forward. Abstract Immunotherapeutic agents may be an attractive option to further improve outcomes and to reduce treatment-related toxicity for pediatric AML. While improvements in outcome have been observed with immunotherapy in many cancer types, immunotherapy development and implementation into patient care for both adult and pediatric AML has been hampered by an incomplete understanding of the bone marrow environment and a paucity of tumor-specific antigens. Since only a minority of patients respond in most immunotherapy trials across different cancer types, it will be crucial to understand which children with AML are likely to respond to or may benefit from immunotherapies. Immune cell profiling efforts hold promise to answer this question, as illustrated by the development of predictive scores in solid cancers. Such information on the number and phenotype of immune cells during current treatment regimens will be pivotal to generate hypotheses on how and when to intervene with immunotherapy in pediatric AML. In this review, we discuss the current understanding of the number and phenotype of immune cells in the bone marrow in pediatric AML, ongoing immunotherapy trials and how comprehensive immune profiling efforts may pave the way for successful clinical trials (and, ultimately, implementation into patient care).
Collapse
|
173
|
Verdon DJ, Jenkins MR. Identification and Targeting of Mutant Peptide Neoantigens in Cancer Immunotherapy. Cancers (Basel) 2021; 13:4245. [PMID: 34439399 PMCID: PMC8391927 DOI: 10.3390/cancers13164245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
In recent decades, adoptive cell transfer and checkpoint blockade therapies have revolutionized immunotherapeutic approaches to cancer treatment. Advances in whole exome/genome sequencing and bioinformatic detection of tumour-specific genetic variations and the amino acid sequence alterations they induce have revealed that T cell mediated anti-tumour immunity is substantially directed at mutated peptide sequences, and the identification and therapeutic targeting of patient-specific mutated peptide antigens now represents an exciting and rapidly progressing frontier of personalized medicine in the treatment of cancer. This review outlines the historical identification and validation of mutated peptide neoantigens as a target of the immune system, and the technical development of bioinformatic and experimental strategies for detecting, confirming and prioritizing both patient-specific or "private" and frequently occurring, shared "public" neoantigenic targets. Further, we examine the range of therapeutic modalities that have demonstrated preclinical and clinical anti-tumour efficacy through specifically targeting neoantigens, including adoptive T cell transfer, checkpoint blockade and neoantigen vaccination.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
174
|
Veatch JR, Singhi N, Srivastava S, Szeto JL, Jesernig B, Stull SM, Fitzgibbon M, Sarvothama M, Yechan-Gunja S, James SE, Riddell SR. A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells. J Clin Invest 2021; 131:e144195. [PMID: 34396986 PMCID: PMC8363286 DOI: 10.1172/jci144195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-β, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.
Collapse
Affiliation(s)
- Joshua R Veatch
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Naina Singhi
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Shivani Srivastava
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Julia L Szeto
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Brenda Jesernig
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Sylvia M Stull
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | | | - Megha Sarvothama
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Sushma Yechan-Gunja
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Scott E James
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stanley R Riddell
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
175
|
Creelan BC, Wang C, Teer JK, Toloza EM, Yao J, Kim S, Landin AM, Mullinax JE, Saller JJ, Saltos AN, Noyes DR, Montoya LB, Curry W, Pilon-Thomas SA, Chiappori AA, Tanvetyanon T, Kaye FJ, Thompson ZJ, Yoder SJ, Fang B, Koomen JM, Sarnaik AA, Chen DT, Conejo-Garcia JR, Haura EB, Antonia SJ. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat Med 2021; 27:1410-1418. [PMID: 34385708 PMCID: PMC8509078 DOI: 10.1038/s41591-021-01462-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown activity in melanoma, but has not been previously evaluated in metastatic non-small cell lung cancer. We conducted a single-arm open-label phase 1 trial ( NCT03215810 ) of TILs administered with nivolumab in 20 patients with advanced non-small cell lung cancer following initial progression on nivolumab monotherapy. The primary end point was safety and secondary end points included objective response rate, duration of response and T cell persistence. Autologous TILs were expanded ex vivo from minced tumors cultured with interleukin-2. Patients received cyclophosphamide and fludarabine lymphodepletion, TIL infusion and interleukin-2, followed by maintenance nivolumab. The end point of safety was met according to the prespecified criteria of ≤17% rate of severe toxicity (95% confidence interval, 3-29%). Of 13 evaluable patients, 3 had confirmed responses and 11 had reduction in tumor burden, with a median best change of 35%. Two patients achieved complete responses that were ongoing 1.5 years later. In exploratory analyses, we found T cells recognizing multiple types of cancer mutations were detected after TIL treatment and were enriched in responding patients. Neoantigen-reactive T cell clonotypes increased and persisted in peripheral blood after treatment. Cell therapy with autologous TILs is generally safe and clinically active and may constitute a new treatment strategy in metastatic lung cancer.
Collapse
Affiliation(s)
- Benjamin C Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Chao Wang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric M Toloza
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jiqiang Yao
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sungjune Kim
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana M Landin
- Cell Therapy Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - John E Mullinax
- Department of Sarcoma, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - James J Saller
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Andreas N Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - David R Noyes
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Leighann B Montoya
- Immune and Cellular Therapy Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Wesley Curry
- Immune and Cellular Therapy Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Shari A Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Alberto A Chiappori
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Tawee Tanvetyanon
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Frederic J Kaye
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Zachary J Thompson
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Sean J Yoder
- Chemical Biology & Molecular Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Bin Fang
- Chemical Biology & Molecular Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - John M Koomen
- Chemical Biology & Molecular Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Amod A Sarnaik
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Dung-Tsa Chen
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jose R Conejo-Garcia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Scott J Antonia
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
176
|
Arnaud M, Bobisse S, Chiffelle J, Harari A. The Promise of Personalized TCR-Based Cellular Immunotherapy for Cancer Patients. Front Immunol 2021; 12:701636. [PMID: 34394096 PMCID: PMC8363295 DOI: 10.3389/fimmu.2021.701636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Mutation-derived neoantigens are now established as attractive targets for cancer immunotherapy. The field of adoptive T cell transfer (ACT) therapy was significantly reshaped by tumor neoantigens and is now moving towards the genetic engineering of T cells with neoantigen-specific T cell receptors (TCRs). Yet, the identification of neoantigen-reactive TCRs remains challenging and the process needs to be adapted to clinical timelines. In addition, the state of recipient T cells for TCR transduction is critical and can affect TCR-ACT efficacy. Here we provide an overview of the main strategies for TCR-engineering, describe the selection and expansion of optimal carrier cells for TCR-ACT and discuss the next-generation methods for rapid identification of relevant TCR candidates for gene transfer therapy.
Collapse
Affiliation(s)
- Marion Arnaud
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johanna Chiffelle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
177
|
Gu YM, Zhuo Y, Chen LQ, Yuan Y. The Clinical Application of Neoantigens in Esophageal Cancer. Front Oncol 2021; 11:703517. [PMID: 34386424 PMCID: PMC8353328 DOI: 10.3389/fonc.2021.703517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor with poor prognosis, and current treatments for patients with advanced EC remain unsatisfactory. Recently, immunotherapy has been recognized as a new and promising approach for various tumors. EC cells present a high tumor mutation burden and harbor abundant tumor antigens, including tumor-associated antigens and tumor-specific antigens. The latter, also referred to as neoantigens, are immunogenic mutated peptides presented by major histocompatibility complex class I molecules. While current genomics and bioinformatics technologies have greatly facilitated the identification of tumor neoantigens, identifying individual neoantigens systematically for successful therapies remains a challenging problem. Owing to the initiation of strong, specific tumor-killing cytotoxic T cell responses, neoantigens are emerging as promising targets to develop personalized treatment and have triggered the development of cancer vaccines, adoptive T cell therapies, and combination therapies. This review aims to give a current understanding of the clinical application of neoantigens in EC and provide direction for future investigation.
Collapse
Affiliation(s)
- Yi-Min Gu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhuo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
178
|
Lv L, Wei Q, Wang Z, Zhao Y, Chen N, Yi Q. Clinical and Molecular Correlates of NLRC5 Expression in Patients With Melanoma. Front Bioeng Biotechnol 2021; 9:690186. [PMID: 34307322 PMCID: PMC8299757 DOI: 10.3389/fbioe.2021.690186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
NLRC5 is an important regulator in antigen presentation and inflammation, and its dysregulation promotes tumor progression. In melanoma, the impact of NLRC5 expression on molecular phenotype, clinical characteristics, and tumor features is largely unknown. In the present study, public datasets from the Cancer Cell Line Encyclopedia (CCLE), Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and cBioPortal were used to address these issues. We identify that NLRC5 is expressed in both immune cells and melanoma cells in melanoma samples and its expression is regulated by SPI1 and DNA methylation. NLRC5 expression is closely associated with Breslow thickness, Clark level, recurrence, pathologic T stage, and ulceration status in melanoma. Truncating/splice mutations rather than missense mutations in NLRC5 could compromise the expression of downstream genes. Low expression of NLRC5 is associated with poor prognosis, low activity of immune-related signatures, low infiltrating level of immune cells, and low cytotoxic score in melanoma. Additionally, NLRC5 expression correlates with immunotherapy efficacy in melanoma. In summary, these findings suggest that NLRC5 acts as a tumor suppressor in melanoma via modulating the tumor immune microenvironment. Targeting the NLRC5 related pathway might improve efficacy of immunotherapy for melanoma patients.
Collapse
Affiliation(s)
- Lei Lv
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qinqin Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhiwen Wang
- Anhui Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujia Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qiyi Yi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
179
|
Liu Z, Lu T, Wang L, Liu L, Li L, Han X. Comprehensive Molecular Analyses of a Novel Mutational Signature Classification System with Regard to Prognosis, Genomic Alterations, and Immune Landscape in Glioma. Front Mol Biosci 2021; 8:682084. [PMID: 34307451 PMCID: PMC8293748 DOI: 10.3389/fmolb.2021.682084] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Glioma is the most common malignant brain tumor with complex carcinogenic process and poor prognosis. The current molecular classification cannot fully elucidate the molecular diversity of glioma. Methods: Using broad public datasets, we performed cluster analysis based on the mutational signatures and further investigated the multidimensional heterogeneity of the novel glioma molecular subtypes. The clinical significance and immune landscape of four clusters also investigated. The nomogram was developed using the mutational clusters and clinical characteristics. Results: Four heterogenous clusters were identified, termed C1, C2, C3, and C4, respectively. These clusters presented distinct molecular features: C1 was characterized by signature 1, PTEN mutation, chromosome seven amplification and chromosome 10 deletion; C2 was characterized by signature 8 and FLG mutation; C3 was characterized by signature 3 and 13, ATRX and TP53 mutations, and 11p15.1, 11p15.5, and 13q14.2 deletions; and C4 was characterized by signature 16, IDH1 mutation and chromosome 1p and 19q deletions. These clusters also varied in biological functions and immune status. We underlined the potential immune escape mechanisms: abundant stromal and immunosuppressive cells infiltration and immune checkpoints (ICPs) blockade in C1; lack of immune cells, low immunogenicity and antigen presentation defect in C2 and C4; and ICPs blockade in C3. Moreover, C4 possessed a better prognosis, and C1 and C3 were more likely to benefit from immunotherapy. A nomogram with excellent performance was also developed for assessing the prognosis of patients with glioma. Conclusion: Our results can enhance the mastery of molecular features and facilitate the precise treatment and clinical management of glioma.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Interventional Institute of Zhengzhou University, Zhengzhou, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
180
|
Gorgun FM, Widen SG, Tyler DS, Englander EW. Enhanced Antitumor Response to Immune Checkpoint Blockade Exerted by Cisplatin-Induced Mutagenesis in a Murine Melanoma Model. Front Oncol 2021; 11:701968. [PMID: 34295826 PMCID: PMC8290318 DOI: 10.3389/fonc.2021.701968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Sequencing data from different types of cancers including melanomas demonstrate that tumors with high mutational loads are more likely to respond to immune checkpoint blockade (ICB) therapies. We have previously shown that low-dose intratumoral injection of the chemotherapeutic DNA damaging drug cisplatin activates intrinsic mutagenic DNA damage tolerance pathway, and when combined with ICB regimen leads to tumor regression in the mouse YUMM1.7 melanoma model. We now report that tumors generated with an in vitro cisplatin-mutagenized YUMM1.7 clone (YUMM1.7-CM) regress in response to ICB, while an identical ICB regimen alone fails to suppress growth of tumors generated with the parental YUMM1.7 cells. Regressing YUMM1.7-CM tumors show greater infiltration of CD8 T lymphocytes, higher granzyme B expression, and higher tumoral cell death. Similarly, ex-vivo, immune cells isolated from YUMM1.7-CM tumors-draining lymph nodes (TDLNs) co-incubated with cultured YUMM1.7-CM cells, eliminate the tumor cells more efficiently than immune cells isolated from TDLNs of YUMM1.7 tumor-bearing mice. Collectively, our findings show that in vitro induced cisplatin mutations potentiate the antitumor immune response and ICB efficacy, akin to tumor regression achieved in the parental YUMM1.7 model by ICB administered in conjunction with intratumoral cisplatin injection. Hence, our data uphold the role of tumoral mutation burden in improving immune surveillance and response to ICB, suggesting a path for expanding the range of patients benefiting from ICB therapy.
Collapse
Affiliation(s)
- Falih M Gorgun
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Ella W Englander
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
181
|
Borch TH, Harbst K, Rana AH, Andersen R, Martinenaite E, Kongsted P, Pedersen M, Nielsen M, Kjeldsen JW, Kverneland AH, Lauss M, Hölmich LR, Hendel H, Met Ö, Jönsson G, Donia M, Marie Svane I. Clinical efficacy of T-cell therapy after short-term BRAF-inhibitor priming in patients with checkpoint inhibitor-resistant metastatic melanoma. J Immunother Cancer 2021; 9:jitc-2021-002703. [PMID: 34210820 PMCID: PMC8252872 DOI: 10.1136/jitc-2021-002703] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Despite impressive response rates following adoptive transfer of autologous tumor-infiltrating lymphocytes (TILs) in patients with metastatic melanoma, improvement is needed to increase the efficacy and broaden the applicability of this treatment. We evaluated the use of vemurafenib, a small-molecule BRAF inhibitor with immunomodulatory properties, as priming before TIL harvest and adoptive T cell therapy in a phase I/II clinical trial. METHODS 12 patients were treated with vemurafenib for 7 days before tumor excision and during the following weeks until TIL infusion. TILs were grown from tumor fragments, expanded in vitro and reinfused to the patient preceded by a lymphodepleting chemotherapy regimen and followed by interleukin-2 infusion. Extensive immune monitoring, tumor profiling and T cell receptor sequencing were performed. RESULTS No unexpected toxicity was observed, and treatment was well tolerated. Of 12 patients, 1 achieved a complete response, 8 achieved partial response and 3 achieved stable disease. A PR and the CR are ongoing for 23 and 43 months, respectively. In vitro anti-tumor reactivity was found in TILs from 10 patients, including all patients achieving objective response. Serum and tumor biomarker analyses indicate that baseline cytokine levels and the number of T cell clones may predict response to TIL therapy. Further, TCR sequencing suggested skewing of TCR repertoire during in vitro expansion, promoting certain low frequency clonotypes. CONCLUSIONS Priming with vemurafenib before infusion of TILs was safe and feasible, and induced objective clinical responses in this cohort of patients with checkpoint inhibitor-resistant metastatic melanoma. In this trial, vemurafenib treatment seemed to decrease attrition and could be considered to bridge the waiting time while TILs are prepared.
Collapse
Affiliation(s)
- Troels Holz Borch
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Katja Harbst
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Aynal Haque Rana
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Rikke Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Per Kongsted
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Magnus Pedersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Morten Nielsen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Anders Handrup Kverneland
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark
| | - Martin Lauss
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic Surgery, Herlev University Hospital, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Hendel
- Department of Clinical Physiology and Nuclear Medicine, Herlev University Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Göran Jönsson
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Marco Donia
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev University Hospital, Herlev, Denmark .,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
182
|
Morisaki T, Kubo M, Umebayashi M, Yew PY, Yoshimura S, Park JH, Kiyotani K, Kai M, Yamada M, Oda Y, Nakamura Y, Morisaki T, Nakamura M. Neoantigens elicit T cell responses in breast cancer. Sci Rep 2021; 11:13590. [PMID: 34193879 PMCID: PMC8245657 DOI: 10.1038/s41598-021-91358-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/26/2021] [Indexed: 01/16/2023] Open
Abstract
Neoantigens are tumour-specific antigens that arise from non-synonymous mutations in tumour cells. However, their effect on immune responses in the tumour microenvironment remains unclear in breast cancer. We performed whole exome and RNA sequencing of 31 fresh breast cancer tissues and neoantigen prediction from non-synonymous single nucleotide variants (nsSNVs) among exonic mutations. Neoantigen profiles were determined by predictive HLA binding affinity (IC50 < 500 nM) and mRNA expression with a read count of ≥ 1. We evaluated the association between neoantigen load and expression levels of immune-related genes. Moreover, using primary tumour cells established from pleural fluid of a breast cancer patient with carcinomatous pleurisy, we induced cytotoxic T lymphocytes (CTLs) by coculturing neoantigen peptide-pulsed dendritic cells (DCs) with autologous peripheral lymphocytes. The functions of CTLs were examined by cytotoxicity and IFN-γ ELISpot assays. Neoantigen load ranged from 6 to 440 (mean, 95) and was positively correlated to the total number of nsSNVs. Although no associations between neoantigen load and mRNA expression of T cell markers were observed, the coculture of neoantigen-pulsed DCs and lymphocytes successfully induced CTLs ex vivo. These results suggest that neoantigen analysis may have utility in developing strategies to elicit T cell responses.
Collapse
Affiliation(s)
- Takafumi Morisaki
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Fukuoka General Cancer Clinic, Fukuoka, Japan
| | - Makoto Kubo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Fukuoka General Cancer Clinic, Fukuoka, Japan.
| | | | - Poh Yin Yew
- Cancer Precision Medicine, Inc, Kawasaki, Kanagawa, Japan
| | | | - Jae-Hyun Park
- Cancer Precision Medicine, Inc, Kawasaki, Kanagawa, Japan
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Masaya Kai
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mai Yamada
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
183
|
Hirai I, Funakoshi T, Kamijuku H, Fukuda K, Mori M, Sakurai M, Koda Y, Kato J, Mori T, Watanabe N, Noji S, Yaguchi T, Iwata T, Ohta S, Fujita T, Tanosaki R, Handa M, Okamoto S, Amagai M, Kawakami Y. Adoptive cell therapy using tumor-infiltrating lymphocytes for melanoma refractory to immune-checkpoint inhibitors. Cancer Sci 2021; 112:3163-3172. [PMID: 34101300 PMCID: PMC8353905 DOI: 10.1111/cas.15009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023] Open
Abstract
To evaluate the feasibility of adoptive cell therapy (ACT) using ex vivo‐expanded tumor‐infiltrating lymphocytes (TILs) in Japanese patients with melanoma who failed immune‐checkpoint inhibitor therapy, an open‐label, single‐arm, pilot study was conducted. We investigated the immunological and genetic factors of the pretreatment tumor and expanded TILs that may be associated with the clinical response. The treatment protocol comprised preparation of TIL culture, lympho‐depleting non‐myeloablative preconditioning with cyclophosphamide and fludarabine, TIL infusion, and intravenous administration of low‐dose IL‐2. Three patients of clinical subtypes mucosal, superficial spreading, and acral melanoma underwent TIL‐ACT. Most severe adverse events, including fever and leukopenia, were manageable with the supportive regimen specified in the protocol, suggesting that the TIL‐ACT regimen is suitable for Japanese patients with melanoma. One patient showed a short‐term partial response, one relatively long‐stable disease, and one experienced disease progression. Whole‐exome and transcriptional sequencing of isolated tumor cells and immunohistochemical analyses before TIL‐ACT revealed various immunostimulatory factors, including a high tumor mutation burden and immune cell‐recruiting chemokines, as well as various immunosuppressive factors including TGF‐β, VEGF, Wnt/β‐catenin, and MAPK signaling and epithelial‐to‐mesenchymal transition, which might influence the efficacy of TIL‐ACT. Our results imply mechanisms for the antitumor effect of and resistance to TIL‐ACT. Further studies of immune‐resistant mechanisms of TIL‐ACT are warranted. This study is registered with the UMIN Clinical Trial Registry (UMIN 000011431).
Collapse
Affiliation(s)
- Ikuko Hirai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Kamijuku
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan
| | - Keitaro Fukuda
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Mariko Mori
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Sakurai
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuya Koda
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Jun Kato
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takehiko Mori
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Naohide Watanabe
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Shinobu Noji
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Ohta
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Fujita
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan
| | - Ryuji Tanosaki
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Handa
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Okamoto
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Institute for Advanced Medical Research, Division of Cellular Signaling, Keio University School of Medicine, Tokyo, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
184
|
Liu R, Yang F, Yin JY, Liu YZ, Zhang W, Zhou HH. Influence of Tumor Immune Infiltration on Immune Checkpoint Inhibitor Therapeutic Efficacy: A Computational Retrospective Study. Front Immunol 2021; 12:685370. [PMID: 34220837 PMCID: PMC8248490 DOI: 10.3389/fimmu.2021.685370] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/03/2021] [Indexed: 01/13/2023] Open
Abstract
The tumor immune microenvironment (TIME) is likely an important determinant of sensitivity to immune checkpoint inhibitor (ICI) treatment. However, a comprehensive analysis covering the complexity and diversity of the TIME and its influence on ICI therapeutic efficacy is still lacking. Data from 782 samples from 10 ICI clinical trials were collected. To infer the infiltration of 22 subsets of immune cells, CIBERSORTx was applied to the bulk tumor transcriptomes. The associations between each cell fraction and the response to ICI treatment, progression-free survival (PFS) and overall survival (OS) were evaluated, modeling cellular proportions as quartiles. Activity of the interferon-γ pathway, the cytolytic activity score and the MHC score were associated with good prognosis in melanoma. Of the immune cells investigated, M1 macrophages, activated memory CD4+ T cells, T follicular helper (Tfh) cells and CD8+ T cells correlated with response and prolonged PFS and OS, while resting memory CD4+ T cells was associated with unfavorable prognosis in melanoma and urothelial cancer. Consensus clustering revealed four immune subgroups with distinct responses to ICI therapy and survival patterns. The cluster with high proportions of infiltrated CD8+ T cells, activated memory CD4+ T cells, and Tfh cells and low levels of resting memory CD4+ T cells exhibited a higher tumor mutation burden and neoantigen load in melanoma and conferred a higher probability of response and improved survival. Local systemic immune cellular differences were associated with outcomes after ICI therapy. Further investigations of the tumor-infiltrating cellular immune response will lay the foundation for achieving durable efficacy.
Collapse
Affiliation(s)
- Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Fang Yang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Ying-Zi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| |
Collapse
|
185
|
Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res 2021; 9:49. [PMID: 34134781 PMCID: PMC8207707 DOI: 10.1186/s40364-021-00301-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy has attracted more and more attention nowadays, and multiple clinical trials have confirmed its effect in a variety of solid tumors. Immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell transfer (ACT), and lymphocyte-promoting cytokines are the main immunotherapy methods. Endometrial cancer (EC) is one of the most frequent tumors in women and the prognosis of recurrent or metastatic EC is poor. Since molecular classification has been applied to EC, immunotherapy for different EC subtypes (especially POLE and MSI-H) has gradually attracted attention. In this review, we focus on the expression and molecular basis of the main biomarkers in the immunotherapy of EC firstly, as well as their clinical application significance and limitations. Blocking tumor immune checkpoints is one of the most effective strategies for cancer treatment in recent years, and has now become the focus in the field of tumor research and treatment. We summarized clinical date of planned and ongoing clinical trials and introduced other common immunotherapy methods in EC, such as cancer vaccine and ACT. Hormone aberrations, metabolic syndrome (MetS) and p53 mutant and that affect the immunotherapy of endometrial cancer will also be discussed in this review.
Collapse
Affiliation(s)
- Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Jean Victoria Fischer
- Department of Pathology, Northwestern Medicine, Gynecologic Pathology Fellow, Chicago, Illinois, USA
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China. .,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China.
| |
Collapse
|
186
|
Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, Osokin N, Kozlov I, Frenkel F, Gancharova O, Almog N, Tsiper M, Ataullakhanov R, Fowler N. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 2021; 39:845-865.e7. [PMID: 34019806 DOI: 10.1016/j.ccell.2021.04.014] [Citation(s) in RCA: 549] [Impact Index Per Article: 183.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alterations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classification by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immunotherapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types due to the inclusion of malignant and microenvironment components. A visual tool integrating transcriptomic and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, immune composition, anti-tumor immunity, and immunosuppressive escape mechanisms. Integrative analyses plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Nathan Fowler
- BostonGene, Waltham, MA 02453, USA; Department of Lymphoma and Myeloma, Unit 0429, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
187
|
Lee HW. Multidiscipline Immunotherapy-Based Rational Combinations for Robust and Durable Efficacy in Brain Metastases from Renal Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22126290. [PMID: 34208157 PMCID: PMC8230742 DOI: 10.3390/ijms22126290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Advanced imaging techniques for diagnosis have increased awareness on the benefits of brain screening, facilitated effective control of extracranial disease, and prolonged life expectancy of metastatic renal cell carcinoma (mRCC) patients. Brain metastasis (BM) in patients with mRCC (RCC-BM) is associated with grave prognoses, a high degree of morbidity, dedicated assessment, and unresponsiveness to conventional systemic therapeutics. The therapeutic landscape of RCC-BM is rapidly changing; however, survival outcomes remain poor despite standard surgery and radiation, highlighting the unmet medical needs and the requisite for advancement in systemic therapies. Immune checkpoint inhibitors (ICIs) are one of the most promising strategies to treat RCC-BM. Understanding the role of brain-specific tumor immune microenvironment (TIME) is important for developing rationale-driven ICI-based combination strategies that circumvent tumor intrinsic and extrinsic factors and complex positive feedback loops associated with resistance to ICIs in RCC-BM via combination with ICIs involving other immunological pathways, anti-antiangiogenic multiple tyrosine kinase inhibitors, and radiotherapy; therefore, novel combination approaches are being developed for synergistic potential against RCC-BM; however, further prospective investigations with longer follow-up periods are required to improve the efficacy and safety of combination treatments and to elucidate dynamic predictive biomarkers depending on the interactions in the brain TIME.
Collapse
Affiliation(s)
- Hye-Won Lee
- Center for Urologic Cancer, National Cancer Center, Department of Urology, Goyang 10408, Korea
| |
Collapse
|
188
|
Li W, Amei A, Bui F, Norouzifar S, Lu L, Wang Z. Impact of Neoantigen Expression and T-Cell Activation on Breast Cancer Survival. Cancers (Basel) 2021; 13:cancers13122879. [PMID: 34207556 PMCID: PMC8228363 DOI: 10.3390/cancers13122879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Neoantigens are novel proteins presented on the cell surface and derived from the accumulation of somatic mutations in tumor cells. They can be recognized by the immune system and may play a crucial role in boosting immune responses against tumor cells. The impact of neoantigen expression and T-cell activation status on overall survival was investigated in a breast cancer cohort. We found that high neoantigen expression and T-cell activation status was correlated with improved patient survival in the study population. This result supports that neoantigens are promising to serve as immunogenic agents for immunotherapy in breast cancer. Abstract Neoantigens are derived from tumor-specific somatic mutations. Neoantigen-based synthesized peptides have been under clinical investigation to boost cancer immunotherapy efficacy. The promising results prompt us to further elucidate the effect of neoantigen expression on patient survival in breast cancer. We applied Kaplan–Meier survival and multivariable Cox regression models to evaluate the effect of neoantigen expression and its interaction with T-cell activation on overall survival in a cohort of 729 breast cancer patients. Pearson’s chi-squared tests were used to assess the relationships between neoantigen expression and clinical pathological variables. Spearman correlation analysis was conducted to identify correlations between neoantigen expression, mutation load, and DNA repair gene expression. ERCC1, XPA, and XPC were negatively associated with neoantigen expression, while BLM, BRCA2, MSH2, XRCC2, RAD51, CHEK1, and CHEK2 were positively associated with neoantigen expression. Based on the multivariable Cox proportional hazard model, patients with a high level of neoantigen expression and activated T-cell status showed improved overall survival. Similarly, in the T-cell exhaustion and progesterone receptor (PR) positive subgroups, patients with a high level of neoantigen expression showed prolonged survival. In contrast, there was no significant difference in the T-cell activation and PR negative subgroups. In conclusion, neoantigens may serve as immunogenic agents for immunotherapy in breast cancer.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Correspondence: (A.A.); (Z.W.)
| | - Francis Bui
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; (F.B.); (S.N.)
| | - Saba Norouzifar
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; (F.B.); (S.N.)
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT 06520, USA;
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
- Correspondence: (A.A.); (Z.W.)
| |
Collapse
|
189
|
Ito T, Kawai Y, Yasui Y, Iriguchi S, Minagawa A, Ishii T, Miyoshi H, Taketo MM, Kawada K, Obama K, Sakai Y, Kaneko S. The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-1derived iPS cells. Commun Biol 2021; 4:694. [PMID: 34099861 PMCID: PMC8184746 DOI: 10.1038/s42003-021-02195-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
Tumor-infiltrating lymphocytes (TIL), which include tumor-specific T lymphocytes with frequency, are used for adoptive cell transfer therapy (ACT) in clinical practice. The optimization of TIL preparation has been investigated to reduce the senescence and increase the abundance of TIL, as both the quality and quantity of the transferred cells have great influence on the outcome of TIL-based ACT (TIL-ACT). Considering the effects of cell reprogramming on senescence, we expected that the anti-tumor effect could be enhanced by TIL regeneration. To confirm this hypothesis, we established tumor-specific TIL-derived iPS cells (TIL-iPSC) with human colorectal cancer specimens. T cells differentiated from TIL-iPSC (TIL-iPS-T) retained not only intrinsic T cell functions and tumor specificity, but also exhibited improved proliferation capacity and additional killing activity. Moreover, less differentiated profiles and prolonged persistency were seen in TIL-iPS-T compared with primary cells. Our findings imply that iPSC technology has great potential for TIL-ACT.
Collapse
Affiliation(s)
- Takeshi Ito
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yohei Kawai
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yutaka Yasui
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Thyas Co. Ltd., Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, Japan
| | - Shoichi Iriguchi
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Atsutaka Minagawa
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Tomoko Ishii
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroyuki Miyoshi
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - M Mark Taketo
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Kenji Kawada
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kazutaka Obama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yoshiharu Sakai
- Osaka Red Cross Hospital, Fudegasaki-cho, Tennoji-ku, Osaka, Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
190
|
Chauhan DS, Dhasmana A, Laskar P, Prasad R, Jain NK, Srivastava R, Jaggi M, Chauhan SC, Yallapu MM. Nanotechnology synergized immunoengineering for cancer. Eur J Pharm Biopharm 2021; 163:72-101. [PMID: 33774162 PMCID: PMC8170847 DOI: 10.1016/j.ejpb.2021.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/06/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Novel strategies modulating the immune system yielded enhanced anticancer responses and improved cancer survival. Nevertheless, the success rate of immunotherapy in cancer treatment has been below expectation(s) due to unpredictable efficacy and off-target effects from systemic dosing of immunotherapeutic(s). As a result, there is an unmet clinical need for improving conventional immunotherapy. Nanotechnology offers several new strategies, multimodality, and multiplex biological targeting advantage to overcome many of these challenges. These efforts enable programming the pharmacodynamics, pharmacokinetics, and delivery of immunomodulatory agents/co-delivery of compounds to prime at the tumor sites for improved therapeutic benefits. This review provides an overview of the design and clinical principles of biomaterials driven nanotechnology and their potential use in personalized nanomedicines, vaccines, localized tumor modulation, and delivery strategies for cancer immunotherapy. In this review, we also summarize the latest highlights and recent advances in combinatorial therapies availed in the treatment of cold and complicated tumors. It also presents key steps and parameters implemented for clinical success. Finally, we analyse, discuss, and provide clinical perspectives on the integrated opportunities of nanotechnology and immunology to achieve synergistic and durable responses in cancer treatment.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Partha Laskar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Rajendra Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nishant K Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
191
|
Li K, Li T, Feng Z, Huang M, Wei L, Yan Z, Long M, Hu Q, Wang J, Liu S, Sgroi DC, Demehri S. CD8 + T cell immunity blocks the metastasis of carcinogen-exposed breast cancer. SCIENCE ADVANCES 2021; 7:eabd8936. [PMID: 34144976 PMCID: PMC8213232 DOI: 10.1126/sciadv.abd8936] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The link between carcinogen exposure and cancer immunogenicity is unclear. Single exposure to 12-dimethylbenz[a]anthracene (DMBA) at puberty accelerated spontaneous breast carcinogenesis in mouse mammary tumor virus-polyoma middle tumor-antigen transgenic (MMTV-PyMTtg or PyMT) and MMTV-Her2/neutg (Her2) mice. Paradoxically, DMBA-treated PyMT and Her2 animals were protected from metastasis. CD8+ T cells significantly infiltrated DMBA-exposed breast cancers. CD8+ T cell depletion resulted in severe lung and liver metastasis in DMBA-treated PyMT mice. Besides increasing tumor mutational burden, DMBA exposure up-regulated Chemokine (C-C motif) ligand 21 (CCL21) in cancer cells and heightened antigen presentation. CCL21 injection suppressed breast cancer growth, and CCL21 receptor deletion attenuated T cell immunity against cancer metastasis in DMBA-treated PyMT animals. CCL21 expression correlated with increased mutational burden and cytolytic activity across human cancers. Higher CCL21 levels correlated with increased CD8+ T cell infiltrates in human breast cancer and predicted lower breast cancer distant recurrence rate. Collectively, carcinogen exposure induces immune-activating factors within cancer cells that promote CD8+ T cell immunity against metastasis.
Collapse
Affiliation(s)
- Kaiwen Li
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tiancheng Li
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zhaoyi Feng
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mei Huang
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Zhiyu Yan
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Dennis C Sgroi
- Molecular Pathology Unit, Department of Pathology, Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology and Cutaneous Biology Research Center, Department of Dermatology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
192
|
Mills JK, Henderson MA, Giuffrida L, Petrone P, Westwood JA, Darcy PK, Neeson PJ, Kershaw MH, Gyorki DE. Generating CAR T cells from tumor-infiltrating lymphocytes. Ther Adv Vaccines Immunother 2021; 9:25151355211017119. [PMID: 34159293 PMCID: PMC8186112 DOI: 10.1177/25151355211017119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Tumor-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapies have demonstrated promising, though limited, efficacy against melanoma. Methods: We designed a model system to explore the efficacy of dual specific T cells derived from melanoma patient TILs by transduction with a Her2-specific CAR. Results: Metastatic melanoma cells in our biobank constitutively expressed Her2 antigen. CAR-TIL produced greater amounts of IFN compared with parental TIL, when co-cultured with Her2 expressing tumor lines, including autologous melanoma tumor lines, although no consistent increase in cytotoxicity by TIL was afforded by expression of a CAR. Results of an in vivo study in NSG mice demonstrated tumor shrinkage when CAR-TILs were used in an adoptive cell therapy protocol. Conclusion: Potential limitations of transduced TIL in our study included limited proliferative potential and a terminally differentiated phenotype, which would need addressing in further work before consideration of clinical translation.
Collapse
Affiliation(s)
- Jane K Mills
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Melissa A Henderson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Lauren Giuffrida
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Pasquale Petrone
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jennifer A Westwood
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David E Gyorki
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
193
|
Zhao Y, Dong Y, Sun Y, Cheng C. AutoEncoder-Based Computational Framework for Tumor Microenvironment Decomposition and Biomarker Identification in Metastatic Melanoma. Front Genet 2021; 12:665065. [PMID: 34122516 PMCID: PMC8191580 DOI: 10.3389/fgene.2021.665065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Melanoma is one of the most aggressive cancer types whose prognosis is determined by both the tumor cell-intrinsic and -extrinsic features as well as their interactions. In this study, we performed systematic and unbiased analysis using The Cancer Genome Atlas (TCGA) melanoma RNA-seq data and identified two gene signatures that captured the intrinsic and extrinsic features, respectively. Specifically, we selected genes that best reflected the expression signals from tumor cells and immune infiltrate cells. Then, we applied an AutoEncoder-based method to decompose the expression of these genes into a small number of representative nodes. Many of these nodes were found to be significantly associated with patient prognosis. From them, we selected two most prognostic nodes and defined a tumor-intrinsic (TI) signature and a tumor-extrinsic (TE) signature. Pathway analysis confirmed that the TE signature recapitulated cytotoxic immune cell related pathways while the TI signature reflected MYC pathway activity. We leveraged these two signatures to investigate six independent melanoma microarray datasets and found that they were able to predict the prognosis of patients under standard care. Furthermore, we showed that the TE signature was also positively associated with patients' response to immunotherapies, including tumor vaccine therapy and checkpoint blockade immunotherapy. This study developed a novel computational framework to capture the tumor-intrinsic and -extrinsic features and identified robust prognostic and predictive biomarkers in melanoma.
Collapse
Affiliation(s)
- Yanding Zhao
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Yadong Dong
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Yongqi Sun
- Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
194
|
Shang S, Li X, Gao Y, Guo S, Sun D, Zhou H, Sun Y, Wang P, Zhi H, Bai J, Ning S, Li X. MeImmS: Predict Clinical Benefit of Anti-PD-1/PD-L1 Treatments Based on DNA Methylation in Non-small Cell Lung Cancer. Front Genet 2021; 12:676449. [PMID: 34093667 PMCID: PMC8173132 DOI: 10.3389/fgene.2021.676449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/26/2021] [Indexed: 01/13/2023] Open
Abstract
Immunotherapy has become an effective therapy for cancer treatment. However, the development of biomarkers to predict immunotherapy response still remains a challenge. We have developed the DNA Methylation Immune Score, named “MeImmS,” which can predict clinical benefits of non-small cell lung cancer (NSCLC) patients based on DNA methylation of 8 CpG sites. The 8 CpG sites regulate the expression of immune-related genes and MeImmS was related to immune-associated pathways, exhausted T cell markers and immune cells. Copy-number loss in 1p36.33 may affect the response of cancer patients to immunotherapy. In addition, SAA1, CXCL10, CCR5, CCL19, CXCL11, CXCL13, and CCL5 were found to be key immune regulatory genes in immunotherapy. Together, MeImmS discovered the heterogeneous of NSCLC patients and guided the immunotherapy of cancer patients in the future.
Collapse
Affiliation(s)
- Shipeng Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuang Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dailin Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hanxiao Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yue Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Peng Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
195
|
Efficacy of BRAF and MEK Inhibition in Patients with BRAF-Mutant Advanced Melanoma and Germline CDKN2A Pathogenic Variants. Cancers (Basel) 2021; 13:cancers13102440. [PMID: 34069952 PMCID: PMC8157545 DOI: 10.3390/cancers13102440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 02/03/2023] Open
Abstract
Simple Summary In our study, we retrospectively collected data of patients with germline CDKN2A pathogenic variants who received targeted therapy for advanced melanoma across four European centers. Since loss of CDKN2A function may intrinsically limit the activity of MAPK-directed targeted therapy, we decided to assess whether patients with germline CDKN2A pathogenic variants may achieve suboptimal results with BRAF and MEK inhibitors. To the best of our knowledge, this is the first study reporting on patients with BRAF-mutant advanced melanoma and a germline CDKN2A pathogenic variant who received treatment with BRAF with or without MEK inhibitors. Despite the limitations of our study, mostly due to the rare frequency of CDKN2A pathogenic variants, a challenge for the conduction of prospective trials with proper sample size, our results support treatment with targeted therapy in this subset of patients. Abstract Inherited pathogenic variants (PVs) in the CDKN2A tumor suppressor gene are among the strongest risk factors for cutaneous melanoma. Dysregulation of the p16/RB1 pathway may intrinsically limit the activity of MAPK-directed therapy due to the interplay between the two pathways. In our study, we assessed, for the first time, whether patients with germline CDKN2A PVs achieve suboptimal results with BRAF inhibitors (BRAFi)+/−MEK inhibitors (MEKi). We compared the response rate of nineteen CDKN2A PVs carriers who received first-line treatment with BRAFi+/−MEKi with an expected rate derived from phase III trials and “real-world” studies. We observed partial response in 16/19 patients (84%), and no complete responses. The overall response rate was higher than that expected from phase III trials (66%), although not statistically significant (p-value = 0.143; 95% CI = 0.60–0.97); the difference was statistically significant (p-value = 0.019; 95% CI = 0.62–0.97) in the comparison with real-world studies (57%). The clinical activity of BRAFi+/−MEKi in patients with germline CDKN2A PV was not inferior to that of clinical trials and real-world studies, which is of primary importance for clinical management and genetic counseling of this subgroup of patients.
Collapse
|
196
|
Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain 2021; 144:1046-1066. [PMID: 33893488 PMCID: PMC8105040 DOI: 10.1093/brain/awab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
197
|
Morotti M, Albukhari A, Alsaadi A, Artibani M, Brenton JD, Curbishley SM, Dong T, Dustin ML, Hu Z, McGranahan N, Miller ML, Santana-Gonzalez L, Seymour LW, Shi T, Van Loo P, Yau C, White H, Wietek N, Church DN, Wedge DC, Ahmed AA. Promises and challenges of adoptive T-cell therapies for solid tumours. Br J Cancer 2021; 124:1759-1776. [PMID: 33782566 PMCID: PMC8144577 DOI: 10.1038/s41416-021-01353-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death worldwide and, despite new targeted therapies and immunotherapies, many patients with advanced-stage- or high-risk cancers still die, owing to metastatic disease. Adoptive T-cell therapy, involving the autologous or allogeneic transplant of tumour-infiltrating lymphocytes or genetically modified T cells expressing novel T-cell receptors or chimeric antigen receptors, has shown promise in the treatment of cancer patients, leading to durable responses and, in some cases, cure. Technological advances in genomics, computational biology, immunology and cell manufacturing have brought the aspiration of individualised therapies for cancer patients closer to reality. This new era of cell-based individualised therapeutics challenges the traditional standards of therapeutic interventions and provides opportunities for a paradigm shift in our approach to cancer therapy. Invited speakers at a 2020 symposium discussed three areas-cancer genomics, cancer immunology and cell-therapy manufacturing-that are essential to the effective translation of T-cell therapies in the treatment of solid malignancies. Key advances have been made in understanding genetic intratumour heterogeneity, and strategies to accurately identify neoantigens, overcome T-cell exhaustion and circumvent tumour immunosuppression after cell-therapy infusion are being developed. Advances are being made in cell-manufacturing approaches that have the potential to establish cell-therapies as credible therapeutic options. T-cell therapies face many challenges but hold great promise for improving clinical outcomes for patients with solid tumours.
Collapse
Affiliation(s)
- Matteo Morotti
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ashwag Albukhari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaliq Alsaadi
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mara Artibani
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - James D Brenton
- Functional Genomics of Ovarian Cancer Laboratory, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Stuart M Curbishley
- Advanced Therapies Facility and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Tao Dong
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences (CAMS) Oxford Institute, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zhiyuan Hu
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas McGranahan
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Martin L Miller
- Cancer System Biology Group, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Laura Santana-Gonzalez
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Leonard W Seymour
- Gene Therapy Group, Department of Oncology, University of Oxford, Oxford, UK
| | - Tingyan Shi
- Department of Gynecological Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, London, UK
| | - Christopher Yau
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- The Alan Turing Institute, London, UK
| | - Helen White
- Patient Representative, Endometrial Cancer Genomics England Clinical Interpretation Partnership (GeCIP) Domain, London, UK
| | - Nina Wietek
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | - David C Wedge
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Oxford NIHR Biomedical Research Centre, Oxford, UK.
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| |
Collapse
|
198
|
Wang P, Chen Y, Wang C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front Oncol 2021; 11:672677. [PMID: 33996601 PMCID: PMC8117238 DOI: 10.3389/fonc.2021.672677] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has significantly improved the clinical outcome of patients with cancer. However, the immune response rate varies greatly, possibly due to lack of effective biomarkers that can be used to distinguish responders from non-responders. Recently, clinical studies have associated high tumor neoantigen burden (TNB) with improved outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a biomarker for immunotherapy and other types of therapy. In the present review, the potential application of TNB as a biomarker was evaluated. The methods of neoantigen prediction were summarized and the mechanisms involved in TNB were investigated. The impact of high TNB and increased number of infiltrating immune cells on the efficacy of immunotherapy was also addressed. Finally, the future challenges of TNB were discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chun Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
199
|
Lin M, Zhang XL, You R, Yang Q, Zou X, Yu K, Liu YP, Zou RH, Hua YJ, Huang PY, Wang J, Zhao Q, Jiang XB, Tang J, Gu YK, Yu T, He GP, Xie YL, Wang ZQ, Liu T, Chen SY, Zuo ZX, Chen MY. Neoantigen landscape in metastatic nasopharyngeal carcinoma. Theranostics 2021; 11:6427-6444. [PMID: 33995666 PMCID: PMC8120206 DOI: 10.7150/thno.53229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/27/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Reportedly, nasopharyngeal carcinoma (NPC) patients with MHC I Class aberration are prone to poor survival outcomes, which indicates that the deficiency of tumor neoantigens might represent a mechanism of immune surveillance escape in NPC. Methods: To clearly delineate the landscape of neoantigens in NPC, we performed DNA and RNA sequencing on paired primary tumor, regional lymph node metastasis and distant metastasis samples from 26 patients. Neoantigens were predicted using pVACseq pipeline. Subtype prediction model was built using random forest algorithm. Results: Portraying the landscape of neoantigens in NPC for the first time, we found that the neoantigen load of NPC was above average compared to that of other cancers in The Cancer Genome Atlas program. While the quantity and quality of neoantigens were similar among primary tumor, regional lymph node metastasis and distant metastasis samples, neoantigen depletion was more severe in metastatic sites than in primary tumors. Upon tracking the clonality change of neoantigens, we found that neoantigen reduction occurred during metastasis. Building a subtype prediction model based on reported data, we observed that subtype I lacked T cells and suffered from severe neoantigen depletion, subtype II highly expressed immune checkpoint molecules and suffered from the least neoantigen depletion, and subtype III was heterogenous. Conclusions: These results indicate that neoantigens are conducive to the guidance of clinical treatment, and personalized therapeutic vaccines for NPC deserve deeper basic and clinical investigations to make them feasible in the future.
Collapse
|
200
|
Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics 2021; 13:pharmaceutics13040520. [PMID: 33918635 PMCID: PMC8069739 DOI: 10.3390/pharmaceutics13040520] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.
Collapse
|