151
|
Crisp PA, Bhatnagar-Mathur P, Hundleby P, Godwin ID, Waterhouse PM, Hickey LT. Beyond the gene: epigenetic and cis-regulatory targets offer new breeding potential for the future. Curr Opin Biotechnol 2021; 73:88-94. [PMID: 34348216 DOI: 10.1016/j.copbio.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
For millennia, natural and artificial selection has combined favourable alleles for desirable traits in crop species. While modern plant breeding has achieved steady increases in crop yields over the last century, on the current trajectory we will simply not meet demand by 2045. Novel breeding strategies and sources of genetic variation will be required to sustainably fill predicted yield gaps and meet new consumer preferences. Here, we highlight that stepping up to meet this grand challenge will increasingly require thinking 'beyond the gene'. Significant progress has been made in understanding the contributions of both epigenetic variation and cis-regulatory variation to plant traits. This non-genic variation has great potential in future breeding, synthetic biology and biotechnology applications.
Collapse
Affiliation(s)
- Peter A Crisp
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Penny Hundleby
- Crop Transformation Group, Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
152
|
Zhao H, Tu Z, Liu Y, Zong Z, Li J, Liu H, Xiong F, Zhan J, Hu X, Xie W. PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Nucleic Acids Res 2021; 49:W523-W529. [PMID: 34037796 PMCID: PMC8262748 DOI: 10.1093/nar/gkab383] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Characterizing regulatory effects of genomic variants in plants remains a challenge. Although several tools based on deep-learning models and large-scale chromatin-profiling data have been available to predict regulatory elements and variant effects, no dedicated tools or web services have been reported in plants. Here, we present PlantDeepSEA as a deep learning-based web service to predict regulatory effects of genomic variants in multiple tissues of six plant species (including four crops). PlantDeepSEA provides two main functions. One is called Variant Effector, which aims to predict the effects of sequence variants on chromatin accessibility. Another is Sequence Profiler, a utility that performs 'in silico saturated mutagenesis' analysis to discover high-impact sites (e.g., cis-regulatory elements) within a sequence. When validated on independent test sets, the area under receiver operating characteristic curve of deep learning models in PlantDeepSEA ranges from 0.93 to 0.99. We demonstrate the usability of the web service with two examples. PlantDeepSEA could help to prioritize regulatory causal variants and might improve our understanding of their mechanisms of action in different tissues in plants. PlantDeepSEA is available at http://plantdeepsea.ncpgr.cn/.
Collapse
Affiliation(s)
- Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhuo Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yinmeng Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jiacheng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hao Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Feng Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinling Zhan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Hu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
153
|
Meng F, Zhao H, Zhu B, Zhang T, Yang M, Li Y, Han Y, Jiang J. Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in Arabidopsis thaliana. THE PLANT CELL 2021; 33:1997-2014. [PMID: 33764459 PMCID: PMC8290289 DOI: 10.1093/plcell/koab093] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 03/23/2021] [Indexed: 05/22/2023]
Abstract
Enhancers located in introns are abundant and play a major role in the regulation of gene expression in mammalian species. By contrast, the functions of intronic enhancers in plants have largely been unexplored and only a handful of plant intronic enhancers have been reported. We performed a genome-wide prediction of intronic enhancers in Arabidopsis thaliana using open chromatin signatures based on DNase I sequencing. We identified 941 candidate intronic enhancers associated with 806 genes in seedling tissue and 1,271 intronic enhancers associated with 1,069 genes in floral tissue. We validated the function of 15 of 21 (71%) of the predicted intronic enhancers in transgenic assays using a reporter gene. We also created deletion lines of three intronic enhancers associated with two different genes using CRISPR/Cas. Deletion of these enhancers, which span key transcription factor binding sites, did not abolish gene expression but caused varying levels of transcriptional repression of their cognate genes. Remarkably, the transcriptional repression of the deletion lines occurred at specific developmental stages and resulted in distinct phenotypic effects on plant morphology and development. Clearly, these three intronic enhancers are important in fine-tuning tissue- and development-specific expression of their cognate genes.
Collapse
Affiliation(s)
- Fanli Meng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan 610101, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mingyu Yang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
- Author for correspondence:
| |
Collapse
|
154
|
Wu D, Tanaka R, Li X, Ramstein GP, Cu S, Hamilton JP, Buell CR, Stangoulis J, Rocheford T, Gore MA. High-resolution genome-wide association study pinpoints metal transporter and chelator genes involved in the genetic control of element levels in maize grain. G3-GENES GENOMES GENETICS 2021; 11:6156830. [PMID: 33677522 PMCID: PMC8759812 DOI: 10.1093/g3journal/jkab059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/21/2021] [Indexed: 12/18/2022]
Abstract
Despite its importance to plant function and human health, the genetics underpinning element levels in maize grain remain largely unknown. Through a genome-wide association study in the maize Ames panel of nearly 2,000 inbred lines that was imputed with ∼7.7 million SNP markers, we investigated the genetic basis of natural variation for the concentration of 11 elements in grain. Novel associations were detected for the metal transporter genes rte2 (rotten ear2) and irt1 (iron-regulated transporter1) with boron and nickel, respectively. We also further resolved loci that were previously found to be associated with one or more of five elements (copper, iron, manganese, molybdenum, and/or zinc), with two metal chelator and five metal transporter candidate causal genes identified. The nas5 (nicotianamine synthase5) gene involved in the synthesis of nicotianamine, a metal chelator, was found associated with both zinc and iron and suggests a common genetic basis controlling the accumulation of these two metals in the grain. Furthermore, moderate predictive abilities were obtained for the 11 elemental grain phenotypes with two whole-genome prediction models: Bayesian Ridge Regression (0.33–0.51) and BayesB (0.33–0.53). Of the two models, BayesB, with its greater emphasis on large-effect loci, showed ∼4–10% higher predictive abilities for nickel, molybdenum, and copper. Altogether, our findings contribute to an improved genotype-phenotype map for grain element accumulation in maize.
Collapse
Affiliation(s)
- Di Wu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Ryokei Tanaka
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Xiaowei Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | | | - Suong Cu
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - James Stangoulis
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Torbert Rocheford
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
155
|
Huang Y, Sicar S, Ramirez-Prado JS, Manza-Mianza D, Antunez-Sanchez J, Brik-Chaouche R, Rodriguez-Granados NY, An J, Bergounioux C, Mahfouz MM, Hirt H, Crespi M, Concia L, Barneche F, Amiard S, Probst AV, Gutierrez-Marcos J, Ariel F, Raynaud C, Latrasse D, Benhamed M. Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in Arabidopsis. Genome Res 2021; 31:1230-1244. [PMID: 34083408 PMCID: PMC8256866 DOI: 10.1101/gr.273771.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the Arabidopsis thaliana nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches. By analyzing mutants defective for histone H3K27 methylation or demethylation, we uncovered the crucial role of this chromatin mark in short- and previously unnoticed long-range chromatin loop formation. We found that a reduction in H3K27me3 levels led to a decrease in the interactions within Polycomb-associated repressive domains. Regions with lower H3K27me3 levels in the H3K27 methyltransferase clf mutant established new interactions with regions marked with H3K9ac, a histone modification associated with active transcription, indicating that a reduction in H3K27me3 levels induces a global reconfiguration of chromatin architecture. Altogether, our results reveal that the 3D genome organization is tightly linked to reversible histone modifications that govern chromatin interactions. Consequently, nuclear organization dynamics shapes the transcriptional reprogramming during plant development and places H3K27me3 as a key feature in the coregulation of distant genes.
Collapse
Affiliation(s)
- Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Sanchari Sicar
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Juan S Ramirez-Prado
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | | - Rim Brik-Chaouche
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Natalia Y Rodriguez-Granados
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Jing An
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Lorenzo Concia
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ENS, CNRS UMR8197, INSERM U1024, PSL Research University, 75005, Paris, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ENS, CNRS UMR8197, INSERM U1024, PSL Research University, 75005, Paris, France
| | - Simon Amiard
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | | | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006 Paris, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
156
|
Song B, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, Gates DJ, Khaipho-Burch M, Bradbury PJ, Ross-Ibarra J, Hufford MB, Romay MC. Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Res 2021; 31:1245-1257. [PMID: 34045362 PMCID: PMC8256870 DOI: 10.1101/gr.266528.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/21/2021] [Indexed: 01/16/2023]
Abstract
Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence alignment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tremendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to understand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.
Collapse
Affiliation(s)
- Baoxing Song
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Hai Wang
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- National Maize Improvement Center, Key Laboratory of Crop Heterosis and Utilization, Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Evan Rees
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | - Daniel J Gates
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
| | - Merritt Khaipho-Burch
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Peter J Bradbury
- Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California Davis, Davis, California 95616, USA
- Center for Population Biology and Genome Center, University of California Davis, Davis, California 95616, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
157
|
Tripathi RK, Wilkins O. Single cell gene regulatory networks in plants: Opportunities for enhancing climate change stress resilience. PLANT, CELL & ENVIRONMENT 2021; 44:2006-2017. [PMID: 33522607 PMCID: PMC8359182 DOI: 10.1111/pce.14012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 05/05/2023]
Abstract
Global warming poses major challenges for plant survival and agricultural productivity. Thus, efforts to enhance stress resilience in plants are key strategies for protecting food security. Gene regulatory networks (GRNs) are a critical mechanism conferring stress resilience. Until recently, predicting GRNs of the individual cells that make up plants and other multicellular organisms was impeded by aggregate population scale measurements of transcriptome and other genome-scale features. With the advancement of high-throughput single cell RNA-seq and other single cell assays, learning GRNs for individual cells is now possible, in principle. In this article, we report on recent advances in experimental and analytical methodologies for single cell sequencing assays especially as they have been applied to the study of plants. We highlight recent advances and ongoing challenges for scGRN prediction, and finally, we highlight the opportunity to use scGRN discovery for studying and ultimately enhancing abiotic stress resilience in plants.
Collapse
Affiliation(s)
- Rajiv K. Tripathi
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Olivia Wilkins
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
158
|
DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023347118. [PMID: 33495321 PMCID: PMC7865151 DOI: 10.1073/pnas.2023347118] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plant DNA methylation, which occurs in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C), is established and maintained by different mechanisms. In this study, we present genome-wide chromatin accessibility profiles of Arabidopsis mutants that are deficient in CG, CHG, and/or CHH methylation. Through a combination of DNA methylation, chromatin accessibility, and higher-order chromosome conformation profiling of these mutants, we uncover links between DNA methylation, chromatin accessibility, and 3D genome architecture. These results reveal the interplay between CG and non-CG methylation in heterochromatin maintenance and suggest that DNA methylation can directly impact chromatin structure. DNA methylation is a major epigenetic modification found across species and has a profound impact on many biological processes. However, its influence on chromatin accessibility and higher-order genome organization remains unclear, particularly in plants. Here, we present genome-wide chromatin accessibility profiles of 18 Arabidopsis mutants that are deficient in CG, CHG, or CHH DNA methylation. We find that DNA methylation in all three sequence contexts impacts chromatin accessibility in heterochromatin. Many chromatin regions maintain inaccessibility when DNA methylation is lost in only one or two sequence contexts, and signatures of accessibility are particularly affected when DNA methylation is reduced in all contexts, suggesting an interplay between different types of DNA methylation. In addition, we found that increased chromatin accessibility was not always accompanied by increased transcription, suggesting that DNA methylation can directly impact chromatin structure by other mechanisms. We also observed that an increase in chromatin accessibility was accompanied by enhanced long-range chromatin interactions. Together, these results provide a valuable resource for chromatin architecture and DNA methylation analyses and uncover a pivotal role for methylation in the maintenance of heterochromatin inaccessibility.
Collapse
|
159
|
Jores T, Tonnies J, Wrightsman T, Buckler ES, Cuperus JT, Fields S, Queitsch C. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. NATURE PLANTS 2021; 7:842-855. [PMID: 34083762 PMCID: PMC10246763 DOI: 10.1038/s41477-021-00932-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/27/2021] [Indexed: 05/24/2023]
Abstract
Targeted engineering of plant gene expression holds great promise for ensuring food security and for producing biopharmaceuticals in plants. However, this engineering requires thorough knowledge of cis-regulatory elements to precisely control either endogenous or introduced genes. To generate this knowledge, we used a massively parallel reporter assay to measure the activity of nearly complete sets of promoters from Arabidopsis, maize and sorghum. We demonstrate that core promoter elements-notably the TATA box-as well as promoter GC content and promoter-proximal transcription factor binding sites influence promoter strength. By performing the experiments in two assay systems, leaves of the dicot tobacco and protoplasts of the monocot maize, we detect species-specific differences in the contributions of GC content and transcription factors to promoter strength. Using these observations, we built computational models to predict promoter strength in both assay systems, allowing us to design highly active promoters comparable in activity to the viral 35S minimal promoter. Our results establish a promising experimental approach to optimize native promoter elements and generate synthetic ones with desirable features.
Collapse
Affiliation(s)
- Tobias Jores
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Program in Biology, University of Washington, Seattle, WA, USA
| | - Travis Wrightsman
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Edward S Buckler
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
160
|
Pei L, Li G, Lindsey K, Zhang X, Wang M. Plant 3D genomics: the exploration and application of chromatin organization. THE NEW PHYTOLOGIST 2021; 230:1772-1786. [PMID: 33560539 PMCID: PMC8252774 DOI: 10.1111/nph.17262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 05/29/2023]
Abstract
Eukaryotic genomes are highly folded for packing into higher-order chromatin structures in the nucleus. With the emergence of state-of-the-art chromosome conformation capture methods and microscopic imaging techniques, the spatial organization of chromatin and its functional implications have been interrogated. Our knowledge of 3D chromatin organization in plants has improved dramatically in the past few years, building on the early advances in animal systems. Here, we review recent advances in 3D genome mapping approaches, our understanding of the sophisticated organization of spatial structures, and the application of 3D genomic principles in plants. We also discuss directions for future developments in 3D genomics in plants.
Collapse
Affiliation(s)
- Liuling Pei
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Guoliang Li
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070China
| |
Collapse
|
161
|
Provart NJ, Brady SM, Parry G, Schmitz RJ, Queitsch C, Bonetta D, Waese J, Schneeberger K, Loraine AE. Anno genominis XX: 20 years of Arabidopsis genomics. THE PLANT CELL 2021; 33:832-845. [PMID: 33793861 PMCID: PMC8226293 DOI: 10.1093/plcell/koaa038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments.
Collapse
Affiliation(s)
- Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, California, 95616, USA
| | - Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Georgia, 30602, USA
| | - Christine Queitsch
- Department of Genome Sciences, School of Medicine, University of Washington, Seattle, Washington, 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, 98195, USA
| | - Dario Bonetta
- Faculty of Science, Ontario Tech University, Oshawa, Ontario, L1G 0C5, Canada
| | - Jamie Waese
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, D-50829, Cologne, Germany
- Faculty of Biology, LMU Munich, 82152 Munich, Germany
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
162
|
Wang M, Li Z, Zhang Y, Zhang Y, Xie Y, Ye L, Zhuang Y, Lin K, Zhao F, Guo J, Teng W, Zhang W, Tong Y, Xue Y, Zhang Y. An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. THE PLANT CELL 2021; 33:865-881. [PMID: 33594406 PMCID: PMC8226296 DOI: 10.1093/plcell/koab028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/25/2021] [Indexed: 05/22/2023]
Abstract
Wheat (Triticum aestivum) has a large allohexaploid genome. Subgenome-divergent regulation contributed to genome plasticity and the domestication of polyploid wheat. However, the specificity encoded in the wheat genome determining subgenome-divergent spatio-temporal regulation has been largely unexplored. The considerable size and complexity of the genome are major obstacles to dissecting the regulatory specificity. Here, we compared the epigenomes and transcriptomes from a large set of samples under diverse developmental and environmental conditions. Thousands of distal epigenetic regulatory elements (distal-epiREs) were specifically linked to their target promoters with coordinated epigenomic changes. We revealed that subgenome-divergent activity of homologous regulatory elements is affected by specific epigenetic signatures. Subgenome-divergent epiRE regulation of tissue specificity is associated with dynamic modulation of H3K27me3 mediated by Polycomb complex and demethylases. Furthermore, quantitative epigenomic approaches detected key stress responsive cis- and trans-acting factors validated by DNA Affinity Purification and sequencing, and demonstrated the coordinated interplay between epiRE sequence contexts, epigenetic factors, and transcription factors in regulating subgenome divergent transcriptional responses to external changes. Together, this study provides a wealth of resources for elucidating the epiRE regulomics and subgenome-divergent regulation in hexaploid wheat, and gives new clues for interpreting genetic and epigenetic interplay in regulating the benefits of polyploid wheat.
Collapse
Affiliation(s)
| | | | | | | | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Luhuan Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Zhuang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fei Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Henan University, School of Life Science, Kaifeng, Henan 457000, China
| | - Wan Teng
- University of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiping Tong
- University of the Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, and The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|
163
|
Marand AP, Chen Z, Gallavotti A, Schmitz RJ. A cis-regulatory atlas in maize at single-cell resolution. Cell 2021; 184:3041-3055.e21. [PMID: 33964211 DOI: 10.1101/2020.09.27.315499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 05/22/2023]
Abstract
cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and uncovering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selection during modern maize breeding, highlighting the biological implications of this CRE atlas. Through comparison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks. In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to understand cis-regulatory variation in any species.
Collapse
Affiliation(s)
| | - Zongliang Chen
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrea Gallavotti
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
164
|
A cis-regulatory atlas in maize at single-cell resolution. Cell 2021; 184:3041-3055.e21. [PMID: 33964211 DOI: 10.1016/j.cell.2021.04.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023]
Abstract
cis-regulatory elements (CREs) encode the genomic blueprints of spatiotemporal gene expression programs enabling highly specialized cell functions. Using single-cell genomics in six maize organs, we determined the cis- and trans-regulatory factors defining diverse cell identities and coordinating chromatin organization by profiling transcription factor (TF) combinatorics, identifying TFs with non-cell-autonomous activity, and uncovering TFs underlying higher-order chromatin interactions. Cell-type-specific CREs were enriched for enhancer activity and within unmethylated long terminal repeat retrotransposons. Moreover, we found cell-type-specific CREs are hotspots for phenotype-associated genetic variants and were targeted by selection during modern maize breeding, highlighting the biological implications of this CRE atlas. Through comparison of maize and Arabidopsis thaliana developmental trajectories, we identified TFs and CREs with conserved and divergent chromatin dynamics, showcasing extensive evolution of gene regulatory networks. In addition to this rich dataset, we developed single-cell analysis software, Socrates, which can be used to understand cis-regulatory variation in any species.
Collapse
|
165
|
Purugganan MD, Jackson SA. Advancing crop genomics from lab to field. Nat Genet 2021; 53:595-601. [PMID: 33958781 DOI: 10.1038/s41588-021-00866-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/22/2021] [Indexed: 01/23/2023]
Abstract
Crop genomics remains a key element in ensuring scientific progress to secure global food security. It has been two decades since the sequence of the first plant genome, that of Arabidopsis thaliana, was released, and soon after that the draft sequencing of the rice genome was completed. Since then, the genomes of more than 100 crops have been sequenced, plant genome research has expanded across multiple fronts and the next few years promise to bring further advances spurred by the advent of new technologies and approaches. We are likely to see continued innovations in crop genome sequencing, genetic mapping and the acquisition of multiple levels of biological data. There will be exciting opportunities to integrate genome-scale information across multiple scales of biological organization, leading to advances in our mechanistic understanding of crop biological processes, which will, in turn, provide greater impetus for translation of laboratory results to the field.
Collapse
Affiliation(s)
- Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, USA. .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | | |
Collapse
|
166
|
Lin Y, Zhao H, Kotlarz M, Jiang J. Enhancer-mediated reporter gene expression in Arabidopsis thaliana: a forward genetic screen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:661-671. [PMID: 33547831 DOI: 10.1111/tpj.15189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Gene expression is controlled and regulated by interactions between cis-regulatory DNA elements (CREs) and regulatory proteins. Enhancers are one of the most important classes of CREs in eukaryotes. Eukaryotic genes, especially those related to development or responses to environmental cues, are often regulated by multiple enhancers in different tissues and/or at different developmental stages. Remarkably, little is known about the molecular mechanisms by which enhancers regulate gene expression in plants. We identified a distal enhancer, CREβ, which regulates the expression of AtDGK7, which encodes a diacylglycerol kinase in Arabidopsis. We developed a transgenic line containing the luciferase reporter gene (LUC) driven by CREβ fused with a minimal cauliflower mosaic virus (CaMV) 35S promoter. The CREβ enhancer was shown to play a role in the response to osmotic pressure of the LUC reporter gene. A forward genetic screen pipeline based on the transgenic line was established to generate mutations associated with altered expression of the LUC reporter gene. We identified a suite of mutants with variable LUC expression levels as well as different segregation patterns of the mutations in populations. We demonstrate that this pipeline will allow us to identify trans-regulatory factors associated with CREβ function as well as those acting in the regulation of the endogenous AtDGK7 gene.
Collapse
Affiliation(s)
- Yuan Lin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Hunan Agriculture University, Changsha, 410128, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Magdalena Kotlarz
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
167
|
Liu A, Bergmann DC. How to build a crop plant: Defining the cis-regulatory landscape of maize. Cell 2021; 184:2804-2806. [PMID: 34048703 DOI: 10.1016/j.cell.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The functional regulatory elements of agronomically important plant genomes have been long sought after. Marand et. al. generate a comprehensive atlas of cis-regulatory elements at single cell resolution in maize, providing a powerful resource for inquiries into the rules of multicellular development and for precision crop engineering.
Collapse
Affiliation(s)
- Ao Liu
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Dominique C Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
168
|
Wang P, Jin S, Chen X, Wu L, Zheng Y, Yue C, Guo Y, Zhang X, Yang J, Ye N. Chromatin accessibility and translational landscapes of tea plants under chilling stress. HORTICULTURE RESEARCH 2021; 8:96. [PMID: 33931606 PMCID: PMC8087716 DOI: 10.1038/s41438-021-00529-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Plants have evolved regulatory mechanisms at multiple levels to regulate gene expression in order to improve their cold adaptability. However, limited information is available regarding the stress response at the chromatin and translational levels. Here, we characterize the chromatin accessibility, transcriptional, and translational landscapes of tea plants in vivo under chilling stress for the first time. Chilling stress significantly affected both the transcription and translation levels as well as the translation efficiency of tea plants. A total of 3010 genes that underwent rapid and independent translation under chilling stress were observed, and they were significantly enriched in the photosynthesis-antenna protein and phenylpropanoid biosynthesis pathways. A set of genes that were significantly responsive to cold at the transcription and translation levels, including four (+)-neomenthol dehydrogenases (MNDs) and two (E)-nerolidol synthases (NESs) arranged in tandem on the chromosomes, were also found. We detected potential upstream open reading frames (uORFs) on 3082 genes and found that tea plants may inhibit the overall expression of genes by enhancing the translation of uORFs under chilling stress. In addition, we identified distal transposase hypersensitive sites (THSs) and proximal THSs and constructed a transcriptional regulatory network for tea plants under chilling stress. We also identified 13 high-confidence transcription factors (TFs) that may play a crucial role in cold regulation. These results provide valuable information regarding the potential transcriptional regulatory network in plants and help to clarify how plants exhibit flexible responses to chilling stress.
Collapse
Affiliation(s)
- Pengjie Wang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Shan Jin
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xuejin Chen
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yucheng Zheng
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Chuan Yue
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Yongchun Guo
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Jiangfan Yang
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China.
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
169
|
Li M, Noshay JM, Dong X, Springer NM, Li Q. A capture-based assay for detection and characterization of transposon polymorphisms in maize. G3-GENES GENOMES GENETICS 2021; 11:6255745. [PMID: 33905487 PMCID: PMC8495914 DOI: 10.1093/g3journal/jkab138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/15/2021] [Indexed: 11/14/2022]
Abstract
Transposons can create allelic diversity that affects gene expression and phenotypic diversity. The detection of transposon polymorphisms at a genome-wide scale across a large population is difficult. Here we developed a targeted sequencing approach to monitor transposon polymorphisms of interest. This approach can interrogate the presence or absence of transposons reliably across various genotypes. Using this approach, we genotyped a set of 965 transposon-related presence/absence polymorphisms in a diverse panel of 16 maize (Zea mays L.) inbred lines that are representative of the major maize breeding groups. About 70% of the selected regions can be effectively assayed in each genotype. The consistency between the capture-based assay and PCR-based assay are 98.6% based on analysis of 24 randomly selected transposon polymorphisms. By integrating the transposon polymorphisms data with gene expression data, ∼18% of the assayed transposon polymorphisms were found to be associated with variable gene expression levels. A detailed analysis of 18 polymorphisms in a larger association panel confirmed the effects of 10 polymorphisms, with one of them having stronger association with expression than nearby SNP markers. The effects of seven polymorphisms were tested using a luciferase-based expression assay, and one was confirmed. Together, this study demonstrates that the targeted sequencing assay is an effective way to explore transposon function in a high-throughput manner.
Collapse
Affiliation(s)
- Minqi Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Xiaoxiao Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
170
|
Huang MK, Zhang L, Zhou LM, Yung WS, Li MW, Lam HM. Genomic Features of Open Chromatin Regions (OCRs) in Wild Soybean and Their Effects on Gene Expressions. Genes (Basel) 2021; 12:640. [PMID: 33923056 PMCID: PMC8146116 DOI: 10.3390/genes12050640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription activation is tightly associated with the openness of chromatin, which allows direct contact between transcriptional regulators, such as transcription factors, and their targeted DNA for downstream gene activation. However, the annotation of open chromatin regions (OCRs) in the wild soybean (Glycine soja) genome is limited. We performed assay for transposase-accessible chromatin using sequencing (ATAC-seq) and successfully identified 22,333 OCRs in the leaf of W05 (a wild soybean accession). These OCRs were enriched in gene transcription start sites (TSS) and were positively correlated with downstream gene expression. Several known transcription factor (TF)-binding motifs were also enriched at the OCRs. A potential regulatory network was constructed using these transcription factors and the OCR-marked genes. Furthermore, by overlapping the OCR distribution with those of histone modifications from chromatin immunoprecipitation followed by sequencing (ChIP-seq), we found that the distribution of the activation histone mark, H3K4me3, but not that of the repressive H3K27me3 mark, was closely associated with OCRs for gene activation. Several putative enhancer-like distal OCRs were also found to overlap with LincRNA-encoding loci. Moreover, our data suggest that homologous OCRs could potentially influence homologous gene expression. Hence, the duplication of OCRs might be essential for plant genome architecture as well as for regulating gene expression.
Collapse
Affiliation(s)
- Ming-Kun Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518055, China
| | - Li-Meng Zhou
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; (M.-K.H.); (L.-M.Z.); (W.-S.Y.); (M.-W.L.)
| |
Collapse
|
171
|
Zhang TQ, Chen Y, Liu Y, Lin WH, Wang JW. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root. Nat Commun 2021; 12:2053. [PMID: 33824350 PMCID: PMC8024345 DOI: 10.1038/s41467-021-22352-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/08/2021] [Indexed: 12/26/2022] Open
Abstract
Root development relies on the establishment of meristematic tissues that give rise to distinct cell types that differentiate across defined temporal and spatial gradients. Dissection of the developmental trajectories and the transcriptional networks that underlie them could aid understanding of the function of the root apical meristem in both dicots and monocots. Here, we present a single-cell RNA (scRNA) sequencing and chromatin accessibility survey of rice radicles. By temporal profiling of individual root tip cells we reconstruct continuous developmental trajectories of epidermal cells and ground tissues, and elucidate regulatory networks underlying cell fate determination in these cell lineages. We further identify characteristic processes, transcriptome profiles, and marker genes for these cell types and reveal conserved and divergent root developmental pathways between dicots and monocots. Finally, we demonstrate the potential of the platform for functional genetic studies by using spatiotemporal modeling to identify a rice root meristematic mutant from a cell-specific gene cohort.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| | - Yu Chen
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wen-Hui Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
- ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
172
|
Zhang Q, Guan P, Zhao L, Ma M, Xie L, Li Y, Zheng R, Ouyang W, Wang S, Li H, Zhang Y, Peng Y, Cao Z, Zhang W, Xiao Q, Xiao Y, Fu T, Li G, Li X, Shen J. Asymmetric epigenome maps of subgenomes reveal imbalanced transcription and distinct evolutionary trends in Brassica napus. MOLECULAR PLANT 2021; 14:604-619. [PMID: 33387675 DOI: 10.1016/j.molp.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/28/2020] [Accepted: 12/28/2020] [Indexed: 05/20/2023]
Abstract
The complexity of the epigenome landscape and transcriptional regulation is significantly increased during plant polyploidization, which drives genome evolution and contributes to the increased adaptability to diverse environments. However, a comprehensive epigenome map of Brassica napus is still unavailable. In this study, we performed integrative analysis of five histone modifications, RNA polymerase II occupancy, DNA methylation, and transcriptomes in two B. napus lines (2063A and B409), and established global maps of regulatory elements, chromatin states, and their dynamics for the whole genome (including the An and Cn subgenomes) in four tissue types (young leaf, flower bud, silique, and root) of these two lines. Approximately 65.8% of the genome was annotated with different epigenomic signals. Compared with the Cn subgenome, the An subgenome possesses a higher level of active epigenetic marks and lower level of repressive epigenetic marks. Genes from subgenome-unique regions contribute to the major differences between the An and Cn subgenomes. Asymmetric histone modifications between homeologous gene pairs reflect their biased expression patterns. We identified a novel bivalent chromatin state (with H3K4me1 and H3K27me3) in B. napus that is associated with tissue-specific gene expression. Furthermore, we observed that different types of duplicated genes have discrepant patterns of histone modification and DNA methylation levels. Collectively, our findings provide a valuable epigenetic resource for allopolyploid plants.
Collapse
Affiliation(s)
- Qing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengpeng Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meng Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shunyao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmeijuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanling Xiao
- National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
173
|
Wang X, Aguirre L, Rodríguez-Leal D, Hendelman A, Benoit M, Lippman ZB. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit. NATURE PLANTS 2021; 7:419-427. [PMID: 33846596 DOI: 10.1038/s41477-021-00898-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 05/22/2023]
Abstract
Cis-regulatory mutations underlie important crop domestication and improvement traits1,2. However, limited allelic diversity has hindered functional dissection of the large number of cis-regulatory elements and their potential interactions, thereby precluding a deeper understanding of how cis-regulatory variation impacts traits quantitatively. Here, we engineered over 60 promoter alleles in two tomato fruit size genes3,4 to characterize cis-regulatory sequences and study their functional relationships. We found that targeted mutations in conserved promoter sequences of SlCLV3, a repressor of stem cell proliferation5,6, have a weak impact on fruit locule number. Pairwise combinations of these mutations mildly enhance this phenotype, revealing additive and synergistic relationships between conserved regions and further suggesting even higher-order cis-regulatory interactions within the SlCLV3 promoter. In contrast, SlWUS, a positive regulator of stem cell proliferation repressed by SlCLV3 (refs. 5,6), is more tolerant to promoter perturbations. Our results show that complex interplay among cis-regulatory variants can shape quantitative variation, and suggest that empirical dissections of this hidden complexity can guide promoter engineering to predictably modify crop traits.
Collapse
Affiliation(s)
- Xingang Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Lyndsey Aguirre
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Daniel Rodríguez-Leal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Inari Agriculture, Cambridge, MA, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
174
|
Technologies enabling rapid crop improvements for sustainable agriculture: example pennycress (Thlaspi arvense L.). Emerg Top Life Sci 2021; 5:325-335. [DOI: 10.1042/etls20200330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 11/17/2022]
Abstract
Growing concerns over food insecurity and ecosystems health related to population growth and climate change have challenged scientists to develop new crops, employing revolutionary technologies in combination with traditional methods. In this review, we discuss the domestication of the oilseed-producing cover crop pennycress, which along with the development of other new crops and improvements to farming practices can provide sustainable solutions to address malnutrition and environmental impacts of production agriculture. We highlight some of the new technologies such as bioinformatics-enabled next-generation sequencing and CRISPR genome editing in combination with traditional mutation breeding that has accelerated pennycress development as a new crop and a potential model system. Furthermore, we provide a brief overview of the technologies that can be integrated for improving pennycress and other crops and the status of pennycress development using these technologies.
Collapse
|
175
|
Strable J. Developmental genetics of maize vegetative shoot architecture. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:19. [PMID: 37309417 PMCID: PMC10236122 DOI: 10.1007/s11032-021-01208-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 06/13/2023]
Abstract
More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by "-omics" analyses, are highlighted within these sections. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01208-1.
Collapse
Affiliation(s)
- Josh Strable
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Present Address: Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
176
|
Chen Z, Gallavotti A. Improving architectural traits of maize inflorescences. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:21. [PMID: 37309422 PMCID: PMC10236070 DOI: 10.1007/s11032-021-01212-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 06/13/2023]
Abstract
The domestication and improvement of maize resulted in radical changes in shoot architecture relative to its wild progenitor teosinte. In particular, critical modifications involved a reduction of branching and an increase in inflorescence size to meet the needs for human consumption and modern agricultural practices. Maize is a major contributor to global agricultural production by providing large and inexpensive quantities of food, animal feed, and ethanol. Maize is also a classic system for studying the genetic regulation of inflorescence formation and its enlarged female inflorescences directly influence seed production and yield. Studies on the molecular and genetic networks regulating meristem proliferation and maintenance, including receptor-ligand interactions, transcription factor regulation, and hormonal control, provide important insights into maize inflorescence development and reveal potential avenues for the targeted modification of specific architectural traits. In this review, we summarize recent findings on the molecular mechanisms controlling inflorescence formation and discuss how this knowledge can be applied to improve maize productivity in the face of present and future environmental challenges.
Collapse
Affiliation(s)
- Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020 USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| |
Collapse
|
177
|
Brooks MD, Juang CL, Katari MS, Alvarez JM, Pasquino A, Shih HJ, Huang J, Shanks C, Cirrone J, Coruzzi GM. ConnecTF: A platform to integrate transcription factor-gene interactions and validate regulatory networks. PLANT PHYSIOLOGY 2021; 185:49-66. [PMID: 33631799 PMCID: PMC8133578 DOI: 10.1093/plphys/kiaa012] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 05/08/2023]
Abstract
Deciphering gene regulatory networks (GRNs) is both a promise and challenge of systems biology. The promise lies in identifying key transcription factors (TFs) that enable an organism to react to changes in its environment. The challenge lies in validating GRNs that involve hundreds of TFs with hundreds of thousands of interactions with their genome-wide targets experimentally determined by high-throughput sequencing. To address this challenge, we developed ConnecTF, a species-independent, web-based platform that integrates genome-wide studies of TF-target binding, TF-target regulation, and other TF-centric omic datasets and uses these to build and refine validated or inferred GRNs. We demonstrate the functionality of ConnecTF by showing how integration within and across TF-target datasets uncovers biological insights. Case study 1 uses integration of TF-target gene regulation and binding datasets to uncover TF mode-of-action and identify potential TF partners for 14 TFs in abscisic acid signaling. Case study 2 demonstrates how genome-wide TF-target data and automated functions in ConnecTF are used in precision/recall analysis and pruning of an inferred GRN for nitrogen signaling. Case study 3 uses ConnecTF to chart a network path from NLP7, a master TF in nitrogen signaling, to direct secondary TF2s and to its indirect targets in a Network Walking approach. The public version of ConnecTF (https://ConnecTF.org) contains 3,738,278 TF-target interactions for 423 TFs in Arabidopsis, 839,210 TF-target interactions for 139 TFs in maize (Zea mays), and 293,094 TF-target interactions for 26 TFs in rice (Oryza sativa). The database and tools in ConnecTF will advance the exploration of GRNs in plant systems biology applications for model and crop species.
Collapse
Affiliation(s)
- Matthew D Brooks
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Che-Lun Juang
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Manpreet Singh Katari
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - José M Alvarez
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Angelo Pasquino
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Hung-Jui Shih
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Ji Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Carly Shanks
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | - Jacopo Cirrone
- Courant Institute for Mathematical Sciences, Department of Computer Science, New York University NY, USA
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
- Author for communication: (G.C.)
| |
Collapse
|
178
|
Zhou L, Huang Y, Wang Q, Guo D. Chromatin Accessibility Is Associated with Artemisinin Biosynthesis Regulation in Artemisia annua. Molecules 2021; 26:molecules26041194. [PMID: 33672342 PMCID: PMC7926469 DOI: 10.3390/molecules26041194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/21/2022] Open
Abstract
Glandular trichome (GT) is the dominant site for artemisinin production in Artemisia annua. Several critical genes involved in artemisinin biosynthesis are specifically expressed in GT. However, the molecular mechanism of differential gene expression between GT and other tissue types remains elusive. Chromatin accessibility, defined as the degree to which nuclear molecules are able to interact with chromatin DNA, reflects gene expression capacity to a certain extent. Here, we investigated and compared the landscape of chromatin accessibility in Artemisia annua leaf and GT using the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) technique. We identified 5413 GT high accessible and 4045 GT low accessible regions, and these GT high accessible regions may contribute to GT-specific biological functions. Several GT-specific artemisinin biosynthetic genes, such as DBR2 and CYP71AV1, showed higher accessible regions in GT compared to that in leaf, implying that they might be regulated by chromatin accessibility. In addition, transcription factor binding motifs for MYB, bZIP, C2H2, and AP2 were overrepresented in the highly accessible chromatin regions associated with artemisinin biosynthetic genes in glandular trichomes. Finally, we proposed a working model illustrating the chromatin accessibility dynamics in regulating artemisinin biosynthetic gene expression. This work provided new insights into epigenetic regulation of gene expression in GT.
Collapse
Affiliation(s)
- Limeng Zhou
- State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Hong Kong 999077, China; (L.Z.); (Y.H.)
| | - Yingzhang Huang
- State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Hong Kong 999077, China; (L.Z.); (Y.H.)
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510000, China;
| | - Dianjing Guo
- State Key Laboratory of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, Hong Kong 999077, China; (L.Z.); (Y.H.)
- Correspondence: ; Tel.: +852-3943-6298
| |
Collapse
|
179
|
Yocca AE, Lu Z, Schmitz RJ, Freeling M, Edger PP. Evolution of Conserved Noncoding Sequences in Arabidopsis thaliana. Mol Biol Evol 2021; 38:2692-2703. [PMID: 33565589 PMCID: PMC8233505 DOI: 10.1093/molbev/msab042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent pangenome studies have revealed a large fraction of the gene content within a species exhibits presence-absence variation (PAV). However, coding regions alone provide an incomplete assessment of functional genomic sequence variation at the species level. Little to no attention has been paid to noncoding regulatory regions in pangenome studies, though these sequences directly modulate gene expression and phenotype. To uncover regulatory genetic variation, we generated chromosome-scale genome assemblies for thirty Arabidopsis thaliana accessions from multiple distinct habitats and characterized species level variation in Conserved Noncoding Sequences (CNS). Our analyses uncovered not only PAV and positional variation (PosV) but that diversity in CNS is nonrandom, with variants shared across different accessions. Using evolutionary analyses and chromatin accessibility data, we provide further evidence supporting roles for conserved and variable CNS in gene regulation. Additionally, our data suggests that transposable elements contribute to CNS variation. Characterizing species-level diversity in all functional genomic sequences may later uncover previously unknown mechanistic links between genotype and phenotype.
Collapse
Affiliation(s)
- Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.,Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
180
|
Ouyang W, Xiao Q, Li G, Li X. Technologies for Capturing 3D Genome Architecture in Plants. TRENDS IN PLANT SCIENCE 2021; 26:196-197. [PMID: 33199261 DOI: 10.1016/j.tplants.2020.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
181
|
Lucero L, Ferrero L, Fonouni-Farde C, Ariel F. Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. THE NEW PHYTOLOGIST 2021; 229:1251-1260. [PMID: 32880949 DOI: 10.1111/nph.16903] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 05/27/2023]
Abstract
The extraordinary maturation in high-throughput sequencing technologies has revealed the existence of a complex network of transcripts in eukaryotic organisms, including thousands of long noncoding (lnc) RNAs with little or no protein-coding capacity. Subsequent discoveries have shown that lncRNAs participate in a wide range of molecular processes, controlling gene expression and protein activity though direct interactions with proteins, DNA or other RNA molecules. Although significant advances have been achieved in the understanding of lncRNA biology in the animal kingdom, the functional characterization of plant lncRNAs is still in its infancy and remains a major challenge. In this review, we report emerging functional and mechanistic paradigms of plant lncRNAs and partner molecules, and discuss how cutting-edge technologies may help to identify and classify yet uncharacterized transcripts into functional groups.
Collapse
Affiliation(s)
- Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Lucía Ferrero
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, Santa Fe, 3000, Argentina
| |
Collapse
|
182
|
Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, Greenleaf WJ, Furlong EEM, Zhao K, Schmitz RJ, Bock C, Aerts S. Chromatin accessibility profiling methods. NATURE REVIEWS. METHODS PRIMERS 2021; 1:10. [PMID: 38410680 PMCID: PMC10895463 DOI: 10.1038/s43586-020-00008-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Chromatin accessibility, or the physical access to chromatinized DNA, is a widely studied characteristic of the eukaryotic genome. As active regulatory DNA elements are generally 'accessible', the genome-wide profiling of chromatin accessibility can be used to identify candidate regulatory genomic regions in a tissue or cell type. Multiple biochemical methods have been developed to profile chromatin accessibility, both in bulk and at the single-cell level. Depending on the method, enzymatic cleavage, transposition or DNA methyltransferases are used, followed by high-throughput sequencing, providing a view of genome-wide chromatin accessibility. In this Primer, we discuss these biochemical methods, as well as bioinformatics tools for analysing and interpreting the generated data, and insights into the key regulators underlying developmental, evolutionary and disease processes. We outline standards for data quality, reproducibility and deposition used by the genomics community. Although chromatin accessibility profiling is invaluable to study gene regulation, alone it provides only a partial view of this complex process. Orthogonal assays facilitate the interpretation of accessible regions with respect to enhancer-promoter proximity, functional transcription factor binding and regulatory function. We envision that technological improvements including single-molecule, multi-omics and spatial methods will bring further insight into the secrets of genome regulation.
Collapse
Affiliation(s)
- Liesbeth Minnoye
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lixia Pan
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | | | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Stein Aerts
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
183
|
Srikant T, Drost HG. How Stress Facilitates Phenotypic Innovation Through Epigenetic Diversity. FRONTIERS IN PLANT SCIENCE 2021; 11:606800. [PMID: 33519857 PMCID: PMC7843580 DOI: 10.3389/fpls.2020.606800] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/16/2020] [Indexed: 05/14/2023]
Abstract
Climate adaptation through phenotypic innovation will become the main challenge for plants during global warming. Plants exhibit a plethora of mechanisms to achieve environmental and developmental plasticity by inducing dynamic alterations of gene regulation and by maximizing natural variation through large population sizes. While successful over long evolutionary time scales, most of these mechanisms lack the short-term adaptive responsiveness that global warming will require. Here, we review our current understanding of the epigenetic regulation of plant genomes, with a focus on stress-response mechanisms and transgenerational inheritance. Field and laboratory-scale experiments on plants exposed to stress have revealed a multitude of temporally controlled, mechanistic strategies integrating both genetic and epigenetic changes on the genome level. We analyze inter- and intra-species population diversity to discuss how methylome differences and transposon activation can be harnessed for short-term adaptive efforts to shape co-evolving traits in response to qualitatively new climate conditions and environmental stress.
Collapse
Affiliation(s)
| | - Hajk-Georg Drost
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
184
|
Fagny M, Kuijjer ML, Stam M, Joets J, Turc O, Rozière J, Pateyron S, Venon A, Vitte C. Identification of Key Tissue-Specific, Biological Processes by Integrating Enhancer Information in Maize Gene Regulatory Networks. Front Genet 2021; 11:606285. [PMID: 33505431 PMCID: PMC7834273 DOI: 10.3389/fgene.2020.606285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Enhancers are key players in the spatio-temporal coordination of gene expression during numerous crucial processes, including tissue differentiation across development. Characterizing the transcription factors (TFs) and genes they connect, and the molecular functions underpinned is important to better characterize developmental processes. In plants, the recent molecular characterization of enhancers revealed their capacity to activate the expression of several target genes. Nevertheless, identifying these target genes at a genome-wide level is challenging, particularly for large-genome species, where enhancers and target genes can be hundreds of kilobases away. Therefore, the contribution of enhancers to plant regulatory networks remains poorly understood. Here, we investigate the enhancer-driven regulatory network of two maize tissues at different stages: leaves at seedling stage (V2-IST) and husks (bracts) at flowering. Using systems biology, we integrate genomic, epigenomic, and transcriptomic data to model the regulatory relationships between TFs and their potential target genes, and identify regulatory modules specific to husk and V2-IST. We show that leaves at the V2-IST stage are characterized by the response to hormones and macromolecules biogenesis and assembly, which are regulated by the BBR/BPC and AP2/ERF TF families, respectively. In contrast, husks are characterized by cell wall modification and response to abiotic stresses, which are, respectively, orchestrated by the C2C2/DOF and AP2/EREB families. Analysis of the corresponding enhancer sequences reveals that two different transposable element families (TIR transposon Mutator and MITE Pif/Harbinger) have shaped part of the regulatory network in each tissue, and that MITEs have provided potential new TF binding sites involved in husk tissue-specificity.
Collapse
Affiliation(s)
- Maud Fagny
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Marieke Lydia Kuijjer
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Maike Stam
- Plant Development and (Epi) Genetics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Johann Joets
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Olivier Turc
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Julien Rozière
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Stéphanie Pateyron
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Clémentine Vitte
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
185
|
Zhou C, Yuan Z, Ma X, Yang H, Wang P, Zheng L, Zhang Y, Liu X. Accessible chromatin regions and their functional interrelations with gene transcription and epigenetic modifications in sorghum genome. PLANT COMMUNICATIONS 2021; 2:100140. [PMID: 33511349 PMCID: PMC7816095 DOI: 10.1016/j.xplc.2020.100140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 05/23/2023]
Abstract
Accessible chromatin regions (ACRs) provide physical scaffolds to recruit transcriptional co-regulators and displace their nearby nucleosomes in multiple plant species. Characterization of ACRs and investigation of their biological effects in Sorghum bicolor has lagged behind. Regulation of gene expression relies on the transcriptional co-regulators that are recruited to ACRs to affect epigenomic modifications of surrounding nucleosomes. In this study, we employed transposase-accessible chromatin sequencing to identify ACRs and decipher how the presence of ACRs affects gene expression and epigenetic signatures in the Sorghum genome. As a result, 21 077 ACRs, which are mapped to 22.9% of genes and 2.7% of repeats, were identified. The profiling of ACRs on gene structures reveals a narrow and sharp peak around the transcription start site, with relatively weak and broad signals covering the entire gene body and an explicit but wide peak from the transcription termination site to its downstream regions. We discovered that the correlations between gene expression levels and profiled ACR densities are dependent on the positions of ACRs. The occurrence of genic ACRs cumulatively enhances the transcriptional activity of intergenic ACR-associated genes. In addition, an intricate crosstalk among ACRs, gene expression, and epigenetic marks has been unveiled by integrating multiple-omics analyses of whole-genome bisulfite sequencing, 6mA immunoprecipitation followed by sequencing, RNA sequencing, chromatin immunoprecipitation sequencing, and DNase I hypersensitive sites sequencing datasets. Our study provides a genome-wide landscape of ACRs in sorghum, decrypts their interrelations with various epigenetic marks, and sheds new light on their roles in transcriptional regulation.
Collapse
Affiliation(s)
- Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang 443002, China
| | - Zhu Yuan
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU), Biotechnology Research Center, Yichang Key Laboratory of Omics-Based Breeding for Chinese Medicines, China Three Gorges University, Yichang 443002, China
| | - Xueping Ma
- Laboratory of Medicinal Plants, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Lanlan Zheng
- Laboratory of Medicinal Plants, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plants, Institute of Basic Medical Sciences, School of Basic Medicine, Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| |
Collapse
|
186
|
Deschamps S, Crow JA, Chaidir N, Peterson-Burch B, Kumar S, Lin H, Zastrow-Hayes G, May GD. Chromatin loop anchors contain core structural components of the gene expression machinery in maize. BMC Genomics 2021; 22:23. [PMID: 33407087 PMCID: PMC7789236 DOI: 10.1186/s12864-020-07324-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/14/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. RESULTS Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. CONCLUSIONS Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.
Collapse
Affiliation(s)
| | - John A. Crow
- Corteva Agriscience, 8325 NW, 62nd Avenue, Johnston, Iowa, 50131 USA
| | - Nadia Chaidir
- Corteva Agriscience, 8325 NW, 62nd Avenue, Johnston, Iowa, 50131 USA
| | | | - Sunil Kumar
- Corteva Agriscience, The V-Acendas, Atria Block, 12th Floor, Plot No.17, Madhapur, Hyderabad, Telangana 500081 India
| | - Haining Lin
- Corteva Agriscience, 8325 NW, 62nd Avenue, Johnston, Iowa, 50131 USA
| | | | - Gregory D. May
- Corteva Agriscience, 8325 NW, 62nd Avenue, Johnston, Iowa, 50131 USA
| |
Collapse
|
187
|
Xu X, Crow M, Rice BR, Li F, Harris B, Liu L, Demesa-Arevalo E, Lu Z, Wang L, Fox N, Wang X, Drenkow J, Luo A, Char SN, Yang B, Sylvester AW, Gingeras TR, Schmitz RJ, Ware D, Lipka AE, Gillis J, Jackson D. Single-cell RNA sequencing of developing maize ears facilitates functional analysis and trait candidate gene discovery. Dev Cell 2021; 56:557-568.e6. [PMID: 33400914 DOI: 10.1016/j.devcel.2020.12.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
Abstract
Crop productivity depends on activity of meristems that produce optimized plant architectures, including that of the maize ear. A comprehensive understanding of development requires insight into the full diversity of cell types and developmental domains and the gene networks required to specify them. Until now, these were identified primarily by morphology and insights from classical genetics, which are limited by genetic redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes associated with crop yield traits.
Collapse
Affiliation(s)
- Xiaosa Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Megan Crow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brian R Rice
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Zefu Lu
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liya Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Nathan Fox
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaofei Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anding Luo
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Anne W Sylvester
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; USDA-ARS, Robert W. Holley Center, Ithaca, NY 14853, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jesse Gillis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
188
|
Huang M, Zhang L, Zhou L, Wang M, Yung WS, Wang Z, Duan S, Xiao Z, Wang Q, Wang X, Li MW, Lam HM. An expedient survey and characterization of the soybean JAGGED 1 (GmJAG1) transcription factor binding preference in the soybean genome by modified ChIPmentation on soybean protoplasts. Genomics 2021; 113:344-355. [PMID: 33338631 DOI: 10.1016/j.ygeno.2020.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022]
Abstract
ChIP-seq is widely used for mapping the transcription factor (TF) binding sites throughout the genome in vivo. In this study, we adopted and modified ChIPmentation, a fast, robust, low-input requirement ChIP-seq method, to a transient expression system using soybean protoplasts to expedite the exploration of TF binding sites. To test this new protocol, we expressed a tagged version of a C2H2-type zinc finger TF, JAGGED1 (GmJAG1), in soybean protoplasts and successfully identified its binding sites in the soybean genome. Furthermore, valuable genomic features such as a novel GmJAG1-binding motif, and the epigenetic characteristics as well as an enhancer-like function of GmJBSs were also found via coupling ATAC-seq and H3K27me3 ChIP-seq data. The application of the modified ChIPmentation protocol in this study using soybean protoplasts provided a new approach for rapid elucidation of how a TF binds to the various target genes in the soybean genome, as illustrated here using GmJAG1.
Collapse
Affiliation(s)
- Mingkun Huang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Ling Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, PR China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518055, PR China
| | - Limeng Zhou
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Mozhu Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Wai-Shing Yung
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhili Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Shaowei Duan
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Zhixia Xiao
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Qianwen Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Xin Wang
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Man-Wah Li
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China.
| |
Collapse
|
189
|
DNA methylation mutants in Physcomitrella patens elucidate individual roles of CG and non-CG methylation in genome regulation. Proc Natl Acad Sci U S A 2020; 117:33700-33710. [PMID: 33376225 DOI: 10.1073/pnas.2011361117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytosine (DNA) methylation in plants regulates the expression of genes and transposons. While methylation in plant genomes occurs at CG, CHG, and CHH sequence contexts, the comparative roles of the individual methylation contexts remain elusive. Here, we present Physcomitrella patens as the second plant system, besides Arabidopsis thaliana, with viable mutants with an essentially complete loss of methylation in the CG and non-CG contexts. In contrast to A. thaliana, P. patens has more robust CHH methylation, similar CG and CHG methylation levels, and minimal cross-talk between CG and non-CG methylation, making it possible to study context-specific effects independently. Our data found CHH methylation to act in redundancy with symmetric methylation in silencing transposons and to regulate the expression of CG/CHG-depleted transposons. Specific elimination of CG methylation did not dysregulate transposons or genes. In contrast, exclusive removal of non-CG methylation massively up-regulated transposons and genes. In addition, comparing two exclusively but equally CG- or CHG-methylated genomes, we show that CHG methylation acts as a greater transcriptional regulator than CG methylation. These results disentangle the transcriptional roles of CG and non-CG, as well as symmetric and asymmetric methylation in a plant genome, and point to the crucial role of non-CG methylation in genome regulation.
Collapse
|
190
|
Ouyang W, Xiong D, Li G, Li X. Unraveling the 3D Genome Architecture in Plants: Present and Future. MOLECULAR PLANT 2020; 13:1676-1693. [PMID: 33065269 DOI: 10.1016/j.molp.2020.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/09/2020] [Accepted: 10/08/2020] [Indexed: 05/02/2023]
Abstract
The eukaryotic genome has a hierarchical three-dimensional (3D) organization with functional implications for DNA replication, DNA repair, and transcriptional regulation. Over the past decade, scientists have endeavored to elucidate the spatial characteristics and functions of plant genome architecture using high-throughput chromatin conformation capturing technologies such as Hi-C, ChIA-PET, and HiChIP. Here, we systematically review current understanding of chromatin organization in plants at multiple scales. We also discuss the emerging opinions and concepts in 3D genome research, focusing on state-of-the-art 3D genome techniques, RNA-chromatin interactions, liquid-liquid phase separation, and dynamic chromatin alterations. We propose the application of single-cell/single-molecule multi-omics, multiway (DNA-DNA, DNA-RNA, and RNA-RNA interactions) chromatin conformation capturing methods, and proximity ligation-independent 3D genome-mapping technologies to explore chromatin organization structure and function in plants. Such methods could reveal the spatial interactions between trait-related SNPs and their target genes at various spatiotemporal resolutions, and elucidate the molecular mechanisms of the interactions among DNA elements, RNA molecules, and protein factors during the formation of key traits in plants.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
191
|
Cai YM, Kallam K, Tidd H, Gendarini G, Salzman A, Patron NJ. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res 2020; 48:11845-11856. [PMID: 32856047 DOI: 10.1101/2020.05.14.095406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 05/20/2023] Open
Abstract
Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.
Collapse
Affiliation(s)
- Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Henry Tidd
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Giovanni Gendarini
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Amanda Salzman
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| |
Collapse
|
192
|
Cai YM, Kallam K, Tidd H, Gendarini G, Salzman A, Patron N. Rational design of minimal synthetic promoters for plants. Nucleic Acids Res 2020; 48:11845-11856. [PMID: 32856047 PMCID: PMC7708054 DOI: 10.1093/nar/gkaa682] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression. We have established a quantitative experimental system to investigate transcriptional function, investigating how identity, density and position contribute to regulatory function. We then identified permissive architectures for minimal synthetic plant promoters enabling the computational design of a suite of synthetic promoters of different strengths. These have been used to regulate the relative expression of output genes in simple genetic devices.
Collapse
Affiliation(s)
- Yao-Min Cai
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Kalyani Kallam
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Henry Tidd
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Giovanni Gendarini
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Amanda Salzman
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| | - Nicola J Patron
- Engineering Biology, Earlham Institute, Norwich Research Park, Norfolk NR4 7UZ, UK
| |
Collapse
|
193
|
Numaguchi K, Akagi T, Kitamura Y, Ishikawa R, Ishii T. Interspecific introgression and natural selection in the evolution of Japanese apricot (Prunus mume). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1551-1567. [PMID: 33048374 DOI: 10.1111/tpj.15020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Domestication and population differentiation in crops involve considerable phenotypic changes. The logs of these evolutionary paths, including natural/artificial selection, can be found in the genomes of the current populations. However, these profiles have been little studied in tree crops, which have specific characters, such as long generation time and clonal propagation, maintaining high levels of heterozygosity. We conducted exon-targeted resequencing of 129 genomes in the genus Prunus, mainly Japanese apricot (Prunus mume), and apricot (Prunus armeniaca), plum (Prunus salicina), and peach (Prunus persica). Based on their genome-wide single-nucleotide polymorphisms merged with published resequencing data of 79 Chinese P. mume cultivars, we inferred complete and ongoing population differentiation in P. mume. Sliding window characterization of the indexes for genetic differentiation identified interspecific fragment introgressions between P. mume and related species (plum and apricot). These regions often exhibited strong selective sweeps formed in the paths of establishment or formation of substructures of P. mume, suggesting that P. mume has frequently imported advantageous genes from other species in the subgenus Prunus as adaptive evolution. These findings shed light on the complicated nature of adaptive evolution in a tree crop that has undergone interspecific exchange of genome fragments with natural/artificial selections.
Collapse
Affiliation(s)
- Koji Numaguchi
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Tsushima-naka 1-1-1, Okayama, 700-8530, Japan
| | - Yuto Kitamura
- Japanese Apricot Laboratory, Wakayama Fruit Tree Experiment Station, Minabe, Higashi-honjo 1416-7, Wakayama, 645-0021, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| | - Takashige Ishii
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Rokkodai 1-1, Kobe, 657-8501, Japan
| |
Collapse
|
194
|
Xu G, Lyu J, Li Q, Liu H, Wang D, Zhang M, Springer NM, Ross-Ibarra J, Yang J. Evolutionary and functional genomics of DNA methylation in maize domestication and improvement. Nat Commun 2020; 11:5539. [PMID: 33139747 PMCID: PMC7606521 DOI: 10.1038/s41467-020-19333-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022] Open
Abstract
DNA methylation is a ubiquitous chromatin feature, present in 25% of cytosines in the maize genome, but variation and evolution of the methylation landscape during maize domestication remain largely unknown. Here, we leverage whole-genome sequencing (WGS) and whole-genome bisulfite sequencing (WGBS) data on populations of modern maize, landrace, and teosinte (Zea mays ssp. parviglumis) to estimate epimutation rates and selection coefficients. We find weak evidence for direct selection on DNA methylation in any context, but thousands of differentially methylated regions (DMRs) are identified population-wide that are correlated with recent selection. For two trait-associated DMRs, vgt1-DMR and tb1-DMR, HiChIP data indicate that the interactive loops between DMRs and respective downstream genes are present in B73, a modern maize line, but absent in teosinte. Our results enable a better understanding of the evolutionary forces acting on patterns of DNA methylation and suggest a role of methylation variation in adaptive evolution. Variation and evolution of DNA methylation during maize domestication remain largely unknown. Here, the authors generate genome and methylome sequencing data as well as HiChIP-based interactome data to investigate the adaptive and phenotypic consequences of methylation variations in maize.
Collapse
Affiliation(s)
- Gen Xu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Jing Lyu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Qing Li
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Dafang Wang
- Division of Math and Sciences, Delta State University, Cleveland, MS, 38733, USA
| | - Mei Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Nathan M Springer
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, Center for Population Biology and Genome Center, University of California, Davis, CA, 95616, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA. .,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
195
|
Galli M, Feng F, Gallavotti A. Mapping Regulatory Determinants in Plants. Front Genet 2020; 11:591194. [PMID: 33193733 PMCID: PMC7655918 DOI: 10.3389/fgene.2020.591194] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The domestication and improvement of many plant species have frequently involved modulation of transcriptional outputs and continue to offer much promise for targeted trait engineering. The cis-regulatory elements (CREs) controlling these trait-associated transcriptional variants however reside within non-coding regions that are currently poorly annotated in most plant species. This is particularly true in large crop genomes where regulatory regions constitute only a small fraction of the total genomic space. Furthermore, relatively little is known about how CREs function to modulate transcription in plants. Therefore understanding where regulatory regions are located within a genome, what genes they control, and how they are structured are important factors that could be used to guide both traditional and synthetic plant breeding efforts. Here, we describe classic examples of regulatory instances as well as recent advances in plant regulatory genomics. We highlight valuable molecular tools that are enabling large-scale identification of CREs and offering unprecedented insight into how genes are regulated in diverse plant species. We focus on chromatin environment, transcription factor (TF) binding, the role of transposable elements, and the association between regulatory regions and target genes.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
196
|
Cis-regulatory units of grass genomes identified by their DNA methylation. Proc Natl Acad Sci U S A 2020; 117:25198-25199. [PMID: 33008886 DOI: 10.1073/pnas.2017729117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
197
|
Ouyang W, Cao Z, Xiong D, Li G, Li X. Decoding the plant genome: From epigenome to 3D organization. J Genet Genomics 2020; 47:425-435. [PMID: 33023833 DOI: 10.1016/j.jgg.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The linear genome of eukaryotes is partitioned into diverse chromatin states and packaged into a three-dimensional (3D) structure, which has functional implications in DNA replication, DNA repair, and transcriptional regulation. Over the past decades, research on plant functional genomics and epigenomics has made great progress, with thousands of genes cloned and molecular mechanisms of diverse biological processes elucidated. Recently, 3D genome research has gradually attracted great attention of many plant researchers. Herein, we briefly review the progress in genomic and epigenomic research in plants, with a focus on Arabidopsis and rice, and summarize the currently used technologies and advances in plant 3D genome organization studies. We also discuss the relationships between one-dimensional linear genome sequences, epigenomic states, and the 3D chromatin architecture. This review provides basis for future research on plant 3D genomics.
Collapse
Affiliation(s)
- Weizhi Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhilin Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Department of Resources and Environment, Henan University of Engineering, Zhengzhou, 451191, China
| | - Dan Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics and Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
198
|
Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes. Proc Natl Acad Sci U S A 2020; 117:23991-24000. [PMID: 32879011 DOI: 10.1073/pnas.2010250117] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genomic sequences of crops continue to be produced at a frenetic pace. It remains challenging to develop complete annotations of functional genes and regulatory elements in these genomes. Chromatin accessibility assays enable discovery of functional elements; however, to uncover the full portfolio of cis-elements would require profiling of many combinations of cell types, tissues, developmental stages, and environments. Here, we explore the potential to use DNA methylation profiles to develop more complete annotations. Using leaf tissue in maize, we define ∼100,000 unmethylated regions (UMRs) that account for 5.8% of the genome; 33,375 UMRs are found greater than 2 kb from genes. UMRs are highly stable in multiple vegetative tissues, and they capture the vast majority of accessible chromatin regions from leaf tissue. However, many UMRs are not accessible in leaf, and these represent regions with potential to become accessible in specific cell types or developmental stages. These UMRs often occur near genes that are expressed in other tissues and are enriched for binding sites of transcription factors. The leaf-inaccessible UMRs exhibit unique chromatin modification patterns and are enriched for chromatin interactions with nearby genes. The total UMR space in four additional monocots ranges from 80 to 120 megabases, which is remarkably similar considering the range in genome size of 271 megabases to 4.8 gigabases. In summary, based on the profile from a single tissue, DNA methylation signatures provide powerful filters to distill large genomes down to the small fraction of putative functional genes and regulatory elements.
Collapse
|
199
|
Huang Y, Rodriguez-Granados NY, Latrasse D, Raynaud C, Benhamed M, Ramirez-Prado JS. The matrix revolutions: towards the decoding of the plant chromatin three-dimensional reality. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5129-5147. [PMID: 32639553 DOI: 10.1093/jxb/eraa322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In recent years, we have witnessed a significant increase in studies addressing the three-dimensional (3D) chromatin organization of the plant nucleus. Important advances in chromatin conformation capture (3C)-derived and related techniques have allowed the exploration of the nuclear topology of plants with large and complex genomes, including various crops. In addition, the increase in their resolution has permitted the depiction of chromatin compartmentalization and interactions at the gene scale. These studies have revealed the highly complex mechanisms governing plant nuclear architecture and the remarkable knowledge gaps in this field. Here we discuss the state-of-the-art in plant chromosome architecture, including our knowledge of the hierarchical organization of the genome in 3D space and regarding other nuclear components. Furthermore, we highlight the existence in plants of topologically associated domain (TAD)-like structures that display striking differences from their mammalian counterparts, proposing the concept of ICONS-intergenic condensed spacers. Similarly, we explore recent advances in the study of chromatin loops and R-loops, and their implication in the regulation of gene activity. Finally, we address the impact that polyploidization has had on the chromatin topology of modern crops, and how this is related to phenomena such as subgenome dominance and biased gene retention in these organisms.
Collapse
Affiliation(s)
- Ying Huang
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Natalia Yaneth Rodriguez-Granados
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - David Latrasse
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Cecile Raynaud
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
- Institut Universitaire de France (IUF), France
| | - Juan Sebastian Ramirez-Prado
- Institute of Plant Sciences Paris of Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Orsay, France
| |
Collapse
|
200
|
Dong P, Tu X, Liang Z, Kang BH, Zhong S. Plant and animal chromatin three-dimensional organization: similar structures but different functions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5119-5128. [PMID: 32374833 DOI: 10.1093/jxb/eraa220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Chromatin is the main carrier of genetic information and is non-randomly distributed within the nucleus. Next-generation sequence-based chromatin conformation capture technologies have enabled us to directly examine its three-dimensional organization at an unprecedented scale and resolution. In the best-studied mammalian models, chromatin folding can be broken down into three hierarchical levels, compartment, domains, and loops, which play important roles in transcriptional regulation. Although similar structures have now been identified in plants, they might not possess exactly the same functions as the mammalian ones. Here, we review recent Hi-C studies in plants, compare plant chromatin structures with their mammalian counterparts, and discuss the differences between plants with different genome sizes.
Collapse
Affiliation(s)
- Pengfei Dong
- The South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyu Tu
- The South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zizheng Liang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Byung-Ho Kang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Silin Zhong
- The South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|