151
|
Pandey A, Braun EL. Phylogenetic Analyses of Sites in Different Protein Structural Environments Result in Distinct Placements of the Metazoan Root. BIOLOGY 2020; 9:E64. [PMID: 32231097 PMCID: PMC7235752 DOI: 10.3390/biology9040064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/23/2022]
Abstract
Phylogenomics, the use of large datasets to examine phylogeny, has revolutionized the study of evolutionary relationships. However, genome-scale data have not been able to resolve all relationships in the tree of life; this could reflect, at least in part, the poor-fit of the models used to analyze heterogeneous datasets. Some of the heterogeneity may reflect the different patterns of selection on proteins based on their structures. To test that hypothesis, we developed a pipeline to divide phylogenomic protein datasets into subsets based on secondary structure and relative solvent accessibility. We then tested whether amino acids in different structural environments had distinct signals for the topology of the deepest branches in the metazoan tree. We focused on a dataset that appeared to have a mixture of signals and we found that the most striking difference in phylogenetic signal reflected relative solvent accessibility. Analyses of exposed sites (residues located on the surface of proteins) yielded a tree that placed ctenophores sister to all other animals whereas sites buried inside proteins yielded a tree with a sponge+ctenophore clade. These differences in phylogenetic signal were not ameliorated when we conducted analyses using a set of maximum-likelihood profile mixture models. These models are very similar to the Bayesian CAT model, which has been used in many analyses of deep metazoan phylogeny. In contrast, analyses conducted after recoding amino acids to limit the impact of deviations from compositional stationarity increased the congruence in the estimates of phylogeny for exposed and buried sites; after recoding amino acid trees estimated using the exposed and buried site both supported placement of ctenophores sister to all other animals. Although the central conclusion of our analyses is that sites in different structural environments yield distinct trees when analyzed using models of protein evolution, our amino acid recoding analyses also have implications for metazoan evolution. Specifically, our results add to the evidence that ctenophores are the sister group of all other animals and they further suggest that the placozoa+cnidaria clade found in some other studies deserves more attention. Taken as a whole, these results provide striking evidence that it is necessary to achieve a better understanding of the constraints due to protein structure to improve phylogenetic estimation.
Collapse
Affiliation(s)
- Akanksha Pandey
- Department of Biology, University of Florida, Gainesville, FL 32611, USA;
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA;
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
152
|
Karin BR, Gamble T, Jackman TR. Optimizing Phylogenomics with Rapidly Evolving Long Exons: Comparison with Anchored Hybrid Enrichment and Ultraconserved Elements. Mol Biol Evol 2020; 37:904-922. [PMID: 31710677 PMCID: PMC7038749 DOI: 10.1093/molbev/msz263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups.
Collapse
Affiliation(s)
- Benjamin R Karin
- Department of Biology, Villanova University, Villanova, PA
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI
- Milwaukee Public Museum, Milwaukee, WI
- Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA
| |
Collapse
|
153
|
Du XH, Wu D, Kang H, Wang H, Xu N, Li T, Chen K. Heterothallism and potential hybridization events inferred for twenty-two yellow morel species. IMA Fungus 2020; 11:4. [PMID: 32617256 PMCID: PMC7325075 DOI: 10.1186/s43008-020-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/06/2020] [Indexed: 01/22/2023] Open
Abstract
Mating-type genes are central to sexual reproduction in ascomycete fungi and result in the establishment of reproductive barriers. Together with hybridization, they both play important roles in the evolution of fungi. Recently, potential hybridization events and MAT genes were separately found in the Elata Clade of Morchella. Herein, we characterized the MAT1-1-1 and MAT1-2-1 genes of twenty-two species in the Esculenta Clade, another main group in the genus Morchella, and proved heterothallism to be the predominant mating strategy among the twenty-two species tested. Ascospores of these species were multi-nuclear and had many mitochondrial nucleoids. The number of ascospore nuclei might be positively related with the species distribution range. Phylogenetic analyses of MAT1-1-1, MAT1-2-1, intergenic spacer (IGS), and partial histone acetyltransferase ELP3 (F1) were performed and compared with the species phylogeny framework derived from the ribosomal internal transcribed spacer region (ITS) and translation elongation factor 1-alpha (EF1-a) to evaluate their species delimitation ability and investigate potential hybridization events. Conflicting topologies among these genes genealogies and the species phylogeny were revealed and hybridization events were detected between several species. Different evolutionary patterns were suggested for MAT genes between the Esculenta and the Elata Clades. Complex evolutionary trajectories of MAT1-1-1, MAT1-2-1, F1 and IGS in the Esculenta Clade were highlighted. These findings contribute to a better understanding of the importance of hybridization and gene transfer in Morchella and especially for the appearance of reproductive modes during its evolutionary process.
Collapse
Affiliation(s)
- Xi-Hui Du
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy Agricultural Reclamation of Sciences, Shihezi, 832000 China
| | - Heng Kang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Hanchen Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Nan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Tingting Li
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Keliang Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| |
Collapse
|
154
|
Traylor-Knowles N, Vandepas LE, Browne WE. Still Enigmatic: Innate Immunity in the Ctenophore Mnemiopsis leidyi. Integr Comp Biol 2020; 59:811-818. [PMID: 31251332 DOI: 10.1093/icb/icz116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Innate immunity is an ancient physiological response critical for protecting metazoans from invading pathogens. It is the primary pathogen defense mechanism among invertebrates. While innate immunity has been studied extensively in diverse invertebrate taxa, including mollusks, crustaceans, and cnidarians, this system has not been well characterized in ctenophores. The ctenophores comprise an exclusively marine, non-bilaterian lineage that diverged early during metazoan diversification. The phylogenetic position of ctenophore lineage suggests that characterization of the ctenophore innate immune system will reveal important features associated with the early evolution of the metazoan innate immune system. Here, we review current understanding of the ctenophore immune repertoire and identify innate immunity genes recovered from three ctenophore species. We also isolate and characterize Mnemiopsis leidyi cells that display macrophage-like behavior when challenged with bacteria. Our results indicate that ctenophores possess cells capable of phagocytosing microbes and that two distantly related ctenophores, M. leidyi and Hormiphora californiensis, possess many candidate innate immunity proteins.
Collapse
Affiliation(s)
- Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, FL 33149, USA
| | - Lauren E Vandepas
- Benaroya Research Institute, 1201 9th Avenue, Seattle, WA 98101, USA.,Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - William E Browne
- Department of Biology, University of Miami, Cox Science Building, 1301 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
155
|
A Screen for Gene Paralogies Delineating Evolutionary Branching Order of Early Metazoa. G3-GENES GENOMES GENETICS 2020; 10:811-826. [PMID: 31879283 PMCID: PMC7003098 DOI: 10.1534/g3.119.400951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.
Collapse
|
156
|
Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D'hondt S, Škaloud P, Delwiche CF, Knoll AH, Raven JA, Verbruggen H, Vandepoele K, De Clerck O, Leliaert F. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proc Natl Acad Sci U S A 2020; 117:2551-2559. [PMID: 31911467 PMCID: PMC7007542 DOI: 10.1073/pnas.1910060117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | | | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Sofie D'hondt
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
- School of Biological Sciences, University of Western Australia, WA 6009, Australia
- Climate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium;
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Meise Botanic Garden, 1860 Meise, Belgium
| |
Collapse
|
157
|
Koenen EJM, Ojeda DI, Steeves R, Migliore J, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Bruneau A, Hughes CE. Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies. THE NEW PHYTOLOGIST 2020; 225:1355-1369. [PMID: 31665814 PMCID: PMC6972672 DOI: 10.1111/nph.16290] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/14/2019] [Indexed: 05/02/2023]
Abstract
Phylogenomics is increasingly used to infer deep-branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep-branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome-scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear-encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as 'basal' or 'early-diverging' with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.
Collapse
Affiliation(s)
- Erik J. M. Koenen
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107CH‐8008ZurichSwitzerland
| | - Dario I. Ojeda
- Service Évolution Biologique et ÉcologieFaculté des SciencesUniversité Libre de BruxellesAvenue Franklin Roosevelt 501050BrusselsBelgium
- Norwegian Institute of Bioeconomy ResearchHøgskoleveien 81433ÅsNorway
| | - Royce Steeves
- Institut de Recherche en Biologie Végétale and Département de Sciences BiologiquesUniversité de Montréal4101 Sherbrooke St EMontrealQCH1X 2B2Canada
- Fisheries & Oceans CanadaGulf Fisheries Center343 Université AveMonctonNBE1C 5K4Canada
| | - Jérémy Migliore
- Service Évolution Biologique et ÉcologieFaculté des SciencesUniversité Libre de BruxellesAvenue Franklin Roosevelt 501050BrusselsBelgium
| | - Freek T. Bakker
- Biosystematics GroupWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jan J. Wieringa
- Naturalis Biodiversity Center, LeidenDarwinweg 22333 CRLeidenthe Netherlands
| | - Catherine Kidner
- Royal Botanic Gardens Edinburgh20a Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RdEdinburghEH9 3JUUK
| | - Olivier J. Hardy
- Service Évolution Biologique et ÉcologieFaculté des SciencesUniversité Libre de BruxellesAvenue Franklin Roosevelt 501050BrusselsBelgium
| | - R. Toby Pennington
- Royal Botanic Gardens Edinburgh20a Inverleith RowEdinburghEH3 5LRUK
- GeographyUniversity of ExeterAmory Building, Rennes DriveExeterEX4 4RJUK
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences BiologiquesUniversité de Montréal4101 Sherbrooke St EMontrealQCH1X 2B2Canada
| | - Colin E. Hughes
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107CH‐8008ZurichSwitzerland
| |
Collapse
|
158
|
Adams RH, Castoe TA. Probabilistic Species Tree Distances: Implementing the Multispecies Coalescent to Compare Species Trees Within the Same Model-Based Framework Used to Estimate Them. Syst Biol 2020; 69:194-207. [PMID: 31086978 DOI: 10.1093/sysbio/syz031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 05/02/2019] [Indexed: 11/14/2022] Open
Abstract
Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for measuring the distance between two gene trees computed as the difference in their site pattern probability distributions. Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently, probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al. (2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance approach available as an R package called pSTDistanceR, for open use by the community.
Collapse
Affiliation(s)
- Richard H Adams
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Dr., Arlington, TX 76019, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Dr., Arlington, TX 76019, USA
| |
Collapse
|
159
|
Nolan ED, Santibáñez-López CE, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol 2020; 230:137-153. [PMID: 31927629 DOI: 10.1007/s00427-019-00644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders). To adjudicate between these hypotheses using a rare genomic change (RGC), we leveraged the recent discovery of ancient paralogy in spiders and scorpions to assess phylogenetic placement. We identified homologs of four transcription factors required for appendage patterning (dachshund, homothorax, extradenticle, and optomotor blind) in arthropods that are known to be duplicated in spiders. Using genomic resources for a spider, a scorpion, and a harvestman, we conducted gene tree analyses and assayed expression patterns of scorpion gene duplicates. Here we show that scorpions, like spiders, retain two copies of all four transcription factors, whereas arachnid orders like mites and harvestmen bear a single copy. A survey of embryonic expression patterns of the scorpion paralogs closely matches those of their spider counterparts, with one paralog consistently retaining the putatively ancestral pattern found in the harvestman, as well as the mite, and/or other outgroups. These data comprise a rare genomic change in chelicerate phylogeny supporting the inference of a distal placement of scorpions. Beyond demonstrating the diagnostic power of developmental genetic data as a phylogenetic data class, a derived placement of scorpions within the arachnids, together with an array of stem-group Paleozoic scorpions that occupied marine habitats, effectively rules out a scenario of a single colonization of terrestrial habitat within Chelicerata, even in tree topologies contrived to recover the monophyly of Arachnida.
Collapse
Affiliation(s)
- Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Developmental Biology, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06266, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
160
|
Wang HC, Susko E, Roger AJ. The Relative Importance of Modeling Site Pattern Heterogeneity Versus Partition-Wise Heterotachy in Phylogenomic Inference. Syst Biol 2020; 68:1003-1019. [PMID: 31140564 DOI: 10.1093/sysbio/syz021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/04/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Large taxa-rich genome-scale data sets are often necessary for resolving ancient phylogenetic relationships. But accurate phylogenetic inference requires that they are analyzed with realistic models that account for the heterogeneity in substitution patterns amongst the sites, genes and lineages. Two kinds of adjustments are frequently used: models that account for heterogeneity in amino acid frequencies at sites in proteins, and partitioned models that accommodate the heterogeneity in rates (branch lengths) among different proteins in different lineages (protein-wise heterotachy). Although partitioned and site-heterogeneous models are both widely used in isolation, their relative importance to the inference of correct phylogenies has not been carefully evaluated. We conducted several empirical analyses and a large set of simulations to compare the relative performances of partitioned models, site-heterogeneous models, and combined partitioned site heterogeneous models. In general, site-homogeneous models (partitioned or not) performed worse than site heterogeneous, except in simulations with extreme protein-wise heterotachy. Furthermore, simulations using empirically-derived realistic parameter settings showed a marked long-branch attraction (LBA) problem for analyses employing protein-wise partitioning even when the generating model included partitioning. This LBA problem results from a small sample bias compounded over many single protein alignments. In some cases, this problem was ameliorated by clustering similarly-evolving proteins together into larger partitions using the PartitionFinder method. Similar results were obtained under simulations with larger numbers of taxa or heterogeneity in simulating topologies over genes. For an empirical Microsporidia test data set, all but one tested site-heterogeneous models (with or without partitioning) obtain the correct Microsporidia+Fungi grouping, whereas site-homogenous models (with or without partitioning) did not. The single exception was the fully partitioned site-heterogeneous analysis that succumbed to the compounded small sample LBA bias. In general unless protein-wise heterotachy effects are extreme, it is more important to model site-heterogeneity than protein-wise heterotachy in phylogenomic analyses. Complete protein-wise partitioning should be avoided as it can lead to a serious LBA bias. In cases of extreme protein-wise heterotachy, approaches that cluster similarly-evolving proteins together and coupled with site-heterogeneous models work well for phylogenetic estimation.
Collapse
Affiliation(s)
- Huai-Chun Wang
- Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, 6316 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada.,Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
161
|
Li G, Figueiró HV, Eizirik E, Murphy WJ. Recombination-Aware Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species. Mol Biol Evol 2020; 36:2111-2126. [PMID: 31198971 PMCID: PMC6759079 DOI: 10.1093/molbev/msz139] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of postspeciation gene flow that can produce a mosaic of phylogenetic signals that interact with recombinational variation. Here, we tested the validity of this assumption with a phylogenomic analysis of 27 species of the cat family, assessing local effects of recombination rate on species tree inference and divergence time estimation across their genomes. We found that the prevailing phylogenetic signal within the autosomes is not always representative of the most probable speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within regions of low recombination, and notably enriched within large X chromosome recombination cold spots that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ∼40%. We conclude that existing phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic architecture of phylogenetic signal relative to recombination rate and its interplay with historical hybridization.
Collapse
Affiliation(s)
- Gang Li
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Henrique V Figueiró
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - Eduardo Eizirik
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| |
Collapse
|
162
|
Alemi M. From Complex Organisms to Societies. SPRINGERBRIEFS IN COMPUTER SCIENCE 2020:29-44. [DOI: 10.1007/978-3-030-25962-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
163
|
Ballesteros JA, Santibáñez López CE, Kováč Ľ, Gavish-Regev E, Sharma PP. Ordered phylogenomic subsampling enables diagnosis of systematic errors in the placement of the enigmatic arachnid order Palpigradi. Proc Biol Sci 2019; 286:20192426. [PMID: 31847768 PMCID: PMC6939912 DOI: 10.1098/rspb.2019.2426] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/18/2019] [Indexed: 11/12/2022] Open
Abstract
The miniaturized arachnid order Palpigradi has ambiguous phylogenetic affinities owing to its odd combination of plesiomorphic and derived morphological traits. This lineage has never been sampled in phylogenomic datasets because of the small body size and fragility of most species, a sampling gap of immediate concern to recent disputes over arachnid monophyly. To redress this gap, we sampled a population of the cave-inhabiting species Eukoenenia spelaea from Slovakia and inferred its placement in the phylogeny of Chelicerata using dense phylogenomic matrices of up to 1450 loci, drawn from high-quality transcriptomic libraries and complete genomes. The complete matrix included exemplars of all extant orders of Chelicerata. Analyses of the complete matrix recovered palpigrades as the sister group of the long-branch order Parasitiformes (ticks) with high support. However, sequential deletion of long-branch taxa revealed that the position of palpigrades is prone to topological instability. Phylogenomic subsampling approaches that maximized taxon or dataset completeness recovered palpigrades as the sister group of camel spiders (Solifugae), with modest support. While this relationship is congruent with the location and architecture of the coxal glands, a long-forgotten character system that opens in the pedipalpal segments only in palpigrades and solifuges, we show that nodal support values in concatenated supermatrices can mask high levels of underlying topological conflict in the placement of the enigmatic Palpigradi.
Collapse
Affiliation(s)
- Jesús A. Ballesteros
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA
| | | | - Ľubomír Kováč
- Department of Zoology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Košice, Slovakia
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prashant P. Sharma
- Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
164
|
Miller JB, McKinnon LM, Whiting MF, Ridge PG. Codon use and aversion is largely phylogenetically conserved across the tree of life. Mol Phylogenet Evol 2019; 144:106697. [PMID: 31805345 DOI: 10.1016/j.ympev.2019.106697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 04/10/2019] [Accepted: 11/29/2019] [Indexed: 01/11/2023]
Abstract
Using parsimony, we analyzed codon usages across 12,337 species and 25,727 orthologous genes to rank specific genes and codons according to their phylogenetic signal. We examined each codon within each ortholog to determine the codon usage for each species. In total, 890,814 codons were parsimony informative. Next, we compared species that used a codon with species that did not use the codon. We assessed each codon's congruence with species relationships provided in the Open Tree of Life (OTL) and determined the statistical probability of observing these results by random chance. We determined that 25,771 codons had no parallelisms or reversals when mapped to the OTL. Codon usages from orthologous genes spanning many species were 1109× more likely to be congruent with species relationships in the OTL than would be expected by random chance. Using the OTL as a reference, we show that codon usage is phylogenetically conserved within orthologous genes in archaea, bacteria, plants, mammals, and other vertebrates. We also show how to use our provided framework to test different tree hypotheses by confirming the placement of turtles as sister taxa to archosaurs.
Collapse
Affiliation(s)
- Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Lauren M McKinnon
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Michael F Whiting
- Department of Biology, Brigham Young University, Provo, UT 84602, USA; M.L. Bean Museum, Brigham Young University, Provo, UT 84602, USA
| | - Perry G Ridge
- Department of Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
165
|
Smith SA, Walker-Hale N, Walker JF, Brown JW. Phylogenetic Conflicts, Combinability, and Deep Phylogenomics in Plants. Syst Biol 2019; 69:579-592. [DOI: 10.1093/sysbio/syz078] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Studies have demonstrated that pervasive gene tree conflict underlies several important phylogenetic relationships where different species tree methods produce conflicting results. Here, we present a means of dissecting the phylogenetic signal for alternative resolutions within a data set in order to resolve recalcitrant relationships and, importantly, identify what the data set is unable to resolve. These procedures extend upon methods for isolating conflict and concordance involving specific candidate relationships and can be used to identify systematic error and disambiguate sources of conflict among species tree inference methods. We demonstrate these on a large phylogenomic plant data set. Our results support the placement of Amborella as sister to the remaining extant angiosperms, Gnetales as sister to pines, and the monophyly of extant gymnosperms. Several other contentious relationships, including the resolution of relationships within the bryophytes and the eudicots, remain uncertain given the low number of supporting gene trees. To address whether concatenation of filtered genes amplified phylogenetic signal for relationships, we implemented a combinatorial heuristic to test combinability of genes. We found that nested conflicts limited the ability of data filtering methods to fully ameliorate conflicting signal amongst gene trees. These analyses confirmed that the underlying conflicting signal does not support broad concatenation of genes. Our approach provides a means of dissecting a specific data set to address deep phylogenetic relationships while also identifying the inferential boundaries of the data set. [Angiosperms; coalescent; gene-tree conflict; genomics; phylogenetics; phylogenomics.]
Collapse
Affiliation(s)
- Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
| | - Nathanael Walker-Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, Cambridge, UK
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI 48109-1085, USA
- Sainsbury Laboratory (SLCU), University of Cambrige, Bateman St, Cambridge CB2 1LR, Cambridge, UK
| | - Joseph W Brown
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, Sheffield, UK
| |
Collapse
|
166
|
Du Y, Wu S, Edwards SV, Liu L. The effect of alignment uncertainty, substitution models and priors in building and dating the mammal tree of life. BMC Evol Biol 2019; 19:203. [PMID: 31694538 PMCID: PMC6833305 DOI: 10.1186/s12862-019-1534-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The flood of genomic data to help build and date the tree of life requires automation at several critical junctures, most importantly during sequence assembly and alignment. It is widely appreciated that automated alignment protocols can yield inaccuracies, but the relative impact of various sources error on phylogenomic analysis is not yet known. This study employs an updated mammal data set of 5162 coding loci sampled from 90 species to evaluate the effects of alignment uncertainty, substitution models, and fossil priors on gene tree, species tree, and divergence time estimation. Additionally, a novel coalescent likelihood ratio test is introduced for comparing competing species trees against a given set of gene trees. RESULTS The aligned DNA sequences of 5162 loci from 90 species were trimmed and filtered using trimAL and two filtering protocols. The final dataset contains 4 sets of alignments - before trimming, after trimming, filtered by a recently proposed pipeline, and further filtered by comparing ML gene trees for each locus with the concatenation tree. Our analyses suggest that the average discordance among the coalescent trees is significantly smaller than that among the concatenation trees estimated from the 4 sets of alignments or with different substitution models. There is no significant difference among the divergence times estimated with different substitution models. However, the divergence dates estimated from the alignments after trimming are more recent than those estimated from the alignments before trimming. CONCLUSIONS Our results highlight that alignment uncertainty of the updated mammal data set and the choice of substitution models have little impact on tree topologies yielded by coalescent methods for species tree estimation, whereas they are more influential on the trees made by concatenation. Given the choice of calibration scheme and clock models, divergence time estimates are robust to the choice of substitution models, but removing alignments deemed problematic by trimming algorithms can lead to more recent dates. Although the fossil prior is important in divergence time estimation, Bayesian estimates of divergence times in this data set are driven primarily by the sequence data.
Collapse
Affiliation(s)
- Yan Du
- Department of Statistics, University of Georgia, 310 Herty Drive, Athens, GA 30606 USA
| | - Shaoyuan Wu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221116 People’s Republic of China
| | - Scott V. Edwards
- Department of Organismic & Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138 USA
| | - Liang Liu
- Liang Liu, Department of Statistics and Institute of Bioinformatics, University of Georgia, 310 Herty Drive, Athens, GA 30606 USA
| |
Collapse
|
167
|
Martín-Durán JM, Hejnol A. A developmental perspective on the evolution of the nervous system. Dev Biol 2019; 475:181-192. [PMID: 31610146 DOI: 10.1016/j.ydbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/02/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
The evolution of nervous systems in animals has always fascinated biologists, and thus multiple evolutionary scenarios have been proposed to explain the appearance of neurons and complex neuronal centers. However, the absence of a robust phylogenetic framework for animal interrelationships, the lack of a mechanistic understanding of development, and a recapitulative view of animal ontogeny have traditionally limited these scenarios. Only recently, the integration of advanced molecular and morphological studies in a broad range of animals has allowed to trace the evolution of developmental and neuronal characters on a better-resolved animal phylogeny. This has falsified most traditional scenarios for nervous system evolution, paving the way for the emergence of new testable hypotheses. Here we summarize recent progress in studies of nervous system development in major animal lineages and formulate some of the arising questions. In particular, we focus on how lineage analyses of nervous system development and a comparative study of the expression of neural-related genes has influenced our understanding of the evolution of an elaborated central nervous system in Bilateria. We argue that a phylogeny-guided study of neural development combining thorough descriptive and functional analyses is key to establish more robust scenarios for the origin and evolution of animal nervous systems.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
168
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 416] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
169
|
Norekian TP, Moroz LL. Comparative neuroanatomy of ctenophores: Neural and muscular systems in
Euplokamis dunlapae
and related species. J Comp Neurol 2019; 528:481-501. [DOI: 10.1002/cne.24770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
170
|
Gatesy J, Sloan DB, Warren JM, Baker RH, Simmons MP, Springer MS. Partitioned coalescence support reveals biases in species-tree methods and detects gene trees that determine phylogenomic conflicts. Mol Phylogenet Evol 2019; 139:106539. [DOI: 10.1016/j.ympev.2019.106539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
|
171
|
Jones KE, Fér T, Schmickl RE, Dikow RB, Funk VA, Herrando‐Moraira S, Johnston PR, Kilian N, Siniscalchi CM, Susanna A, Slovák M, Thapa R, Watson LE, Mandel JR. An empirical assessment of a single family-wide hybrid capture locus set at multiple evolutionary timescales in Asteraceae. APPLICATIONS IN PLANT SCIENCES 2019; 7:e11295. [PMID: 31667023 PMCID: PMC6814182 DOI: 10.1002/aps3.11295] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/05/2019] [Indexed: 05/23/2023]
Abstract
PREMISE Hybrid capture with high-throughput sequencing (Hyb-Seq) is a powerful tool for evolutionary studies. The applicability of an Asteraceae family-specific Hyb-Seq probe set and the outcomes of different phylogenetic analyses are investigated here. METHODS Hyb-Seq data from 112 Asteraceae samples were organized into groups at different taxonomic levels (tribe, genus, and species). For each group, data sets of non-paralogous loci were built and proportions of parsimony informative characters estimated. The impacts of analyzing alternative data sets, removing long branches, and type of analysis on tree resolution and inferred topologies were investigated in tribe Cichorieae. RESULTS Alignments of the Asteraceae family-wide Hyb-Seq locus set were parsimony informative at all taxonomic levels. Levels of resolution and topologies inferred at shallower nodes differed depending on the locus data set and the type of analysis, and were affected by the presence of long branches. DISCUSSION The approach used to build a Hyb-Seq locus data set influenced resolution and topologies inferred in phylogenetic analyses. Removal of long branches improved the reliability of topological inferences in maximum likelihood analyses. The Astereaceae Hyb-Seq probe set is applicable at multiple taxonomic depths, which demonstrates that probe sets do not necessarily need to be lineage-specific.
Collapse
Affiliation(s)
- Katy E. Jones
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Tomáš Fér
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
| | - Roswitha E. Schmickl
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Institute of BotanyThe Czech Academy of SciencesZámek 1CZ 25243PrůhoniceCzech Republic
| | - Rebecca B. Dikow
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | - Vicki A. Funk
- Department of BotanyNational Museum of Natural HistorySmithsonian InstitutionWashingtonD.C.20013‐7012USA
| | | | - Paul R. Johnston
- Freie Universität BerlinEvolutionary BiologyBerlinGermany
- Berlin Center for Genomics in Biodiversity ResearchBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
| | - Norbert Kilian
- Botanischer Garten und Botanisches Museum BerlinFreie Universität BerlinKönigin‐Luise‐Str. 6–814195BerlinGermany
| | - Carolina M. Siniscalchi
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Alfonso Susanna
- Botanic Institute of Barcelona (IBB‐CSIC‐ICUB)Pg. del Migdia s.n.ES 08038BarcelonaSpain
| | - Marek Slovák
- Department of BotanyFaculty of ScienceCharles UniversityBenátská 2CZ 12800PragueCzech Republic
- Plant Science and Biodiversity CentreSlovak Academy of SciencesSK‐84523BratislavaSlovakia
| | - Ramhari Thapa
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| | - Linda E. Watson
- Department of Plant Biology, Ecology, and EvolutionOklahoma State UniversityStillwaterOklahoma74078USA
| | - Jennifer R. Mandel
- Department of Biological SciencesUniversity of MemphisMemphisTennessee38152USA
- Center for BiodiversityUniversity of MemphisMemphisTennessee38152USA
| |
Collapse
|
172
|
Walker JF, Walker-Hale N, Vargas OM, Larson DA, Stull GW. Characterizing gene tree conflict in plastome-inferred phylogenies. PeerJ 2019; 7:e7747. [PMID: 31579615 PMCID: PMC6764362 DOI: 10.7717/peerj.7747] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/25/2019] [Indexed: 11/20/2022] Open
Abstract
Evolutionary relationships among plants have been inferred primarily using chloroplast data. To date, no study has comprehensively examined the plastome for gene tree conflict. Using a broad sampling of angiosperm plastomes, we characterize gene tree conflict among plastid genes at various time scales and explore correlates to conflict (e.g., evolutionary rate, gene length, molecule type). We uncover notable gene tree conflict against a backdrop of largely uninformative genes. We find alignment length and tree length are strong predictors of concordance, and that nucleotides outperform amino acids. Of the most commonly used markers, matK, greatly outperforms rbcL; however, the rarely used gene rpoC2 is the top-performing gene in every analysis. We find that rpoC2 reconstructs angiosperm phylogeny as well as the entire concatenated set of protein-coding chloroplast genes. Our results suggest that longer genes are superior for phylogeny reconstruction. The alleviation of some conflict through the use of nucleotides suggests that stochastic and systematic error is likely the root of most of the observed conflict, but further research on biological conflict within plastome is warranted given documented cases of heteroplasmic recombination. We suggest that researchers should filter genes for topological concordance when performing downstream comparative analyses on phylogenetic data, even when using chloroplast genomes.
Collapse
Affiliation(s)
- Joseph F. Walker
- Sainsbury Laboratory (SLCU), University of Cambridge, Cambridge, United Kingdom
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom
| | - Oscar M. Vargas
- University of California, Santa Cruz, Santa Cruz, United States of America
| | - Drew A. Larson
- University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Gregory W. Stull
- Department of Botany, Smithsonian Institution, Washington, United States of America
| |
Collapse
|
173
|
Paetzold C, Wood KR, Eaton DAR, Wagner WL, Appelhans MS. Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq Resolves Species Relationships and Reveals Ancient Introgression. FRONTIERS IN PLANT SCIENCE 2019; 10:1074. [PMID: 31608076 PMCID: PMC6758601 DOI: 10.3389/fpls.2019.01074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/07/2019] [Indexed: 05/11/2023]
Abstract
Hawaiian Melicope are one of the major adaptive radiations of the Hawaiian Islands comprising 54 endemic species. The lineage is monophyletic with an estimated crown age predating the rise of the current high islands. Phylogenetic inference based on Sanger sequencing has not been sufficient to resolve species or deeper level relationships. Here, we apply restriction site-associated DNA sequencing (RAD-seq) to the lineage to infer phylogenetic relationships. We employ Quartet Sampling to assess information content and statistical support, and to quantify discordance as well as partitioned ABBA-BABA tests to uncover evidence of introgression. Our new results drastically improved resolution of relationships within Hawaiian Melicope. The lineage is divided into five fully supported main clades, two of which correspond to morphologically circumscribed infrageneric groups. We provide evidence for both ancestral and current hybridization events. We confirm the necessity for a taxonomic revision of the Melicope section Pelea, as well as a re-evaluation of several species complexes by combining genomic and morphological data.
Collapse
Affiliation(s)
- Claudia Paetzold
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Goettingen, Germany
| | - Kenneth R. Wood
- National Tropical Botanical Garden, Kalaheo, HI, United States
| | - Deren A. R. Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, United States
| | - Warren L. Wagner
- Department of Botany, Smithsonian Institution, Washington, DC, United States
| | - Marc S. Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Göttingen, Goettingen, Germany
- Department of Botany, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
174
|
Roycroft EJ, Moussalli A, Rowe KC. Phylogenomics Uncovers Confidence and Conflict in the Rapid Radiation of Australo-Papuan Rodents. Syst Biol 2019; 69:431-444. [DOI: 10.1093/sysbio/syz044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
The estimation of robust and accurate measures of branch support has proven challenging in the era of phylogenomics. In data sets of potentially millions of sites, bootstrap support for bifurcating relationships around very short internal branches can be inappropriately inflated. Such overestimation of branch support may be particularly problematic in rapid radiations, where phylogenetic signal is low and incomplete lineage sorting severe. Here, we explore this issue by comparing various branch support estimates under both concatenated and coalescent frameworks, in the recent radiation Australo-Papuan murine rodents (Muridae: Hydromyini). Using nucleotide sequence data from 1245 independent loci and several phylogenomic inference methods, we unequivocally resolve the majority of genus-level relationships within Hydromyini. However, at four nodes we recover inconsistency in branch support estimates both within and among concatenated and coalescent approaches. In most cases, concatenated likelihood approaches using standard fast bootstrap algorithms did not detect any uncertainty at these four nodes, regardless of partitioning strategy. However, we found this could be overcome with two-stage resampling, that is, across genes and sites within genes (using -bsam GENESITE in IQ-TREE). In addition, low confidence at recalcitrant nodes was recovered using UFBoot2, a recent revision to the bootstrap protocol in IQ-TREE, but this depended on partitioning strategy. Summary coalescent approaches also failed to detect uncertainty under some circumstances. For each of four recalcitrant nodes, an equivalent (or close to equivalent) number of genes were in strong support ($>$ 75% bootstrap) of both the primary and at least one alternative topological hypothesis, suggesting notable phylogenetic conflict among loci not detected using some standard branch support metrics. Recent debate has focused on the appropriateness of concatenated versus multigenealogical approaches to resolving species relationships, but less so on accurately estimating uncertainty in large data sets. Our results demonstrate the importance of employing multiple approaches when assessing confidence and highlight the need for greater attention to the development of robust measures of uncertainty in the era of phylogenomics.
Collapse
Affiliation(s)
- Emily J Roycroft
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Adnan Moussalli
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Science, Museums Victoria, GPO Box 666, Melbourne, VIC 3001, Australia
| |
Collapse
|
175
|
Striedter GF. Variation across Species and Levels: Implications for Model Species Research. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:57-69. [PMID: 31416083 DOI: 10.1159/000499664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
The selection of model species tends to involve two typically unstated assumptions, namely: (1) that the similarity between species decreases steadily with phylogenetic distance, and (2) that similarities are greater at lower levels of biological organization. The first assumption holds on average, but species similarities tend to decrease with the square root of divergence time, rather than linearly, and lineages with short generation times (which includes most model species) tend to diverge faster than average, making the decrease in similarity non-monotonic. The second assumption is more difficult to test. Comparative molecular research has traditionally emphasized species similarities over differences, whereas comparative research at higher levels of organization frequently highlights the species differences. However, advances in comparative genomics have brought to light a great variety of species differences, not just in gene regulation but also in protein coding genes. Particularly relevant are cases in which homologous high-level characters are based on non-homologous genes. This phenomenon of non-orthologous gene displacement, or "deep non-homology," indicates that species differences at the molecular level can be surprisingly large. Given these observations, it is not surprising that some findings obtained in model species do not generalize across species as well as researchers had hoped, even if the research is molecular.
Collapse
Affiliation(s)
- Georg F Striedter
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California, USA,
| |
Collapse
|
176
|
Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connell MJ, Creevey CJ. Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Mol Biol Evol 2019; 36:1344-1356. [PMID: 30903171 PMCID: PMC6526904 DOI: 10.1093/molbev/msz067] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasingly, large phylogenomic data sets include transcriptomic data from nonmodel organisms. This not only has allowed controversial and unexplored evolutionary relationships in the tree of life to be addressed but also increases the risk of inadvertent inclusion of paralogs in the analysis. Although this may be expected to result in decreased phylogenetic support, it is not clear if it could also drive highly supported artifactual relationships. Many groups, including the hyperdiverse Lissamphibia, are especially susceptible to these issues due to ancient gene duplication events and small numbers of sequenced genomes and because transcriptomes are increasingly applied to resolve historically conflicting taxonomic hypotheses. We tested the potential impact of paralog inclusion on the topologies and timetree estimates of the Lissamphibia using published and de novo sequencing data including 18 amphibian species, from which 2,656 single-copy gene families were identified. A novel paralog filtering approach resulted in four differently curated data sets, which were used for phylogenetic reconstructions using Bayesian inference, maximum likelihood, and quartet-based supertrees. We found that paralogs drive strongly supported conflicting hypotheses within the Lissamphibia (Batrachia and Procera) and older divergence time estimates even within groups where no variation in topology was observed. All investigated methods, except Bayesian inference with the CAT-GTR model, were found to be sensitive to paralogs, but with filtering convergence to the same answer (Batrachia) was observed. This is the first large-scale study to address the impact of orthology selection using transcriptomic data and emphasizes the importance of quality over quantity particularly for understanding relationships of poorly sampled taxa.
Collapse
Affiliation(s)
- Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.,School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.,Dpto. de Herpetología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain.,Department of Neuroscience, Spinal Cord and Brain Injury Research Center and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Davide Pisani
- Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
177
|
A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera Aspergillus and Penicillium. mBio 2019; 10:mBio.00925-19. [PMID: 31289177 PMCID: PMC6747717 DOI: 10.1128/mbio.00925-19] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Understanding the evolution of traits across technologically and medically significant fungi requires a robust phylogeny. Even though species in the Aspergillus and Penicillium genera (family Aspergillaceae, class Eurotiomycetes) are some of the most significant technologically and medically relevant fungi, we still lack a genome-scale phylogeny of the lineage or knowledge of the parts of the phylogeny that exhibit conflict among analyses. Here, we used a phylogenomic approach to infer evolutionary relationships among 81 genomes that span the diversity of Aspergillus and Penicillium species, to identify conflicts in the phylogeny, and to determine the likely underlying factors of the observed conflicts. Using a data matrix comprised of 1,668 genes, we found that while most branches of the phylogeny of the Aspergillaceae are robustly supported and recovered irrespective of method of analysis, a few exhibit various degrees of conflict among our analyses. Further examination of the observed conflict revealed that it largely stems from incomplete lineage sorting and hybridization or introgression. Our analyses provide a robust and comprehensive evolutionary genomic roadmap for this important lineage, which will facilitate the examination of the diverse technologically and medically relevant traits of these fungi in an evolutionary context. The filamentous fungal family Aspergillaceae contains >1,000 known species, mostly in the genera Aspergillus and Penicillium. Several species are used in the food, biotechnology, and drug industries (e.g., Aspergillus oryzae and Penicillium camemberti), while others are dangerous human and plant pathogens (e.g., Aspergillus fumigatus and Penicillium digitatum). To infer a robust phylogeny and pinpoint poorly resolved branches and their likely underlying contributors, we used 81 genomes spanning the diversity of Aspergillus and Penicillium to construct a 1,668-gene data matrix. Phylogenies of the nucleotide and amino acid versions of this full data matrix as well as of several additional data matrices were generated using three different maximum likelihood schemes (i.e., gene-partitioned, unpartitioned, and coalescence) and using both site-homogenous and site-heterogeneous models (total of 64 species-level phylogenies). Examination of the topological agreement among these phylogenies and measures of internode certainty identified 11/78 (14.1%) bipartitions that were incongruent and pinpointed the likely underlying contributing factors, which included incomplete lineage sorting, hidden paralogy, hybridization or introgression, and reconstruction artifacts associated with poor taxon sampling. Relaxed molecular clock analyses suggest that Aspergillaceae likely originated in the lower Cretaceous and that the Aspergillus and Penicillium genera originated in the upper Cretaceous. Our results shed light on the ongoing debate on Aspergillus systematics and taxonomy and provide a robust evolutionary and temporal framework for comparative genomic analyses in Aspergillaceae. More broadly, our approach provides a general template for phylogenomic identification of resolved and contentious branches in densely genome-sequenced lineages across the tree of life.
Collapse
|
178
|
Nielsen C. Early animal evolution: a morphologist's view. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190638. [PMID: 31417759 PMCID: PMC6689584 DOI: 10.1098/rsos.190638] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 05/15/2023]
Abstract
Two hypotheses for the early radiation of the metazoans are vividly discussed in recent phylogenomic studies, the 'Porifera-first' hypothesis, which places the poriferans as the sister group of all other metazoans, and the 'Ctenophora-first' hypothesis, which places the ctenophores as the sister group to all other metazoans. It has been suggested that an analysis of morphological characters (including specific molecules) could throw additional light on the controversy, and this is the aim of this paper. Both hypotheses imply independent evolution of nervous systems in Planulozoa and Ctenophora. The Porifera-first hypothesis implies no homoplasies or losses of major characters. The Ctenophora-first hypothesis shows no important synapomorphies of Porifera, Planulozoa and Placozoa. It implies either independent evolution, in Planulozoa and Ctenophora, of a new digestive system with a gut with extracellular digestion, which enables feeding on larger organisms, or the subsequent loss of this new gut in the Poriferans (and the re-evolution of the collar complex). The major losses implied in the Ctenophora-first theory show absolutely no adaptational advantages. Thus, morphology gives very strong support for the Porifera-first hypothesis.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
179
|
Pett W, Adamski M, Adamska M, Francis WR, Eitel M, Pisani D, Wörheide G. The Role of Homology and Orthology in the Phylogenomic Analysis of Metazoan Gene Content. Mol Biol Evol 2019; 36:643-649. [PMID: 30690573 DOI: 10.1093/molbev/msz013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resolving the relationships of animals (Metazoa) is crucial to our understanding of the origin of key traits such as muscles, guts, and nerves. However, a broadly accepted metazoan consensus phylogeny has yet to emerge. In part, this is because the genomes of deeply diverging and fast-evolving lineages may undergo significant gene turnover, reducing the number of orthologs shared with related phyla. This can limit the usefulness of traditional phylogenetic methods that rely on alignments of orthologous sequences. Phylogenetic analysis of gene content has the potential to circumvent this orthology requirement, with binary presence/absence of homologous gene families representing a source of phylogenetically informative characters. Applying binary substitution models to the gene content of 26 complete animal genomes, we demonstrate that patterns of gene conservation differ markedly depending on whether gene families are defined by orthology or homology, that is, whether paralogs are excluded or included. We conclude that the placement of some deeply diverging lineages may exceed the limit of resolution afforded by the current methods based on comparisons of orthologous protein sequences, and novel approaches are required to fully capture the evolutionary signal from genes within genomes.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA
| | - Marcin Adamski
- Computational Biology and Bioinformatics Unit, Research School of Biology, The Australian National University, Canberra, Australia
| | - Maja Adamska
- Computational Biology and Bioinformatics Unit, Research School of Biology, The Australian National University, Canberra, Australia
| | - Warren R Francis
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Eitel
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gert Wörheide
- Department of Earth & Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,SNSB-Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany
| |
Collapse
|
180
|
Wang N, Yang Y, Moore MJ, Brockington SF, Walker JF, Brown JW, Liang B, Feng T, Edwards C, Mikenas J, Olivieri J, Hutchison V, Timoneda A, Stoughton T, Puente R, Majure LC, Eggli U, Smith SA. Evolution of Portulacineae Marked by Gene Tree Conflict and Gene Family Expansion Associated with Adaptation to Harsh Environments. Mol Biol Evol 2019; 36:112-126. [PMID: 30371871 DOI: 10.1093/molbev/msy200] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several plant lineages have evolved adaptations that allow survival in extreme and harsh environments including many families within the plant clade Portulacineae (Caryophyllales) such as the Cactaceae, Didiereaceae, and Montiaceae. Here, using newly generated transcriptomic data, we reconstructed the phylogeny of Portulacineae and examined potential correlates between molecular evolution and adaptation to harsh environments. Our phylogenetic results were largely congruent with previous analyses, but we identified several early diverging nodes characterized by extensive gene tree conflict. For particularly contentious nodes, we present detailed information about the phylogenetic signal for alternative relationships. We also analyzed the frequency of gene duplications, confirmed previously identified whole genome duplications (WGD), and proposed a previously unidentified WGD event within the Didiereaceae. We found that the WGD events were typically associated with shifts in climatic niche but did not find a direct association with WGDs and diversification rate shifts. Diversification shifts occurred within the Portulacaceae, Cactaceae, and Anacampserotaceae, and whereas these did not experience WGDs, the Cactaceae experienced extensive gene duplications. We examined gene family expansion and molecular evolutionary patterns with a focus on genes associated with environmental stress responses and found evidence for significant gene family expansion in genes with stress adaptation and clades found in extreme environments. These results provide important directions for further and deeper examination of the potential links between molecular evolutionary patterns and adaptation to harsh environments.
Collapse
Affiliation(s)
- Ning Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, MN
| | - Michael J Moore
- Department of Biology, Oberlin College, Science Center K111, Oberlin, OH
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Joseph W Brown
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Bin Liang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Tao Feng
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Caroline Edwards
- Department of Biology, Oberlin College, Science Center K111, Oberlin, OH
| | - Jessica Mikenas
- Department of Biology, Oberlin College, Science Center K111, Oberlin, OH
| | - Julia Olivieri
- Department of Biology, Oberlin College, Science Center K111, Oberlin, OH
| | - Vera Hutchison
- Department of Biology, Oberlin College, Science Center K111, Oberlin, OH
| | - Alfonso Timoneda
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tommy Stoughton
- Center for the Environment, MSC 63, Plymouth State University, Plymouth, NH
| | - Raúl Puente
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ
| | - Lucas C Majure
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ.,Florida Museum of Natural History, University of Florida, Gainesville, FL
| | - Urs Eggli
- Sukkulenten-Sammlung Zürich, Zürich, Switzerland
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
181
|
Boutte J, Fishbein M, Liston A, Straub SCK. NGS-Indel Coder: A pipeline to code indel characters in phylogenomic data with an example of its application in milkweeds (Asclepias). Mol Phylogenet Evol 2019; 139:106534. [PMID: 31212081 DOI: 10.1016/j.ympev.2019.106534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/12/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022]
Abstract
Targeted genome sequencing approaches allow characterization of evolutionary relationships using a considerable number of nuclear genes and informative characters. However, most phylogenomic analyses only utilize single nucleotide polymorphisms (SNPs). Studies at the species level, especially in groups that have recently radiated, often recover low amounts of phylogenetically informative variation in coding regions, and require non-coding sequences, which are richer in indels, to resolve gene trees. Here, NGS-Indel Coder, a pipeline to detect and omit false positive indels inferred from assemblies of short read sequence data, was developed to resolve the relationships among and within major clades of the American milkweeds (Asclepias), which are the result of a rapid and recent evolutionary radiation, and whose phylogeny has been difficult to resolve. This pipeline was applied to a Hyb-Seq data set of 768 loci including targeted exons and flanking intron regions from 33 milkweed species. Robust species tree inference was improved by excluding small alignment partitions (<100 bp) that increased gene tree ambiguity and incongruence. To further investigate the robustness of indel coding, data sets that included small and large indels were explored, and species trees derived from concatenated loci versus coalescent methods based on gene trees were compared. The phylogeny of Asclepias obtained using nuclear data was well resolved, and phylogenetic information from indels improved resolution of specific nodes. The Temperate North American, Mexican Highland, and Incarnatae clades were well supported as monophyletic. Asclepias coulteri, which has been considered part of the Sonoran Desert clade based on plastome analyses, was placed as sister to all the other milkweed species studied here, rather than as a member of that clade. Two groups within the Temperate North American and Mexican clades were not resolved, and the inferred relationships strongly conflicted when comparing results based on data sets that did or did not include indel characters. This new pipeline represents a step forward in making maximal use of the information content in phylogenomic data sets.
Collapse
Affiliation(s)
- Julien Boutte
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Mark Fishbein
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Shannon C K Straub
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, USA.
| |
Collapse
|
182
|
de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian CF, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 2019; 69:1852-1863. [PMID: 31140963 DOI: 10.1099/ijsem.0.003426] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.
Collapse
Affiliation(s)
| | - Mitchell Andrews
- 2Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Julie Ardley
- 3School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | | | - Estelle Jumas-Bilak
- 5UMR 5569, Department of Microbiology, Faculty of Pharmacy, University of Montpellier, France
| | - Nemanja Kuzmanović
- 6Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Florent Lassalle
- 7Department of Infectious Disease Epidemiology - MRC Centre for Outbreak Analysis and Modelling, St Mary's Hospital, Praed Street, London W2 1NY, UK
| | - Kristina Lindström
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Ridha Mhamdi
- 9Centre of Biotechnology of Borj-Cedria, BP 901 Hammam-lif 2050, Tunisia
| | - Esperanza Martínez-Romero
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Lionel Moulin
- 11IRD, CIRAD, University of Montpellier, IPME, Montpellier, France
| | - Seyed Abdollah Mousavi
- 8Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki FI-00014, Finland
| | - Xavier Nesme
- 12LEM, UCBL, CNRS, INRA, Univ Lyon, Villeurbanne, France
| | - Alvaro Peix
- 13Instituto de Recursos Naturales y Agrobiología, IRNASA-CSIC, c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Joanna Puławska
- 14Department of Phytopathology, Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
| | - Emma Steenkamp
- 15Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria 0002, South Africa
| | - Tomasz Stępkowski
- 16Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Chang-Fu Tian
- 17State Key Laboratory of Agrobiotechnology, MOA Key Laboratory of Soil Microbiology, Rhizobium Research Center, College of Biological Sciences, China Agricultural University, 100193, Beijing, PR China
| | - Pablo Vinuesa
- 10Centro de Ciencias Genómicas, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
| | - Gehong Wei
- 18Northwest A&F University, Yangling, Shaanxi, PR China
| | - Anne Willems
- 19Department Biochemistry and Microbiology, Lab. Microbiology, Ghent University, Belgium
| | - Jerri Zilli
- 20Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, Brazil, 23891-000, Brazil
| | - Peter Young
- 21Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
183
|
Gonçalves DJP, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenet Evol 2019; 138:219-232. [PMID: 31146023 DOI: 10.1016/j.ympev.2019.05.022] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Abstract
The current classification of angiosperms is based primarily on concatenated plastid markers and maximum likelihood (ML) inference. This approach has been justified by the assumption that plastid DNA (ptDNA) is inherited as a single locus and that its individual genes produce congruent trees. However, structural and functional characteristics of ptDNA suggest that plastid genes may not evolve as a single locus and are experiencing different evolutionary forces. To examine this idea, we produced new complete plastid genome (plastome) sequences of 27 species and combined these data with publicly available sequences to produce a final dataset that includes 78 plastid genes for 89 species of rosids and five outgroups. We used four data matrices (i.e., gene, exon, codon-aligned, and amino acid) to infer species and gene trees using ML and multispecies coalescent (MSC) methods. Rosids include about one third of all angiosperms and their two major clades, fabids and malvids, were recovered in almost all analyses. However, we detected incongruence between species trees inferred with different matrices and methods and previously published plastid and nuclear phylogenies. We visualized and tested the significance of incongruence between gene trees and species trees. We then measured the distribution of phylogenetic signal across sites and genes supporting alternative placements of five controversial nodes at different taxonomic levels. Gene trees inferred with plastid data often disagree with species trees inferred using both ML (with unpartitioned or partitioned data) and MSC. Species trees inferred with both methods produced alternative topologies for a few taxa. Our results show that, in a phylogenetic context, plastid protein-coding genes may not be fully linked and behaving as a single locus. Furthermore, concatenated matrices may produce highly supported phylogenies that are discordant with individual gene trees. We also show that phylogenies inferred with MSC are accurate. We therefore emphasize the importance of considering variation in phylogenetic signal across plastid genes and the exploration of plastome data to increase accuracy of estimating relationships. We also support the use of MSC with plastome matrices in future phylogenomic investigations.
Collapse
Affiliation(s)
- Deise J P Gonçalves
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA.
| | - Beryl B Simpson
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA
| | - Edgardo M Ortiz
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA; Department of Ecology & Ecosystem Management, Plant Biodiversity Research, Technical University of Munich, Emil-Ramann Strasse 2, Freising D-85354, Germany
| | - Gustavo H Shimizu
- Department of Plant Biology, University of Campinas, 13083-970 Campinas, SP, Brazil
| | - Robert K Jansen
- Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78713, USA; Genomics and Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
184
|
Nikolov LA, Shushkov P, Nevado B, Gan X, Al-Shehbaz IA, Filatov D, Bailey CD, Tsiantis M. Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity. THE NEW PHYTOLOGIST 2019; 222:1638-1651. [PMID: 30735246 DOI: 10.1111/nph.15732] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/10/2019] [Indexed: 05/03/2023]
Abstract
The Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research. Here, we inferred a Brassicaceae phylogeny using newly generated targeted enrichment sequence data of 1827 exons (> 940 000 bases) representing 63 species, as well as sequenced genome data of 16 species, together representing 50 of the 52 currently recognized Brassicaceae tribes. A third of the samples were derived from herbarium material, facilitating broad taxonomic coverage of the family. Six major clades formed successive sister groups to the rest of Brassicaceae. We also recovered strong support for novel relationships among tribes, and resolved the position of 16 taxa previously not assigned to a tribe. The broad utility of these phylogenetic results is illustrated through a comparative investigation of genome-wide expression signatures that distinguish simple from complex leaves in Brassicaceae. Our study provides an easily extendable dataset for further advances in Brassicaceae systematics and a timely higher-level phylogenetic framework for a wide range of comparative studies of multiple traits in an intensively investigated group of plants.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Philip Shushkov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Bruno Nevado
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Xiangchao Gan
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| | - Ihsan A Al-Shehbaz
- Missouri Botanical Garden, 4344 Shaw Boulevard, St Louis, MO, 63110, USA
| | - Dmitry Filatov
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - C Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, 50829, Germany
| |
Collapse
|
185
|
Parker E, Dornburg A, Domínguez-Domínguez O, Piller KR. Assessing phylogenetic information to reveal uncertainty in historical data: An example using Goodeinae (Teleostei: Cyprinodontiformes: Goodeidae). Mol Phylogenet Evol 2019; 134:282-290. [DOI: 10.1016/j.ympev.2019.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 01/18/2023]
|
186
|
Palmer M, Venter SN, McTaggart AR, Coetzee MPA, Van Wyk S, Avontuur JR, Beukes CW, Fourie G, Santana QC, Van Der Nest MA, Blom J, Steenkamp ET. The synergistic effect of concatenation in phylogenomics: the case in Pantoea. PeerJ 2019; 7:e6698. [PMID: 31024760 PMCID: PMC6474361 DOI: 10.7717/peerj.6698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
With the increased availability of genome sequences for bacteria, it has become routine practice to construct genome-based phylogenies. These phylogenies have formed the basis for various taxonomic decisions, especially for resolving problematic relationships between taxa. Despite the popularity of concatenating shared genes to obtain well-supported phylogenies, various issues regarding this combined-evidence approach have been raised. These include the introduction of phylogenetic error into datasets, as well as incongruence due to organism-level evolutionary processes, particularly horizontal gene transfer and incomplete lineage sorting. Because of the huge effect that this could have on phylogenies, we evaluated the impact of phylogenetic conflict caused by organism-level evolutionary processes on the established species phylogeny for Pantoea, a member of the Enterobacterales. We explored the presence and distribution of phylogenetic conflict at the gene partition and nucleotide levels, by identifying putative inter-lineage recombination events that might have contributed to such conflict. Furthermore, we determined whether smaller, randomly constructed datasets had sufficient signal to reconstruct the current species tree hypothesis or if they would be overshadowed by phylogenetic incongruence. We found that no individual gene tree was fully congruent with the species phylogeny of Pantoea, although many of the expected nodes were supported by various individual genes across the genome. Evidence of recombination was found across all lineages within Pantoea, and provides support for organism-level evolutionary processes as a potential source of phylogenetic conflict. The phylogenetic signal from at least 70 random genes recovered robust, well-supported phylogenies for the backbone and most species relationships of Pantoea, and was unaffected by phylogenetic conflict within the dataset. Furthermore, despite providing limited resolution among taxa at the level of single gene trees, concatenated analyses of genes that were identified as having no signal resulted in a phylogeny that resembled the species phylogeny of Pantoea. This distribution of signal and noise across the genome presents the ideal situation for phylogenetic inference, as the topology from a ≥70-gene concatenated species phylogeny is not driven by single genes, and our data suggests that this finding may also hold true for smaller datasets. We thus argue that, by using a concatenation-based approach in phylogenomics, one can obtain robust phylogenies due to the synergistic effect of the combined signal obtained from multiple genes.
Collapse
Affiliation(s)
- Marike Palmer
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanus N Venter
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Alistair R McTaggart
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Stephanie Van Wyk
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Juanita R Avontuur
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Chrizelle W Beukes
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Gerda Fourie
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Quentin C Santana
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Magriet A Van Der Nest
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig Universität Gießen, Giessen, Germany
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, DST-NRF Centre of Excellence in Tree Health Biotechnology (CTHB) and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
187
|
MacGuigan DJ, Near TJ. Phylogenomic Signatures of Ancient Introgression in a Rogue Lineage of Darters (Teleostei: Percidae). Syst Biol 2019; 68:329-346. [PMID: 30395332 DOI: 10.1093/sysbio/syy074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Evolutionary history is typically portrayed as a branching phylogenetic tree, yet not all evolution proceeds in a purely bifurcating manner. Introgressive hybridization is one process that results in reticulate evolution. Most known examples of genome-wide introgression occur among closely related species with relatively recent common ancestry; however, we present evidence for ancient hybridization and genome-wide introgression between major stem lineages of darters, a species-rich clade of North American freshwater fishes. Previous attempts to resolve the relationships of darters have been confounded by the uncertain phylogenetic resolution of the lineage Allohistium. In this study, we investigate the phylogenomics of darters, specifically the relationships of Allohistium, through analyses of approximately 30,000 RADseq loci sampled from 112 species. Our phylogenetic inferences are based on traditional approaches in combination with strategies that accommodate reticulate evolution. These analyses result in a novel phylogenetic hypothesis for darters that includes ancient introgression between Allohistium and other two major darter lineages, minimally occurring 20 million years ago. Darters offer a compelling case for the necessity of incorporating phylogenetic networks in reconstructing the evolutionary history of diversification in species-rich lineages. We anticipate that the growing wealth of genomic data for clades of non-model organisms will reveal more examples of ancient hybridization, eventually requiring a re-evaluation of how evolutionary history is visualized and utilized in macroevolutonary investigations.
Collapse
Affiliation(s)
- Daniel J MacGuigan
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Thomas J Near
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA.,Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
188
|
Laumer CE. Inferring Ancient Relationships with Genomic Data: A Commentary on Current Practices. Integr Comp Biol 2019; 58:623-639. [PMID: 29982611 DOI: 10.1093/icb/icy075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Contemporary phylogeneticists enjoy an embarrassment of riches, not only in the volumes of data now available, but also in the diversity of bioinformatic tools for handling these data. Here, I discuss a subset of these tools I consider well-suited to the task of inferring ancient relationships with coding sequence data in particular, encompassing data generation, orthology assignment, alignment and gene tree inference, supermatrix construction, and analysis under the best-fitting models applicable to large-scale datasets. Throughout, I compare and critique methods, considering both their theoretical principles and the details of their implementation, and offering practical tips on usage where appropriate. I also entertain different motivations for analyzing what are almost always originally DNA sequence data as codons, amino acids, and higher-order recodings. Although presented in a linear order, I see value in using the diversity of tools available to us to assess the sensitivity of clades of biological interest to different gene and taxon sets and analytical modes, which can be an indication of the presence of systematic error, of which a few forms remain poorly controlled by even the best available inference methods.
Collapse
Affiliation(s)
- Christopher E Laumer
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, EBML-EBI South Building, Hinxton CB10 1SD, UK
| |
Collapse
|
189
|
Abstract
Addressing the origin of axial-patterning machinery is essential for understanding the evolution of animal form. Historically, sponges, a lineage that branched off early in animal evolution, were thought to lack Hox and ParaHox genes, suggesting that these critical axial-patterning genes arose after sponges diverged. However, a recent study has challenged this long-held doctrine by claiming to identify ParaHox genes (Cdx family) in two calcareous sponge species, Sycon ciliatum and Leucosolenia complicata. We reanalyzed the main data sets in this paper and analyzed an additional data set that expanded the number of bilaterians represented and removed outgroup homeodomains. As in the previous study, our Neighbor-Joining analyses of the original data sets recovered a clade that included sponge and Cdx genes, whereas Bayesian analyses placed these sponge genes within the NKL subclass of homeodomains. Unlike the original study, only one of our two maximum-likelihood analyses was congruent with Cdx genes in sponges. Our analyses of our additional data set led to the sponge genes consistently being placed within the NKL subclass of homeodomains regardless of method or model. Our results show more support for these sponge genes belonging to the NKL subclass, and therefore imply that Hox and ParaHox genes arose after Porifera diverged from the rest of animals.
Collapse
Affiliation(s)
- Claudia C Pastrana
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine.,Department of Biology, University of Miami
| | - Melissa B DeBiasse
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine.,Department of Biology, University of Florida
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine.,Department of Biology, University of Florida
| |
Collapse
|
190
|
Ballesteros JA, Sharma PP. A Critical Appraisal of the Placement of Xiphosura (Chelicerata) with Account of Known Sources of Phylogenetic Error. Syst Biol 2019; 68:896-917. [DOI: 10.1093/sysbio/syz011] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/20/2018] [Accepted: 02/10/2019] [Indexed: 11/13/2022] Open
Abstract
AbstractHorseshoe crabs (Xiphosura) are traditionally regarded as sister group to the clade of terrestrial chelicerates (Arachnida). This hypothesis has been challenged by recent phylogenomic analyses, but the non-monophyly of Arachnida has consistently been disregarded as artifactual. We re-evaluated the placement of Xiphosura among chelicerates using the most complete phylogenetic data set to date, expanding outgroup sampling, and including data from whole genome sequencing projects. In spite of uncertainty in the placement of some arachnid clades, all analyses show Xiphosura consistently nested within Arachnida as the sister group to Ricinulei (hooded tick spiders). It is apparent that the radiation of arachnids is an old one and occurred over a brief period of time, resulting in several consecutive short internodes, and thus is a potential case for the confounding effects of incomplete lineage sorting (ILS). We simulated coalescent gene trees to explore the effects of increasing levels of ILS on the placement of horseshoe crabs. In addition, common sources of systematic error were evaluated, as well as the effects of fast-evolving partitions and the dynamics of problematic long branch orders. Our results indicated that the placement of horseshoe crabs cannot be explained by missing data, compositional biases, saturation, or ILS. Interrogation of the phylogenetic signal showed that the majority of loci favor the derived placement of Xiphosura over a monophyletic Arachnida. Our analyses support the inference that horseshoe crabs represent a group of aquatic arachnids, comparable to aquatic mites, breaking a long-standing paradigm in chelicerate evolution and altering previous interpretations of the ancestral transition to the terrestrial habitat. Future studies testing chelicerate relationships should approach the task with a sampling strategy where the monophyly of Arachnida is not held as the premise.
Collapse
Affiliation(s)
- Jesús A Ballesteros
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
191
|
Zhao Y, Vinther J, Parry LA, Wei F, Green E, Pisani D, Hou X, Edgecombe GD, Cong P. Cambrian Sessile, Suspension Feeding Stem-Group Ctenophores and Evolution of the Comb Jelly Body Plan. Curr Biol 2019; 29:1112-1125.e2. [PMID: 30905603 DOI: 10.1016/j.cub.2019.02.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/10/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
The origin of ctenophores (comb jellies) is obscured by their controversial phylogenetic position, with recent phylogenomic analyses resolving either sponges or ctenophores as the sister group of all other animals. Fossil taxa can provide morphological evidence that may elucidate the origins of derived characters and shared ancestries among divergent taxa, providing a means to "break" long branches in phylogenetic trees. Here we describe new fossil material from the early Cambrian Chengjiang Biota, Yunnan Province, China, including the putative cnidarian Xianguangia, the new taxon Daihua sanqiong gen et sp. nov., and Dinomischus venustus, informally referred to as "dinomischids" here. "Dinomischids" possess a basal calyx encircled by 18 tentacles that surround the mouth. The tentacles carry pinnules, each with a row of stiff filamentous structures interpreted as very large compound cilia of a size otherwise only known in ctenophores. Together with the Cambrian tulip animal Siphusauctum and the armored Cambrian scleroctenophores, they exhibit anatomies that trace ctenophores to a sessile, polypoid stem lineage. This body plan resembles the polypoid, tentaculate morphology of cnidarians, including a blind gastric cavity partitioned by mesenteries. We propose that comb rows are derived from tentacles with paired sets of pinnules that each bear a row of compound cilia. The scleroctenophores exhibit paired comb rows, also observed in Siphusauctum, in addition to an organic skeleton, shared as well by Dinomischus, Daihua, and Xianguangia. We formulate a hypothesis in which ctenophores evolved from sessile, polypoid suspension feeders, sharing similarities with cnidarians that suggest either a close relationship between these two phyla, a striking pattern of early convergent evolution, or an ancestral condition for either metazoans or eumetazoans.
Collapse
Affiliation(s)
- Yang Zhao
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China
| | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; School of Biological Sciences, University of Bristol, Life Sciences, Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Luke A Parry
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Palaeobiology Section, Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada; Yale Institute for Biosphere Studies, Yale University, New Haven, CT, USA
| | - Fan Wei
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China
| | - Emily Green
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; School of Biological Sciences, University of Bristol, Life Sciences, Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Peiyun Cong
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
192
|
Susko E, Lincker L, Roger AJ. Accelerated Estimation of Frequency Classes in Site-Heterogeneous Profile Mixture Models. Mol Biol Evol 2019; 35:1266-1283. [PMID: 29688541 DOI: 10.1093/molbev/msy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As a consequence of structural and functional constraints, proteins tend to have site-specific preferences for particular amino acids. Failing to adjust for heterogeneity of frequencies over sites can lead to artifacts in phylogenetic estimation. Site-heterogeneous mixture-models have been developed to address this problem. However, due to prohibitive computational times, maximum likelihood implementations utilize fixed component frequency vectors inferred from sequences in a database that are external to the alignment under analysis. Here, we propose a composite likelihood approach to estimation of component frequencies for a mixture model that directly uses the data from the alignment of interest. In the common case that the number of taxa under study is not large, several adjustments to the default composite likelihood are shown to be necessary. In simulations, the approach is shown to provide large improvements over hierarchical clustering. For empirical data, substantial improvements in likelihoods are found over mixtures using fixed components.
Collapse
Affiliation(s)
- Edward Susko
- Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
| | - Léa Lincker
- École Nationale Supérieure de Techniques Avancées, Palaiseau, France.,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
193
|
Mongiardino Koch N. The phylogenomic revolution and its conceptual innovations: a text mining approach. ORG DIVERS EVOL 2019. [DOI: 10.1007/s13127-019-00397-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
194
|
Parks MB, Wickett NJ, Alverson AJ. Signal, Uncertainty, and Conflict in Phylogenomic Data for a Diverse Lineage of Microbial Eukaryotes (Diatoms, Bacillariophyta). Mol Biol Evol 2019; 35:80-93. [PMID: 29040712 PMCID: PMC5850769 DOI: 10.1093/molbev/msx268] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diatoms (Bacillariophyta) are a species-rich group of eukaryotic microbes diverse in morphology, ecology, and metabolism. Previous reconstructions of the diatom phylogeny based on one or a few genes have resulted in inconsistent resolution or low support for critical nodes. We applied phylogenetic paralog pruning techniques to a data set of 94 diatom genomes and transcriptomes to infer perennially difficult species relationships, using concatenation and summary-coalescent methods to reconstruct species trees from data sets spanning a wide range of thresholds for taxon and column occupancy in gene alignments. Conflicts between gene and species trees decreased with both increasing taxon occupancy and bootstrap cutoffs applied to gene trees. Concordance between gene and species trees was lowest for short internodes and increased logarithmically with increasing edge length, suggesting that incomplete lineage sorting disproportionately affects species tree inference at short internodes, which are a common feature of the diatom phylogeny. Although species tree topologies were largely consistent across many data treatments, concatenation methods appeared to outperform summary-coalescent methods for sparse alignments. Our results underscore that approaches to species-tree inference based on few loci are likely to be misled by unrepresentative sampling of gene histories, particularly in lineages that may have diversified rapidly. In addition, phylogenomic studies of diatoms, and potentially other hyperdiverse groups, should maximize the number of gene trees with high taxon occupancy, though there is clearly a limit to how many of these genes will be available.
Collapse
Affiliation(s)
- Matthew B Parks
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Norman J Wickett
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| |
Collapse
|
195
|
Pârvulescu L. Introducing a new Austropotamobius crayfish species (Crustacea, Decapoda, Astacidae): A Miocene endemism of the Apuseni Mountains, Romania. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
196
|
Norekian TP, Moroz LL. Neural system and receptor diversity in the ctenophore
Beroe abyssicola. J Comp Neurol 2019; 527:1986-2008. [DOI: 10.1002/cne.24633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
197
|
Siozios S, Pilgrim J, Darby AC, Baylis M, Hurst GD. The draft genome of strain cCpun from biting midges confirms insect Cardinium are not a monophyletic group and reveals a novel gene family expansion in a symbiont. PeerJ 2019; 7:e6448. [PMID: 30809447 PMCID: PMC6387759 DOI: 10.7717/peerj.6448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND It is estimated that 13% of arthropod species carry the heritable symbiont Cardinium hertigii. 16S rRNA and gyrB sequence divides this species into at least four groups (A-D), with the A group infecting a range of arthropods, the B group infecting nematode worms, the C group infecting Culicoides biting midges, and the D group associated with the marine copepod Nitocra spinipes. To date, genome sequence has only been available for strains from groups A and B, impeding general understanding of the evolutionary history of the radiation. We present a draft genome sequence for a C group Cardinium, motivated both by the paucity of genomic information outside of the A and B group, and the importance of Culicoides biting midge hosts as arbovirus vectors. METHODS We reconstructed the genome of cCpun, a Cardinium strain from group C that naturally infects Culicoides punctatus, through Illumina sequencing of infected host specimens. RESULTS The draft genome presented has high completeness, with BUSCO scores comparable to closed group A Cardinium genomes. Phylogenomic analysis based on concatenated single copy core proteins do not support Cardinium from arthropod hosts as a monophyletic group, with nematode Cardinium strains nested within the two groups infecting arthropod hosts. Analysis of the genome of cCpun revealed expansion of a variety of gene families classically considered important in symbiosis (e.g., ankyrin domain containing genes), and one set-characterized by DUF1703 domains-not previously associated with symbiotic lifestyle. This protein group encodes putative secreted nucleases, and the cCpun genome carried at least 25 widely divergent paralogs, 24 of which shared a common ancestor in the C group. The genome revealed no evidence in support of B vitamin provisioning to its haematophagous host, and indeed suggests Cardinium may be a net importer of biotin. DISCUSSION These data indicate strains of Cardinium within nematodes cluster within Cardinium strains found in insects. The draft genome of cCpun further produces new hypotheses as to the interaction of the symbiont with the midge host, in particular the biological role of DUF1703 nuclease proteins that are predicted as being secreted by cCpun. In contrast, the coding content of this genome provides no support for a role for the symbiont in provisioning the host with B vitamins.
Collapse
Affiliation(s)
- Stefanos Siozios
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Jack Pilgrim
- Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Matthew Baylis
- Institute of Infection and Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections (HPRU-EZI), University of Liverpool, Liverpool, UK
| | - Gregory D.D. Hurst
- Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
198
|
Zhou X, Shen XX, Hittinger CT, Rokas A. Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets. Mol Biol Evol 2019; 35:486-503. [PMID: 29177474 PMCID: PMC5850867 DOI: 10.1093/molbev/msx302] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The sizes of the data matrices assembled to resolve branches of the tree of life have increased dramatically, motivating the development of programs for fast, yet accurate, inference. For example, several different fast programs have been developed in the very popular maximum likelihood framework, including RAxML/ExaML, PhyML, IQ-TREE, and FastTree. Although these programs are widely used, a systematic evaluation and comparison of their performance using empirical genome-scale data matrices has so far been lacking. To address this question, we evaluated these four programs on 19 empirical phylogenomic data sets with hundreds to thousands of genes and up to 200 taxa with respect to likelihood maximization, tree topology, and computational speed. For single-gene tree inference, we found that the more exhaustive and slower strategies (ten searches per alignment) outperformed faster strategies (one tree search per alignment) using RAxML, PhyML, or IQ-TREE. Interestingly, single-gene trees inferred by the three programs yielded comparable coalescent-based species tree estimations. For concatenation-based species tree inference, IQ-TREE consistently achieved the best-observed likelihoods for all data sets, and RAxML/ExaML was a close second. In contrast, PhyML often failed to complete concatenation-based analyses, whereas FastTree was the fastest but generated lower likelihood values and more dissimilar tree topologies in both types of analyses. Finally, data matrix properties, such as the number of taxa and the strength of phylogenetic signal, sometimes substantially influenced the programs’ relative performance. Our results provide real-world gene and species tree phylogenetic inference benchmarks to inform the design and execution of large-scale phylogenomic data analyses.
Collapse
Affiliation(s)
- Xiaofan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, P.R. China
| | - Xing-Xing Shen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| |
Collapse
|
199
|
Bravo GA, Antonelli A, Bacon CD, Bartoszek K, Blom MPK, Huynh S, Jones G, Knowles LL, Lamichhaney S, Marcussen T, Morlon H, Nakhleh LK, Oxelman B, Pfeil B, Schliep A, Wahlberg N, Werneck FP, Wiedenhoeft J, Willows-Munro S, Edwards SV. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 2019; 7:e6399. [PMID: 30783571 PMCID: PMC6378093 DOI: 10.7717/peerj.6399] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 01/07/2019] [Indexed: 12/23/2022] Open
Abstract
Building the Tree of Life (ToL) is a major challenge of modern biology, requiring advances in cyberinfrastructure, data collection, theory, and more. Here, we argue that phylogenomics stands to benefit by embracing the many heterogeneous genomic signals emerging from the first decade of large-scale phylogenetic analysis spawned by high-throughput sequencing (HTS). Such signals include those most commonly encountered in phylogenomic datasets, such as incomplete lineage sorting, but also those reticulate processes emerging with greater frequency, such as recombination and introgression. Here we focus specifically on how phylogenetic methods can accommodate the heterogeneity incurred by such population genetic processes; we do not discuss phylogenetic methods that ignore such processes, such as concatenation or supermatrix approaches or supertrees. We suggest that methods of data acquisition and the types of markers used in phylogenomics will remain restricted until a posteriori methods of marker choice are made possible with routine whole-genome sequencing of taxa of interest. We discuss limitations and potential extensions of a model supporting innovation in phylogenomics today, the multispecies coalescent model (MSC). Macroevolutionary models that use phylogenies, such as character mapping, often ignore the heterogeneity on which building phylogenies increasingly rely and suggest that assimilating such heterogeneity is an important goal moving forward. Finally, we argue that an integrative cyberinfrastructure linking all steps of the process of building the ToL, from specimen acquisition in the field to publication and tracking of phylogenomic data, as well as a culture that values contributors at each step, are essential for progress.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alexandre Antonelli
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Botanical Garden, Göteborg, Sweden
| | - Christine D. Bacon
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Stella Huynh
- Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Graham Jones
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Thomas Marcussen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Hélène Morlon
- Institut de Biologie, Ecole Normale Supérieure de Paris, Paris, France
| | - Luay K. Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bengt Oxelman
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Bernard Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Alexander Schliep
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| | | | - Fernanda P. Werneck
- Coordenação de Biodiversidade, Programa de Coleções Científicas Biológicas, Instituto Nacional de Pesquisa da Amazônia, Manaus, AM, Brazil
| | - John Wiedenhoeft
- Department of Computer Science and Engineering, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
- Department of Computer Science, Rutgers University, Piscataway, NJ, USA
| | - Sandi Willows-Munro
- School of Life Sciences, University of Kwazulu-Natal, Pietermaritzburg, South Africa
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Gothenburg Centre for Advanced Studies in Science and Technology, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
200
|
Borowiec ML. Convergent Evolution of the Army Ant Syndrome and Congruence in Big-Data Phylogenetics. Syst Biol 2019; 68:642-656. [DOI: 10.1093/sysbio/syy088] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/09/2018] [Accepted: 12/15/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marek L Borowiec
- Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, University of Idaho, Moscow, ID 83844, USA
- School of Life Sciences, Social Insect Research Group, Arizona State University, Tempe, AZ 85287, USA
- Department of Entomology and Nematology, One Shields Avenue, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|